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LECTURE 24: Baum-Welch and Entropic Training
g The Baum-Welch re-estimation procedure
g Implementation issues
g Continuous and semi-continuous HMMs
g Types of HMM structure
g Entropic training
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Problem 3: Parameter estimation (1)
g The most important and difficult problem in HMMs is to find the model 

parameters λ={A,B,π} from data
n HMMs are trained with the Maximum Likelihood criterion: seek model 

parameters λ that best explain the observations, as measured by P(O|λ)
n This problem is solved with an iterative procedure known as Baum-Welch, 

which is an implementation of the EM algorithm (Lecture 14)
g As usual, we begin by defining a variable ξt(i,j) 

n which is the probability of being in state Si at time t, and state Sj at time t+1

( ) ( )λO,Sq,SqPji,ξ j1titt === +

From [Rabiner, 1989]
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Problem 3: Parameter estimation (2)
n From the definition of αt(i), βt(j) and conditional probability we can rewrite

g Intuitive interpretation of γt(i) and ξt(i,j)
n First note that, since γt(i) is the probability of being in state Si at time t given the 

observation sequence O and the model λ, ξt(i,j) can be related to γt(i) by

n The sum of γt(i) over time may be interpreted as the expected number of times 
that state Si is visited or, excluding time t=T, the number of transitions from Si

n Similarly, summation of ξt(i,j) from t=1 to t=T-1 may be interpreted as the 
expected number of transitions from state Si to state Sj
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Problem 3: Parameter estimation (3)
g Using this line of reasoning, we can produce a method to iteratively 

update the parameters of an HMM by simply “counting events”

n where the right-hand side of the equations is computed from the “old” parameter 
values, and the left-hand side are the re-estimated (new) parameters

n It can be shown that each iteration of this procedure increases the likelihood of 
the data until a local minimum is found

g This property is due to the fact that Baum-Welch is just an implementation of the 
Expectation-Maximization algorithm
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Problem 3: Parameter estimation (4)
g Baum-Welch is “simply” an implementation of the EM algorithm where

n The observation sequence O={o1,o2,o3,o4,…} is the observed data
n The underlying state sequence Q={q1,q2,q3,q4,…} is the missing or hidden data
n The incomplete-data likelihood is given by P(O|λ)
n The complete-data likelihood is P(O,Q|λ)

g Therefore, the auxiliary Q function from EM becomes

n from which the expected value EQ[⋅] is computed by averaging over all state 
sequences

n The re-estimation formulas in the previous page can also be obtained from this 
auxiliary function

g Details on this derivation can be found in [Rabiner and Juang, 1993; Bilmes, 1998]
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Implementation issues for HMMs
g Scaling

n Since αt(i) involves the product of a large number of terms that are less than 
one, the machine precision is likely to be exceeded at some point in the 
computation

n To solve this problem, the αt(i) are re-scaled periodically (e.g., every iteration t) 
to avoid underflow.  A similar scaling is done to the βt(i) so that the scaling 
coefficients cancel out exactly

g Multiple observation sequences
n The HMM derivation in these lectures is based on a single observation 

sequence.  This becomes a problem in left-right models, since the transient 
nature of the states only allows a few observations to be used for each state

n For this reason, one has to use multiple observation sequences. Re-estimation 
formulas for multiple sequences can be found in [Rabiner and Juang, 1993]

g Initial parameter estimates
n How are the initial HMM parameters chosen so that the local maximum to which 

Baum-Welch converges to is actually the global maximum?
n Random or uniform initial values for π and A have experimentally been found to 

work well in most cases
n Careful selection of initial values for B, however, has been found to be helpful in 

the discrete case and essential in the continuous case.  These initial estimates 
may be found by segmenting the sequences with k-means clustering
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Continuous HMMs (1)
g The discussion thus far has focused on discrete HMMs

n Discrete HMMs assume that the observations are defined by a set of discrete 
symbols from a finite alphabet

n In most pattern recognition applications, however, observations are inherently 
multidimensional and having continuous features

g There are two alternatives to handle continuous vectors with HMMs
n Convert the continuous multivariate observations into discrete univariate 

observations via a codebook (e.g., cluster the observations with k-means)
g This approach, however, may lead to degraded performance as a result of the 

discretization of the continuous signals
n Employ HMM states that have continuous observation densities bj(⋅)

g This is, in general, a much better alternative, which we explore next
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Continuous HMMs (2)
g Continuous HMMs model the observation probabilities with a 

continuous density function, as opposed to a multinomial
n To ensure that the parameters of the model can be re-estimated in a consistent 

manner, some restrictions are applied to the form of the observation pdf
n The most common form is the Gaussian mixture model of Lecture 14

g where o is the observation vector, and cjk, µjk and Σjk are the mixture coefficient, mean 
and covariance for the k-th Gaussian component at state Sj, respectively

g The re-estimation formulas for the continuous case generalize very 
gracefully from the discrete HMM

n The term γt(j) generalizes to γt(j,k), which is the probability of being in state Sj at 
time t with the k-th mixture component accounting for the observation ot
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Continuous HMMs (3)
g The re-estimation formulas for the continuous HMM become

n The re-estimation formula for cjk is the ratio between the expected number of 
times the system is in state Sj using the k-th mixture component, and the 
expected number of times the system is in state Sj

n The re-estimation formula for the mean vector µjk weights the numerator in the 
equation for cjk by the observation, to produce the portion of the observation that 
can be accounted by that mixture component 

g The re-estimation formula for the covariance term can be interpreted similarly
n The re-estimation formula for the transition probabilities aij is the same as in the 

discrete HMM
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Semi-Continuous HMMs
g Continuous HMMs avoid the distortions introduced by a discrete 

codebook, but this comes at a price 
n A large number of mixtures are generally required to improve the recognition 

accuracy as compared to D-HMMs [Huang, 1992]
n As a result, the computational complexity of C-HMMs increases considerably 

with respect to D-HMMs
n In addition, the number of free parameters increases significantly, which means 

that a larger amount of training data is required to properly train the model
g Semi-continuous HMMs (SC-HMMs) represent a compromise between 

discrete and continuous HMMs
n In SC-HMMs, the observation space is modeled with a Gaussian mixture whose 

components (µ,Σ) are shared by all the states in the HMM
n Each state in the HMM, though, is allowed to have a different mixing coefficient 

cjk for each of the k Gaussian components in the “common” mixture
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Types of HMM structure (1)
g Ergodic vs. left-right HMMs

n An ergodic HMM is a fully connected model, where each state can be reached in 
one step from every other state

g This is the most general type of HMM, and the one that has been implicitly assumed in 
the previous derivations

n A left-right or Bakis model is one where no transitions are allowed to states 
whose indices are lower than the current state: aij=0 ∀j<i

g Left-right models are best suited to model signals whose properties change over time, 
such as speech

g When using left-right models, some additional constraints are commonly placed, such 
as preventing large transitions: aij=0 ∀j>i+∆ (∆=3 in the example below)

Ergodic HMM Left-right HMM

From [Rabiner, 1989]
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Types of HMM structure (2)
g Null transitions

n In the HMM models presented in these lectures, observations are associated 
with the states.  A number of people (IBM, CMU) have used HMM models where 
the observations are associated with the transitions between states

n In this type of models, it has been found useful to allow transitions that produce 
no observations.  These are called null transitions

g In the example below, an HMM with null transition φ is used to model two different 
pronunciations for the English word “two”

From [Rabiner, 1989]
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Entropic training (1) 
g Selecting the HMM model structure

n Given that the process being modeled by an HMM is hidden, how can an 
appropriate model structure be selected?

g In most cases, this is achieved by training several models with different structures and 
selecting the best one through cross-validation

n Nonetheless, even after an appropriate model is selected, conventional training 
(Baum-Welch) leads to HMMs that are too ambiguous, too difficult to interpret

g In an HMM it is not rare to find many slightly different state sequences that are virtually 
equally likely.  The Viterbi sequence, for instance, may represent only a small fraction 
of the total probability mass

g An alternative procedure, known as entropic training,  can be used to 
learn sparse HMM models

n Conventional HMM training (Baum-Welch) is based on a Maximum Likelihood 
criterion: find model parameters λ={A,B,π} that maximize the likelihood of the 
observation sequence P(O|λ)

n Entropic training is based on a Maximum A Posteriori criterion λ=argmaxP(λ|O) 
with a prior term P(λ) that favors low-entropy multinomials

From [Brand, 1998]
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Entropic training (2) 
g The prior term employed by entropic training is expressed by

n where θi are multimodal parameters, such as 
the set of transition probabilities aij from a state, 
or the mixture coefficient in a GMM

g This prior favors multinomials that have low entropy H(θ)
n The highest entropy multinomial is a uniform histogram.  This is called a “non 

informative” prior because it does not tell us anything about the parameter value
n The lowest entropy corresponds to a histogram where all bins are zero except for 

one.  This histogram has no uncertainty: only one parameter value is possible

From [Brand, 1998]
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Entropic training (3)
g Assume that you are given a collection of events {ωi}, where ωi is the 

number of occurrences of the i-th event in the multinomial
n The likelihood of the collection of events ωi given multinomial parameters θi is

g Merging the entropic prior with the posterior leads to the following 
MAP objective function

n The MAP solution represents a compromise between the prior and the likelihood
g If there is sufficient training data, the term θi+ωi is dominated by ωi (note that ωi

represents an event “count”, whereas θi is a probability,) and the MAP solution 
converges to the Maximum Likelihood solution

g If the training data is scarce, the term θi+ωi will be dominated by θi, and the MAP 
solution will converge to the Minimum Entropy solution
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Entropic training (4)
g To find the optimal model parameters θi, we set the derivative of the 

log-posterior to zero using a Lagrange multiplier ρ to ensure Σθi=1

n This last expression defines a system of non-linear equations, whose solution 
can be found in [Brand, 1998]
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Entropic training (5)
g Examples

n The right viewgraph shows the posterior of a binomial (e.g., a coin toss 
experiment) where heads occur twice as often as tails, and θ=P(H)

g In the absence of data, the posterior favors minimum entropy: either θ=0 or θ=1
g As the number of coin-tosses increases, the maximum of the posterior becomes closer 

to the ML solution θ=2/3
n The left viewgraph shows the asymptotic evolution of the MAP parameter 

estimates as the number of examples increases to N→∞

From [Brand, 1998] From [Brand, 1998]
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Entropic training (6)
g How is entropic training used in practice?

n In the context of mixture modeling, the parameters θi are the mixing coefficients 
of the different Gaussian components, and the “evidence” is the probability of 
each Gaussian component given the data

g The figures below illustrate the results on the classical annulus problem for 
conventional (EM) training and entropic training.  The latter leads to a more concise 
Gaussian Mixture Model
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Entropic training (7)
n In the context of HMM training, each state has a set of parameters θ that 

represent the transitions probabilities from that state, and the “evidence” is the 
expected number of state transitions as measured by the E-step in Baum-Welch 

g Thus, entropic training treats HMMs as a collection of multinomials, one for each state
g The figures below illustrate the transition matrix for a left-right HMM trained with Baum-

Welch and entropic training.  The latter leads to a sparse matrix
n In either situation, convergence is accelerated by “trimming” parameters that fall 

below a threshold (see [Brand, 1998] for details)
g An added advantage of entropic training is that you can start with a very large HMM (or 

GMM) and let the algorithm trim the model down to a smaller one
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