
Přemek Brada, Katedra informatiky a výpočetní techniky 

FAV ZČU Plzeň 

21.5.2012 



 

> Software Components: Origins and Core Concepts 

> What is Software Component Anyway:  
From Concepts to Visualization 

> Software Component Substitutability:  
What and How 

 

> Service to People, Institution and Community 

> Conclusions 

2 



> What is Software Component 

> How to Evaluate Substitutability 

 

> The Roots and Manifestations of Practicality 
 software architecture research as response to growing 

complexity of real-world software 
 desire to provide answers that have both formal backing 

and near-term realistic applicability 
 mostly validating on current cutting edge technology 

3 

hmm, isn’t this 
just low-hanging 

fruit? 



4 



> Modularity + Information Hiding 
 separate compilation units 
 public interface / private implementation 

> Assume-Guarantee  
 postconditions / functionality guaranteed    

<=>  assumptions (preconditions / dependencies) valid 

> Contract 
 syntax (signature) 
 semantics (ADT), behaviour (traces) 
 extra-functional (QoS) 

 

5 

black box 



> Compositionality 
 [build systems so that] if property valid on parts 
 it holds on the whole as well 

> Software Architectures 
 specify parts 
 compose system by rules (styles) 

> Dependency Injection 
 part declares dependency 
 container injects supplier 

6 



> Software Architecture 

> Component 

 

> Component Model 

> Component Framework 

7 

http://www.flickr.com/photos/dorkomatic/5360309441/ 



> “The set of principal design decisions made 
about a system.” 

 

> Component  

> Connector 

> Composition rules / styles 

8 



 

 

 
WCOP 1996  Szyperski 2002 

 

> Technical part  
 independence, contractual interfaces,  

composition 

> Market-related part 
 third parties, [distribution and] deployment 

9 



> “A component model specifies the standards 
and conventions imposed on developers of 
components.”   [Bachmann 2000] 
 component types (incl. surface features) 
 interaction scheme 
 composition rules 

 

> “Compliance with a component model is one 
of the properties that distinguish components 
(…) from other forms of packaged software.“ 

10 

Static  x  Dynamic 



> “A component framework is an 
implementation of services that support or 
enforce a component model.” 
 deployment 
 lifecycle 
 resource management 

11 



12 



2002 Microsoft  
.NET (assemblies) 

2006 OSGi 4 

1996 Martin  
“Dependency Inversion” 

2004 Fowler 
“Dependency Injection” 

201X Java Platform  
Module system 

1992 Microsoft  COM 1999 Enterprise JavaBeans 
CORBA Component Model 

Modularity 

Software Architecture 

13 

1968 McIlroy 
“Mass-Produced  
Software Components” 

19
70

 

19
8

0
 

19
9

0
 

20
0

0
 

1972 Parnas 
“On the Criteria…” 

1992 
Perry & Wolf 

“Foundations for the Study  
of Sw Architectures” 

2002 Szyperski “Component Software” 2nd ed. 

20
10

 

2000 Medvidovic & Taylor 
“A classification and comparison  
framework for software ADLs” 

2011 Crnkovic et al. 
“A Classification Framework  

for Software Component Models” 
+ IEEE Software  

Special Issue 

1995 Magee & Kramer 
“Specifying Distributed Sw Arch” 

Component-Based Software Eng. 

1981 Misra & Chandy, 1985 Stark  
“A Proof Technique for Rely/Guarantee Properties” 



 

> If we don’t understand concepts 
 we cannot communicate 
 things cannot be modeled 
 models cannot be manipulated and visualized 

> If we don’t capture an aspect 
(of module interface) 
 we suffer from hidden dependencies 
 modularity breaks 

14 

http://www.flickr.com/photos/tobiasschlitt/2736153191/ 



15 

Szyperski book 2nd 
edition, preface 

“CBSE is a coherent engineering practice, 
but we still haven’t fully identified just 

what it is.” [Brown, IEEE Software 1998] 



16 

About 17 other definitions 1987-2007 



> We talk about deployable architectural 
components  

> A piece of software called a component is 
 black-box (opaque) software element  
 with completely and precisely specified features  

crossing its encapsulation barrier (machine readable way) 
 3rd party composable and deployable  

in ways not foreseeable by the developer 
 model conformant (features etc. not arbitrary) 
 + small enough to be reusable,  

large enough to be business interesting 

 

 

17 



> Software Engineering core concept:  
  modules -> interfaces -> components  

> Information hiding enforced 

 

> Goals 
 prevent property leaks 
 localize change effects 
 make software comprehensible 
 make software composable, interchangeable 

 
18 



> Explicit required role 

> In-completeness of specification 
 core: don’t declare services 
 declarative services: good & complete, not universal 

> Weak specification-implementation 
consistency 
 core: package resolving only 

> Moderate enforcement of black box 
 bind to declared packages and registered services only 
 class leaks from packages deprecated but easy 

19 

Bundle-SymbolicName: org.openwms.core.integration 
Bundle-Vendor: org.openwms 
Bundle-Version: 0.0.1.SNAPSHOT 
Export-Package: org.openwms.core.integration;version="0.0.1.SNAPSHOT"; 
 uses:="org.openwms.core.domain,org.openwms.core.domain.system.userman 
 agement",org.openwms.core.integration.exception;version="0.0.1.SNAPSH 
Import-Bundle: org.openwms.core.domain;version="[0.0.1.SNAPSHOT, 0.0.1 
 .SNAPSHOT]",com.springsource.javax.persistence;version="[1.0.0, 1.0.0]" 



> Component (bundle) 
 flat, dynamic model 
 OSGi-like packaging 
 Java, Groovy 

> Rich base features 
 services, events, EFPs, etc.  

> Container 
 simple run-time framework 
 no horizontal services (75kB .jar) 
 lifecycle interceptors, AOP and DI support 

 
20 



> Enforce information hiding on surface 
 no export/import at runtime unless declared 

> Prevent unresolvable dependencies 
 statically on  

install, update 

 

21 



> Brada, Přemysl. The CoSi Component Model: Reviving the Black-Box Nature 
of Components. In Component-Based Software Engineering. Heidelberg : 
Springer, 2008, s. 318-333. ISBN: 978-3-540-87890-2 

> Brada, Přemysl. A Look at Current Component Models from the Black-box 
Perspective. In 2009 35th Euromicro conference on software engineering 
and advanced applications. Los Alamitos : IEEE Computer Society, 2009, s. 
388-395. ISBN: 978-0-7695-3784-9 

> Šnajberk, Jaroslav; Brada, Přemysl. ENT: A Generic Meta-Model for the 
Description of Component-Based Applications. Electronic Notes on 
Theoretical Computer Science, 2011, vol.279, pp.59-73, ISSN 1571-0661 

> Ježek, Kamil; Brada, Přemysl. 6th International Conference on Evaluation of 
Novel Approaches to Software Engineering – Revised Selected Papers, 
chapter Formalisation of a Generic Extra-functional Properties Framework. 
Accepted for publication in Communications in Computer and Information 
Science (CCIS), vol 275, ISSN: 1865-0929. Springer-Verlag, 2012. 

 

22 



23 



1995 DCE service versions 2010 OSGi Semantic Versioning 1992 Microsoft  COM UUIDs 

1996 Java Binary Compatibility 

1990’s linux package versioning 

Modularity 

Software Architecture 

24 

1968 McIlroy 
“Mass-Produced  
Software Components” 

19
70

 

19
8

0
 

19
9

0
 

20
0

0
 

1972 Parnas 
“On the Criteria…” 

1992 
Perry & Wolf 

“Foundations for the Study  
of Sw Architectures” 

2002 Szyperski “Component Software” 2nd ed. 

20
10

 

2000 Medvidovic & Taylor 
“A classification and comparison  
framework for software ADLs” 

2011 Crnkovic et al. 
“A Classification Framework  

for Software Component Models” 
1995 Magee & Kramer 
“Specifying Distributed Sw Arch” 

Component-Based Software Eng. 

1981 Misra & Chandy, 1985 Stark  
“A Proof Technique for Rely/Guarantee Properties” 

1987 Liskov 
“Data abstraction and Hierarchy”  LSP 

1997 Zaremski & Wing 
“Specification Matching …” 

2007 Desnos et al. 
“Automated and  
Unanticipated …” 

2002 Plášil & Višňovský “Behavior Protocols… ” 

1994 Liskov & Wing  
“behavioural subtyping” 

1990 Cook et al. 
“Inheritance is not 
Subtyping” 

2005 Stuckenholz “Component 
Evolution and Versioning 
State of the Art” 



25 

On 4 June 1996, the maiden flight of  the Ariane 5 launcher  

ended in a failure. Only about 40 seconds after initiation of   

the flight sequence, at an altitude of  about 3700 m, the launcher 

veered off  its flight path, broke up and exploded.  

… 

3.1 FINDINGS 

… 

m) The inertial reference system of  Ariane 5 is essentially common to a system 

which is presently flying on Ariane 4.  (...)  [Its] realignment function (…) was 

[retained and allowed] to operate for approx. 40 seconds after lift-off. 

... 

p) Ariane 5 has a high initial acceleration and a trajectory which leads to a 

build-up of  horizontal velocity which is five times more rapid than for 

Ariane 4. [This generated] the excessive value which caused the inertial system 

computers to cease operation. 

 

 
http://www.esa.int/esapub/bulletin/bullet89/dalma89.htm 



 

26 



> “Independent composition by 3rd parties”  
=> need to check compatibility 

 

> Very late binding 
 static architecture:  deployment-time 
 dynamic architectures:  run-time (or reconfiguration time) 

> Can work with distribution form only 
 no sources 
 weak specifications 

> Target platform ≠ development one 
 performance, access issues 

 
27 



> Formal – how much from contract to include  
 syntax  type checks 
 semantics (behaviour)  model checking 
 extra-func properties  function evaluation 

> Informal – how good is the data 
 version numbers 
 compatibility meta-data 

28 

Terminology 
•  substitutability: A <-> B 
•  compatibility: A -> A’ 



“Marketing” vs “Semantic” 
version IDs 

Original Semantic Surface changes 

1.0.1 1.0.0 n/a 

1.0.3 1.0.1 (none) 

1.0.4 1.0.2 (none) 

1.2.0 2.0.0 modification 

1.2.1 2.0.1 (none) 

1.2.2 2.0.2 (none) 

1.4.0 2.1.0 extension 

1.4.1 2.2.0 extension 

“When you only import packages and 
require some minimal or maximal 
version it means that the developer of 
the library has to do very good version 
management. If he changes an API and 
does not change the major number it 
can affect an already deployed 
application. 
  
“With maven you already have the same 
problems it compile time but with OSGi 
it can crash at runtime. We need a whole 
set of new tools for this problem.” 
 
-- comment on Peter Kriens’ blog, 
6/2009 



Reconciling  
• formal strength  
• practical aspects 

 
(Semantic and Behavioural) 
• intensive research 
• “state explosion problem”  O(en)  

 
 

30 



> Assignment analogy 
 
 
 

 triggers type check  
 dynamic type checking allows  

unforeseen subtypes 

 

31 

Vehicle v := (Car) ford; 
Instances of type T1  can 
be bound to variables 
declared to be of type T  
if T1<: T 

 
 short <: long 
 Car <: Vehicle 



> Formalized (and simplified) model  

> Captures 
 collection of elements (their types) 
 element role (provided, required) 

 

> C = (EP, ER) ; E = { ei | e=(n, T, r, o, a) } 
 declared component type 
 elements – name, type, role, opt, arity 

> Instance    : C ; .P  EP etc.  
 not all elements may be always present 

32 



> Strict  
 on component type representations 
 used for 1:1 any-time compatibility 

 

> Contextual 
 consider actual use of component instance 
 include in comparison with A’ or B 

33 



> Standard subtyping 

 
Ar <: Ac  when    
 prAr.P, pcAc.P      pr

 <: pc
    

 rrAr.R , rcAc.R      rr :> rc 

 
 covariance for provided part 
 contravariance for required one 

34 

> “A substitute component 
should be usable 
whenever the current one 
was expected, without 
the client noticing it.” 
[Wegner, Zdonik, 1988] 

ei <: ej  
 

Ti <: Tj  

ri = rj 
oi vs oj , ai vs aj 
depends on r 



> Goal 
 evaluate through recursion 
 store for future reference 
 read 

 

> Rules 
 none  <  ins | del   

<  spec | gen   
<  mut  

 ins  del  mut,   
ins  spec  spec, 
…  

35 

diff(a,b) = spec     b <: a 



> Initial bindings and Updates that ensure 
application consistency 

> Relation to framework checks (lifecycle) 

36 

Export-Package:  

  cz.zcu.logging 

Import-Package:  

  org.gnu.bar 

component 

impl 

type representation type relation 

Resolver 



Null app Parking CoCoME  

Meta-data 28 58 234 

Type check 256 1345 10437 

37 

> Applications 
 Null = 2 bundles 
 Parking = 6 bundles 
 CoCoME = 15/37 bundles 

 
> Felix resolver hook 
> Desktop + Android 

implementation 



> Luminis (NL) 
 conceptual cooperation 
 Apache ACE project enhancements 

 

> Openmatics s.r.o. 
 strict compatibility for API + 3rd party OSGi application 

verification 
 simulation tests of extra-functional property limits 

38 



> Strict  
 on component type representations 
 used for 1:1 any-time compatibility 

 

> Contextual 
 consider actual use of component instance 
 include in comparison with A’ or B 

> Prerequisites 
 deployment context as a type 

39 



> Deployment Context (D) = rest of architecture  
 components, bindings (relations, actual types) 
 architectural consistency 

> Contextual Complement of :A = ’s view of D  
as a type 

 
1. obtain 

actual 
usage 

2. invert 
 
 

40 

P 

R 

effective type 



> Deployment Context (D) = rest of architecture  
 components, bindings (relations, actual types) 
 architectural consistency 

> Contextual Complement of :A  = ’s view of D  
as a type 

 
1. obtain 

actual 
usage 

2. invert 
 
 

41 



 
 
 
 
 
 
 

 
   xpP pP    p <: xp

      

   rR xrR     xr <: r       Ar  <:D  Ac 

Gate v2 

Gate 

42 



> Contextual complement: may  
provide less, require more 
 AD.P    .P  –  not all provisions need be used, etc. 

> Effective type & context time-dependent (!) 

 

> Substitutability: strict ensures contextual 
in any context 
 A’ <: A  will always fit into  D() 

43 



> How to obtain replacement component type 
 binary package, e.g. bytecode [Bauml,Brada 2010] 
 Er not included, obviously 

> How to obtain context (-> complement) 
 query component framework 

> Subtyping vs. language rules  
 e.g. Java binary compatibility 

44 



45 

EFPs = qualitative characteristics 
• performance, resource consumption, reliability 
• maintainability, security, usability 

 

Motivation and challenge 
• properties “same” but values “context dependent” 
• lack of normalization (esp. in CBSE) 
• rudimentary support beyond RT and HA domains 

Closest model: Palladio 



> Component-model independent 
 generic meta-model 
 primitive, complex and derived properties 

 
 assignment and evaluation framework 

> Usage context independent 
 declaration (type) – global repository 

(time_to_process, integer, {unit:‘‘ms’’, names: {low, avg, high}} ) 

 definition (value) – local repositories 
mobile/GPRS: time_to_process: low = 10, high=5000, ... 
   data_transferred: low = 1, high=100, ... 
desktop/10GEth: time_to_process: low = 1, high=250, ... 
   data_transferred: low = 1000, high=1000000, ... 

46 

NoFun 
CQML+ 

… 



 

47 

alignment  (“time_to_process” 
always the same property) 



> Works on complete (to be) composed 
architecture graph 

 

1. Create graph 
> uses element/feature meta-types, types, roles 

2. Find values (depth-first) 
> assign direct values 

> compute derived and function-defined values (recursion on “R” features) 

3. Compare and evaluate 
> quality vector using the    function 

> results pair-wise and for the whole composition  

 48 

Can always say “low < high” 



> Use incremental evaluation for 
 large applications 
 architecture reconfiguration (substitution) 

 

49 



> Goal 
 integrate EFFCC to OSGi => provide EFP support 

> Implementation 
 framework-tied “assignment module”  
 metadata 

extensions 

50 



> Brada, Přemysl. Component Change and Version Identification in SOFA. In Pavelka, J. and Tel, G. 
(Eds.): Proceedings of SOFSEM'99, LNCS 1725, Springer-Verlag, 1999. ISSN 0302-9743 

> Brada, Přemysl. Metadata support for safe component upgrades. In Proceedings of COMPSAC’02, 
the 26th Annual International Computer Software and Applications Conference, Oxford, England, 
August 2002. IEEE Computer Society Press. ISBN: 0-7695-1727-7 

> Brada, Přemysl; Valenta, Lukáš. Practical verification of component substitutability using subtype 
relation. In 32nd Euromicro conference on software engineering and advanced applications (SEAA). 
Los Alamitos : IEEE Computer Society, 2006, s. 38-45. ISBN: 0-7695-2594-6 

> Bauml, Jaroslav; Brada, Přemysl. Automated Versioning in OSGi: a Mechanism for Component 
Software Consitency Guarantee. In 2009 35th Euromicro conference on software engineering and 
advanced applications. Los Alamitos : IEEE Computer Society, 2009, s. 428-435. ISBN: 978-0-7695-
3784-9 

> Brada, Přemysl. Enhanced type-based component compatibility using deployment context 
information. Electronic Notes on Theoretical Computer Science, 2011, vol.279, pp.17-31, ISSN 1571-
0661 

> Ježek, K.; Brada, P. Correct Matching of Components with Extra-functional Properties -- A 
Framework Applicable to a Variety of Component Models. Proceedings of the Evaluation of Novel 
Approaches to Software Engineering (ENASE 2011) conference, SciTePress 2011, s. 155-166. ISBN: 
978-989-8425-57-7 

51 



52 



> Meta-modeling 
 The ENT meta-model  

 
 
 

> Visualization 
 Advanced Interactive  

Visualization Approach 
 Vieport in Diagrams 

53 



> Simulation-based Approaches 
 componentized simulations 
 EFP verification 

 

> Meta-data for Resource  
Constrained Scenarios 
 the CRCE repository 

54 



55 



> (GAČR 1999-2001 „Developing software 
components for distributed environment“) 

> GAČR 2008-2010 „Methods and models for 
consistency verification of advanced component-
based applications“ 

> GAČR 2011-2013 „Methods of development and 
verification of component-based applications 
using natural language specifications“ 

 

> PhD student grants: Kamil Ježek M/cr, TALENT 

56 



> Master-level courses (2001-today) 
 Principles of / Advanced Software Engineering, Modern Trends in 

Software Engineering (seminar) 
 Programming Internet Applications, Java Enterprise Technologies 

> Bc-level courses, master theses 
 

> PhD students (2006+) 
 Kamil Ježek „Extra-Functional Properties Support For a Variety of 

Component Models“ (thesis submitted) 

> Institutional involvement 
 Head of Software Engineering and Info Systems (2011) 

57 



> Program Committees 
 Euromicro SEAA (2007+) 
 SOFSEM (2011+) 
 QUASOSS, CNSI, Objekty 

 

> Industry Liaisons 
 guest lectures, CZJUG 
 Enterprise Software Engineering Competence Center (2011) 

 

58 



59 



> Making compatibility possible in resource-
constrained scenarios 
 algorithm optimizations 
 rich meta-data use 
 pre-computed results of computationally expensive checks 

 

> Visualization of complex software 
architectures 
 data-supported graph layouts and interaction 
 interaction and usability aspects 

60 



Lukáš Valenta, Jarda Bauml 

Kamil Ježek, Jarda Šnajberk, Lukáš Holý 

+ all those Bc and Ing students 

 

František, Širo, Ralf, Ivica,  

Kung-Kiu, Tomáš, Petr 

+ their colleagues 

 

Jana + j + t + k 

 

Him 

http://www.flickr.com/photos/sushiraider/6893083210/ 


