LECTURE 10: Linear Discriminant Analysis

m Linear Discriminant Analysis, two classes
= Linear Discriminant Analysis, C classes

m LDA vs. PCA example

= Limitations of LDA

= Variants of LDA

= Other dimensionality reduction methods
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Linear Discriminant Analysis, two-classes (1)

= The objective of LDA is to perform dimensionality reduction while
preserving as much of the class discriminatory information as
possible
o Assume we have a set of D-dimensional samples {x(7, x(?, ..., xN}, N, of which

belong to class 4, and N, to class »,. We seek to obtain a scalar y by projecting
the samples x onto a line

y =W X

o Of all the possible lines we would like to select the one that maximizes the
separability of the scalars

m This is illustrated for the two-dimensional case in the following figures

A A
Xy Xy
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Linear Discriminant Analysis, two-classes (2)

= In order to find a good projection vector, we need to define a measure
of separation between the projections
m The mean vector of each class in x and y feature space is

1 . 1
= 22X and fi=gdy =) wix=wih

i Xew; i YEW; i Xew;

»  We could then choose the distance between the projected means as our objective
function

J(w) = ‘ H1 _ﬁz‘ = ‘ WT(IJ1 _sz

» However, the distance between the projected means is not a very good measure since it
does not take into account the standard deviation within the classes

A
Xp

This axis yields better class separability —» {

! »
»

~ X4

TThis axis has a larger distance between means
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Linear Discriminant Analysis, two-classes (3)

= The solution proposed by Fisher is to maximize a function that represents the
difference between the means, normalized by a measure of the within-class
scatter
o For each class we define the scatter, an equivalent of the variance, as
giz = Z(y_ﬁi)z
YEW;
= where the quantity (§12 + §22) is called the within-class scatter of the projected examples

e The Fisher linear discriminant is defined as the linear function wTx that maximizes the
criterion function

~ ~ |2
J(w) = M
S; +5S,
e Therefore, we will be looking for a projection A

where examples from the same class are

projected very close to each other and, at the SO T A ' ’ ................................... X
same time, the projected means are as farther ...........
apart as possible O S
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Linear Discriminant Analysis, two-classes (4)

e In order to find the optimum projection w*, we need to express J(w) as an explicit function of w
o We define a measure of the scatter in multivariate feature space x, which are scatter matrices

S = Z(X_“i)(x_“i)T

XEW;
S, +S, =S,
= where S, is called the within-class scatter matrix

e The scatter of the projection y can then be expressed as a function of the scatter matrix in
feature space x

8= Z(y—i:ii)2 = Z(WTX—WTpi)Z = ZWT(X—piXX—pi)TW =w'Sw

yew; XEW; XEW;

S2+8:=w'S,w
o Similarly, the difference between the projected means can be expressed in terms of the means
in the original feature space

(ﬁ1 _ﬁz )2 = (WT|J1 _Wsz)z = WT(U1 — My )(U1 _Uz)TW = WTSBW

Sg

= The matrix Sy is called the between-class scatter. Note that, since S; is the outer product of two vectors,
its rank is at most one

o We can finally express the Fisher criterion in terms of S, and S; as

;
Jw) = V"Tﬂ
WS, w
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Linear Discriminant Analysis, two-classes (5)

e To find the maximum of J(w) we derive and equate to zero

T
i[J(W)]I d WTSBW 0 =
dw dw| w S, w

= [WTSWW]—d[WTSBW] -

w'S w]d[WT—SWW] =0 =
dw - 8 dw

= [WTSWW]ZSBW - [WTSBW]ZSWW =0

T T
WTSWW Sy — WTSBW S,W=0 =
w'S,, W w'S,, W

= Sgw-JS,w=0 =

e Dividing by w'S,,w

= SySgw-Jw=0

 Solving the generalized eigenvalue problem (S, 'Sgw=Jw) yields

=Sy (b —H,)

T

. w'S,w
w* = argmax
w W SWW

m This is know as Fisher’s Linear Discriminant (1936), although it is not a discriminant but rather a
specific choice of direction for the projection of the data down to one dimension
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LDA example

s Compute the Linear Discriminant projection for 10 -

the following two-dimensional dataset

o X1=(x4,%)={(4,1),(2,4),(2,3),(3,6),(4.4)} 8 " 1

o X2=(x,,X,)={(9,10),(6,8),(9,5),(8,7),(10,8)} =

= SOLUTION (by hand) 6 g

e The class statistics are: X,
0.80 -0.40 184 -0.04 4 I ¢
S, = S, =
-040 2.60 -0.04 2064
u,=[3.00 3.60} u,=[8.40 7.60] -~ Wipa

e The within- and between-class scatter are 0

[29.16 21.60], [2.64 -0.44 X,
8712160 16.00 "V |-044 5.28

o The LDA projection is then obtained as the solution of the generalized eigenvalue problem
11.89-A  8.81
5.08 3.76-A

{11.89 8.81}{@ {vq {vq {0.91}
=15.65 = =
5.08 3.76 | v, v, v,| [0.39
e Ordirectly by
w* =S (U, -, )=[-0.91 -0.39]

S;,LSBV:)\V:‘SGVSB—)\I‘:OS‘ =0=A=15.65
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Linear Discriminant Analysis, C-classes (1)

m Fisher’s LDA generalizes very gracefully for C-class problems
« Instead of one projection y, we will now seek (C-1) projections [y,,y,,...,Yc.4] by means of

(C-1) projection vectors w,, which can be arranged by columns into a projection matrix
W=[w, [w,|...[we_q]:
yi=w, ' x = y=WTx
= Derivation X,
e The generalization of the within-class scatter is

C
Sw=Y'S
i=1

where S, = > (x—p Nx—p)" and b :N12x

XEW; i Xew;

e The generalization for the between-class scatter is Sws
c /
Sg = 2Nk, — k), —n)’
i=1

N
Vv

1 1
where p=—> x=—> Ny, Swz <
N VX N XEW; X re
1
m  where S;=S3+S,, is called the total scatter matrix
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Linear Discriminant Analysis, C-classes (2)

o Similarly, we define the mean vector and scatter matrices for the projected samples as

W =N12y 8= Sy -ly-a)

i Yew, i=1 yew;
}.I:NZy Sg :ZNi(Ui_UX“i_”)T
vy i=1

e From our derivation for the two-class problem, we can write
S, =W'S,W
S, =W'S,W

o Recall that we are looking for a projection that maximizes the ratio of between-class to
within-class scatter. Since the projection is no longer a scalar (it has C-1 dimensions), we
then use the determinant of the scatter matrices to obtain a scalar objective function:

Se| |wTs,w|
‘éw‘ wTs,w|

JW) =

o And we will seek the projection matrix W* that maximizes this ratio
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Linear Discriminant Analysis, C-classes (3)

e |t can be shown that the optimal projection matrix W* is the one whose columns are the
eigenvectors corresponding to the largest eigenvalues of the following generalized
eigenvalue problem

WTS,W|

W= = [W1 | Wy |- WC—1]: argmax{w

} = (Sg—ASy )w, =0

= NOTES

e S;is the sum of C matrices of rank one or less and the mean vectors are constrained by
1 C
~2.M=H
c &
= Therefore, Sg will be of rank (C-1) or less

»  This means that only (C-1) of the eigenvalues A; will be non-zero

e The projections with maximum class separability information are the eigenvectors
corresponding to the largest eigenvalues of S, 'S,

e LDA can be derived as the Maximum Likelihood method for the case of normal class-
conditional densities with equal covariance matrices
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LDA Vs. PCA: Coffee discrimination with a gas sensor array

m These figures show the performance of PCA and
LDA on an odor recognition problem

o Five types of coffee beans were presented to an array
of chemical gas sensors

o For each coffee type, 45 “sniffs” were performed and
the response of the gas sensor array was processed in
order to obtain a 60-dimensional feature vector

s Results

o From the 3D scatter plots it is clear that LDA
outperforms PCA in terms of class discrimination

e This is one example where the discriminatory

Sensor response

information is not aligned with the direction of . = / _— o o
maleum Varlance Sulaw esy Kenya Arabian Sumatra Colombia
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154 4 4 2
100 7929 207 2 0.4
104 .
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Limitations of LDA

= LDA produces at most C-1 feature projections

o If the classification error estimates establish that more features are needed, some other
method must be employed to provide those additional features

m LDA is a parametric method since it assumes unimodal Gaussian likelihoods

 If the distributions are significantly non-Gaussian, the LDA projections will not be able to
preserve any complex structure of the data, which may be needed for classification

S
LS

= LDA will fail when the discriminatory information is not in the mean but rather
in the variance of the data

A
X.

RN
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Variants of LDA

m Non-parametric LDA (Fukunaga)

o NPLDA removes the unimodal Gaussian assumption by computing the between-class
scatter matrix Sy using local information and the K Nearest Neighbors rule. As a result of this
m»  The matrix Sy is full-rank, allowing us to extract more than (C-1) features
m The projections are able to preserve the structure of the data more closely

= Orthonormal LDA (Okada and Tomita)

o OLDA computes projections that maximize the Fisher criterion and, at the same time, are
pair-wise orthonormal

= The method used in OLDA combines the eigenvalue solution of S, 'Sz and the Gram-Schmidt
orthonormalization procedure

»  OLDA sequentially finds axes that maximize the Fisher criterion in the subspace orthogonal to all
features already extracted

»  OLDA is also capable of finding more than (C-1) features

m Generalized LDA (Lowe)

o GLDA generalizes the Fisher criterion by incorporating a cost function similar to the one we
used to compute the Bayes Risk

m  The effect of this generalized criterion is an LDA projection with a structure that is biased by the cost
function

= Classes with a higher cost C; will be placed further apart in the low-dimensional projection
m Multilayer Perceptrons (Webb and Lowe)

e It has been shown that the hidden layers of multi-layer perceptrons (MLP) perform non-linear
discriminant analysis by maximizing Tr[S;S;'], where the scatter matrices are measured at
the output of the last hidden layer
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Other dimensionality reduction methods (1)

= Exploratory Projection Pursuit (Friedman and Tukey)
o EPP seeks an M-dimensional (M=2,3 typically) linear projection of the data that maximizes a
measure of “interestingness”

e Interestingness is measured as departure from multivariate normality

m This measure is not the variance and is commonly scale-free. In most proposals it is also affine
invariant, so it does not depend on correlations between features . [Ripley, 1996]

e In other words, EPP seeks projections that separate clusters as much as possible and keeps
these clusters compact, a similar criterion as Fisher’s, but EPP does NOT use class labels

e Once an interesting projection is found, it is important to remove the structure it reveals to
allow other interesting views to be found more easily

UNINTERESTING INTERESTING
° o ® ° .:: .
° e ° °e’
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Other dimensionality reduction methods (2)

= Sammon’s Non-linear Mapping (Sammon)

e This method seeks a mapping onto an M-dimensional space that preserves the
inter-point distances of the original N-dimensional space

m This is accomplished by minimizing the following objective function

, d(P,P)-d(P.P)|’
E(d,d)—;[ dP.P) ]

o The original method did not obtain an explicit mapping but only a lookup table for the elements in
the training set

o Recent implementations using artificial neural networks (MLPs and RBFs) do provide an explicit
mapping for test data and also consider cost functions (Neuroscale)

e Sammon’s mapping is closely related to Multi-Dimensional Scaling (MDS), a family of multivariate
statistical methods commonly used in the social sciences

Xy

d(P, P)= d(P’, P) Vij
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