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1. Introduction

After years of research and industrial development, software component
technology [McI68, Szy98, OMG02a] has become well established as an
important approach to engineering complex and flexible software systems.

Yet the functionality provided by current component frameworks is lim-
ited to the basic wiring of components (setting up their interconnections)
and supporting key system-level aspects. They lack easy component com-
position [LvdH02], high level of re-use, and seamless evolution [Ore98]
and version management support.

The thesis shows how current component technology can be enhanced
to answer some of these concerns, by presenting a novel approach to meta-
modelling, version management and controlled substitution of software
components. In this abstract we provide an overview of the open issues
which motivate our work, present its goals, describe the achieved results
and list the contributions made to the component research field.

1.1 Motivation for the Work

The motivation for our work is given by the inadequacies in component
modelling, versioning and substitutability checking.

Component Models and Meta-Models A software component is a coarse
grained black-box software element with contractually specified interface
syntax and semantics [Szy98, MT00], and a component model defines “a
standard to which a set of components must adhere in order to be com-
posable into applications” [LvdH02]. In many component frameworks, it
is defined implicitly or informally (for instance in UniCon [S+95], SOFA
[PBJ98], or Enterprise JavaBeans [Sun01]).

At a more abstract level, a meta-model captures the common aspects of
a set of models in the above meaning. Good meta-models are important
because they define the standard level of practice and technology in their
subject areas – the terminology, structural and semantic features, element
relationships, modelling possibilities etc. The UML Enterprise Distribut-
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ed Object Computing (EDOC) Profile [OMG02b] is a key industrial com-
ponent meta-model which maps well to current component frameworks.
In the research area, several meta-models with interesting features have e-
merged (e.g. by Seyler and Anoirte [SA02], the Fractal framework [C+02],
or Rastofer [Ras02]).

The problem is that these meta-models are mostly straightforward ab-
stractions of the present technology and offer few forward-thinking ideas
to handle future developments — configuration management issues (ver-
sioning, compatibility as a key to configuration consistency), aspects (distri-
bution, location transparency, concurrency, persistence), or the quality of
service properties. Thus they will need to be modified to accommodate up-
coming developments (mobility, emphasis on quality of service) which will
have negative effects on the stability of the technology at large.

Component Versioning Any software component, as a software artefact,
inevitably evolves and changes. Thus several versions of one component
are created during its active life. Compared to versioning used during soft-
ware development [CW98], component versioning faces several distinctive
challenges:

• Component versioning is applied to software elements which are tre-
ated as black boxes, thus version information needs to be available
separately or via standardised introspection interfaces [LC99].

• Different component versions should be easy to select and assemble,
mainly in a (semi-)automated manner. They may be used in multiple
configurations, some of them unforeseen at the time of its creation.

• Component providers cannot govern the use of components after re-
lease to market. Therefore, version information need to be under-
standable, precise, and preferably standardised.

Unfortunately, together with other researchers [BW98, Szy98, SV01] we
find very little support for these component version management functions
in current industrial as well as research component systems. Even in sys-
tems with this support, version identification provides at most a tag to dis-
tinguish versions (this is the case of e.g. CORBA, Java product versioning,
as well as some software packaging tools [OMG02a, Rig02, J+03]). They
mostly use a two- to four-number revision identification scheme, which we
call here the “M.m.µ” (major, minor, micro) scheme, with fuzzy definition
of its parts. Major enhancements (visible to clients) are mostly indicated by
changing the major version number and/or giving the software a different
marketing name, internal enhancements and bug fixes usually lead to some
modifications of minor and/or micro revision number(s).
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The situation may well become serious in the near future if components
are used at a large scale and for a longer period of time. Suitable approa-
ches and tools are therefore required to handle the proliferation of versions
of successful components.

Substitutability and Compatibility Substitution and in particular up-
grade of components is a vital mechanism for maintaining installed appli-
cations up-to-date. The key requirement is that the substitution must not
introduce new problems [WZ88], but rather fix the old ones or enhance the
application.

Currently there are two main classes of solutions dealing with this issue
in similar systems. In the first one, meta-data is provided with each applica-
tion package or component [J+03, Des98, LC00, vdHW02] with its version
identification, information about compatibility with previous versions and
the components depended upon. The problem is that in practice, the meta-
data is usually created manually based on the developer’s knowledge of the
implementation. This is an error-prone process and leads to data that is
either insufficiently informative or time consuming to create.

Several research systems use on the other hand various forms of subtyp-
ing relation [Car97, LW94] to check substitutability, determined by com-
paring (semi-)formal component descriptions [ZW97, VHT00, Nie93]. The
negative aspect of these systems is that the algorithms used in determining
the subtyping relation may have high computational complexity [PV02],
resulting in potential delays. Also, some research systems define relaxed
compatibility levels to increase the chances on substitution but these re-
laxations are designed for a different purpose (e.g. searching [ZW97]) and
their application would reduce the reliablility of the substitution.

1.2 Goals of the Thesis

Motivated by these findings, our work described in the thesis pursues these
primary goals:

Meta-model for Components Develop an open derived component me-
ta-model that would serve as a common denominator in understanding
component specifications and would make it possible to define at least some
of the “penetrating” advanced technological features (flexible visual repre-
sentation, substitutability, version identification) on the the meta-level.

Component versioning Design a scheme for component versioning suit-
able for automated processing and supporting component distribution and
retrieval, while providing all of the traditional functions.
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Component substitutability Define a notion of substitutability suitable
for black-box components, and devise a method for checking whether a
prospective component substitution will not break configuration consisten-
cy. Compatibility shall be considered as a special case of substitutability.

Link between versioning and compatibility In software configuration
management, there is a close link between versioning and configuration
consistency. This work should give an answer how this link can be estab-
lished in the case of black-box components.

1.2.1 Addressing the Goals: The Constraints

Solutions relevant to practice need to offer end-user simplicity, reliability
and standardisation. In the work towards the primary goals we therefore
need to carefully choose suitable approaches and methods. The following
constraints formulate the guidelines for their selection or design that our
work should follow.

Use existing data We should (re)use already existing data including sour-
ce code as much as possible; in particular, we should try not to introduce
new human-entered data in our methods.

Use automated methods There should be as much automation, and as
little additional human effort involved in developing and using compo-
nents as possible. We should strive for automated derivation of information
and automated reasoning based on such data.

Strive for simplicity and readability Aim at creating methods and sys-
tems that are simple, produce or require data that can be read and written
by humans, and that fit well within current frameworks and tools. We be-
lieve people and their knowledge should take precedence over algorithms
even in sophisticated systems.
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2. Contributions of the Thesis

2.1 The ENT Component Meta-model

Despite the differences between different component models, they share
many similarities — separation of interface and implementation, declara-
tion of exported and imported elements, etc. We conducted a study of
several frameworks — SOFA [PBJ98], CORBA Component Model (CCM)
[OMG02a], UniCon [S+95], Han’s model [Han98], and Fractal [C+02] plus
a survey of comparative studies by Shaw [S+95], and Medvidovic and Tay-
lor [MT00]. It shows that current meta-models which describe this common
denominator emphasise the technical aspect of components but provide lit-
tle help in specifying and analysing high-level component properties.

We therefore designed the ENT meta-model which captures the com-
mon component characteristics from the user’s point of view, using appro-
aches that people use when they reason about component interfaces. The
name of our meta-model technically comes from the abbreviation of a key
set of structures — Exports-Needs-Ties — it defines; for brevity, it is refer-
enced as “the ENT model” below.

In ENT, the specification of a given component is seen as a set of el-
ements (functional features like IDL interfaces, and non-functional quality
attributes like SOFA protocols) which define its capabilities. The character-
istics that we as humans are interested in when observing the component
specification are easy to formulate. We formalise them by a faceted classi-
fication system which uses seven facets called dimensions; the term space of
each facet consists of pre-defined identifiers1.

Definition 2.1.1 (ENT classification) The ENT classification system is a
system for faceted classification of component specification elements which uses an
ontology DimensionsENT = {Nature, Kind, Role, Construct, Presence,
Arity, Lifecycle} where the dimensions (facets) are

• Nature = {feature, quality} ∪ Idspec is a basic dimension used to describe
the primary meaning of an element,

1We use the set Idspec = {nil, na, nk, all} ⊂ Identifiers to handle special cases.
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• Kind = {operational, data} ∪ Idspec is a dimension describing the nature
of an element with respect to computational characteristics,

• Role = {provided, required, neutral} ∪ Idspec describes the “orientation”
of an element in component interactions and type relations,

• Construct = {constant, instance, type}∪Idspec describes how an element
is to be interpreted in terms of the specification language syntax,

• Presence = {mandatory, optional} ∪ Idspec denotes whether the compo-
nent interface must contain an element at run-time.

• Arity = {single,multiple} ∪ Idspec denotes how many connections an
element can accept/provide,

• Lifecycle = {development, assembly, deployment, runtime} ∪ Idspec

is a dimension describing the possible phases in component’s lifecycle in which
an element can be meaningfully accessed or used.

The ENT classifier is an ordered tuple (nature, kind, role, construct, pre-
sence, arity, lifecycle) = (d1, d2, . . . , dD) such that di ⊆ dimi, and dimi ∈
DimensionsENT .

2.1.1 Constituents of the Meta-model

The structures which form the ENT model as such start at the lowest level
of specification elements. Its key structures however are aggregate con-
structs — traits and categories — which cluster elements according to their
human-based classification.

Definition 2.1.2 (Specification element) A specification element e found in
the specification of a component M written in language L is a tuple e = (name,
type, tags, inh, metatype, classifier).

A specification element represents a complete information about one
feature or of one component-wide quality attribute. The element is identi-
fied by its name and type; however, in some cases the name may be empty.

The tags item contains a set of phrases with additional declarations per-
taining to the particular element (not to its type). For example, the desig-
nation of an element as readonly or readwrite is captured in the tag access.
The inh item contains, as an ordered n-tuple of identifiers, the fully qual-
ified type name of a component from which the element is inherited. The
name, type, tags and inheritance indication of an element can be obtained
directly by analysing the specification source code.
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frame FAddressBook {

requires:

;

provides:

IAddressBook book;

;

protocol: // abbreviated

};

property short defaultSortOrder;

provides: IAddressSearch search;

::sys::IFileAccess files

readonly          long maxSize

(?book.addPerson … )*

property

name

type

tags

Figure 2.1: Example elements in component specification

The metatype element is a name describing the general type of feature
or quality, such as “interface” or “event”. It is often related to or derived
from the name of the corresponding non-terminal symbol in the grammar
of L. The classifier contains the classification of the element according
to the ENT classification system. The information about meta-type and
classification of an element has to be based on an manual analysis of the
specification language L and the human-perceived meaning of its phrases.

Definition 2.1.3 (Trait) Let CT = (ct1, ct2, ..., ctD) be an ENT classifier. A
specification trait (or just trait in short) of a component M is a tuple t = (name,
metatype, CT , E) where E ⊆ Elements(M) is a set of specification elements
such that ∀ei ∈ E : metatype = ei.metatype∧CT = ei.classifier . (CT is called
trait classifier.)

The notion of trait is a key idea of our meta-model — it is a named
set of specification elements which are equal in terms of their classification
and metatype, i.e. have the same meaning from user’s point of view. (This
differs from language types which group elements with the same structure.)
The consequence is that in ENT , a given concrete component model is
defined by the (fixed) set of its traits.

Definition 2.1.4 (Category) Let fK : (d1, . . . , dD) → Boolean be a boolean
function on ENT classifiers, called the selection function.

A specification trait category (shortly category) of a component M is a tuple
K = (name, fK , T ) in which T ⊆ Traits(M) such that ∀t ∈ T : fK(t.CT ) =
true. A category set is a set of categories {K1,K2, . . . ,Kn} such that ∀t1 ∈ Ki.T,
t2 ∈ Kj .T : t1 6= t2. The expression S = {K1,K2, . . . ,Kn} means a component
specification S structured into n categories.
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Categories group traits which are similar in some high-level aspect(s),
expressed in our model by sharing the values in some of their classifica-
tion dimensions as specified by the category’s selection function fK . For a
defined category set, each trait from the component trait set belongs to at
most one category.

Figure 2.2: Example categories in the FAddressBook SOFA component

For a given specification language, we can define an arbitrary number
of different category sets. These sets, superimposed on a particular com-
ponent specification expressed in traits, then give us completely different
user-defined views of the component (see Figure 2.2).

A key category set most useful for our work, “Exports”, “Needs” and
“Ties” (or “ENT”), captures the view of the component interface which
developers (and some languages as well) use very often — that of ele-
ments provided for others to use (Role = {provided}), of those required
from the environment to ensure proper functionality (Role = {required}),
and those which express the bindings of these two sets together (Role =
{provided, required}).

Restricted Elements and Categories When there is a need to compare
elements in two components, the sets of names contained in the compo-
nents — and referenced in the elements — may differ. It is therefore neces-
sary to compare only those parts of the element declaration that correspond
to a relevant intersection of the sets of names.

We therefore define restricted element e′ = e/A as an element whose
declaration uses only identifiers from the set A and e <: e′; category re-
striction K/A is then an aggregate of such elements. An example of re-
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striction on elements is the protocol restriction operator defined for SOFA
behaviour protocols in [PV02].

2.1.2 Applications

The primary application of the ENT model is the description of current,
and design of new, components and component models. Its novel app-
roach to meta-modelling allows the designers to reason about the desired
usage properties of components, rather than restricting them to the low-
level problems of component wiring.

The ENT-based visual representation of software modules and compo-
nents (see Figure 2.2 on the preceding page) can be helpful in understand-
ing of the software by presenting the interface at various levels of detail
and from different viewpoints in user terms. In search and retrieval, the
ENT model can assist by narrowing the search (e.g. full-text search in des-
criptions, signature matching, and so on) using the classifiers and other
meta-data associated with elements, traits and categories.

Concerning platform applicability, we provide detailed ENT model trait
definitions for the SOFA, CORBA (CCM) and JavaBeans component fra-
meworks. The SOFA CDL for example has four traits of elements in com-
ponent frame specification: “provides”, “requires”, “properties” and “pro-
tocol”. In a similar manner, other component frameworks with IDL-like
specifications or modular languages can utilise the ENT model.

2.2 Component Substitutability and Compatibility

A frequent kind of software modification is component substitution and its
special case, upgrade, that is the replacement of an out-dated version of a
component by a more current one. It is natural to require that after such
substitution, the whole application must function correctly and its behavi-
our must be consistent with that before the change — the new component
must be substitutable for the old one.

In the thesis we present a formal underpinning of methods which test
two components for substitutability a-priori using subtyping-based speci-
fication comparison. Our approach is applicable in scenarios where the
component substitution is fully automated and provides flexibility over pure
subtyping.

2.2.1 Comparing Specifications

The possibility to see and analyse differences between components is a basis
for determining their substitutability. In our work we use a method of com-
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paring the ENT data structures, which gives it the property that the results
are easy to interpret for humans. This contrasts with some “implementa-
tion dependent” approaches to comparing specification, e.g. the “diff ” tool
or DCE interface change rules.

The comparison of component specifications starts at the level of el-
ements and is expressed using a novel subsumes relation. We say that el-
ement ei subsumes element ej (denoted ei � ej) if ei.type <:L ej .type ∧
∀u ∈ ej .tags ∃t ∈ ei.tags : t.name = u.name ∧ t.value <:L u.value.

For traits and categories, the definition of the subsumes relation uses the
subsumption on their contents — name-equivalent trait’s elements must
subsume or be equal, and categorie’s traits likewise.

Definition 2.2.1 (Component subsumption) Assume two components, C1 and
C2, and their specifications structured by the ENT category sets {K1,i} = {E1,
N1, T1} and {K2,j} = {E2, N2, T2}. Let A = Names(C1)∩Names(C2) where
Names(C) denote the set of all identifiers (the e.name parts of elements) that occur
in the specification of component C.

We say that component C1 subsumes component C2 (denoted C1 � C2) if
E1 � E2 ∧ N2 � N1 ∧ T1/A � T2/A.

Element comparison deliberately pays no attention to the element’s
classification, in particular to its role (occurrence on the provided or requi-
red side of component interface). This is accounted for in the component
comparison (see below) where it results in the application of covariant or
contravariant rules to the provided and required elements, respectively.

For easy representation of comparison results we use a the classification
set Differences = {init, none, specialization, generalization, mutation}. Its
values are generated by a polymorphic specification matching function diff :
× → Differences and correspond to the following situations in diff (σ1, σ2):

init if σ1 is not defined, none for equality, specialisation for σ2 � σ1,
generalisation for the reverse, and mutation for incomparability. This
straightforward classification makes it easy to visualise the differences, as
in Figure 2.3.

2.2.2 Substitutability of Components

Our component substitutability is based on the principle coined by [WZ88]:
a subtype (replacement) component should be usable whenever a supertype (the cur-
rent one) was expected, without the client noticing it. Considering compatibility,
we view it as a special case of substitutability applied to subsequent revisions
of a software component.

The principle of substitutability shows that this property does not con-
cern just the two components in question. It tells us that we additionally
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Figure 2.3: ENT-based difference highlighting for CORBA components

need to take into account their use by clients, and from the usage point of
view changes in the provided and required parts of component interface
do not affect substitutability in a uniform way. The situation is unlike most
programming languages where the type of the “replacement” object must
be an exact subtype of the current type.

We therefore define two kinds of component substitutability that deal
with the extent to which the environment is considered: strict and contextu-
al substitutability. Strict substitutability is in fact the usual subtyping-based
one [VHT00], in which component Cr can substitute Cc if Cr � Cc. It is
useful for comparing two components alone, i.e. without any information
about their actual use.

Contextual Substitutability In the evaluation of substitutability, we can
determine the actual run-time architectural environment of the application
in which the component will be bound. This leads to a novel form of sub-
stitutability that takes into account

1. which of the current component’s provided features actually have
bindings to particular required features of other components, and

2. whether the environment provides features which the replacement
component declares as required.

This idea is illustrated by Figure 2.4 on the next page, where e.g. the
new version of HTTPClient requires an additional XMLParser interface that
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Figure 2.4: Context and Component Substitution

is being provided in the environment by an already present parser compo-
nent.

The description of the deployment environment in terms of the ENT
model is called deployment context. It is defined as a pseudo-component
Cx = E′ ∪ N ′ ∪ T ′. The E′ set represents the subset of provided elements
of the current component that are actually bound to other components.
The N ′ set represents the provided elements of other components that can
satisfy the requirements of the replacement one. The T ′ are the current
component’s ties that are related to the bound exports of the component
and the counterparts of its needs available in the context.

The novel kind of substitutability which uses this notion is therefore
termed contextual substitutability.

Definition 2.2.2 () Given a current component Cc and its deployment context
Cx = {E′, N ′, T ′}, the replacement component Cr = {Er, N r, T r} is contextu-
ally substitutable for Cc (modulo renaming of elements n′ ∈ N ′;n′.name = nil)
if Cr � Cx , that is Er � E′ ∧ N ′ � N r ∧ T r/A � T ′/A where A =
Names(Cr) ∩Names(Cx ).

In plain words, the replacement component provides at least the same
features and qualities as are used of the current one in the context, requires
at most what is available from other components, and its ties correspond to
those of the current ones related to the replacement elements. Note that
among other things the definition allows downgrading of provided features
and extension in the required ones, through the definition of deployment
context.

Intuitively, one would expect that strict substitutability implies contex-
tual. This is proven in the following proposition.

Proposition 2.1 (Strict substitutability implies contextual) Let us have two
components Cc and Cr. If Cr is strictly substitutable for Cc, then it is contextually
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substitutable for Cc in any deployment context Cx .
Proof: What we need to prove is that Cc � Cx . From the definition of

context we can easily see that Ec � E′ ∧ N ′ � N c. Let us therefore consider
the ties, for which we want to prove that T c/A � T ′/A with the reduction set
A = Names(Cc) ∩Names(Cx ).

It follows from the definition of context that Names(E′) ⊆ Names(Ec) and
Names(T ′) = Names(T c). Also, for comparing the Ties categories we may safe-
ly lay Names(N ′) = Names(N c) because the “nil” name (added for the avail-
able context’s provided elements not used by Cc) cannot be used by elements in
T c. From these assumptions we get Names(Cx ) ⊆ Names(Cc) and therefore
A = Names(Cx ).

Consequently, we obtain T c/Names(Cx ) � T ′/Names(Cx ) but this is equal
to T ′ � T ′/Names(Cx ). Because Names(Cx ) is neutral relative to reduction of
T ′, we get T ′ � T ′ which holds by Definition ?? and therefore T c/A � T ′/A.

Thus Cc � Cx and, because Cr � Cc was assumed, we prove the claim.

This fact can be useful in certain common cases, e.g. subsequent revi-
sions of a component — we can easily prove strict substitutability at compo-
nent release, store appropriate indication in its meta-data, and use it when
upgrading the component.

Checking substitutability of black-box components using these definiti-
ons should bring clear advantages to substitution and upgrades. We con-
sider the contextual substitutability to be especially useful in cases of big
components with many interfaces, where some of them may be optional,
and in systems consisting of a large number of components.

Since the substitutability definitions use the ENT meta-model struc-
tures, we have created a generic framework for component substitutability
and compatibility, applicable to different technologies and extensible to fu-
ture developments. Our evaluation of substitutability will continue to work
if we modify the specification language by adding new parts of specification,
or devise new classification dimensions.

Partial Substitutability Component’s clients may be interested in the
compatibility of only particular parts of the substituted component’s inter-
face, and/or of only selected aspects of these parts. Orthogonally to the
two types defined above we therefore define a hierarchical system of partial
substitutability levels. The levels were motivated by and clarify the work of
Larsson [LC99].

• Full substitutability All features and qualities are included in the assess-
ment, implying that both syntax and semantics of component inter-
actions is compared.
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• Feature substitutability This medium level concentrates on the syntacti-
cal aspects of the component interface, disregarding the specification
of qualities. For the assessment, a subset F ⊆ Elements(S) of compo-
nent element set is used such that ∀e ∈ F : ({feature}) ∈ e.classifier .

• Data substitutability The least strictness is achieved by considering only
the data features to preserve, as the last resort, the usefulness of data
created by the current component. For the assessment, a subset D ⊆
Elements(S) of component element set is used such that ∀e ∈ D :
({feature}, {data}) ∈ e.classifier .

We can use combinations of substitutability kinds and levels, due to their
orthogonality. Thus we can require e.g. full strict substitutability to ensure
plug-in replacement, or just contextual data substitutability if we know there
are only a few operational bindings that we can adapt.

2.2.3 Backward Compatibility of Components

As we noted in the introduction to this chapter, there is the common case
of component upgrade, where the Cr is actually a downstream revision of
the Cc (with a smaller revision number rev ). This means that both of them
will have the same name. Substitutability between such two components is
commonly called backward compatibility.

We therefore say that component C2 is strictly backward compatible with
C1 if the two components have the same name, rev(C1) < rev(C2), and C2

is strictly substitutable for C1. Similarly, contextual backward compatibility
means that the new revision C2 is contextually substitutable for C1. The
contextual compatibility makes it explicit that newer versions may not be
plug-in replacements for the old ones; in fact, real life sometimes requires
such incompatible changes to happen.

2.3 Revision Identification Scheme for Components

As any piece of software, a component that is successfully used for a period
of time evolves into many revisions which differ in their specifications. We
therefore need a cheme for their identification better than that provided
by common practice and current version control tools, as discussed in the
Introduction and shown in Figure 2.5 on the following page.

Our scheme reconciles the sometimes conflicting needs of the human
developers (readable data for version selection, indication of changes) and
their automated tools (precise data for version graph traversal, compatibi-
lity checks).
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/**
* $RCSFile: AdrBookExample.cdl,v $ $Revision: 1.2.2.2 $
*/
frame FAddressBook
{ ...

Revision: 1.2.2.2 means “this is the second change to this file on a branch
created from the second revision on the trunk.”

Figure 2.5: Meaning of revision identifiers in RCS-based systems

In line with the fundamental positions of the thesis, we design our ver-
sioning scheme as specification-based. It uses component specification as the
primary object of versioning, and at the same time the specification pro-
vides the source data used to compute the revision identification. Further-
more, its novel in that it links the component revision identification to the
information about exactly which parts of the specification are affected by
the change between revisions.

2.3.1 The ENT Revision Identification Scheme

The usage of the ENT model provides us with the opportunity to create
revision identification at several levels of abstraction, rather than a single-
level scheme. In this process, higher (abstract) levels — which are useful for
human understanding — can be derived from lower (detailed) ones, which
have a clear correspondence to individual parts of the specification.

At all levels, the revision of the level is given by its revision marker
which is an ordered tuple of natural numbers in which each has a relation
to a well-defined part of the specification. A (specification-based) revision
identifier is a human readable form of revision marker.

The lowest level of revision markers has component trait set as its object.
It is designed to provide the most detailed information about the evolution
of the component specification with a fixed number of elements. A detailed
revision marker of a component C2 (an immediate ancestor of revision C1)
is a tuple RD = (r1, . . . , rn), ri ∈ N such that ∀tj ∈ Traits(C2) ∃rj ∈ RD :
rj = rev(tj) and ∀tj : rev(tj) = rev(ti) + 1, ti ∈ Traits(C1) iff diff (ti, tj) 6∈
{init, none}.

Component Revision Identification Since component specifications usu-
ally contain a number of traits, detailed revision marker may consist of too
many numbers to be practical for human reading and understanding. Us-
ing the E,N, T category set we obtain a suitable aggregate revision marker.
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The component revision marker of component C2 is therefore a triple
RC(C2) = (rE , rN , rT ), where rE = rev(Er), rN = rev(N r) and rT =
rev(T r). It has all the benefits of a specification-based marker, a balanced
number of elements, a clear relation to the detailed marker data and in ad-
dition fits the pattern of the industry-standard “M.m.µ” revision identifiers.

In certain cases, namely if user-defined data types need to be versioned,
the component revision markers are still overly elaborate. As the most ab-
stract level we therefore define a primitive revision marker as a single revision
number RP (C2) that is incremented upon any ENT-relevant change.

Each level of our revision identification can be derived either directly
from specification comparison or from the markers on the lower level. This
“cascaded” derivation uses the following mechanism: if there is a chan-
ge (increment) in any revision number on the lower level, then the corre-
sponding revision number on the higher level according to the ENT model
aggregation rules is incremented. For example, an increment in rev(ti) of
one trait propagates to the revision number of the category containing ti.

The behaviour of revision identifiers can be characterised by three prop-
erties: idempotence (the same set of changes in C1 must always result in the
same revision marker of C2), differentiation (the derived revision of a com-
ponent cannot have the same revision marker as its predecessor) and mono-
tonicity (the identifiers preserve the time order of revision creation). In the
thesis we prove these properties for our scheme.

2.3.2 Application in the SOFA Framework

In the SOFA framework prototype implementation, the ENT-based revi-
sion information is stored in two places: as part of the CDL specification of
the component (see Figure 2.6) plus in a meta-data attached to its distribu-
tion form.

The structures subject to our versioning scheme are all user-defined
types. The motivation for this rather far-reaching step is the need to handle
the evolution of components at large. Once we allow one name to denote
multiple versions, we have to uniquely identify also all the types it refer-
ences in order to ensure the correctness of their interactions. Except for
component types (frames, which use component revision markers), primi-
tive revision identification is then sufficient.

To be able to reference these versioned types and components, we pro-
pose that type names in SOFA have the form of an URI (Uniform Resource
Identifier, [BLFM98]). This enables us to create structured identifiers which
carry a lot of information yet remain human readable, in contrast to e.g. U-
UIDs used in COM.

The greatest advantage of the ENT revision identification scheme over
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frame FAddressBook
[ @rev = 3.2.1; // automatically generated

@diff= (spec,mut,none); ]
{

provides:
IAddressBook book; // default revision
sofa://com.notscape/ab/IAddressSearch#rev=3 search;

requires:
OfficeApps/IPhoneBook#rev=2 phone;

};

Figure 2.6: Proposed revision identifiers in CDL source

the current state of the art is its blend of algorithmic predictability and com-
prehensibility of meaning. Firstly, the way revision markers and identifiers
are derived ensures idempotence — the same set of changes will always re-
sult in the same marker, unlike RCS-based or manual schemes. Secondly,
the ENT revision identifiers convey clear meaning to humans (developers,
component users) with their correspondence between the place of change
in terms of the ENT model and position in the identifier.

2.3.3 Relating Revision Identification and Compatibility

In many software application installation systems the distribution packages
contain meta-data which describes their purpose, version, dependencies
and compatibility information. It is used for application lookup, installa-
tion, and upgrades 2.

Since components should be easy to use and assemble, improvements
in the automation and reliability of these activities are highly desirable.
In particular, the reliability of upgrades is often checked using an intuitive
rule, that “rev(a) < rev(b) implies that b can substitute a but not vice versa.”
In a simple form (used e.g. in DCE) the rule leads to the plain comparison
of revision numbers to determine substitutability. More complex systems
rely on meta-data with information about the applications’ compatibility,
but even these do not formalise the rule sufficiently.

Our approach to solving upgrade reliability uses meta-data which com-
bines revision data with indications of compatibility between component
revisions. The meta-data of a given component version contain primarily
these elements:

• identification of the component (name, description, . . . );
2Upgrade is a special case of substitution, in which a revision N is substituted by the

revision N + 1 (or N + m).
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• version identification, i.e. the branch, revision and variant identifiers;

• difference indications of this revision against the previous one;

• optionally the revision history, i.e. the path from the first release revi-
sion to the current one;

• optionally the pairwise differences between the current revision and
each revision listed in the history.

The difference indications represent the results of type-based ENT com-
parison of component specifications, using the diff classification values, as
described above. The revision and difference data is contained in two tu-
ples, dENT = (RC , DC) and dT = (RD, DT ). The first are coarse-grained
data: component revision marker and comparison of the E, N , T catego-
ries. The second are the detailed revision marker and trait comparison
results. The revision history is a set H = {dENT,1, dENT,2, . . . , dENT,v−1}
with category-level data of all preceding revisions of the component.

The pairwise differences data is an ordered set {d1,v, . . . , dv−1,v} which
contains category-level differences between each historical revision and the
current one. It can be included to increase the speed and reliability of
compatibility checks if an upgrade of an old revision is performed.

A key contribution of our work is that meta-data with this design explic-
itly state the relation between revisions and their compatibility, and that this
information is obtained reliably and automatically. It can be pre-computed
once (on component release; the diff algorithms often have even exponen-
tial complexity) and stored in a form which allows the checks to run (any
number of times) in linear time. It is used prior to the upgrade to achieve
reliable and at the same time fast substitutability checks.

Metadata Formats In SOFA, the meta-data is present in two places. The
component revision identification and diff is made part of the CDL com-
ponent specification by extending the grammar of the language and its
compiler (see Figure 2.6 on the preceding page). Thus an important part
of the meta-data is accessible in a readable form to the developers directly
in the component specification.

The complete data in XML format is stored in the component distribu-
tion package. It contains all the meta-data elements described above in one
place, and is useful for tools that manipulate the component. A prototype
implementation of SOFA Template Repository uses the meta-data includ-
ed with the components to store them in appropriate places and for user
queries of the repository contents.
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3. Summary

The work contained in the thesis is summarised by its key contributions and
the lessons we have learned during the research.

3.1 Contributions of the Work

The work described in the thesis and in related published articles is based
on the hypothesis that part of the lack of success of components is due to
inadequate component versioning and compatibility evaluation methods.

Its results contribute to the current state-of-the-art in component re-
search and development in the following:

1. It defines an abstract meta-model of component interface which ma-
kes it possible to model components in a wide range of current com-
ponent frameworks [Bra02a, Bra02c]. Furthermore, it can easily ac-
commodate future developments that will result in creating new kinds
of component specifications.

2. It introduces the definitions of and algorithms for a novel notion
of contextual substitutability and compatibility, specifically designed
for black-box software components as parts of architectures [Bra99,
Bra01b, Bra02b].

3. It describes a versioning scheme (revision/release identification) suit-
able for black-box components and providing a precise meaning of
version data [Bra99, Bra01a]; the author is aware of no similar appro-
ach neither in component systems nor in other software development
areas.

4. It clearly defines the (intuitively obvious) relation between component
versioning and compatibility, and shows the advantage of using this
relation in component upgrading [Bra02b].

5. The use of data resulting from normal development processes, name-
ly IDL and source code, is a key aspect which other approaches tend
to neglect or at least do not emphasise.
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3.2 Lessons Learned

During the development of the ideas and methods covered in this thesis we
have learned several lessons.

Component modelling It is fairly easy to extract model information from
IDL or ADL sources, but doing so for component models implemented
directly in programming languages is very difficult (an example is the Jav-
aBeans component model). Component programming and modelling ben-
efits from languages with a direct support of its key abstractions.

Specification language features Various component models provide in-
teresting and/or useful features, but there is no single specification lan-
guage which would support most (if not all) of them. These languages
could (and should) be much richer in their repertoire to achieve better us-
ability of components and improved reliability of their substitution.

Specification-based versioning is needed Until now, component ver-
sioning has been understood as simple technical or marketing tagging.
However, our work reveals that the nature of components — at the same
time design abstractions, language constructs and tradeable items — re-
quires versioning to be integrated into the component (meta-)models and
related languages.
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[BLFM98] Tim Berners-Lee, Roy Fielding, and L. Masinter. Uniform
resource identifiers (URI): Generic syntax. RFC 2396, IETF,
1998.

[BR00] Přemysl Brada and Jan Rovner. Methods of SOFA compo-
nent behavior description. In Proceedings of Information Systems
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