LECTURE 6: Parameter Estimation

= Introduction

= Parameter Estimation
= Maximum Likelihood

m Bayesian Estimation

= Numerical Examples
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Introduction

= Previous chapters have shown you how to develop decision regions
and classifiers when the underlying density is known
o Bayesian Decision Theory introduced the general formulation
o Quadratic Classifiers covered the case of multi-modal Gaussian data

= In most situations, however, knowledge of the true distributions is not
available and must be determined from experimental data
e Two approaches are commonplace
m Parameter Estimation (this lecture)
m Non-parametric Density Estimation (the next two lectures)
s Parameter Estimation
o These methods assume a particular form for the density (e.g. Gaussian) so that
only the parameters (e.g., mean and variance) need to be determined

s Maximum Likelihood
m Bayesian Estimation

s Non-parametric Density Estimation

e These methods do not assume ANY knowledge about the density
m Kernel Density Estimation
m Nearest Neighbor Rule
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Maximum Likelihood vs. Bayesian Parameter Estimation

s Maximum Likelihood
e The parameters are assumed to be FIXED but unknown
o The ML solution seeks the solution that “best” explains the dataset X

6 =argmax|p(X | 0)]
= Bayesian Estimation

o The parameters are assumed to be random variables with some (assumed)
known a priori distribution

o Bayesian methods seeks to estimate the posterior density p(6|X)
o The final density p(x|X) is obtained by integrating out the parameters:

p(x|X)=[p(x|6)p(B| X)d6

p(X|9) IF i p(e | X)A p(e | X)\
p()
5 \
-\ 7 X\,
0
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Maximum Likelihood (1)

= Suppose we consider estimating a density function p(x) which
depends on a number of parameters 6=[6,, 6,,...0,,]7
e For a Gaussian pdf 6,=y, 6,=c and p(x)=N(n, o)
e To make the dependence on the parameters 6 explicit we write p(x|0)

m Assume that we have a number of examples X={x(1, x(2,... x(N} drawn
independently from the distribution p(x|0) (an i.i.d. set)

e Then we can write \
p(X|8)=] [plx"|6)
k=1

o The ML estimate of 0 is the value that maximizes the likelihood p(X|6)
6 =argmax|p(X|0)]

m This corresponds to the intuitively pleasing idea of choosing the value of 6 that is most
likely to give rise to the data!
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Maximum Likelihood (2)

= For analytical purposes it is convenient to work with the log of the
likelihood

e Since the log is a monotonic function

6 =argmax|p(X | 8)]= argmax[logp(X|6)]
1 1

S : S
Q. 1 > Q :
: o)) 1
! o :
) ) 9 )

s Then the Maximum Likelihood estimate of the parameter 6 can be
written as

6= argmax{loglﬁ[ p(x(k | 9)} = argmax{ZN:Iog p(x(k | 9)}
k=1 k=1

e Maximizing a sum of terms is always an easier task than maximizing a product
m To convince yourself, think of computing the derivative of a long product of terms!

e An added advantage of taking logs will become very clear when the distribution
is Gaussian
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Example: Gaussian case, i1 unknown

m Assume a dataset X={x(1, x(2,... x(N} and a density of the form
p(x)=N(un,c) where the standard deviation ¢ is known

= What is the Maximum Likelihood estimate of the mean?

O=p=06= argmasz:Iog p(x"‘ | e)
k=1

:argmaxZN:Iog(ro exp( 1 (x"‘ p)zj]
_argmaxZ{log(roj _(x (k_“)z}

e The maxima (or minima) of a function are defined by the zeros of its derivative:

N
(k
a;|09p<x |9): 0 ZN:{'} =O:>|J=1ZN:X(k
00 oM

k=1 ) R

o So the ML estimate of the mean is the average value of the training data, a very
intuitive result!
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Example: Gaussian case, both  and o unknown

= This is a more general case when neither the mean nor the standard
deviation are known

o Fortunately, the problem can be solved in the same fashion
o In this case, the derivative becomes a gradient since we have two variables

) Lo )
6=y %ilogp(x(" |9) \ e—(X(k-91)
{91 oz}jvez o' & 21 e[
- v (k k=1] _ -
2 _aezé"’gp(x |e)_ B T _

e Solving for 6, and 6, yields
8= DX B, =Y -8,
N i NS

m Therefore, the ML of the variance is the sample variance of the dataset, again a very
pleasing result

e Similarly, it can be shown that the Maximum Likelihood parameter estimates for
the multivariate Gaussian are also the sample mean vector and sample
covariance matrix

N T I
OR Z=N;(X(k—u)(X‘k—u)T

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University




Bias and variance (1)

= How good are these estimates? Two measures of “goodness” are
used for statistical estimates

e BIAS: how close is the estimate to the true value?

o VARIANCE: how much does the estimate change for different runs (e.g. different
datasets)?

1 BIAS

O
Orrue : .

" VARIANCE ~

m The bias-variance tradeoff
e In most cases, you can only decrease one of them at the expense of the other

A LOW BIAS 4 HIGH BIAS
HIGH VARIANCE LOW VARIANCE
_/:\_) = >
Orrue 0 Orrue o
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Bias of the ML estimate of mean and variance

m What is the bias of the ML estimate of the mean?

cfl-E 2 |-y 2w

e Therefore the mean is an unbiased estimate
m What is the bias of the ML estimate of the variance?

N -
El62]=E 1Z(x"‘ —nf N2 L2
N i= N
e Thus, the ML estimate of variance is BIASED

m The problem is that the ML estimate of variance uses the ML estimate of the mean
instead of its true value

e How “bad” is this bias?
m For N—w the bias becomes zero asymptotically
m The bias is only noticeable when we have very few samples, in which case we should
not be doing statistics in the first place

¢ Notice that MATLAB uses an unbiased estimate of the co-variance

A

zUNBIASED N 1 = 1( IJXX(k A>T
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Bayesian Estimation (1)

= In the Bayesian approach, our uncertainty about the parameters is
represented by a pdf

o Before we observe the data, the parameters are described by a prior density p(0)
which is typically very broad to reflect the fact that we know little about its true
value

e Once we obtain data, we make use of Bayes theorem to find the posterior p(6|X)

» |deally, we want the data to sharpen the posterior p(6|X), in other words, reduce our
uncertainty about the parameters

p(e|x)A p(elx)\
p(6)

N\
V.

o BUT keep in mind that our goal is to estimate the density p(x) or, more exactly,
p(x|X), the density given the evidence provided by the dataset X
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Bayesian Estimation (2)

m Let us derive the theoretical expression of a Bayesian estimate
e From the definition of conditional probability

p(x,8]X)=p(x|8,X)p(6X)

o P(x]|6,X) is independent of X since knowledge of 6 completely specifies the
(parametric) density. Therefore

p(x,81X)=p(x|8)p(6 | X)

e and, using the theorem of total probability we can integrate 6 out:

p(x1X)= [p(x|6)p(6] X)d6

m The only unknown in this expression is p(6|X) which, using Bayes rule, becomes:

o(6]x)= PX18)P()__p(X|6)p()

p(X)  [p(X|6)p(B)do
» Where p(X|0) can be computed using the i.i.d. assumption

p(X|6) Hp( 0)

m NOTE: The last three expressions suggest a procedure to estimate p(x|X). This is not
to say that integration of these expressions is easy!
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Example (1)

= Assume a univariate density where our random variable x is generated
from a normal distribution with known standard deviation

e Our goal is to find the mean pu of the distribution given some i.i.d. data points
X={x(1, x .. x(N}

e To capture our knowledge about 6=p, we assume that it also follows a normal
density with mean p, and standard deviation o,

0,0)- ] 500w |

o We use Bayes rule to develop an expression for the posterior p(6|X):

p(6]X)= p(X|6)p(6) _ Do (e)ﬁp(x(k |6):

p(X)  p(X) i
1 1 ) 1 & 1 1 k
J2mo, exp(— 20 (6-1s) ]@E{ 2170 exp(— 20° (X( _e)zﬂ

From [Bishop, 1995]

Introduction to Pattern Analysis 12
Ricardo Gutierrez-Osuna
Texas A&M University




Example (2)

s To understand how Bayesian Estimation changes the posterior as
more data becomes available, we will find the maximum of p(6|X)

o The partial derivative with respect to 6=p is

5 o 1 S
—5109p(61X)=0=> ——| ——— (u-po J' + - _(x*—p) |=0

o which, after some algebraic manipulation, becomes:

0)
Mn = Mo +
o°+Nog = o°+ No0 kZ‘
PRIOR MAXIMUM
LIKELIHOOD

m Therefore, as the number N of available data points increases, the estimate of the
mean p, moves from the initial prior p, to the maximum likelihood solution

e Similarly, the standard deviation cy can be found to be:

1N
o, o° o}

From [Bishop, 1995]
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Example (3)

= A numerical example will allow us to develop a better insight about the
process of Bayesian Estimation
e Assume that the true mean of the distribution p(x) is u=0.8 with standard
deviation 6=0.3
= In reality we would not know the true mean, u=0.8, we are just “playing God”

o We generate a number of examples from this distribution
e To capture our lack of knowledge about the mean, we assume a normal prior
Po(0) 1p=0.0 and 5,=0.3
m The figure below shows the posterior p(u|X)

o As the number of training examples increases, the estimate p, approaches its
true value (1=0.8) and the spread o), (or uncertainty in the estimate) decreases

50

P(61X)

40 N=10 -

30 - 7

L N=5 |
20 - 7

- N=0 / -
10 [~ \ N=1 —~— -

0
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Maximum Likelihood vs. Bayesian Estimation

s What is the relationship between these two estimates?

o By definition, p(X|0) peaks at the ML estimate. If this peak is relatively sharp and
the prior is broad, then the integral below will be dominated by the region around
the ML estimate

p(x | X)= [p(x|©)p(61 X)d0 = plx |8)] p(6] X)d0 = plx |8}

1

m Therefore, the Bayesian estimate will approximate the ML solution

o As we have seen in the previous example, when the number of available data
increases, the posterior p(6|X) tends to sharpen

m Therefore, the Bayesian estimate of p(x) will approach the ML solution as N—00

= In practice, only when we have a limited number of observations will the two
approaches yield different results
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