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LECTURE 10: Linear Discriminant Analysis

g Linear Discriminant Analysis, two classes
g Linear Discriminant Analysis, C classes
g LDA vs. PCA example
g Limitations of LDA
g Variants of LDA
g Other dimensionality reduction methods
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Linear Discriminant Analysis, two-classes (1)
g The objective of LDA is to perform dimensionality reduction while 

preserving as much of the class discriminatory information as 
possible
n Assume we have a set of D-dimensional samples {x(1, x(2, …, x(N}, N1 of which 

belong to class ω1, and N2 to class ω2. We seek to obtain a scalar y by projecting 
the samples x onto a line

n Of all the possible lines we would like to select the one that maximizes the 
separability of the scalars
g This is illustrated for the two-dimensional case in the following figures
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Linear Discriminant Analysis, two-classes (2)
g In order to find a good projection vector, we need to define a measure 

of separation between the projections
g The mean vector of each class in x and y feature space is

g We could then choose the distance between the projected means as our objective 
function

g However, the distance between the projected means is not a very good measure since it 
does not take into account the standard deviation within the classes
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Linear Discriminant Analysis, two-classes (3)
g The solution proposed by Fisher is to maximize a function that represents the 

difference between the means, normalized by a measure of the within-class 
scatter

n For each class we define the scatter, an equivalent of the variance, as

g where the quantity                    is called the within-class scatter of the projected examples
n The Fisher linear discriminant is defined as the linear function wTx that maximizes the 

criterion function

n Therefore, we will be looking for a projection 
where examples from the same class are 
projected very close to each other and, at the 
same time, the projected means are as farther 
apart as possible
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Linear Discriminant Analysis, two-classes (4)
n In order to find the optimum projection w*, we need to express J(w) as an explicit function of w
n We define a measure of the scatter in multivariate feature space x, which are scatter matrices

g where SW is called the within-class scatter matrix
n The scatter of the projection y can then be expressed as a function of the scatter matrix in 

feature space x

n Similarly, the difference between the projected means can be expressed in terms of the means 
in the original feature space

g The matrix SB is called the between-class scatter.  Note that, since SB is the outer product of two vectors, 
its rank is at most one

n We can finally express the Fisher criterion in terms of SW and SB as
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Linear Discriminant Analysis, two-classes (5)
n To find the maximum of J(w) we derive and equate to zero

n Dividing by wTSWw

n Solving the generalized eigenvalue problem (SW
-1SBw=Jw) yields

g This is know as Fisher’s Linear Discriminant (1936), although it is not a discriminant but rather a 
specific choice of direction for the projection of the data down to one dimension
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LDA example
g Compute the Linear Discriminant projection for 

the following two-dimensional dataset
n X1=(x1,x2)={(4,1),(2,4),(2,3),(3,6),(4,4)}
n X2=(x1,x2)={(9,10),(6,8),(9,5),(8,7),(10,8)}

g SOLUTION (by hand)
n The class statistics are:

n The within- and between-class scatter are

n The LDA projection is then obtained as the solution of the generalized eigenvalue problem

n Or directly by
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Linear Discriminant Analysis, C-classes (1)
g Fisher’s LDA generalizes very gracefully for C-class problems 

n Instead of one projection y, we will now seek (C-1) projections [y1,y2,…,yC-1] by means of   
(C-1) projection vectors wi, which can be arranged by columns into a projection matrix 
W=[w1|w2|…|wC-1]:

g Derivation
n The generalization of the within-class scatter is

n The generalization for the between-class scatter is

g where ST=SB+SW is called the total scatter matrix
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Linear Discriminant Analysis, C-classes (2)
n Similarly, we define the mean vector and scatter matrices for the projected samples as

n From our derivation for the two-class problem, we can write

n Recall that we are looking for a projection that maximizes the ratio of between-class to 
within-class scatter.  Since the projection is no longer a scalar (it has C-1 dimensions), we 
then use the determinant of the scatter matrices to obtain a scalar objective function:

n And we will seek the projection matrix W* that maximizes this ratio
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n It can be shown that the optimal projection matrix W* is the one whose columns are the 
eigenvectors corresponding to the largest eigenvalues of the following generalized 
eigenvalue problem

g NOTES
n SB is the sum of C matrices of rank one or less and the mean vectors are constrained by

g Therefore, SB will be of rank (C-1) or less
g This means that only (C-1) of the eigenvalues λi will be non-zero

n The projections with maximum class separability information are the eigenvectors 
corresponding to the largest eigenvalues of SW

-1SB

n LDA can be derived as the Maximum Likelihood method for the case of normal class-
conditional densities with equal covariance matrices

Linear Discriminant Analysis, C-classes (3)
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PCA
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 3

LDA

LDA Vs. PCA: Coffee discrimination with a gas sensor array
g These figures show the performance of PCA and 

LDA on an odor recognition problem
n Five types of coffee beans were presented to an array 

of chemical gas sensors
n For each coffee type, 45 “sniffs” were performed and 

the response of the gas sensor array was processed in 
order to obtain a 60-dimensional feature vector

g Results
n From the 3D scatter plots it is clear that LDA 

outperforms PCA in terms of class discrimination
n This is one example where the discriminatory 

information is not aligned with the direction of 
maximum variance
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Limitations of LDA
g LDA produces at most C-1 feature projections

n If the classification error estimates establish that more features are needed, some other 
method must be employed to provide those additional features 

g LDA is a parametric method since it assumes unimodal Gaussian likelihoods
n If the distributions are significantly non-Gaussian, the LDA projections will not be able to 

preserve any complex structure of the data, which may be needed for classification

g LDA will fail when the discriminatory information is not in the mean but rather 
in the variance of the data
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Variants of LDA
g Non-parametric LDA (Fukunaga)

n NPLDA removes the unimodal Gaussian assumption by computing the between-class 
scatter matrix SB using local information and the K Nearest Neighbors rule. As a result of this

g The matrix SB is full-rank, allowing us to extract more than (C-1) features
g The projections are able to preserve the structure of the data more closely

g Orthonormal LDA (Okada and Tomita)
n OLDA computes projections that maximize the Fisher criterion and, at the same time, are 

pair-wise orthonormal
g The method used in OLDA combines the eigenvalue solution of SW

-1SB and the Gram-Schmidt 
orthonormalization procedure

g OLDA sequentially finds axes that maximize the Fisher criterion in the subspace orthogonal to all 
features already extracted

g OLDA is also capable of finding more than (C-1) features

g Generalized LDA (Lowe)
n GLDA generalizes the Fisher criterion by incorporating a cost function similar to the one we 

used to compute the Bayes Risk
g The effect of this generalized criterion is an LDA projection with a structure that is biased by the cost 

function
g Classes with a higher cost Cij will be placed further apart in the low-dimensional projection

g Multilayer Perceptrons (Webb and Lowe)
n It has been shown that the hidden layers of multi-layer perceptrons (MLP) perform non-linear 

discriminant analysis by maximizing Tr[SBST
†], where the scatter matrices are measured at 

the output of the last hidden layer
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Other dimensionality reduction methods (1)
g Exploratory Projection Pursuit (Friedman and Tukey)

n EPP seeks an M-dimensional (M=2,3 typically) linear projection of the data that maximizes a 
measure of “interestingness”

n Interestingness is measured as departure from multivariate normality
g This measure is not the variance and is commonly scale-free.  In most proposals it is also affine 

invariant, so it does not depend on correlations between features . [Ripley, 1996]
n In other words, EPP seeks projections that separate clusters as much as possible and keeps 

these clusters compact, a similar criterion as Fisher’s, but EPP does NOT use class labels
n Once an interesting projection is found, it is important to remove the structure it reveals to 

allow other interesting views to be found more easily
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Other dimensionality reduction methods (2)
g Sammon’s Non-linear Mapping (Sammon)

n This method seeks a mapping onto an M-dimensional space that preserves the 
inter-point distances of the original N-dimensional space
g This is accomplished by minimizing the following objective function

n The original method did not obtain an explicit mapping but only a lookup table for the elements in 
the training set

n Recent implementations using artificial neural networks (MLPs and RBFs) do provide an explicit 
mapping for test data and also consider cost functions (Neuroscale)

n Sammon’s mapping is closely related to Multi-Dimensional Scaling (MDS), a family of multivariate 
statistical methods commonly used in the social sciences
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