
Přemek Brada, Katedra informatiky a výpočetní techniky

FAV ZČU Plzeň

21.5.2012

> Software Components: Origins and Core Concepts

> What is Software Component Anyway:
From Concepts to Visualization

> Software Component Substitutability:
What and How

> Service to People, Institution and Community

> Conclusions

2

> What is Software Component

> How to Evaluate Substitutability

> The Roots and Manifestations of Practicality
 software architecture research as response to growing

complexity of real-world software
 desire to provide answers that have both formal backing

and near-term realistic applicability
 mostly validating on current cutting edge technology

3

hmm, isn’t this
just low-hanging

fruit?

4

> Modularity + Information Hiding
 separate compilation units
 public interface / private implementation

> Assume-Guarantee
 postconditions / functionality guaranteed

<=> assumptions (preconditions / dependencies) valid

> Contract
 syntax (signature)
 semantics (ADT), behaviour (traces)
 extra-functional (QoS)

5

black box

> Compositionality
 [build systems so that] if property valid on parts
 it holds on the whole as well

> Software Architectures
 specify parts
 compose system by rules (styles)

> Dependency Injection
 part declares dependency
 container injects supplier

6

> Software Architecture

> Component

> Component Model

> Component Framework

7

http://www.flickr.com/photos/dorkomatic/5360309441/

> “The set of principal design decisions made
about a system.”

> Component

> Connector

> Composition rules / styles

8

WCOP 1996  Szyperski 2002

> Technical part
 independence, contractual interfaces,

composition

> Market-related part
 third parties, [distribution and] deployment

9

> “A component model specifies the standards
and conventions imposed on developers of
components.” [Bachmann 2000]
 component types (incl. surface features)
 interaction scheme
 composition rules

> “Compliance with a component model is one
of the properties that distinguish components
(…) from other forms of packaged software.“

10

Static x Dynamic

> “A component framework is an
implementation of services that support or
enforce a component model.”
 deployment
 lifecycle
 resource management

11

12

2002 Microsoft
.NET (assemblies)

2006 OSGi 4

1996 Martin
“Dependency Inversion”

2004 Fowler
“Dependency Injection”

201X Java Platform
Module system

1992 Microsoft COM 1999 Enterprise JavaBeans
CORBA Component Model

Modularity

Software Architecture

13

1968 McIlroy
“Mass-Produced
Software Components”

19
70

19
8

0

19
9

0

20
0

0

1972 Parnas
“On the Criteria…”

1992
Perry & Wolf

“Foundations for the Study
of Sw Architectures”

2002 Szyperski “Component Software” 2nd ed.

20
10

2000 Medvidovic & Taylor
“A classification and comparison
framework for software ADLs”

2011 Crnkovic et al.
“A Classification Framework

for Software Component Models”
+ IEEE Software

Special Issue

1995 Magee & Kramer
“Specifying Distributed Sw Arch”

Component-Based Software Eng.

1981 Misra & Chandy, 1985 Stark
“A Proof Technique for Rely/Guarantee Properties”

> If we don’t understand concepts
 we cannot communicate
 things cannot be modeled
 models cannot be manipulated and visualized

> If we don’t capture an aspect
(of module interface)
 we suffer from hidden dependencies
 modularity breaks

14

http://www.flickr.com/photos/tobiasschlitt/2736153191/

15

Szyperski book 2nd
edition, preface

“CBSE is a coherent engineering practice,
but we still haven’t fully identified just

what it is.” [Brown, IEEE Software 1998]

16

About 17 other definitions 1987-2007

> We talk about deployable architectural
components

> A piece of software called a component is
 black-box (opaque) software element
 with completely and precisely specified features

crossing its encapsulation barrier (machine readable way)
 3rd party composable and deployable

in ways not foreseeable by the developer
 model conformant (features etc. not arbitrary)
 + small enough to be reusable,

large enough to be business interesting

17

> Software Engineering core concept:
 modules -> interfaces -> components

> Information hiding enforced

> Goals
 prevent property leaks
 localize change effects
 make software comprehensible
 make software composable, interchangeable

18

> Explicit required role

> In-completeness of specification
 core: don’t declare services
 declarative services: good & complete, not universal

> Weak specification-implementation
consistency
 core: package resolving only

> Moderate enforcement of black box
 bind to declared packages and registered services only
 class leaks from packages deprecated but easy

19

Bundle-SymbolicName: org.openwms.core.integration
Bundle-Vendor: org.openwms
Bundle-Version: 0.0.1.SNAPSHOT
Export-Package: org.openwms.core.integration;version="0.0.1.SNAPSHOT";
 uses:="org.openwms.core.domain,org.openwms.core.domain.system.userman
 agement",org.openwms.core.integration.exception;version="0.0.1.SNAPSH
Import-Bundle: org.openwms.core.domain;version="[0.0.1.SNAPSHOT, 0.0.1
 .SNAPSHOT]",com.springsource.javax.persistence;version="[1.0.0, 1.0.0]"

> Component (bundle)
 flat, dynamic model
 OSGi-like packaging
 Java, Groovy

> Rich base features
 services, events, EFPs, etc.

> Container
 simple run-time framework
 no horizontal services (75kB .jar)
 lifecycle interceptors, AOP and DI support

20

> Enforce information hiding on surface
 no export/import at runtime unless declared

> Prevent unresolvable dependencies
 statically on

install, update

21

> Brada, Přemysl. The CoSi Component Model: Reviving the Black-Box Nature
of Components. In Component-Based Software Engineering. Heidelberg :
Springer, 2008, s. 318-333. ISBN: 978-3-540-87890-2

> Brada, Přemysl. A Look at Current Component Models from the Black-box
Perspective. In 2009 35th Euromicro conference on software engineering
and advanced applications. Los Alamitos : IEEE Computer Society, 2009, s.
388-395. ISBN: 978-0-7695-3784-9

> Šnajberk, Jaroslav; Brada, Přemysl. ENT: A Generic Meta-Model for the
Description of Component-Based Applications. Electronic Notes on
Theoretical Computer Science, 2011, vol.279, pp.59-73, ISSN 1571-0661

> Ježek, Kamil; Brada, Přemysl. 6th International Conference on Evaluation of
Novel Approaches to Software Engineering – Revised Selected Papers,
chapter Formalisation of a Generic Extra-functional Properties Framework.
Accepted for publication in Communications in Computer and Information
Science (CCIS), vol 275, ISSN: 1865-0929. Springer-Verlag, 2012.

22

23

1995 DCE service versions 2010 OSGi Semantic Versioning 1992 Microsoft COM UUIDs

1996 Java Binary Compatibility

1990’s linux package versioning

Modularity

Software Architecture

24

1968 McIlroy
“Mass-Produced
Software Components”

19
70

19
8

0

19
9

0

20
0

0

1972 Parnas
“On the Criteria…”

1992
Perry & Wolf

“Foundations for the Study
of Sw Architectures”

2002 Szyperski “Component Software” 2nd ed.

20
10

2000 Medvidovic & Taylor
“A classification and comparison
framework for software ADLs”

2011 Crnkovic et al.
“A Classification Framework

for Software Component Models”
1995 Magee & Kramer
“Specifying Distributed Sw Arch”

Component-Based Software Eng.

1981 Misra & Chandy, 1985 Stark
“A Proof Technique for Rely/Guarantee Properties”

1987 Liskov
“Data abstraction and Hierarchy”  LSP

1997 Zaremski & Wing
“Specification Matching …”

2007 Desnos et al.
“Automated and
Unanticipated …”

2002 Plášil & Višňovský “Behavior Protocols… ”

1994 Liskov & Wing
“behavioural subtyping”

1990 Cook et al.
“Inheritance is not
Subtyping”

2005 Stuckenholz “Component
Evolution and Versioning
State of the Art”

25

On 4 June 1996, the maiden flight of the Ariane 5 launcher

ended in a failure. Only about 40 seconds after initiation of

the flight sequence, at an altitude of about 3700 m, the launcher

veered off its flight path, broke up and exploded.

…

3.1 FINDINGS

…

m) The inertial reference system of Ariane 5 is essentially common to a system

which is presently flying on Ariane 4. (...) [Its] realignment function (…) was

[retained and allowed] to operate for approx. 40 seconds after lift-off.

...

p) Ariane 5 has a high initial acceleration and a trajectory which leads to a

build-up of horizontal velocity which is five times more rapid than for

Ariane 4. [This generated] the excessive value which caused the inertial system

computers to cease operation.

http://www.esa.int/esapub/bulletin/bullet89/dalma89.htm

26

> “Independent composition by 3rd parties”
=> need to check compatibility

> Very late binding
 static architecture: deployment-time
 dynamic architectures: run-time (or reconfiguration time)

> Can work with distribution form only
 no sources
 weak specifications

> Target platform ≠ development one
 performance, access issues

27

> Formal – how much from contract to include
 syntax  type checks
 semantics (behaviour)  model checking
 extra-func properties  function evaluation

> Informal – how good is the data
 version numbers
 compatibility meta-data

28

Terminology
• substitutability: A <-> B
• compatibility: A -> A’

“Marketing” vs “Semantic”
version IDs

Original Semantic Surface changes

1.0.1 1.0.0 n/a

1.0.3 1.0.1 (none)

1.0.4 1.0.2 (none)

1.2.0 2.0.0 modification

1.2.1 2.0.1 (none)

1.2.2 2.0.2 (none)

1.4.0 2.1.0 extension

1.4.1 2.2.0 extension

“When you only import packages and
require some minimal or maximal
version it means that the developer of
the library has to do very good version
management. If he changes an API and
does not change the major number it
can affect an already deployed
application.

“With maven you already have the same
problems it compile time but with OSGi
it can crash at runtime. We need a whole
set of new tools for this problem.”

-- comment on Peter Kriens’ blog,
6/2009

Reconciling
• formal strength
• practical aspects

(Semantic and Behavioural)
• intensive research
• “state explosion problem”  O(en)

30

> Assignment analogy

 triggers type check
 dynamic type checking allows

unforeseen subtypes

31

Vehicle v := (Car) ford;
Instances of type T1 can
be bound to variables
declared to be of type T
if T1<: T

 short <: long
 Car <: Vehicle

> Formalized (and simplified) model

> Captures
 collection of elements (their types)
 element role (provided, required)

> C = (EP, ER) ; E = { ei | e=(n, T, r, o, a) }
 declared component type
 elements – name, type, role, opt, arity

> Instance  : C ; .P  EP etc.
 not all elements may be always present

32

> Strict
 on component type representations
 used for 1:1 any-time compatibility

> Contextual
 consider actual use of component instance
 include in comparison with A’ or B

33

> Standard subtyping

Ar <: Ac when
 prAr.P, pcAc.P  pr

 <: pc

 rrAr.R , rcAc.R  rr :> rc

 covariance for provided part
 contravariance for required one

34

> “A substitute component
should be usable
whenever the current one
was expected, without
the client noticing it.”
[Wegner, Zdonik, 1988]

ei <: ej


Ti <: Tj

ri = rj
oi vs oj , ai vs aj
depends on r

> Goal
 evaluate through recursion
 store for future reference
 read

> Rules
 none < ins | del

< spec | gen
< mut

 ins  del  mut,
ins  spec  spec,
…

35

diff(a,b) = spec  b <: a

> Initial bindings and Updates that ensure
application consistency

> Relation to framework checks (lifecycle)

36

Export-Package:

 cz.zcu.logging

Import-Package:

 org.gnu.bar

component

impl

type representation type relation

Resolver

Null app Parking CoCoME

Meta-data 28 58 234

Type check 256 1345 10437

37

> Applications
 Null = 2 bundles
 Parking = 6 bundles
 CoCoME = 15/37 bundles

> Felix resolver hook
> Desktop + Android

implementation

> Luminis (NL)
 conceptual cooperation
 Apache ACE project enhancements

> Openmatics s.r.o.
 strict compatibility for API + 3rd party OSGi application

verification
 simulation tests of extra-functional property limits

38

> Strict
 on component type representations
 used for 1:1 any-time compatibility

> Contextual
 consider actual use of component instance
 include in comparison with A’ or B

> Prerequisites
 deployment context as a type

39

> Deployment Context (D) = rest of architecture
 components, bindings (relations, actual types)
 architectural consistency

> Contextual Complement of :A = ’s view of D
as a type

1. obtain

actual
usage

2. invert

40

P

R

effective type

> Deployment Context (D) = rest of architecture
 components, bindings (relations, actual types)
 architectural consistency

> Contextual Complement of :A = ’s view of D
as a type

1. obtain

actual
usage

2. invert

41

 xpP pP  p <: xp

 rR xrR  xr <: r  Ar <:D Ac

Gate v2

Gate

42

> Contextual complement: may
provide less, require more
 AD.P  .P – not all provisions need be used, etc.

> Effective type & context time-dependent (!)

> Substitutability: strict ensures contextual
in any context
 A’ <: A will always fit into D()

43

> How to obtain replacement component type
 binary package, e.g. bytecode [Bauml,Brada 2010]
 Er not included, obviously

> How to obtain context (-> complement)
 query component framework

> Subtyping vs. language rules
 e.g. Java binary compatibility

44

45

EFPs = qualitative characteristics
• performance, resource consumption, reliability
• maintainability, security, usability

Motivation and challenge
• properties “same” but values “context dependent”
• lack of normalization (esp. in CBSE)
• rudimentary support beyond RT and HA domains

Closest model: Palladio

> Component-model independent
 generic meta-model
 primitive, complex and derived properties

 assignment and evaluation framework

> Usage context independent
 declaration (type) – global repository

(time_to_process, integer, {unit:‘‘ms’’, names: {low, avg, high}})

 definition (value) – local repositories
mobile/GPRS: time_to_process: low = 10, high=5000, ...
 data_transferred: low = 1, high=100, ...
desktop/10GEth: time_to_process: low = 1, high=250, ...
 data_transferred: low = 1000, high=1000000, ...

46

NoFun
CQML+

…

47

alignment (“time_to_process”
always the same property)

> Works on complete (to be) composed
architecture graph

1. Create graph
> uses element/feature meta-types, types, roles

2. Find values (depth-first)
> assign direct values

> compute derived and function-defined values (recursion on “R” features)

3. Compare and evaluate
> quality vector using the  function

> results pair-wise and for the whole composition

 48

Can always say “low < high”

> Use incremental evaluation for
 large applications
 architecture reconfiguration (substitution)

49

> Goal
 integrate EFFCC to OSGi => provide EFP support

> Implementation
 framework-tied “assignment module”
 metadata

extensions

50

> Brada, Přemysl. Component Change and Version Identification in SOFA. In Pavelka, J. and Tel, G.
(Eds.): Proceedings of SOFSEM'99, LNCS 1725, Springer-Verlag, 1999. ISSN 0302-9743

> Brada, Přemysl. Metadata support for safe component upgrades. In Proceedings of COMPSAC’02,
the 26th Annual International Computer Software and Applications Conference, Oxford, England,
August 2002. IEEE Computer Society Press. ISBN: 0-7695-1727-7

> Brada, Přemysl; Valenta, Lukáš. Practical verification of component substitutability using subtype
relation. In 32nd Euromicro conference on software engineering and advanced applications (SEAA).
Los Alamitos : IEEE Computer Society, 2006, s. 38-45. ISBN: 0-7695-2594-6

> Bauml, Jaroslav; Brada, Přemysl. Automated Versioning in OSGi: a Mechanism for Component
Software Consitency Guarantee. In 2009 35th Euromicro conference on software engineering and
advanced applications. Los Alamitos : IEEE Computer Society, 2009, s. 428-435. ISBN: 978-0-7695-
3784-9

> Brada, Přemysl. Enhanced type-based component compatibility using deployment context
information. Electronic Notes on Theoretical Computer Science, 2011, vol.279, pp.17-31, ISSN 1571-
0661

> Ježek, K.; Brada, P. Correct Matching of Components with Extra-functional Properties -- A
Framework Applicable to a Variety of Component Models. Proceedings of the Evaluation of Novel
Approaches to Software Engineering (ENASE 2011) conference, SciTePress 2011, s. 155-166. ISBN:
978-989-8425-57-7

51

52

> Meta-modeling
 The ENT meta-model

> Visualization
 Advanced Interactive

Visualization Approach
 Vieport in Diagrams

53

> Simulation-based Approaches
 componentized simulations
 EFP verification

> Meta-data for Resource
Constrained Scenarios
 the CRCE repository

54

55

> (GAČR 1999-2001 „Developing software
components for distributed environment“)

> GAČR 2008-2010 „Methods and models for
consistency verification of advanced component-
based applications“

> GAČR 2011-2013 „Methods of development and
verification of component-based applications
using natural language specifications“

> PhD student grants: Kamil Ježek M/cr, TALENT

56

> Master-level courses (2001-today)
 Principles of / Advanced Software Engineering, Modern Trends in

Software Engineering (seminar)
 Programming Internet Applications, Java Enterprise Technologies

> Bc-level courses, master theses

> PhD students (2006+)
 Kamil Ježek „Extra-Functional Properties Support For a Variety of

Component Models“ (thesis submitted)

> Institutional involvement
 Head of Software Engineering and Info Systems (2011)

57

> Program Committees
 Euromicro SEAA (2007+)
 SOFSEM (2011+)
 QUASOSS, CNSI, Objekty

> Industry Liaisons
 guest lectures, CZJUG
 Enterprise Software Engineering Competence Center (2011)

58

59

> Making compatibility possible in resource-
constrained scenarios
 algorithm optimizations
 rich meta-data use
 pre-computed results of computationally expensive checks

> Visualization of complex software
architectures
 data-supported graph layouts and interaction
 interaction and usability aspects

60

Lukáš Valenta, Jarda Bauml

Kamil Ježek, Jarda Šnajberk, Lukáš Holý

+ all those Bc and Ing students

František, Širo, Ralf, Ivica,

Kung-Kiu, Tomáš, Petr

+ their colleagues

Jana + j + t + k

Him

http://www.flickr.com/photos/sushiraider/6893083210/

