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LECTURE 17: Linear Discriminant Functions
g Perceptron learning
g Minimum squared error (MSE) solution
g Least-mean squares (LMS) rule
g Ho-Kashyap procedure
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Linear Discriminant Functions (1)
g The objective of this lecture is to present methods for learning linear 

discriminant functions of the form

n where w is the weight vector and w0 is the threshold weight or bias (not to be 
confused with that of the bias-variance dilemma)
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Linear Discriminant Functions (2)
g Similar discriminant functions were derived in Lecture 5 as a special 

case of the quadratic classifier
n In this lecture, the discriminant functions will be derived in a non- parametric 

fashion, this is, no assumptions will be made about the underlying densities
g For convenience, we will focus on the binary classification problem

n Extension to the multicategory case can be easily achieved by
g Using ωi/not ωi dichotomies
g Using ωi/ωi dichotomies
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Gradient descent
g Gradient descent is general method for function minimization 

n Recall that the minimum of a function J(x) is defined by the zeros of the gradient

n Only in very special cases this minimization function has a closed form solution
n In some other cases, a closed form solution may exist, but is numerically ill-

posed or impractical (e.g., memory requirements)
g Gradient descent finds the minimum in an iterative fashion by moving 

in the direction of steepest descent 

n where η is a learning rate 
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1. Start with an arbitrary solution x(0)
2. Compute the gradient ∇xJ(x(k))
3. Move in the direction of steepest descent: 

4. Go to 1 (until convergence)

1. Start with an arbitrary solution x(0)
2. Compute the gradient ∇xJ(x(k))
3. Move in the direction of steepest descent: 

4. Go to 1 (until convergence)
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Perceptron learning (1)
g Let’s now consider the problem of learning a binary classification 

problem with a linear discriminant function
n As usual, assume we have a dataset X={x(1,x(2,…x(N} containing examples from 

the two classes
n For convenience, we will absorb the intercept w0 by augmenting the feature 

vector x with an additional constant dimension:

n Keep in mind that our objective is to find a vector a such that

n To simplify the derivation, we will “normalize” the training set by replacing all 
examples from class ω2 by their negative 

g This allows us to ignore class labels and look for a weight vector such that
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Perceptron learning (2)
g To find this solution we must first define an objective function J(a)

n A good choice is what is known as the Perceptron criterion function

g where YM is the set of examples misclassified by a. 
g Note that JP(a) is non-negative since aTy<0 for all misclassified samples

g To find the minimum of this function, we use gradient descent
n The gradient is defined by

n And the gradient descent update rule becomes

n This is known as the perceptron batch update rule. 
g The weight vector may also be updated in an “on-line” fashion, this is, after the 

presentation of each individual example

n where y(i is an example that has been misclassified by a(k)
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Perceptron learning (3)
g If classes are linearly separable, the perceptron rule is guaranteed to 

converge to a valid solution
n Some version of the perceptron rule use a variable learning rate η(k)

g In this case, convergence is guaranteed only under certain conditions (for details refer 
to [Duda, Hart and Stork, 2001], pp. 232-235)

g However, if the two classes are not linearly separable, the perceptron 
rule will not converge

n Since no weight vector a can correctly classify every sample in a non-separable 
dataset, the corrections in the perceptron rule will never cease

n One ad-hoc solution to this problem is to enforce convergence by using variable 
learning rates η(k) that approach zero as k approaches infinite
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Minimum Squared Error solution (1)
g The classical Minimum Squared Error (MSE) criterion provides an 

alternative to the perceptron rule
n The perceptron rule seeks a weight vector aT that satisfies the inequality aTy(i>0

g The perceptron rule only considers misclassified samples, since these are the only 
ones that violate the above inequality

n Instead, the MSE criterion looks for a solution to the equality aTy(i=b(i, where b(i

are some pre-specified target values (e.g., class labels)
g As a result, the MSE solution uses ALL of the samples in the training set:

g The system of equations solved by MSE is

n where a is the weight vector, each row in Y is a training example, and each row 
in b is the corresponding class label

g For consistency, we will continue assuming that examples from class ω2 have been 
replaced by their negative vector, although this is not a requirement for the MSE 
solution
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Minimum Squared Error solution (2)
g An exact solution to Ya=b can sometimes be found 

n If the number of (independent) equations (N) is equal to the number of unknowns 
(D+1), the exact solution is defined by

g In practice, however, Y will be singular so its inverse Y-1 does not exist
n Y will commonly have more rows (examples) than columns (unknown), which 

yields an over-determined system, for which an exact solution cannot be found
g The solution in this case is to find a weight vector that minimizes some 

function of the error between the model (aY) and the desired output (b)
n In particular, MSE seeks to Minimize the sum of the Squares of these Errors:

n which, as usual, can be found by setting its gradient to zero
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The pseudo-inverse solution
g The gradient of the objective function is

n with zeros defined by

n Notice that YTY is now a square matrix!
g If YTY is nonsingular, the MSE solution becomes

n where the matrix Y†=(YTY)-1YT is known as the pseudo-inverse of Y (Y†Y=I)
g Note that, in general, YY†≠I in general
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Ridge-regression solution
g If the training data is extremely correlated (collinearity problem), the 

matrix YTY becomes near singular
n As a result, the smaller eigenvalues (the noise) dominate the computation of the 

inverse (YTY)-1, which results in numerical problems
g The collinearity problem can be solved through regularization

n This is equivalent to adding a small multiple of the identity matrix to the term 
YTY, which results in 

n where ε (0<ε<1) is a regularization parameter that controls the amount of 
shrinkage to the identity matrix.  This is known as the ridge-regression solution

g If the features have significantly different variances, the regularization term may be 
replaced by a diagonal matrix of the feature variances

g Selection of the regularization parameter
n For ε=0, ridge-regression solution is equivalent to the pseudo-inverse solution
n For ε=1, the ridge-regression solution is a constant function that predicts the 

average classification rate across the entire dataset
n An appropriate value for ε is typically found through cross-validation
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Least-mean-squares solution
g The objective function JMSE(a)=||Ya-b||2 can also be found using a 

gradient descent procedure
n This avoids the problems that arise when YTY is singular
n In addition, it also avoids the need for working with large matrices

g Looking at the expression of the gradient, the obvious update rule is

n It can be shown that if η(k)=η(1)/k, where η(1) is any positive constant, this rule 
generates a sequence of vectors that converge to a solution to YT(Ya-b)=0

g The storage requirements of this algorithm can be reduced by 
considering each sample sequentially

n This is known as the Widrow-Hoff, least-mean-squares (LMS) or delta rule 
[Mitchell, 1997]
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Numerical example
g Compute the perceptron and MSE solution 

for the following dataset
n X1 = [ (1,6), (7,2), (8,9), (9,9)]
n X2 = [ (2,1), (2,2), (2,4), (7,1)]

g Perceptron leaning
n Assume η=0.1 
n Assume a(0)=[0.1, 0.1, 0.1]
n Use an online update rule 
n SOLUTION

g Normalize the dataset 
g Iterate through all the examples and update a(k) on the ones that are misclassified 

1. Y(1) ⇒ [1 1 6]*[0.1 0.1 0.1]T>0 ⇒ no update
2. Y(2) ⇒ [1 7 2]*[0.1 0.1 0.1]T>0 ⇒ no update
3. ….
4. Y(5) ⇒ [-1 -2 -1]*[0.1 0.1 0.1]T<0 ⇒ update a(1) = [0.1 0.1 0.1] + η*[-1 -2 -1] = [0 -0.1 0]
5. Y(6) ⇒ [-1 -2 -2]*[0 -0.1 0]T>0 ⇒ no update 
6. ….
7. Y(1) ⇒ [1 1 6]*[0 -0.1 0]T<0 ⇒ update a(2) = [0 -0.1 0] +η*[1 1 6] = [0.1 0 0.6]
8. Y(2) ⇒ [1 7 2]*[0.1 0 0.6]T>0 ⇒ no update 
9. ….

g In this example, the perceptron rule converges after 175 iterations to a=[-3.5 0.3 0.7]
n To convince yourself this is a solution, compute Y*a (you will find out that all of the terms are non-negative)

g MSE
n The MSE solution is found in one shot as a=(YTY)-1YTb=[-1.1870  0.0746 0.1959];

g For the choice of targets b = [1 1 1 1 1 1 1 1]T
g As you can see in the figure, the MSE solution misclassifies one of the samples
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Summary: Perceptron vs. MSE procedures
g Perceptron rule

n The perceptron rule always finds a solution if the classes are linearly separable, 
but does not converge if the classes are non-separable

g MSE criterion
n The MSE solution has guaranteed convergence, but it may not find a separating 

hyperplane if classes are linearly separable
g Notice that MSE tries to minimize the sum of the squares of the distances of the 

training data to the separating hyperplane, as opposed to finding this hyperplane
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The Ho-Kashyap procedure (1)
g The main limitation of the MSE criterion is the lack of guarantees that 

a separating hyperplane will be found in the linearly separable case
n All we can say about the MSE rule is that it minimizes ||Ya-b||2

n Whether MSE finds a separating hyperplane or not depends on how properly 
the target outputs b(i are selected

g Now, if the two classes are linearly separable, there must exist
vectors a* and b* such that1 Ya*=b*>0
n If b* were known, one could simply use the MSE solution (a=Y†b) to compute 

the separating hyperplane
n However, since b* is unknown, one must then solve for BOTH a and b

g This idea gives rise to an alternative training algorithm for linear 
discriminant functions known as the Ho-Kashyap procedure

1) Find the target values b through gradient descent
2) Compute the weight vector a from the MSE solution
3) Repeat 1) and 2) until convergence

1 Here we also assume y←[−y] ∀y∈ω2)
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The Ho-Kashyap procedure (2)
g The gradient ∇bJ is defined by 

n which suggest a possible update rule for b
g Now, since b is subject to the constraint b>0, we are not free to follow 

whichever direction the gradient may point to
n The solution is to start with an initial solution b>0, and refuse to reduce any of its 

components
n This is accomplished by setting to zero all the positive components of the 

gradient ∇bJ

g where |⋅| denotes the absolute value of the components of the argument vector
n Once b is updated, the MSE solution a=Y†b directly provides the zeros of ∇aJ

g The resulting iterative procedure is
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