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LECTURE 16: Competitive learning
g Competitive Learning
g Adaptive Resonance Theory
g Kohonen Self Organizing Maps
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Competitive learning (1)
g A form of unsupervised training where output units are said to be in 

competition for input patterns
n During training, the output unit that provides the highest activation to a given input 

pattern is declared the winner and is moved closer to the input pattern, whereas 
the rest of the neurons are left unchanged

n This strategy is also called winner-take-all since only the winning neuron is 
updated
g Output units may have lateral inhibitory connections so that a winner neuron can inhibit 

others by an amount proportional to its activation level
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Competitive learning (2)
g Neuron weights and input patterns are typically normalized

n With normalized vectors, the activation function of the ith unit can be computed as 
the inner product of the unit’s weight vector wi and a particular input pattern x(n

g Note: the inner product of two normal vectors is the cosine of the angle between them 
n The neuron with largest activation is then adapted to be more like the input that 

caused the excitation

g Following adaptation, the weight vector is renormalized (||w||=1)
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Competitive learning (3)
g If weights and input patters are un-normalized, the activation function 

becomes the Euclidean distance

g In a neural-network implementation, we would use radial units instead of the conventional 
inner-product unit

n The learning rule then becomes
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Competitive learning (4)
g Two implementations of competitive learning are presented 

n A basic competitive learning scheme with fixed number of clusters
n The Leader-Follower algorithm of Hartigan, which allows a variable number of neurons

1. Normalize all input patterns
2. Randomly select a pattern x(n

2a. Find the winner neuron

2.b. Update the winner neuron

2c. Normalize the winner neuron

3. Go to step 2 until no changes occur in NEX runs

1. Normalize all input patterns
2. Randomly select a pattern x(n

2a. Find the winner neuron

2.b. Update the winner neuron

2c. Normalize the winner neuron

3. Go to step 2 until no changes occur in NEX runs
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2. Randomly select a pattern x(n

2a. Find the winner neuron

2.b. If ||x(n-wi||<θ (cluster and example are close)
then update the winner neuron

else add a new neuron

2c. Normalize the neuron

3. Go to step 2 until no changes occur in NEX runs

1. Normalize all input patterns
2. Randomly select a pattern x(n

2a. Find the winner neuron

2.b. If ||x(n-wi||<θ (cluster and example are close)
then update the winner neuron

else add a new neuron

2c. Normalize the neuron

3. Go to step 2 until no changes occur in NEX runs
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Adaptive Resonance Theory (1)
g Adaptive Resonance Theory (ART) is a family of algorithms for 

unsupervised learning developed by Carpenter and Grossberg
n ART is similar to many iterative clustering algorithms where each pattern is 

processed by
g finding the "nearest" cluster (a.k.a. prototype or template) to that example
g updating that cluster to be "closer" to the example

g What makes ART different is that it is capable of determining the 
number of clusters through adaptation

n ART allows a training example to modify an existing cluster only if the cluster is 
sufficiently close to the example (the cluster is said to “resonate” with the 
example); otherwise a new cluster is formed to handle the example

n To determine when a new cluster should be formed, ART uses a vigilance 
parameter as a threshold of similarity between patterns and clusters

g There are several architectures in the ART family
n ART1, designed for binary features
n ART2, designed for analog features
n ARTMAP, a supervised version of ART

g We will describe the algorithm called ART2-A, a version of ART2 that is 
optimized for speed



Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

7

The ART2 algorithm 
Let: α: positive number

β: small positive number
θ: normalization parameter
ρ: vigilance parameter 

0. For each example x(n in the database 
0a. Normalize x(n to have magnitude 1
0b. Replace coordinates of x(n that are <θ by 0 (remove small noise signals)
0c. Re-normalize x(n

1. Start with no prototype vectors (clusters)
2. Perform iterations until no example causes any change. At this point quit because stability has been 

achieved. For each iteration, choose the next example x(n in cyclic order
3. Find the prototype wk (cluster) not yet tried during this iteration that maximizes wk

Tx(n

(inner product of two normal vectors is equal to the cosine of the angle between the vectors)
4. Test whether wk is sufficiently similar to x(n

4a. If not then
4a1. Make a new cluster with prototype set to x(n

4a2. End this iteration and return to step 2 for the next example
4b. If sufficiently similar, then test for vigilance acceptability

4b1. If acceptable then x(n belongs to wk. Modify wk to be more like x(n

and go to step 2 for the next iteration with the next example
4b2. If not acceptable, then make a new cluster with prototype set to to x(n

Let: α: positive number
β: small positive number
θ: normalization parameter
ρ: vigilance parameter 

0. For each example x(n in the database 
0a. Normalize x(n to have magnitude 1
0b. Replace coordinates of x(n that are <θ by 0 (remove small noise signals)
0c. Re-normalize x(n

1. Start with no prototype vectors (clusters)
2. Perform iterations until no example causes any change. At this point quit because stability has been 

achieved. For each iteration, choose the next example x(n in cyclic order
3. Find the prototype wk (cluster) not yet tried during this iteration that maximizes wk

Tx(n

(inner product of two normal vectors is equal to the cosine of the angle between the vectors)
4. Test whether wk is sufficiently similar to x(n

4a. If not then
4a1. Make a new cluster with prototype set to x(n

4a2. End this iteration and return to step 2 for the next example
4b. If sufficiently similar, then test for vigilance acceptability

4b1. If acceptable then x(n belongs to wk. Modify wk to be more like x(n

and go to step 2 for the next iteration with the next example
4b2. If not acceptable, then make a new cluster with prototype set to to x(n
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Adaptive Resonance Theory (2)
g ART was motivated by the “stability-plasticity dilemma”, a term coined 

by Grossberg that describes the problems endemic to competitive 
learning

n The network’s adaptability or plasticity causes prior learning to be eroded by 
exposure to more recent input patterns

n ART resolves this problem by creating a new cluster every time an example is 
very dissimilar from the existing clusters

g Stability: previous learning is preserved since the existing clusters are not altered and
g Plasticity: the new example is incorporated by creating a new cluster

g The main limitation of ART is that it lacks a mechanism to avoid
overfitting

n It has been shown that, in the presence of noisy data, ART has a tendency to 
create new clusters continuously, resulting in “category proliferation”

n Notice that ART is very similar to the leader-follower algorithm!
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Kohonen Self Organizing Maps (1)
g Kohonen Self-Organizing Maps (SOMs) produce a mapping from a 

multidimensional input space onto a lattice of clusters (or neurons)
n The key feature in SOMs is that the mapping is topology-preserving, in that 

neighboring neurons respond to “similar” input patterns
n SOMs are typically organized as one- or two- dimensional lattices (i.e., a string 

or a mesh) for the purpose of visualization and dimensionality reduction
g Unlike MLPs trained with the back-propagation algorithm, SOMs have 

a strong neurobiological basis
n On the mammalian brain, visual, auditory and tactile inputs are mapped into a 

number of “sheets” (folded planes) of cells [Gallant, 1993]
n Topology is preserved in these sheets; for example, if we touch parts of the body 

that are close together, groups of cells will fire that are also close together
g Kohonen SOMs result from the synergy of three basic processes

n Competition
n Cooperation
n Adaptation
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Competition
g Each neuron in a SOM is assigned a weight vector with the same 

dimensionality N as the input space
g Any given input pattern is compared to the weight vector of each

neuron and the closest neuron is declared the winner
n The Euclidean norm is commonly used to measure distance
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Cooperation
g The activation of the winning neuron is spread to neurons in its

immediate neighborhood
n This allows topologically close neurons to become sensitive to similar patterns

g The winner’s neighborhood is determined on the lattice topology 
n Distance in the lattice is a function of the number of lateral connections to the 

winner (as in city-block distance)
g The size of the neighborhood is initially large, but shrinks over time

n An initially large neighborhood promotes a topology-preserving mapping
n Smaller neighborhoods allows neurons to specialize in the latter stages of training
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Adaptation
g During training, the winner neuron and its topological neighbors are 

adapted to make their weight vectors more similar to the input pattern 
that caused the activation
n The adaptation rule is similar to the one presented in slide 4
n Neurons that are closer to the winner will adapt more heavily than neurons that 

are further away
n The magnitude of the adaptation is controlled with a learning rate, which decays 

over time to ensure convergence of the SOM

WINNERWINNER
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1. Initialize weights to some small, random values
2. Repeat until convergence

2a. Select the next input pattern x(n from the database
2a1. Find the unit wi that best matches the input pattern x(n

2a2. Update the weights of the winner wi and all its neighbors wk

2b. Decrease the learning rate η(t)
2c. Decrease neighborhood size σ(t)

1. Initialize weights to some small, random values
2. Repeat until convergence

2a. Select the next input pattern x(n from the database
2a1. Find the unit wi that best matches the input pattern x(n

2a2. Update the weights of the winner wi and all its neighbors wk

2b. Decrease the learning rate η(t)
2c. Decrease neighborhood size σ(t)
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SOM algorithm
g Define

n A learning rate decay rule 

n A neighborhood kernel function

g where dik is the lattice distance between wi and wk

n A neighborhood size decay rule
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SOM examples (1)
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SOM examples (2)




