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Abstract

Component-based software engineering is concerned with the composition of software
systems from well-defined building blocks, software components. They embody the
principles of modularity and information hiding in perhaps the clearest form so far
and can be in theory treated as pure black boxes, accessed only according to the
specification of their interface. Third-party composition and substitution is one of
the key consequences (and also benefits) of this nature of components.

For these benefits to materialize, the concrete component models must however
adhere to the principles and provide support for safe component substitution. Several
studies have shown that this is not always the case, leading to problems in component
application consistency caused by hard-to-analyse hidden dependencies and weak ve-
rification mechanisms. Safe component substitution is particularly challenging in the
case of component models enabling dynamic evolution of application architecture.

This thesis summarizes author’s contributions to this field of research in two com-
plementary areas. First, it presents the work on conceptually clean component mo-
dels with complete type system representation of component interface amenable to
automated processing. Secondly, it shows that efficient consistency verification me-
chanisms can be built on this basis, utilizing the unique characteristics of components
and helping to reduce application failures caused by incorrect component composition
or architectural reconfigurations, in particular substitution.

The thesis has the form of a collection of nine articles for which the textual part
introduces key concepts and provides a contextual commentary. Four papers were
written solely by the author, the remaining six were co-authored with at least 1/3
contribution by the author. The presented methods were validated by applications
on industrial component frameworks and most of the works contributed to the results
of several national research grants.
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1 Introduction

Component-based software engineering is an area of research and practice concerned
with the composition of software systems from well-defined building blocks, software
components. This term was coined already in 1968 by McIlroy, who noted that “soft-
ware production in the large would be enormously helped by the availability of spectra
of [components]” [60] and called for techniques to produce families of standardized,
reusable, proven software parts with specified properties. His strikingly clear vision
has been slowly becoming a reality during the last 15 years.

The evolution of component-related research began within the investigations of
software architectures [73, 81], with deeper roots in the principles of encapsulation
and modularity [72]. Software architecture research started from the need to formally
describe high-level structure of software systems and lead to defining the notions of
architecture description lanugages (ADLs) [61] and architectural styles [94]. They
define the constituent elements of the architecture, in particular components and
connectors, and the rules of their correct composition.

In this context, components are understood mainly as elements of logical architec-
ture. Soon a recognizable stream of research established itself with the primary focus
on components per se [90, 25]. It looks into their fundamental properties as well as
other aspects like deployment on target systems, lifecycle, or distribution of compo-
nents as artifacts. Thus the notion of component and its impact on system building
has gradually reached better understanding in the research community [91, 34] and
software components began (largely independently of research though) being used for
building industrial software systems [63, 88].

1.1 Motivation and Focus of this Thesis

Software components embody the principles of modularity and information hiding [72]
in perhaps the clearest form so far. They can be in theory treated as pure black boxes
which can be accessed only according to the specification of the component interface.
This approach leads to good compositionality [2] of component-based applications,
including the benefits of easy replacement of application parts.

Any move away from the guiding principles of information hiding then incurs
the risk of diminishing the benefits just mentioned [7]. It is therefore important to
study the properties embodied in component models and work towards cleaner ones to
achieve greater flexibility and stronger compositional properties of component-based
applications.

Third-party composition and substitution are one of the key consequences (and
also benefits) of the black box nature of components [91]. To enable both human-
oriented and programmatic analyses and manipulations of component-based architec-
tures, including composition and substitution, a well-defined formal model of compo-
nent interface is needed. At present however, individual component models mostly
use each its own representation of the component interface – very often an ADL –
depending on the features it can contain [35]. A sufficiently general yet descriptive
meta-model and representation of the interface would improve architectural analyses
and model interoperability.
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Among the most important low-level requirements of component-based applica-
tions is that they preserve their architectural consistency [94] during component de-
ployment and at run time. This implies that the infrastructure should check the
mutual conformance of component interfaces on the client-supplier bindings as well
as of any prospective replacement components. This is a challenging task [92] due to
the rich variety of component interface specification formalisms, ranging from semi-
formal UML models to rigorous ones based e.g. on temporal logic. It is true that the
more precise the specification is the better guarantees of consistency we get; however,
especially the run time consistency checks need to consider computational complexity
and resource usage besides the formal strength of the methods used.

The methods, models and formalisms we present here concern various aspects of
these issues, with the common theme to provide better component specifications and
their handling for improved consistency of component-based architectures in realistic
circumstances. The focus is mainly on the foundational properties of components,
their type-based representations, and safe component substitution.

1.2 Structure of the Document

This thesis summarizes – in the form of a commented collection of published articles
– author’s contributions to the research of component-based software systems in the
above areas. The two following chapters present in detail the concepts, issues and
state of the art concerning the understanding of components as black box entities plus
their interface representation (Chapter 2), and methods for verifying consistency of
component-based architectures (Chapter 3), thus setting author’s work in the context.
They additionaly provide a commentary to the author’s contributions which are listed
in Chapter 4 and included thereafter.

We would finally like to add a few notes on the overall patterns that can be
discerned in this thesis. The contributions are separated into two themes, which is
reflected in the set of collected papers being split into two subsets and denoted by A1-
A4 and B1-B5 identifiers. However, the topics are mutually related and often overlap
which is why there are (very few) forward references within the text. Because the
author believes that research should – besides enhancing the fundamental knowledge
of the world – make impact to the current state of practice, cf. [39], the work on the
properties and methods presented here also lead to several results which stem from
their application to industrial component implementations.
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2 Software Components: Models and Properties

From the onset of software architecture research, the concept of component has been
central to the structural view of architectural models. In this chapter we review the
origins, current the state of the art and author’s contributions concerning (1) the basic
properties of software components and how they are reflected in component model
design, and (2) component interface specifications and their representations amenable
to automated processing.

2.1 General Concepts

The debate about what component is and isn’t from the late 1990s [90, 27] resulted
in the terminology becoming largely settled, as witnessed by the classic textbooks
by Szyperski [91] and Taylor et al [94]. Definitions of the term mostly emphasize
that component should be an independently deployable and composable black-box
software entity which explicitly declares both the features provided to its clients and
required from its deployment environment.

The types of components permissible in an architecture, the particular features
of components and the means of their specification, and the ways in which they can
be interconnected and interact, are prescribed by a component model and enacted by
a component framework [7, 35]. Dozens of component models have been created by
both the research community (e.g. Darwin [56], SOFA [28], ProCom [78] or Fractal
[15]) and industry (e.g. JavaBeans, Koala [97], CORBA Components [68] or OSGi
[69, 71]).

Component models and consequently components can be further distinguished
according to several characteristics. Most importantly, hierarchical models like Dar-
win or Fractal allow a component to be composed of sub-components whereas flat
models like OSGi use only a single level1. Concerning component “weight” the ap-
proaches range from components comprised of a single function (ProCon) through
single-interface components (EJB) to the prevailing case of components with many
features on the interface.

Further, some models use only design-time components which get composed into
a monolithic application (Koala) while most models use components as entities with
separate identity during the whole lifecycle (design, deployment and run-time) [35].
Similarly we can distinguish static architectures (e.g. CORBA Components or original
SOFA) which fix the set of components and their bindings at design or deployment
time, and dynamic architectures like OSGi which allow the architecture to evolve at
run time. This class also relates to service oriented architectures [47] whose dominant
aspect is dynamic lookup, binding and orchestration of services.

Lastly, the specification of component interface or surface2 can have many forms

1It is interesting to note that most industrial component models are flat, with the notable excep-
tion of Koala, whereas research models are almost invariably hierarchical. This may be related to
the need for a manageable framework complexity in the industrial models.

2This term denotes the complete structure of a component visible and accessible from outside; we
prefer it to the more customary term “interface” so as to avoid confusion with the language construct
used in many current programming languages.

13



[35] but in principle presents the software component as a set of (usually named)
features: C = {fi}, i ∈ N. An important discriminator is the role of these features,
that is whether fi is provided to component’s clients or required to be bound for C to
function properly. Using the concept of contract levels [62, 12, 94] we can orthogonally
decompose the specification into four parts:

• syntactic — covers the signature and interface definition language constructs,
declaring the existence of separate features and properties on the component
interface; a foundational (sine qua non) layer;

• semantic — concerns the meaning of features often specficied by the expecta-
tions and effects of individual features, e.g. via pre- and post-conditions;

• interaction — defines the allowed sequences of interactions with the component,
e.g. in the form of state models or event traces;

• extra-functional — quantifies or enumerates various qualities of the component
and/or its individual features.

It is necessary to note that the terminology in this area is not unified: the first
level is alternately called ‘signature level’ [95], semantic level is sometimes called
‘behavioural’ [94], other terms for the interaction level are ‘protocol’ [96] or ‘syn-
chronization’, and extra-functional level is often called ‘quality of service’ (QoS) or
‘non-functional properties’ level. Furthermore, the term “behaviour” is at times used
to denote the semantic level [55] while other times it denotes the interaction level [76].

Below we present the state of the art and discuss in detail the aspects of component
models where the author of this thesis has contributed to the current state of research
– fundamental issues related to component’s foundational properties, their type rep-
resentation, and means of enriching component specifications with extra-functional
properties.

2.2 Black-box Nature of Components

The fact that a key property of components is their black-box nature, essentially
manifestation of the well-known information hiding principle [72], is not agreed upon
uniformly. For example, Crnkovic et al in their study [35] seem to prefer a more
general definition in which the formulation of core component properties is delegated
to the component model.

Since composition is the raison d’être of components, properties and mechanisms
that enable composition are crucial in component model design. Being a black box is
one of them, and its practical manifestation – context dependencies explicitly specified
as required features – is a key supportive abstraction in this respect [91]. To reason
about component properties and to compose components correctly, we should there-
fore rely solely on the specification of their surface (explicitly excluding the internals
of a particular implementation from such reasoning).

It has also been shown that the lack of explicit specification of dependencies leads
to property leaks or hidden dependencies [7, 98]. In such case there exists a binding
of components Cx and Cy which is not established as a relation between a required
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feature fr ∈ Cx and a provided feature fp ∈ Cy. Component models which allow
or even necessitate hidden dependencies – due to weak specification means – pose
problems for studying and modifying application architecture [38, 4].

Several studies analyzed component models for criteria including the black box
nature [79, 106, 35]. Although it is hard to generalize, the results tend to agree
that most research component models satisfy the black-box property quite well while
industrial components tend to be rather weak in this respect (especially those enabling
dynamic architecture evolution).

2.3 Representing Component Interfaces

Once the component can be treated as a black box, it is conceptually easy to obtain a
representation of its complete surface. Such representations are however not usually
formalized beyond the standard notion of a set of features or ports [35] or a meta-
model specific for the given component model [28].

This lack of formal representations has several undesirable consequences. It hin-
ders the evaluation of component properties such as those discussed in Chapter 3 of
this thesis. Finding a suitable component based on actual or expected usage is diffi-
cult without rich models amenable to automated processing [79, 82] which diminishes
their reusability potential. Lastly, dynamic architectures and adaptive systems need
precise and rich representations in order to efficiently create and modify application
architectures [66, 99].

2.4 Enriching Component Specifications with Extra-Functional
Properties

The concept of extra-functional properties (EFPs) like performance or security is
certainly not a new one, as are not the efforts in creating their adequate specifications.
The need for such properties has been long recognized in the software engineering
community, as exemplified e.g. by the FURPS scheme first used by Hewlett-Packard
[44] and incorporated into the IBM Rational Unified Process framework [53] or by the
UML3 QoS and Fault Tolerance profile [1]. The research community has also been
working on EFP formalisms for a considerable time [41, 77, 65, 31, 43] which lead to
a proliferation of models and specifications.

Most recent and current research component models define elements at the syn-
tactic and (less often) semantic or protocol contract levels – interfaces, ports, events,
bahviour protocols, etc. Only very recently researchers have started investigating the
use of extra-functional properties in the context of component models [67, 10, 107, 89],
especially in the real-time and embedded systems domains due to the need to evaluate
timing and performance properties [52]. The need for (and lack of) these properties
has however been recognized from the early years of architectural research [61].

The problem brought by the diversity of proposed EFP formalisms is the lack of
a universally accepted meta-model and resulting interoperability issues. Even within
the individual approaches, authors usually assume internal consistency of the set of
properties attached to a set of software modules. However, this becomes an issue in

3Unified Modeling Language
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the area of component-based systems which enable composition of components from
independent providers. Despite some standardization-related proposals [6], there have
been few research efforts addressing this need for the consistency of EFP definitions
and interpretations across multiple vendors and domains.

2.5 Contribution

Black-box nature Based on our experiences with research component models and
building applications with several industrial ones, we defined a set of criteria to eval-
uate how well the black-box property is supported in the subject area of software
components. They are described in paper A2 [20] which also gives the argument for
the importance of the black-box property.

These criteria were used to analyse a set of component models and mutually in-
fluenced the design and implementation of our experimental component model called
CoSi, described in paper A1 [17]. It preserves the benefits of dynamic, service-oriented
architectures while adhering to the fundamental principles of component-based pro-
gramming.

Component type representation Inspired by the implicit use by advanced com-
ponent models (e.g. SOFA2, CORBA components), we defined a formal model of
the component surface in the form of component type which aggregates the surface
elements (representation of the features and properties at all contract levels) while
preserving the important distinction between provided and required elements [21].

On this base we then defined the novel notion of component’s contextual com-
plement which represents the deployment context of a component in architecture.
Our ENT meta-model [108] uniquely enhances this component type representation
with semantic (ontology based) information and a model of inter-component bind-
ings. Both of these formal models are accompanied by representations that enable
automated processing of their data.

In paper A4 [9] we discuss the issues that can be encountered when the type
representation needs to be obtained from the distribution packages of real-world com-
ponents. Our contribution in this area is the method for reconstructing the type
representation of required elements, since their data types are inherently not defined
within the component’s package. The problems related to obtaining parts of type
information due to model inadequacies are discussed also in paper A2 [20].

Extra-functional property specifications For this level of component interface
contract we have proposed a rich model of extra-functional properties which can be
attached to components and their surface features. The model, formally described
in paper A3 [48], is augmented by a system of federated registries which store EFP
definitions and value assignments. This approach allows to define properties and their
symbolic values in one place and use them in different domains and target components,
while preserving consistent property semantics.

We have subsequently linked the model to component surface specifications [50]
and extended it with algorithms for checking EFP compatibility (discussed in Section
3.2 further below).
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3 Consistency of Dynamically Evolving Component
Architectures

Consistency is a key property of any software system, meaning that its constituent
elements do not contradict each other [94] so that they can cooperate correctly and the
whole system provide the intended functionality. Since the ability to be composed is
central to components [16], it is an important question how to ensure that a resulting
composed architecture is a consistent one.

Dynamically evolving systems are those which allow “modifying the architecture
and enacting those modifications in the system while the system is executing” [61].
They were brought into light by the research into architectures and components e.g. by
the works of Magee and Kramer [57], Plasil et al [75] or the ArchJava team [5]. Their
ability to flexibly change application structure – that is, evolve their architecture at
run time – makes them well suited for many scenarios where larger software systems
are deployed, including the case of service-oriented and adaptive systems.

The downside of these positives is that maintaining consistency and correctness
of dynamically composed architectures is extremely challenging [92, 66]. Unexpected
system failures due to consistency violations are at the same time one of the worst to
prevent, detect and repair; especially in the world of component-based systems which
allow the composition of black-box components independently created by various
providers. Measures that help to prevent consistency violations to arise are therefore
vital for correct functioning and wider success of dynamic component-based systems.

In the following two sections, we first clarify the core concepts used in this area
and then present our contributions set within the wider context of the field.

3.1 Ensuring Architectural Consistency: Basic Concepts

The concept of architectural consistency (also “integrity”) is used at the meta-level
of whole application architecures. Here, architectural styles [3, 94] and component
models define the rules for correct composition of components i.e. the allowed types
of components in a concrete architecture, proper bindings of their elements and the
required global static and dynamic properties [86] of the whole system (e.g. com-
pleteness or liveness). A consistent system is consequently one which is composed
according to such rules.

At the level of bindings between the components (via surface features) within an
architecture, we require contract consistency . This is achieved when the parties of a
contract adhere to all its aspects – are of the same or matching type, their behaviour is
equivalent or in subsumption relation and their properties are in an inclusion relation.
We especially need to verify that the “requires” part of a component’s contract is
satisfied.

Due to the completeness of component surface specification, we can use the assume-
guarantee principle [64, 83] to check each component’s correct functionality within
an architecture – if the component’s “requires” contract part (the assumptions) is
satisfied then it will guarantee the “provides” part according to its specification.
Component-based architectures thus enable compositional reasoning [36, 2] – if we
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establish that each component’s contract is satisfied individually then the whole com-
position is correctly assembled. Thus architectural consistency can be induced from
that of individual components and their bindings.

From a broader perspective, contract consistency ensures the interoperability of
components which can be defined as “the ability of two or more entities to communi-
cate and cooperate despite differences in the implementation language, the execution
environment, or the model abstraction” [96, 82].

A related term, compatibility is sometimes used to denote the same concept; syn-
onyms “conformance” [94] or “horizontal compatibility” [11] are also sometimes used.
However, the term “compatibility” alternately expresses the ability of one revision of
an entity (component) to safely replace a preceding revision, i.e. the notion of “back-
ward compatibility” which in turn is a special case of “vertical compatibility” [ibid.].
Due to this ambiguity, we avoid using the general term unless its meaning is clear
from the context.

Substitutability is finally the most general concept (synonymical with vertical com-
patibility) expressing the ability of a replacement entity CR to fully substitute a cur-
rent one CC (denoted CR � CC); the replacement entity can be unrelated to the
current one in terms of its origin and revision history. As noted above, a special case
of substitutability is backward compatibility . These notions follow the well-founded
general principle of substitutability introduced by Liskov and others [54, 101].

In the area of component-based systems, its applicability is enhanced by the com-
pleteness of (semi)formal component contract specification as discussed in Chapter 2.
This property facilitates the use of matching methods [102] as a basis of the checks.

To ensure architectural consistency during initial composition of a (static) archi-
tecture, the adherence to architectural style respectively component model rules must
be checked, followed by horizontal contract consistency checks. The measures appli-
cable during run time architectural reconfiguration present a wider range of options,
mostly involving vertical substitutability verification:

1. Do not allow run time architecture modifications (e.g. UniCon [80]).

2. Constrain changes to a well-defined set governed by architectural rules and
patterns (e.g. Darwin [56], SOFA2 [46]).

3. Check that the (unconstrained) changes performed do not violate architectural
rules (e.g. C2 [93] or service-oriented architectures [42]).

4. Let the reconfiguration happen and hope for good luck (e.g. plain OSGi [71]).

Our work focuses on the level of individual components and their contracts which
are part of the second and third options as discussed in detail below.

3.2 Horizontal Compatibility

Methods for verifying horizontal compatibility can be primarily classified by the level
of interface contract on which they operate; and at a second tier, by the means used
to determine it — static or dynamic. As Stuckenholz observed [85], the higher up the
contract level, the fewer methods are available as researched results.
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Syntactic compatibility works with the signature part of component interface
specification, in effect with its type representation (see Section 2.3 above). The early
works on software architectures like Shaw et al [80] already mention the need for type
checking at the granularity of architectural descriptions.

Compatibility is determined by establishing subtype relation on bound interface
elements, possibly with relaxations as introduced by Zaremski and Wing [103] and
used by e.g. Flores [40]. Some approaches use a constrained component model or
language subset to facilitate full formal proof of subtyping [104, 14].

Semantic and interaction compatibility has been researched continuously using
many formal models of behaviour (cf. surveys by Bradbury and Zhang et al [24,
105]). The component behaviour model can be specified either a-priori, or derived by
reflection or run-time observation from component’s implementation [59, 30]. Models
on both sides of inter-component bindings are in most methods compared by static
model-checking [32] to establish whether they are in refinement relation and thus
compatible [76, 13]. Alternately, they can serve as a basis for generating a test suite
which is executed to verify compatibility dynamically [58, 40].

There are two well known issues with methods of behavioural compatibility veri-
fication. First, the state space of the models tends to grow exponentially with model
size [33] which makes the methods difficult to use with large systems, often found in
real-world applications. Second, semantic and behavioural specifications are rarely
available for current and near-future component systems [35] apart from specialized
domains (hard real-time, high availability systems).

Extra-functional properties compatibility has only been gaining attention re-
cently, since even the basic prerequisite of EFP models and specifications is an area
of active research. The ability to specify, compare and verify component and ser-
vice extra-functional properties [51, 84, 107] is important from systems point of view,
because EFPs in the areas of performance or security have significant impact on ap-
plication architecture and implementation [89] as well as on the configuration of its
deployment environment.

3.3 Component Substitutability

Verification of component substitutability uses methods linked to the contract levels
discussed above. Furthermore, the methods can vary depending on the size of the cur-
rent and replacement component sets: from basic 1:1 replacement (single component
for single component) to full M:N substitution (larger component sets).

In the general case of an “open world scenario,” there need not be any relation be-
tween the current and replacement components; this requires to check substitutability
in-situ for the pair of components or component sets under substitution. Approaches
for the basic substitutability checks correspond closely to the compatibility verifica-
tion methods discussed above. The M:N substitution has been researched by e.g.
Stuckenholz, Desnos and others [87, 37, 30].

All the methods discussed so far consider the current and replacement components
as closed sets, verifying their substitutability “in isolation”. This approach is limited
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by the strict covariance and contravariance it enforces on the provided and required
sides of component interface, respectively. While alternative approaches have been
proposed based on global (rather than local) integrity checks [86], we are not aware of
advanced methods working at the level of available component interface specifications.

When the replacement component CR is a downstream revision of a current one
CC , general substitutability is reduced to backward compatibility4 which is verified
on component updates – this is useful for the common situation when the component
revision stream is controlled by a single vendor (a “closed world scenario”). Substi-
tutability in this case can be verified a-priori, by establishing backward compatibility
relation between subsequent component revisions, and benefit from correctly set meta-
data indicating compatibility [23]. Among this meta-data, version identifier has the
primary role to indicate both the position of the particular revision in the component
revision sequence and its backward compatibility. This is achieved by employing suit-
able semantic versioning schemes [70]; the current state of practice is however to set
the data manually.

3.4 Contribution

Our work on ensuring consistency for dynamically evolving component-based systems
has its roots in three particular streams of computer science and software engineering
research: (1) Type safety [29], signature matching [103] and behavioural subtyping
[55] which concentrate on the formal models for representing and comparing software
elements at the lower levels of abstraction and finer granularity. (2) The part of the
software architecture research dealing with verification of architecture consistency, e.g.
in the UniCon ADL [80], which emphasize the issue at the coarser-grained level of
software system architectures. (3) Versioning approaches that strive to provide formal
backing for meta-data based compatibility of software modules, like the scheme used
by the Distributed Computing Environment (DCE [74]) or the Gandalf system [45].

Horizontal Compatibility Unlike fully formalized but restricted methods of com-
patibility checking, we have striven for methods that can be used with readily available
specifications/implementations of real-world component models on a wide scale. At
the syntactic level, paper B1 [22] defines the subtype relation on component types
in terms of specification differences. Compatibility verification can use these subtype
checks on the corresponding parts of the component type representation.

These type-based consistency checks make sure that syntactic level consistency
is verified when components are being assembled into an architecture. Consistency
at this level is obviously checked by the compiler for monolithic applications or by
specialized composition tools for static architectures [80], however, it can be easily
broken in systems which employ ad-hoc composition, as we show in paper B1 [22].
This work provides an example that ensuring even just syntactic compatibility is a
challenge especially for industrial systems with dynamically evolving architectures.

4We should note that this is considered a really special case in the area of component systems [92]
which are meant to allow full general substitutability, even though Wallnau argues [100] that full-
featured substitutability might never happen for software components for reasons related to market
forces.
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Our method was implemented in a tool [18, 19] to determine compatibility on inter-
component bindings in the OSGi framework.

Based on our platform-independent EFP specification scheme, presented in Section
2.5, we have proposed a method to ensure inter-component contractual consistency
at the EFP level . Paper B5 [50] introduces the algorithms and methods for checking
that components in an assembly are consistent in terms of extra-functional properties
(see also [49]), as a next stage after their syntactic compatibility has been determined.

Component Substitutability We apply the type-based consistency checks de-
scribed in paper B1 [22] to verify subtype relation on the current and replacement
components at manageable algorithmic complexity. This ensures so called strong sub-
stitutability applicable for run time component replacement. The method has been
validated on an industrial component framework as described in paper B2 [18]; the
work also uncovered the difficulties in integrating consistency checks with the com-
ponent update process. The method for verifying compatibility of extra-functional
properties, discussed above and described in paper B5 [50], can augment the type-
based checks within the same update process scheme.

We introduced the novel notion of contextual substitutability which uses the con-
textual complement of current component during substitutability evaluation. For-
mally defined in paper B4 [21], this method evaluates the actual usage of the current
component’s features as well as the capabilities of its enclosing architecture against
the replacement component. The consequence is that the current and replacement
components need not be in subtype relation yet be safely substitutable, enabling con-
sistency preserving architectural evolution not restricted to strict substitutability on
updates.

Lastly, based on the general type-based consistency checking approach we designed
a method for automated creation of semantically correct component version identifiers,
described in paper B3 [8]. Such identifiers are used to simplify the update process,
as follows. Assume this meta-data is correct, i.e. given a sequence of component
revisions (C1..Cn), it holds for their version identifiers v(Ci) that ∀Ci, Cj ∈ (C1..Cn) :
v(Ci) ≤ v(Cj) iff i ≤ j ∧ Cj � Ci under a suitable ordering relation on v. Then
we can safely verify compatibility during the update process only by comparing the
identifiers, checking v(CC) ≤ v(CR), and similarly for horizontal compatibility in
case of versioned features. Rather than running the verification methods in full with
O(n) computational complexity for simple EFPs or O(en) for checking behavioural
refinement, we thus achieve constant time checks. In an earlier work [23] we also
proposed a more complex meta-data model to further enhance the consistency checks
on update.

3.5 A Note on the Results Applicability

Formal or at least well-founded methods of substitutability verification are rare in
industrial systems. Hard real-time and high availability systems use model checking
to some degree (reasonable from development time point of view), while mainstream
platforms usually support only backward compatibility checks based on manually cre-
ated version data (which we might consider rather primitive). The latter approach has
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been used in such high-profile systems like DCE [74], Solaris libraries [26], Microsoft’s
.NET framework, Linux package distributions and OSGi [71, 70].

Since we have shown the fragility of this approach [19, 9], there is clearly a room
for such substitutability verification methods that are both formally well-founded and
relevant for real world systems. We believe the methods contributed and presented
in this thesis are fully applicable in the wider context of practical solutions.
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4 Collection of Papers

Collection “A”: Software Components: Models and Properties

A1 [17] – Brada, P. The CoSi component model: Reviving the black-box nature of
components. In Proceedings of the 11th International Symposium on Component
Based Software Engineering (CBSE), volume 5282 of Lecture Notes in Computer
Science, October 2008. Springer Verlag. [17]

A2 [20] – Brada, P. A look at current component models from the black-box perspec-
tive. In Proceedings of 35th Euromicro Conference on Software Engineering and
Advanced Applications, Patras, Greece, 2009. IEEE Computer Society Press.

A3 [48] – Jezek, K., Brada, P. and Stepan, P. Towards context independent extra-
functional properties descriptor for components. Electronic Notes in Theoretical
Computer Science, 264(1):55 – 71, 2010.

A4 [9] – Bauml, J. and Brada, P. Reconstruction of type information from Java
bytecode for component compatibility. Electronic Notes in Theoretical Com-
puter Science, 264(4):3 – 18, 2011.

Collection “B”: Consistency of Dynamically Evolving Component Architectures

B1 [22] – Brada, P. and Valenta, L. Practical verification of component substi-
tutability using subtype relation. In Proceedings of the 32nd Euromicro Con-
ference on Software Engineering and Advanced Applications, pages 38–45. IEEE
Computer Society Press, 2006.

B2 [18] – Brada, P. Enhanced OSGi bundle updates to prevent runtime exceptions.
In Proceedings of the 34th Euromicro Conference on Software Engineering and
Advanced Applications, Parma, Italy, September 2008. IEEE Computer Society
Press.

B3 [8] – Bauml, J. and Brada, P. Automated versioning in OSGi: A mechanism for
component software consistency guarantee. In Proceedings of the 34th Euromi-
cro Conference on Software Engineering and Advanced Applications, Patras,
Greece, 2009. IEEE Computer Society Press.

B4 [21] – Brada, P. Enhanced type-based component compatibility using deploy-
ment context information. In Proceedings of Formal Approaches to Software
Component Applications (FESCA), satellite event of European Conference on
Theory and Practice of Software (ETAPS), 2011. Accepted for publication in
Electronic Notes on Theoretical Computer Science, Elsevier.

B5 [50] – Ježek, K. and Brada, P. 6th International Conference on Evaluation of
Novel Approaches to Software Engineering – Revised Selected Papers, chap-
ter Formalisation of a Generic Extra-functional Properties Framework. Ac-
cepted for publication in Communications in Computer and Information Science
(CCIS), ISSN: 1865-0929. Springer-Verlag.
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