
Anchor
boftware

+ -ng the
Proces

BARRY BOEHM, University of Southern California

or a few golden moments in the mid-’70s, i t
appeared that the software field had found a set
of common anchor points: A sequence of mile-
stones around which people could plan, organize,
monitor, and control their projects. These were
the milestones in the waterfall model. They typi-

cally included the completion of system requirements, software
requirements, preliminary design, detailed design, code, unit
test, software acceptance test, and system acceptance test.’
These milestones let companies, government organizations,
and standards groups establish a set of interloclung regulations,
specifications, and standards that covered a full set of software
project needs.

Unfortunately, just as the waterfall model was becoming fully
elaborated, people were finding that its milestones did not fit an
increasing number of project situations. For example, the ideal of
a complete, consistent software requirements specification ran
into the following problems:

I E E E S O F T W A R E 0 7 4 0 7459/96/$05 0 0 0 1 9 9 6 I E E E

+ A pyotogpe is wwtb 100,000 w0i-d.r.
Written requirements specifications try-
ing to describe the look and feel of a user
interface were nowhere near as effective
as a user-interface prototype.

4 Gold platizg. Fixed requirements
specifications in advance of design tend-
ed to encourage elaborate additions.
Asked about their requirements, users
would often reason, “I don’t know if I’ll
need this feature or not, but I might as
well specify it just in case.”

+ Injlexible poin t solutions. Fixed
requirements specifications also tended
to produce point solutions optiniized
around the original problem statement.
l h e s e solutions were frequently difficult
t o modify or t o scale up t o mee t
increased workload levels.

T h e primary initial response to the
waterfall model’s problems was evohttiuz-
my development.’ The central nrilestoiies
here are the releases of increments of
system capability; new content is deter-

mined from experience uith earlier sys-
tem releases. T h e critical milestone is
thus the initial release: a package of soft-
ware with sufficient capability to serve as
a basis for user exercise, evaluation, and
evolutionary improvement. However,
this “initial release” milestone frequently
suffered from three major problems.

+ h@exible poiut-solntions. Frequently,
the initial release is optimized for initial
demonstration- and exploratory-mode suc-
cess. For example, it niay store e v e q h g
in main meinon7 to proiide rapid response
tinie. Then, when users want to transition
to large-scale use, the initial point-solution
architecture nil1 not scale up.

+ High-risk doilnstrennr rtlpnbilities.
The initial release often defers consider-
ations such as security, fault tolerance,
and distributed processing in favor of
providing early functionality and user
interface capabilities. The users may like
the results and expect the deferred con-
siderations to be delivered equally rapid-

ly. This often puts the project in big
trouble because the initial release’s arch-
tecture cannot be easily extended to sup-
port these other key considerations.

+ Off-tuyet initial yelease. Evolution-
ary developers often begin by saying,
“Let’s find out what the user needs by
building an initial release and seeing
what the users want improved.” T h e
lack of initial user-activity analysis fre-
qucntly leads to a first release that is so
far from user needs that they never
bother to learn or use it.

T h e difficulties with the waterfall and
evolutionary- development models have
led to the development of several alter-
native process models, such as risk-dri-
ven, reuse-driven, legacy-driven, demon-
stration-driven, design-to-cost or -sched-
ule, incremental, as well as hybrids of any
of these with the waterfall or evolution-
ary-development models. This prolifera-
tion has made it difficult for software
organizations to establish a common

RECENT INITIATIVES AND THE KEY MILESTONES

Recent software process initiatives have provided guidelines that make it easier to depart from lock-step software processes.
These initiatives-such as i%l-Std-498’ (now e~olving into ELMEEE J-Std-016)’ and ISO/IEC Standard 12207j-are compati-
ble with the life-cycle objectives, life-cycle architecture, and initial operational capability milestones.

J-STD-016. This standard supersedes DoD Std-2 167h and Std-793 SA, which largely focused DoD projects on waterfall-
model software processes. J-Std-016 avoids lock-in to the waterfall model by focusing on required software activities rather
than phases, stating that activities ‘hay overlap, Inay be applied iteratively, may be applied differently to different parts of the
software, and need not be performed in the order listed below.” It provides examples of its application to waterfall, incremen-
tal, and evolutionary processes, with a guidebook that offers more detailed usage examples and tailoring guidelines.

J-Std-01 6’s guidance on system requirements analysis and sl-stem architectural design are quite consistent with the LCO
inilestone. For example, system requirements analysis involves user-input analysis, operational-concept definition, and itera-
tive application of requirements analysis and design. Its guidance on software requirements analysis and software design are
compatible with the LCA milestone, hut the standard misses several opportunities to emphasize the coupling of software
architecture to anticipated requirements evolution and to establish the feasibility rationale as a first-class citizen. It requires
the recording of global design decisions, but relegates their rationale to the “notes” sections in the system and software design
data-item descriptions.

J-Std-016 is also an advance from previous DoD standards in that it covers activities involved in proceeding from software
configuration itern-acceptance tests to the equivalent of the IOC milestone. The standard’s guidelines for application to incre-
mental and evolutionary development also show how these apply to the IOC milestone.

ISO/IEC 12207: IT life-cycle processes. The ISOAEC 12207 standard is similar to J-Std-016 in that it focuses on activities
and core processes-acquisition, supply, development, operation, maintenance, life-cycle process support, and organizational life-
cycle processes-that can be performed sequentially, repeated, and combined according to the project’s choice of life-cycle

J U L Y 1996

frame of reference and common mile- body is off doing different things and
stones for software life-cycle planning, we don’t know how to pull them all
measuring, controlling, and communi-
cating with external organizations. In ~ In analyzing the various results, I dis-
many cases, organizations have remained covered that one of the most consistent
loyal to admittedly flawed models - ~ correlates of success versus failure was
such as the waterfall - because they ~ the degree t o which the projects
believe that the value of any common employed the equivalents of three criti-
framework is worth the price of its cal milestones:
imperfections. + life-cycle objectives,

I together.”

+ life-cycle architecture, and
+ initial operational capability.

~ The management team I established
for the US Defense Department’s
Software Technology for Adaptable,

Since 1988, when I first published i Reliable Systems program successfully
an article on the spiral model,’ I have ’ used the equivalents of these mile-
reviewed many results of its implemen- stones. STARS created a set of software
tation. Several of these implementa- , environment life-cycle process and
tioiis were effective; several were ~ software asset library capabilities sup-
flawed. A not-too-extreme example of ’ porting software reuse and product-line
the latter? “We decided that using the management. As the experience with
spiral model meant that we didn’t have ~ STARS shows, and the box on page 76
to write anything down, so now every- 1 explains, L C O , LCA, and I O C can

ANCHORING THE PROCESS:
THREE MILESTONES

anchor not just individual projects, but
the management of software product
lines with domain architectures and
reusable components. The three mile-
stones are also compatible with recent
process standards initiatives, as the box
on page 74 explains.

life-cycle objectives. As Table I shows,
the key element of the LCO milestone
is stakeholder concurrence on the sys-
tem’s objectives.

Top-level system objectives. T o estab-
lish the LCO’s top-level system objec-
tives, the system’s key stakeholders
must operate as a team to determine
the system boundary by making key
decisions on what will aiid will not be
included in the system. T h e part that
will not be included will therefore be in
the system’s environment: key paraine-
t e n and assumptions on the nature of
users, data volume and consistency,

models. Example models cited in this regard are waterfall, evolutionary builds, preplanned product improvement, and spiral.
ISOIIEC 12207’s provisions for system requirements analysis and architectural design are consistent with the LCO mile-

stone. This standard goes beyond J-Std-016 in emphasizing the need to co-define the system requirements and architecture
and to document the results of feasibility evaluations. It includes, significantly, tlie “feasibility of system architectural design’’
as a requireinents-evaluation criterion and “traceability to” and “consistency with” system requirements as architectural
design-evaluation criteria. The treatment of software requirements analysis and architechiral design activities is similar and
consistent with the LCA milestone.

ISO/IEC 12207 is also consistent with the IOC milestone in its accommodation of builds or increments: its culminating
developmelit-process activities are “software installation” aiid “software acceptance support.” Overall, ISOAEC 12207 goes
farther than J-Std-016 in countering the problem areas associated with the waterfall and evolutionary-development mile-
stones. However, it also misses some opportunities to integrate the architectural rationale into the architecture, to include risk

l resolution as an architecture-evaluation criterion, and to emphasize the most likely directions of requirements change as an
integral part of the requirements.

I E E E S O F T W A R E

CT-LINE M A N A G ~ M ~ N ~

If your organization applies the LCO, LCA, and IOC milestones separately to each individual software project, it will get a
suboptimal oLitcoine: a series of separate “stovepipe” systems with many redundantly developed and iiicompatible compo-
nents. T o achieve the cost, schedule, and quality benefits of sobrare reuse, you need to develop a software product-line man-
agement approach. This involves extending the definitions of the LCO and LCA milestones.

For the LCO milestone, you need to determine the breadth of the product-line domain across which reusable components
will be shared (an example set of breadth choices is transaction processing, message processing, military message processing,
or military medical message processing). For the LC.4 milestone, you need to develop a domain architecture for the product
line, rather than just a life-cycle architecture for an individual s?-stein.

workload levels, interoperating external
systems, and so on. These should be
characterized not just a t their initial
operating levels, but in terms of their
likely evolution, to avoid the point-
solution difficulties.

could have, for example, two workable
cent ra l commercial-off- the-shelf
products with different architectural
implications. However, if you can’t
show any architectural option to be
feasible, you should cancel the project
o r rework its scope and objectives.
Also, keep a record of infeasible
opt ions tha t were considered and
dropped to ensure that others don’t
adopt them in ignorance later.

Ope?*ational comept . T o formulate
the operational concept, stakeholders
work through scenarios4 of how the
system will be used. These scenarios
may involve prototypes, screen layouts,
dataflow diagrams, state transition dia- Lif-cycle plaz. In your initial life-
grams, or other relevant representa- cycle plan, identify the major stakehold-
tions. If the ability to perform in off- ers in the system: they are often the sys-
nominal situations (component fail- tem user, customer, developer, and
ures, crisis simations) is important, you maintainer organizations. If the system
should develop scenarios for these as is closely coupled with another system,
well. You should also work out scenar- the interoperator organization is also a
ios for software and system mainte- key stakeholder. If system safety, priva-
nance and determine which organiza- cy, or other general-public issues are
tions will be responsible for funding important, you should include a repre-
and performing the various functions. ~ sentative of the general public as a
These organizations are some of the stakeholder. T‘i’ithout the concurrence
key stakeholders; their concurrence is of these stakeholders on system require-
needed for realistic and supportable ments, the system may not reflect their
system definitions. needs and will not be a success.

Another critical point of the life-
System ~ e g u i 7 w m n t s . Unlike the cycle plan is to id en ti^ the process

waterfall or related contract-oriented model or models to be used (such as
models, the system requirements here waterfall, evolutionary, spiral, incre-
are not cast-in-concrete specifications. mental, design-to-cost or -schedule,
Instead, you use diem to record the col- o r a hybrid). For the main part of
lective stakeholders’ concurrence on t h e l i fe-cycle p l a n , y o u need a n
essential system features, the details of o r g a n i z i n g pr inc ip le t h a t scales
which can be modified easily and col- down to provide simple plans for
laboratively as new opportunities (reuse simple projects. X good approach is
opportunities, strategic partners), prob- t h e WWWWWHH p r i n c i p l e ,
lems (budget cuts, technical difficulties), which organizes the plan as follows:
o r developments (reorganizations, 1 + Objectives: Why is the system
divestitures) arise. I being developed?

o Milestones and schedules: What

Responsibilities: ,Who is responsi-
ble for a function? W e 7 - e are tliey orga-
nizationally located?

o Approach: HOE will the job be
done, technically and managerially?

Resources: Hozu much of each
resource is needed?

System and software architectuve. 1 will be done by when?
T h e architecture definitions should be ’

sufficiently detailed to support analy-
s i s of the architecture’s feasibility in
suppor t ing system objectives and
requirements. Having more than one
feasible choice of a rch i tec ture is
acceptable a t the L C O stage; you

By using this approach, you can
pack the essential decision content of a
life-cycle plan for a small, straightfor-
ward project into one page or two
briefing charts.

Feasibility vationale. The most impor-
tant thing that you need to achieve for
the L C O milestone is the conceptual
integrity and compatibility of all the
milestone’s components. T h e element
that assures you can do this is the feasi-
bility rationale. Wi th i t , you use an
appropriate combination of analysis,
measurement, prototyping, simulation,
benchmarking, or other techniques to
establish that a system built to die life-
cycle architecture and plans can support
the system’s requirements and opera-
tional concept. Another key element is
the business case analysis, which estab-
lishes whether or not the system can
generate enough business value to be
worth the investment. (A defense sector
counterpart is the cost and operational
effectiveness analysis, or COEA.)

Life-cycle architecture. As T a b l e 1
shows, most of the LCA elements are
elaborations of the LCO elements. The
critical element of the LCA milestone
is the definition of the system and soft-
ware architecture itself. This consists of
defining the system and software com-
ponents (either a hardware component,
a computer program, a data ensemble,
or a combination of such items), con-
nectors (elements tliat mediate interac-
tions among components), configura-
tions (combinations of components and
connectors), and constraints (such as
resource l imitations and shared
assumptions about the operating envi-
ronment) . M a r y Shaw and David
Garlan provide an excellent treatment
of software architectures.’

Other key features of the LCA mile-
stone are

+ specifics of commercial-off-the-
shelf and reused software choices,

J U L Y 1996

which often drive both the architec-
tiire and the requirements;

+ specifics of quality attribute levels
such as response time, reliability, and
security, which are also significant
architecture drivers; and

+ identification of likely directions
of architectural evolution, which
reduces the chance that the architecture
will become obsolete.

As with the L C O milestone, the
most important things stakeholders
shouId achieve with the LCA mile-
stone are

+ a feasibility rationale, which estab-
lishes the consistency and conceptual
integrity of the other elements, and

+ stakeholders' concurrence that the

I E E E S O F T W A R E

LCA elements are compatible with their
objectives for the system.

The LCA milestone differs from the
LCO milestone in that you must have
all the systern's major risks resolved or
a t least covered by an element of the
system's risk management plan. For
large systems, when you pass the LCA
milestone you significantly escalate
both staff level and resource commit-
ments. Proceeding to this stage with
major risks unaddressed has led to dis-
asters for many large projects. Several
good guidelines are available for soft-
ware risk assesment: '

I can't overemphasize how critical
the LCA milestone is to your project
and your career. If you ha-ven't satisfied

the LCA milestone criteria, do izot pro-
ceed in to full-scale development.
Reconvene the stakeholders and work
out a new project plan that will success-
fully achieve the LCA criteria.

LCO/LCA Distinguishing features. T h e
LCO and LCA milestones are distin-
guished from most current software
milestones in that they provide a ratio-
nale for project success that lets them
serve as anchor points across many
typcs of software development.

4 Their focus is not on requirements
snapshots or architecture point solu-
tions, but on requirements and architec-
tural specifications that anticipate and
accommodate system evolution. This is

2. Identify stakeholders’
win conditions.

stakeholders. obiectives, constraints,
alternatives.

7. Review, commitment.
4. Evaluate product

5. Define next level of product
and process - including partitions.

Figure 1. The Wiz- Win spival model.

the reason for calling them the “life
cycle” milestones.

+ Elements can be either specifica-
tions or executing programs with data
(such as prototypes, or COTS products).

+ Specifications are driven by risk
considerations rather than completeness
considerations. Critical interface specifi-
cations should be complete or you will
face integration risks. However, you
should not t ry for complete written
specifications of user interfaces because
they are generally less risky to define via
prototypes.

+ The ndestones are not peculiar to
a single process model. You can move
successfully from an LCO to an LCA via
a waterfall, spiral, evolutionary, o r
COTS-driven process.

t T h e feasibility rationale is an
essential element rather than an optional
add-on.

+ Stakeholder concurrence on the
milestone elements is crucial because it
establishes mutual stakeholder buy-in to
the plans and specifications, and enables
a collaborative team approach to unan-
ticipated setbacks rather than the adver-
s a r d approach in most contract models.

IOC. At the start of the development
cycle, if you skip or err on any part of

the LCO or LCA milestones there are
serious consequences. At the end of the
development cycle, the IOC is the mile-
s tone with the most serious coiise-
quences of neglect. It can help you
avoid the possibility of offering users a
new system that has ill-matched soft-
ware, poor site preparation, or poor
user preparation-all of which are fre-
quent sources of user alienation and
killed projects.

T h e IOC’s key elements are
+ software preparation, including

operational and support software with
appropriate commentary and documen-
tation, data preparation or conversion,
the necessary licenses and rights for
COTS and reused sofixare, and appro-
priate operational readiness testing;

t site preparation, including facili-
ties, equipment, supplies, and C O T S
vendor-support arrangements; and

+ user, operator, and maintainer
preparation, including selection, team-
building, and training for usage, opera-
tions, or maintenance.

The nature of the IOC milestone is
also risk-driven with respect to the sys-
tem objectives determined in the LCO
and L C A milestones. For example,
these objectives drive the trade-off
between IOC date and product quality

(such as that between the safety-critical
space shuttle software and a market-
window-critical commercial software
product) . However , the difference
between these two cases is narrowing as
commercial vendors and users increas-
ingly appreciate t he market risks
involved in buggy products.9

As with LCO and LCA, the IOC
milestone is compatible with multiple
classes of processes. It can be preceded
by combinations of hardware-software
integration, alpha testing, beta testing,
operational test and evaluation, or shad-
ow-mode operation. It can be followed
by any mix of incremental or evolution-
ary developments, preplanned product
improvements, and annual or other
planning and development cycles.

Transitions. T o move from LCA to
IOC you can use any appropriate mix of
waterfall, evolutionary, incremental, spi-
ral, design to cost or schedule, or other
models. Again, this lets your organiza-
tion use the LCO, LCA, and IOC mile-
stones as anchor points without overcon-
straining your intermediate processes.
You can also use tailored versions of the
three milestones to anchor major system
upgrades or reengineering efforts.

Finally, these milestones let you
define endpoints for cost and schedule
estimates. Such est imates become
rather meaningless if you can’t refer-
ence them to well-defined endpoints.
In fact, the primary validation of the
LCO, LCA, and IOC milestones’ rele-
vance to industry and government
came from an effort to define common
milestones for C o c o m o 2.0 cost
model“’ estimates by a working group
of the USC-UCI Cocomo 2.0 affiliates
(see Acknowledgments).

THE WIN-WIN SPIRAL MODEL

The spiral model of software devel-
opment begins each cycle of the spiral
by performing the next level of elabora-
tion of the prospective system’s objec-

J U L Y 1 9 9 6

tives, constraints, and alternatives. As
my review of irnplernentations showed,
a priinaiy difficulty in applying the spj-
ral model has been the lack of explicit
process guidance in determining these
objectives, constraints, and alternatives.
Prasanta Bose and I recendy developed
the Win-Win spiral model” which uses
the Theory U7 (win-win) approach” to
converge on a system’s next-level objec-
tives, constraints, and alternatives. The
Theory 147 approach involves identify-
ing the system’s stakcholders and their
win conditions, and using negotivtion
processes to determine a rnuhially satis-
factory set of objectives, constraints, and
alternatives for the stakeholders.

Figure 1 illustrates the Win-Win
spiral model. The original spiral model
had four sectors, beginning with “estab-
lish next-level objectives, constraints,
alternatives.” The two additional sectors
in each spiral cycle, “identify next-level
stakeholders” and “identify stakehold-
ers’ win conditions,” and the “reconcile
win conditions” portion of the third
sector, provide the collahora tive foun-
dation for the model. They also fill a
missing portion of the original spiral
model, namely, the Incans to answer the
questions “Where do the next-level
objectives and constraints come from?”
and “How do you know they’re the
right ones?” The refined spiral model
also explicitly addresses the need for
concurrent analysis, risk resolution, def-
inition, and elaboration of both the soft-
ware product and the software process.
In particular, the nine-step Theory X V
process translates into the following spi-
ral model extensions:

4 Detewnirze objectives. Identify the
system life-cycle stakeholders arid their
win conditions. Establish initial system
boundaries and external interfaces.

4 Detemnine comtmints. Determine
the conditions under which the system
would produce win-lose or lose-lose
outcomes for some stakeholders.

4 Identih a ~ t d evaluate alter-rzdtives.
Solicit suggestions from stakeholders.
Evaluate them with respect to stake-

I E E E S O F T W A R E

holders’ win conditions SynthesiLe and
negotiate candidate win-win alterna-
tives Analyze, assess, and resolve win-
lo5e or lose-lose nsks.

4 Record tum~nz~nents, and areas to be
left flexible, in the project’s design
record and life-cycle plans.

+ Cycle throzagh the spzr-al Elaborate
win conditions, screen alternatives,
resolve mks, accumulate appropriate
commitments, and develop and execute
downstream plans

and maintamability based on its high-level
shuchire. This implies that the architec-
ture should be strongly coupled wth the
requirements, indicating if it can meet
them. The customer will often have a
longer-range concern: that the architec-
ture will be cornpaable with corporate
software product-lme investments.

Usem need software architectures to
clarify and negotiate their requireinents
for the software being developed, espe-
cially with respect to future product
extensions At the archtectural stage, the
user wll be interested m die impact of the
sofnvare structure on performance, usahll-
ity, and compliance with other systein
attribute reqrurements. As wth the archi-
tecture of buildings, users need to relate
the architecture to their usage scenanos.

Archztects and systems engznee7-s are con-
cerned with translating requirements
into architectural design. Therefore,
their major concern 15 for consistency
between the requirements and the archl-
tecture during the process of clarifying
and negouaung the systeIn reqmrements.

Stakeholder roncerns/milestone criteria.
T h e stakeholder win-win approach
enables us to define a much more thor-
ough set of evaluation criteria for the
LCO, LCA, and IOC mllestoncs. For
example, Table 2 idenufies a set of eval-
uation criteria for the LCA milestone in
terms of thL custorner, user, architect,
system engineer, developer, and main-
tainer staLeholderc.”

ils the table shows, the custmer IS hke-
ly to be concerned mth gemng first-order
esnmates of the software’s cost, reliabihtv,

DezvLopers are concerned with get-
ting an architectural specification that is
detailed enough to satisfy the cus-
toiner's requirements, but not so con-
straining as to preclude equivalent but
different approaches or technologies in
the implementation. They then use the
architecture as a reference for develop-
ing and assembling system components,
and to provide a coinpatibility check for
reusing pre-existing components.

finto-opemtovs use the software archi-
tecture as a basis for understanding (and
negotiating about) the product to keep
it interoperable with existing systems.

T h e maintainei- is concerned with
how easy it will be to diagnose, extend,
or modify the software, given its high-
level structure.

Spiral cycles and up-front milestones.
Table 3 shows a set of three spiral cycles
and their relatlonship to the LCO and
LCA milestone\ LCO occurs after
cycle 1 and LCA occurs after cycle 3
Howevei, other cycle configurauons are
acceptable as well For example, for a
large system, you could have an
exploratory cycle before cycle 1 2nd
could expand cycle 2 into two or more
cycles (not necessarily sequential)

By the LCA milestone, the spiral
cycles have converged on a compatible
set of objectives, coiistraints, and alter-
nauves for the yystein's lite-cycle con-
cept of operauon, requirements, archi-

tecture, and plans. During this spiral
process, these artifacts are defined and
grow in detail as stakeholders identify
and resolve risks and explore artifact
interactions. Once such an LCAA and its
associated artifacts are in place, the pro-
ject can use a watert'dll, spiral, evolu-
tionary, or other selected process to
pursue the system's post-architecture
development and el-olu tion,

STARS PROJECT

The DoD's ST .RS project began in
1982 to address overall DoD software
problems. By 1989, STARS was focused
on developing a set of prototype soft-
w a re - en g i n e er i n g environments , or
SEEs, for DoD use 1-ia contracts with
three prime contractors - Boeing,
IBM, and Unisys - and their suhcon-
tractor teams. Hov-ever, there were
major mismatches between the pro-
gram's planned products and the needs
of its prospective government and indus-
try users, operators, and inaintainers.
These shortfalls xvere in areas such as
tool support, tool integation, tailorabili-
ty, robustness, compatibility with CASE
tools, portability, and maintenance costs,
which the DoD was expected to bear.

In late 1Y89, I assumed responsibili-
ty for the STARS prograin as office
manager a t the Defense Advanced
Research Projects Agency. Along with

the new STARS program manager,
Jack Kramer, I prepared to apply the
spiral model to address the program's
risks. W e found that incompatibilities
among stakeholder expectations consti-
tuted a serious set of risks. W e thus
decided to enhance the spiral model
with a Theory W approach to deter-
mine whether a win-win solution for
STARS was feasible. If not, we would
discontinue the program.

Commercializing STARS. T h e first two
steps in the Win-Win spiral model are to
identify the system's stakeholders and
their associated win conditions. Table 4
summarizes the results of diese steps for
STARS. As often happens, the union of
the stakeholders' win conditions pro-
duced an overconstrained situation. The
STARS prime contractors were govern-
ment contracting companies or divisions,
and were not prepared to commercially
sell and service the STARS SEEs. But
without commercially supported SEEs,
DoD could not afford to operate and
maintain thein. Thus, for the prograin to
remain viable, the STARS prime contrac-
tors had to find commercial coitnterparts
willing to sell and service the STARS
SEES. Evenmally, each was able to do so:
Boeing with DEC, IBM Federal Systems
with IBM Canada, and Unisys Defense
Systems with Hewlett-Packard. (IBM
Federal Systems and Unisys Defense
Systems became part of Loral, which is

J U L Y 1996

now part of Lockheed Martin.)
Howcver, although the commercial

counterparts were very willing to develop
SEEs that would support software devel-
opment in the Don-mandated Ada pro-
gramming language, they were not willing
to devclop all their new SEE software in
Ada, as then required by STARS. Their
rationale was that their existing invest-
ments in C software aiid their need to
support C for commercial SEE customers
made programming in C much more
cost-effective. Because such a cost-benefit
rationale fit DoD’s Ada waiver criteria,
DARPA was able to create a win-win
solution by waiving the Ada programming
requircment for the STARS SEEs.

Winning compromises. A number of
other overconstrained situations were
also resolved into win-win situations for
stakeholders. The revised STARS pro-
gram also included14

+ reorientat ion around much
stronger software process and reuse
support to achieve software quality and
productivity win conditions;

+ inclusion of a set of three demon-
stration projects, jointly sponsored by
DARPA and a D o D Service (Army,
Navy, Air Force), to reduce the risks of
subsequent STARS SEE adoption by
major Service programs.

+ negotiation of a set of common
open STARS SEE interface specifica-
tions, to enable CASE vendors to reach
a larger marketplace and reduce tool
rehosting costs; and

+ addition of several STARS affili-
ates’ programs to provide CASE ven-
dors, DoD Service organizations, aiid
other DoD software contractors with
access to intermediate STARS prod-
ucts and a voice in the STARS evolu-
tion strategy.

STARS milestones. The equivalents of
the common milestones in the STARS
program required different things of
the prime contractors.

+ ’I’he LCO equivalent required the
pritne contractors to develop a set of

“success plans” and get them endorsed required that each prime contractor
by the other major stakeholders in a deliver its STARS environment to a
S’rAFWUsers Workshop.14 ’ D ~ D Service project for use on a repre-

+ The LCA equivalent required the sentative application of significant size:
prime Contractors to define risk-driven T h e IBM system was used on an Air
life-cycle architectures for the STARS Force space system, the Unisys-HP sys-
environments. These included execut- tem was used on an Army signal-pro-
i n g prototypes and rationales that ~ cessing system, and the Boeing-DEC
reflected their responsiveness to the system was used on a Navy flight simu-
life-cycle objectives, such as the corn- lator system.
mo n open - i ii t er fa ce specific a t i oils. ~

(Responsiveness was not total; for exam- ’ Results. Under the management of
ple, commercial considerations outside , John Foreman and Linda Brown, the
DARPA’s control caused Boeing-DEC ~ successor DARPA STARS program
to adopt the Atherton tool-integration managers, the STARS applications are
framework rather than the SoftBench ’ generally reporting significant benefits
framework adopted by IBiM and from using the environment, process,
Unisys-HP .) and product lindreuse capabilities. For

+ T h e STARS IOC milestone example, early results from the Air Force

I E E E S O F T W A R E

Space Command’s STARS application
reported a cost improvement from $140
to $57 per delivered line of code and a
quality improvement from more than 3
to 0.35 errors per thousand delivered
lines of code. The Navy STARS pro-
gram has reported a factor of 3 to 10 in
quality improveinent.”

Several other projects have success-
fully focused on the equivaleiits of these
milestones. For example, the TRW-Air
Force Command Center Processing and
Display System-Replacement (CCPDS-
R) project developed over 500,000 lilies
of complex distributed software within
budget and schedule using an LCO-
LCA-IOC approach with five incre-
ments. The initial increment, including
the executing distributed kernel soft-
ware, was part of the LCA milestone,
which included demonstration of its
ability to meet requirements growth
projections.16 The Microsoft software-
development approach is converging
toward an LCO-type milestone with its
activity-based planning techniques.” It
does not have a strong LCA milestone,
but it does have a strong IOC milestone
preceded by extensive beta testing,
reflecting Microsoft’s increasing appre-
ciation of die risks involved in shipping
software with high defect rates.

o avoid the problems of the previ- T ous model milestones -stake-
holder mismatches, gold plating, inflexi-
ble point solutions, high-risk down-
stream capabilities, and uncontrolled
developments-software projects need a
mix of flcxihility and discipline. T h e
risk-driven content of the LCO, LCA,
a i d IOC milestones let you tailor them
to specific software situations and yet
they reinaiii general enough to apply to
most software projects. And, because
they emphasize stakeholder commit-
ment to shared system objectives, they
can provide your organization a collab-
orative framework for successfully real-
izing software’s most powerful capabili-
ty: its ability to help people and organi-
zations cope with change. +

~ ~~ ~ ~ ~~~~~~~

ACKNOWLEDGMENTS
This research is sponsored by DARPA through Rome Laboratory under contract

F30h02-91-C-0195 and by thc Affiliates of the USC Center for Software Engineering:
Aerospace Corp.. .lir Force Cost Analysis Agency, AT&T, Bellcore, DISA, Electronic Data
Sl-sterns, E-Sj-sterns, Hughes .Arcraft, Interactive Development Environments, Institute for
Defciise Anall-sis, Jet Propulsion Laboratory, Titton Data Systems, Lockheed Martin, Loral
Federal Systems, AIotorola, S o r t l i r o p Grumman, Rational Software, Rockwell
International, Science Applications International, Software Engineering Institute, Software
Productix-ity Consortium. Sun AIicrosysteins, Texas Instruments, T R W , US k r Force
Rome Laboraton; US .Army Research Idmratory, and Xerox.

I also thank Jack Kramer, John Foreman, Linda Brown, and the many STARS partici-
pants; Raghu Singh for his standards insights; and the IEER Sojimui-e reviewers for many
improvements in this paper.

REFERENCES
1. \lr.\~17 Roj-ce, “Jlanaping the Dex-elopment of Large S o h a r e Systems: Concepts and Techniques,”

originallj- published i i i Pioi. L i P r o n . Aug. 1970; currently available in A - o c . 1CSE Y, Ii!,EE/AC,bl, New
York, 1987.

?. D.D. AIcCracken and >I..\. Jackson. “Llfe-C:ycle Concept Considered Harmful,” ACM SWEng.
.\-orer, \pi-. 1982. pp. 29-32.

3. B.\V. Boehm. “.I Spiral 1Iodel of Soh ia re Dei-elopment a n d Enhanceineiit,” Compuier, M a y 1988,

4. J. .\I. Cai-roll. Smi/ii-io-Bnwi Dnigii, John \Vile!- & So
5. 11. Shair and D. Garlan. Sofkcni-e . i i - r h i r c m i i . e . P r s p t c

Englen-ood Cliffs. X.J.. 1996.
6. B.\4-. Boehin, So f i x7 . e Risk . ~ I m i ~ c ~ e ~ i ~ e 7 i r , IEEE CS Press, Los ,.Uamitos, Calif., 19S9,
5. R.N. Charetre. S o f i ~ n r ~ E7igiiieci-iiig Rirk rJ7inl)ai.i m d .Mmagemei7t, McGraw FIiII, New York, 1989.
8. 1 T . J . Carr e t al., “Ta\onoin! -Based Risk Ideiitification,” CMU/SEIL93-TR-06, Software F.ng. Inst.,

9. 1 iA Cusurnaiio and R I\-. Selhj~. \iin.o.wj Seo.et5, The Free Press, New York, 1995.
10. B.IT. Boehm et al., “Cost \lodeis for Future Software Processes: Cocomo 2.0,” Annalr of Sofmnlr

11. B.\T. Boehm and P. Bose. “-4 Collahorative Spiral Software Process Model Based 011 Theory W,”

12. B.17.. Boehm and R. Ross, “Theoq I\- Software Project Alanageinenr: Principles aiid Examples,”

Jlp. 61-72,

(kneg ie Llellon Unii ., Pittshurph, I’enn., 1993.

Eiigiiieei-ii/g. 1 997

Pi-oc. ICSP 3, IEEE Press. S e i \ - I-ork, 1994.

I E E Tr07i5. Sqfktini-e Eiig.. IEEE CS Press, Los Ilamitos, Calif.,July 1989.
icused \T-orksliop on Softwarc .Architectures: issue Paper,” Proc. ICSE 17 TVorizrhop
riiic. IEEF./:XhI. S e n - York. Apr. 1995.

I + . J . Bamhei-ge~-, d., “ST~\RS/Csers 1\hrkshop: Final Report ~ Issues for Discussion Groups,”

15. R.R. 1Iacala. L.D. Stuckey.Jr., and D.C. Gross, “Managing Doinain-Specific, Product Line

16. \ T 7 . E Royce, “TRIT-s :\da Pi-ocess \Iode1 for Incremental Development of Large Software Systems,”

(:A1U/SE1-90-TR-32. Sofnl arc I,hp. Inst . C:amegie ;Clellon Univ., Pittsburgh, Pcim., Dec. 1990.

De\eiopment.” IEEE SoP.oi-,. \la!- 1996. pp. i 7 - h i .

Pmc. ICSE 22. EEE/.XC\l. l e n . J-ork. \lac. 1990, pp. 2-11,

Bar“ Boehm is the TKlV Professor of Software
Eiipineerinp and Director of the Center for Softmare
1,hgineerinp a t the L-nix-crsity of Snutherii Califnrnia.
His current research iiiiol\ es the \VinIVin groupware
s! steni for \oft\\ are requirements nepotiation, arcliitec-
tui-e-based models of software qidi ty attributes, and
the Cocoirio 2.0 cost-estimation model.

L-ni\-ersit! a n d ‘in \IS and PhU in mathematics froin
the L-ni, e w n - of California, Los AngcI~s. I-IC is a fel-
10n of the IEEE aiid the MAA, and a inemher of the
Sational Acadeiny of Engineering.

Boehin r e c e i ~ d a R A in mathernarics froin Harvard

Address questions ahout thic article to Boehm a t the Ccncer for Software Engineering, LJSC, Los Angeles,
CA. 9008‘1-078 I ; hoelim@sunset.usc.edu. Additioiidl information 15 availahlc at http://sunuct.usc.cdu.

J U L Y 1996

mailto:hoelim@sunset.usc.edu
http://sunuct.usc.cdu

