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LECTURE 6: Parameter Estimation

g Introduction
g Parameter Estimation
g Maximum Likelihood
g Bayesian Estimation
g Numerical Examples
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Introduction
g Previous chapters have shown you how to develop decision regions

and classifiers when the underlying density is known
n Bayesian Decision Theory introduced the general formulation
n Quadratic Classifiers covered the case of multi-modal Gaussian data

g In most situations, however, knowledge of the true distributions is not 
available and must be determined from experimental data

n Two approaches are commonplace
g Parameter Estimation (this lecture)
g Non-parametric Density Estimation (the next two lectures)

g Parameter Estimation
n These methods assume a particular form for the density (e.g. Gaussian) so that 

only the parameters (e.g., mean and variance) need to be determined
g Maximum Likelihood
g Bayesian Estimation

g Non-parametric Density Estimation
n These methods do not assume ANY knowledge about the density

g Kernel Density Estimation
g Nearest Neighbor Rule
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Maximum Likelihood vs. Bayesian Parameter Estimation

g Maximum Likelihood
n The parameters are assumed to be FIXED but unknown
n The ML solution seeks the solution that “best” explains the dataset X

g Bayesian Estimation
n The parameters are assumed to be random variables with some (assumed) 

known  a priori distribution
n Bayesian methods seeks to estimate the posterior density p(θ|X) 
n The final density p(x|X) is obtained by integrating out the parameters:

( )[ ]θ|Xpargmaxθ =ˆ

( ) ( ) ( )∫= dθX|θpθ|xpX|xp
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Maximum Likelihood (1)
g Suppose we consider estimating a density function p(x) which 

depends on a number of parameters θ=[θ1, θ2,…θM]T

n For a Gaussian pdf θ1=µ, θ2=σ and p(x)=N(µ, σ)
n To make the dependence on the parameters θ explicit we write p(x|θ)

g Assume that we have a number of examples X={x(1, x(2,… x(N} drawn 
independently from the distribution p(x|θ) (an i.i.d. set)

n Then we can write

n The ML estimate of θ is the value that maximizes the likelihood p(X|θ)

g This corresponds to the intuitively pleasing idea of choosing the value of θ that is most 
likely to give rise to the data!
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Maximum Likelihood (2)
g For analytical purposes it is convenient to work with the log of the 

likelihood
n Since the log is a monotonic function

g Then the Maximum Likelihood estimate of the parameter θ can be 
written as

n Maximizing a sum of terms is always an easier task than maximizing a product 
g To convince yourself, think of computing the derivative of a long product of terms!

n An added advantage of taking logs will become very clear when the distribution 
is Gaussian

( )[ ] ( )[ ]θ|Xplogargmaxθ|Xpargmaxθ ==ˆ

( ) ( )







=








= ∑∏

==

N

1k

(k
N

1k

(k θ|xplogargmaxθ|xplogargmaxθ̂

p(
X|
θ)

lo
g 

p(
X|
θ)

Taking logs

θ̂ θ̂θ θ



Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

6

Example: Gaussian case, µ unknown
g Assume a dataset X={x(1, x(2,… x(N} and a density of the form 

p(x)=N(µ,σ) where the standard deviation σ is known
g What is the Maximum Likelihood estimate of the mean?

n The maxima (or minima) of a function are defined by the zeros of its derivative:

n So the ML estimate of the mean is the average value of the training data, a very  
intuitive result!
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Example: Gaussian case, both µ and σ unknown
g This is a more general case when neither the mean nor the standard 

deviation are known
n Fortunately, the problem can be solved in the same fashion
n In this case, the derivative becomes a gradient since we have two variables

n Solving for θ1 and θ2 yields

g Therefore, the ML of the variance is the sample variance of the dataset, again a very 
pleasing result

n Similarly, it can be shown that the Maximum Likelihood parameter estimates for 
the multivariate Gaussian are also the sample mean vector and sample 
covariance matrix
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Bias and variance (1)
g How good are these estimates? Two measures of “goodness” are 

used for statistical estimates
n BIAS: how close is the estimate to the true value?
n VARIANCE: how much does the estimate change for different runs (e.g. different 

datasets)?

g The bias-variance tradeoff
n In most cases, you can only decrease one of them at the expense of the other 

VARIANCE
θθTRUE
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θθTRUE θθTRUE

LOW BIAS
HIGH VARIANCE

HIGH BIAS
LOW VARIANCE
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Bias of the ML estimate of mean and variance
g What is the bias of the ML estimate of the mean?

n Therefore the mean is an unbiased estimate
g What is the bias of the ML estimate of the variance?

n Thus, the ML estimate of variance is BIASED
g The problem is that the ML estimate of variance uses the ML estimate of the mean 

instead of its true value
n How “bad” is this bias?

g For N→∞ the bias becomes zero asymptotically
g The bias is only noticeable when we have very few samples, in which case we should 

not be doing statistics in the first place
n Notice that MATLAB uses an unbiased estimate of the co-variance 
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Bayesian Estimation (1)
g In the Bayesian approach, our uncertainty about the parameters is 

represented by a pdf
n Before we observe the data, the parameters are described by a prior density p(θ) 

which is typically very broad to reflect the fact that we know little about its true 
value

n Once we obtain data, we make use of Bayes theorem to find the posterior p(θ|X)
g Ideally, we want the data to sharpen the posterior p(θ|X), in other words, reduce our 

uncertainty about the parameters

n BUT keep in mind that our goal is to estimate the density p(x) or, more exactly, 
p(x|X), the density given the evidence provided by the dataset X

( )X|θp
( )θp
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Bayesian Estimation (2)
g Let us derive the theoretical expression of a Bayesian estimate

n From the definition of conditional probability

n P(x|θ,X) is independent of X since knowledge of θ completely specifies the 
(parametric) density.  Therefore

n and, using the theorem of total probability we can integrate θ out:

g The only unknown in this expression is p(θ|X) which, using Bayes rule, becomes:

g Where p(X|θ) can be computed using the i.i.d. assumption

g NOTE: The last three expressions suggest a procedure to estimate p(x|X). This is not 
to say that integration of these expressions is easy!
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Example (1)
g Assume a univariate density where our random variable x is generated 

from a normal distribution with known standard deviation
n Our goal is to find the mean µ of the distribution given some i.i.d. data points 

X={x(1, x(2,… x(N}
n To capture our knowledge about θ=µ, we assume that it also follows a normal 

density with mean µ0 and standard deviation σ0

n We use Bayes rule to develop an expression for the posterior p(θ|X):
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Example (2)
g To understand how Bayesian Estimation changes the posterior as 

more data becomes available, we will find the maximum of p(θ|X)
n The partial derivative with respect to θ=µ is

n which, after some algebraic manipulation, becomes:

g Therefore, as the number N of available data points increases, the estimate of the 
mean µN moves from the initial prior µ0 to the maximum likelihood solution 

n Similarly, the standard deviation σN can be found to be:
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Example (3)
g A numerical example will allow us to develop a better insight about the 

process of Bayesian Estimation
n Assume that the true mean of the distribution p(x) is µ=0.8 with standard 

deviation σ=0.3
g In reality we would not know the true mean, µ=0.8, we are just “playing God”

n We generate a number of examples from this distribution
n To capture our lack of knowledge about the mean, we assume a normal prior 

p0(θ) µ0=0.0 and σ0=0.3
g The figure below shows the posterior p(µ|X)

n As the number of training examples increases, the estimate µN approaches its 
true value (µ=0.8) and the spread σN (or uncertainty in the estimate) decreases
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Maximum Likelihood vs. Bayesian Estimation
g What is the relationship between these two estimates?

n By definition, p(X|θ) peaks at the ML estimate.  If this peak is relatively sharp and 
the prior is broad, then the integral below will be dominated by the region around 
the ML estimate

g Therefore, the Bayesian estimate will approximate the ML solution
n As we have seen in the previous example, when the number of available data 

increases, the posterior p(θ|X) tends to sharpen

g Therefore, the Bayesian estimate of p(x) will approach the ML solution as N→∞
g In practice, only when we have a limited number of observations will the two 

approaches yield different results
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