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Outline

g Introduction to Pattern Recognition
g Dimensionality reduction
g Classification
g Validation
g Clustering
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SECTION I: Introduction

g Features, patterns and classifiers 
g Components of a PR system
g An example
g Probability definitions
g Bayes Theorem
g Gaussian densities
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Features, patterns and classifiers

g Feature
n Feature is any distinctive aspect, quality or characteristic

g Features may be symbolic (i.e., color) or numeric (i.e., height)

n The combination of d features is represented as a d-dimensional 
column vector called a feature vector
g The d-dimensional space defined by the feature vector is called 

feature space
g Objects are represented as points in feature space. This 

representation is called a scatter plot

Feature vector Feature space (3D)
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Features, patterns and classifiers

g Pattern
n Pattern is a composite of traits or features characteristic of an 

individual
n In classification, a pattern is a pair of variables {x,ω} where

g x is a collection of observations or features (feature vector)

g ω is the concept behind the observation (label)

g What makes a “good” feature vector?
n The quality of a feature vector is related to its ability to 

discriminate examples  from different classes
g Examples from the same class should have similar feature values
g Examples from different classes have different feature values

“Good” features “Bad” features
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Features, patterns and classifiers

g More feature properties

g Classifiers
n The goal of a classifier is to partition feature space into class-

labeled decision regions
n Borders between decision regions are called decision 

boundaries

Highly correlated featuresNon-linear separabilityLinear separability Multi-modal
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Components of a pattern recognition system

g A typical pattern recognition system contains
n A sensor
n A preprocessing mechanism
n A feature extraction mechanism (manual or automated)
n A classification or description algorithm
n A set of examples (training set) already classified or described

Sensor / 
transducer

Preprocessing 
and 

enhancement

Feature

extraction

Classification 
algorithm

Description 
algorithm

The 
“real world”

Class 
assignment

Description

Feedback / Adaptation

[Duda, Hart and Stork, 2001]
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An example

g Consider the following scenario*
n A fish processing plan wants to automate the process of sorting 

incoming fish according to species (salmon or sea bass)
n The automation system consists of

g a conveyor belt for incoming products
g two conveyor belts for sorted products 
g a pick-and-place robotic arm
g a vision system with an overhead CCD camera
g a computer to analyze images and control the robot arm

*Adapted from [Duda, Hart and Stork, 2001]

Conveyor 
belt

CCD 
camera

Conveyor 
belt (bass)

Conveyor 
belt (salmon)

Robot
arm

computer
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An example

g Sensor
n The camera captures an image as a new fish enters the sorting area

g Preprocessing
n Adjustments for average intensity levels
n Segmentation to separate fish from background

g Feature Extraction
n Suppose we know that, on the average, sea bass is larger than salmon

count

length

Sea bassSalmon

Decision 
boundary

g Classification
n Collect a set of examples from both species

g Plot a distribution of lengths for both classes
n Determine a decision boundary (threshold) 

that minimizes the classification error
g We estimate the system’s probability of 

error and obtain a discouraging result of 
40% 

n What is next?
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Avg. scale intensity
le

ng
th Decision 

boundary

Sea bass Salmon

count

Avg. scale intensity

Sea bass Salmon

Decision 
boundary

An example
g Improving the performance of our PR system

n Committed to achieve a recognition rate of 95%, we try a number of 
features

g Width, Area, Position of the eyes w.r.t. mouth...
g only to find out that these features contain no discriminatory information

n Finally we find a “good” feature: average intensity of the scales

n We combine “length” and “average 
intensity of the scales” to improve 
class separability

n We compute a linear discriminant 
function to separate the two classes, 
and obtain a classification rate of 
95.7%
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An example

g Cost Versus Classification rate
n Is classification rate the best objective function for this problem? 

g The cost of misclassifying salmon as sea bass is that the end 
customer will occasionally find a tasty piece of salmon when he 
purchases sea bass

g The cost of misclassifying sea bass as salmon is a customer upset 
when he finds a piece of sea bass purchased at the price of salmon

n We could intuitively shift the decision boundary to minimize an 
alternative cost function

Avg. scale intensity

le
ng

th Decision 
boundary

Sea bass Salmon

Avg. scale intensity

le
ng

th New
Decision 
boundary

Sea bass

Salmon



Ricardo Gutierrez-Osuna
Wright State University

Statistical Pattern Recognition
12

NOSE 2nd Summer School
Lloret de Mar, Spain, October 2-5, 2000

An example

g The issue of generalization
n The recognition rate of our linear classifier (95.7%) met the 

design specs, but we still think we can improve the performance 
of the system
g We then design an artificial neural 

network with five hidden layers, a 
combination of logistic and hyperbolic 
tangent activation functions, train it 
with the Levenberg-Marquardt algorithm 
and obtain an impressive classification 
rate of 99.9975% with the following 
decision boundary

n Satisfied with our classifier, we integrate the system and deploy it 
to the fish processing plant
g A few days later the plant manager calls to complain that the system 

is misclassifying an average of 25% of the fish

g What went wrong?

Avg. scale intensity
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th

SalmonSea bass
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Review of probability theory
g Probability

n Probabilities are numbers assigned to events that indicate “how likely” it 
is that the event will occur when a random experiment is performed

g Conditional Probability
n If A and B are two events, the probability of event A when we already 

know that event B has occurred P[A|B] is defined by the relation

g P[A|B] is read as the “conditional probability of A conditioned on B”, 
or simply the “probability of A given B”
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Review of probability theory

g Conditional probability: graphical interpretation

g Theorem of Total Probability
n Let B1, B2, …, BN be mutually exclusive events, then

S S
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Review of probability theory

g Bayes Theorem
n Given B1, B2, …, BN, a partition of the sample space S. Suppose 

that event A occurs; what is the probability of event Bj?
n Using the definition of conditional probability and the Theorem of 

total probability we obtain

n Bayes Theorem is definitely the 
fundamental relationship in 
Statistical Pattern Recognition
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Review of probability theory

g For pattern recognition, Bayes Theorem can be expressed as

n where ωj is the ith class and x is the feature vector

g Each term in the Bayes Theorem has a special name, which you 
should be familiar with

n P(ωi) Prior probability (of class ωi)

n P(ωi|x) Posterior Probability (of class ωi given the observation x)
n P(x|ωi) Likelihood (conditional prob. of x given class ωi)
n P(x) A normalization constant that does not affect the decision

g Two commonly used decision rules are
n Maximum A Posteriori (MAP): choose the class ωi with highest P(ωi|x)
n Maximum Likelihood (ML): choose the class ωi with highest P(x|ωi)

g ML and MAP are equivalent for non-informative priors (P(ωi)=constant)
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Review of probability theory

g Characterizing features/vectors
n Complete: Probability mass/density function

n Partial: Statistics
g Expectation

n The expectation represents the center of mass of a density

g Variance
n The variance represents the spread about the mean

g Covariance (only for random vectors)
n The tendency of each pair of features to vary together, i.e., to co-vary
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Review of probability theory

g The covariance matrix (cont.)

n The covariance terms can be expressed as

g where ρik is called the correlation coefficient

g Graphical interpretation
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Review of probability theory
g Meet the multivariate Normal or Gaussian

density N(µ,Σ):

n For a single dimension, this formula reduces to 
the familiar expression

g Gaussian distributions are very popular
n The parameters (µ,Σ) are sufficient to uniquely 

characterize the normal distribution
n If the xi’s are mutually uncorrelated (cik=0), then 

they are also independent
g The covariance matrix becomes diagonal, with 

the individual variances in the main diagonal

n Marginal and conditional densities
n Linear transformations
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SECTION II: Dimensionality reduction

g The “curse of dimensionality”
g Feature extraction vs. feature selection
g Feature extraction criteria
g Principal Components Analysis (briefly)
g Linear Discriminant Analysis
g Feature Subset Selection
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g The “curse of dimensionality” [Bellman, 1961]
n Refers to the problems associated with multivariate data analysis as the 

dimensionality increases

g Consider a 3-class pattern recognition problem
n A simple (Maximum Likelihood) procedure would be to 

g Divide the feature space into uniform bins

g Compute the ratio of examples for each class at each bin and, 
g For a new example, find its bin and choose the predominant class in that bin

n We decide to start with one feature and divide the real line into 3 bins

g Notice that there exists a large overlap between classes ⇒ to improve 
discrimination, we decide to incorporate a second feature

Dimensionality reduction

x1x1
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g Moving to two dimensions increases the number of bins from 3 
to 32=9
n QUESTION: Which should we maintain constant?

g The density of examples per bin? This increases the number of examples from 
9 to 27

g The total number of examples? This results in a 2D scatter plot that is very 
sparse

g Moving to three features …
n The number of bins grows to 33=27
n To maintain the initial density of examples,

the number of required examples grows to 81
n For the same number of examples the

3D scatter plot is almost empty

Dimensionality reduction

x1

x2 Constant density Constant # examples

x1
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x1

x2
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Dimensionality reduction
g Implications of the curse of dimensionality

n Exponential growth with dimensionality in the number of examples
required to accurately estimate a function

g How do we beat the curse of dimensionality?
n By incorporating prior knowledge
n By providing increasing smoothness of the target function
n By reducing the dimensionality

g In practice, the curse of dimensionality means that
n For a given sample size, there is a maximum number of features above 

which the performance of our classifier will degrade rather than improve
g In most cases, the information 

that was lost by discarding some 
features is compensated by a 
more accurate mapping in lower-
dimensional space
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The curse of dimensionality
g Implications of the curse of dimensionality

n Exponential growth in the number of examples required to maintain a 
given sampling density

g For a density of N examples/bin and D dimensions, the total number of 
examples grows as ND

n Exponential growth in the complexity of the target function (a density) 
with increasing dimensionality

g “A function defined in high-dimensional space is likely to be much more 
complex than a function defined in a lower-dimensional space, and those 
complications are harder to discern” –Jerome Friedman

n This means that a more complex target function requires denser sample points to 
learn it well!

n What to do if it ain’t Gaussian?
g For one dimension, a large number of density functions are available
g For most multivariate problems, only the Gaussian density is employed
g For high-dimensional data, the Gaussian density can only be handled in a 

simplified form!

n Human performance in high dimensions
g Humans have an extraordinary capacity to discern patterns in 1-3 

dimensions, but these capabilities degrade drastically for 4 or higher 
dimensions
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Dimensionality reduction

g Two approaches to perform dim. reduction ℜN→ℜM (M<N)
n Feature selection: choosing a subset of all the features

n Feature extraction: creating new features by combining existing ones

g In either case, the goal is to find a low-dimensional representation of the 
data that preserves (most of) the information or structure in the data

g Linear feature extraction
n The “optimal” mapping y=f(x) is, in general, a non-linear function whose 

form is problem-dependent
g Hence, feature extraction is commonly limited to linear projections y=Wx
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g Two criteria can be used to find the “optimal” feature extraction 
mapping y=f(x) 
n Signal representation: The goal of feature extraction is to represent the 

samples accurately in a lower-dimensional space

n Classification: The goal of feature extraction is to enhance the class-
discriminatory information in the lower-dimensional space

g Within the realm of linear feature extraction, two techniques are 
commonly used
n Principal Components (PCA)

g Based on signal representation

n Fisher’s Linear Discriminant (LDA)
g Based on classification

Signal representation versus classification
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Principal Components Analysis

g Summary
n The optimal* approximation of a random vector x∈ℜN by a linear 

combination of M (M<N) independent vectors is obtained by projecting 
the random vector x onto the eigenvectors ϕi corresponding to the 
largest eigenvalues λi of the covariance matrix Σx

g *optimality is defined as the minimum of the sum-square magnitude of the 
approximation error 

n Since PCA uses the eigenvectors of the covariance matrix Σx, it is able 
to find the independent axes of the data under the unimodal Gaussian 
assumption 

g However, for non-Gaussian or multi-modal Gaussian data, PCA simply de-
correlates the axes

n The main limitation of PCA is that it does not consider class separability 
since it does not take into account the class label of the feature vector

g PCA simply performs a coordinate rotation that aligns the transformed axes 
with the directions of maximum variance

g There is no guarantee that the directions of maximum variance will 
contain good features for discrimination!!
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PCA example

g 3D Gaussian distribution
n Mean and covariance are

g RESULTS
n First PC has largest variance
n PCA projections are de-correlated 
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Linear Discriminant Analysis, two-classes

g The objective of LDA is to perform dimensionality reduction 
while preserving as much of the class discriminatory 
information as possible
n Assume a set of D-dimensional samples {x1, x2, …, xN}, N1 of which 

belong to class ω1, and N2 to class ω2

n We seek to obtain a scalar y by projecting the samples x onto a line 
y=wTx

n Of all possible lines we want the one that maximizes the separability of 
the scalars

x1

x2

x1

x2
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Linear Discriminant Analysis, two-classes

g In order to find a good projection vector, we need to define a 
measure of separation between the projections
n We could choose the distance between the projected means

g Where the mean values of the x and y examples are

n However, the distance between projected means is not a very good
measure since it does not take into account the standard deviation within 
the classes
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Linear Discriminant Analysis, two-classes
n The solution proposed by Fisher is to normalize the difference 

between the means by a measure of the within-class variance
g For each class we define the scatter, an equivalent of the variance, as

g and the quantity                 is called the within-class scatter of the 
projected examples

n The Fisher linear discriminant is defined as the linear function wTx that 
maximizes the criterion function

n In a nutshell: we look for a projection 
where examples from the same class 
are projected very close to each other 
and, at the same time, the projected 
means are as farther apart as possible
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Linear Discriminant Analysis, two-classes
n Noticing that

n We can express J(w) in terms of x and w as

n It can be shown that the projection vector w* which maximizes J(w) is
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Linear Discriminant Analysis, C-classes

g Fisher’s LDA generalizes for C-class problems very gracefully
n For the C class problem we will seek (C-1) projection vectors wi, which can be 

arranged by columns into a projection matrix W=[w1|w2|…|wC-1]

g The solution uses a slightly different formulation
n The within-class scatter matrix is similar as the two-class problem

n The generalization of the between-class scatter matrix is

g Where µ is the mean of the entire dataset

n The objective function becomes

g Recall that we are looking for a projection that, in some sense, maximizes 
the ratio of between-class to within-class scatter:

n Since the projection is not scalar (it has C-1 dimensions), we have used the 
determinant of the scatter matrices to obtain a scalar criterion function
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n It can be shown that the optimal projection matrix W* is the one whose 
columns are the eigenvectors corresponding to the largest eigenvalues 
of the following generalized eigenvalue problem

g NOTE
n SB is the sum of C matrices of rank one or less and the mean vectors 

are constrained by ΣNiµi=Nµ
g Therefore, SB will be at most of rank (C-1)

g This means that only (C-1) of the eigenvalues λi will be non-zero

n Therefore, LDA produces at most C-1 feature projections
g If the classification error estimates establish that more features are needed, 

some other method must be employed to provide those additional features 

Linear Discriminant Analysis, C-classes
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PCA Versus LDA
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Limitations of LDA

g LDA assumes unimodal Gaussian likelihoods
n If the densities are significantly non-Gaussian, LDA may not preserve 

any complex structure of the data needed for classification

g LDA will fail when the discriminatory 
information is not in the mean but 
rather in the variance of the data
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Limitations of LDA

g LDA has a tendency to overfit training data
n To illustrate this problem, we generate an artificial dataset

g Three classes, 50 examples per class, with the exact same likelihood: a 
multivariate Gaussian with zero mean and identity covariance

g As we arbitrarily increase the number of dimensions, classes appear to 
separate better, even though they come from the same distribution
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Feature Subset Selection

g Why Feature Subset Selection?
n Feature Subset Selection is necessary in a number of situations

g Features may be expensive to obtain
n You evaluate a large number of features (sensors) in the test bed and select only 

a few for the final implementation

g You may want to extract meaningful rules from your classifier
n When you transform or project, the measurement units (length, weight, etc.) of 

your features are lost

g Features may not be numeric
n A typical situation in the machine learning domain

g Although FSS can be thought of as a special case of feature 
extraction (think of an identity projection matrix with a few 
diagonal zeros), in practice it is a quite different problem

n FSS looks at dimensionality reduction from a different perspective

n FSS has a unique set of methodologies
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Search strategy and objective function
g Feature Subset Selection requires 

n A search strategy to select candidate subsets 
n An objective function to evaluate candidates

g Search Strategy
n Exhaustive evaluation involves        feature 

subsets for a fixed value of M, and 2N subsets 
if M must be optimized as well
g This number of combinations is unfeasible, even 

for moderate values of M and N
n For example, exhaustive evaluation of 10 out of 

20 features involves 184,756 feature subsets; 
exhaustive evaluation of 10 out of 20 involves 
more than 1013 feature subsets

n A search strategy is needed to explore the 
space of all possible feature combinations

g Objective Function
n The objective function evaluates candidate 

subsets and returns a measure of their 
“goodness”, a feedback that is used by the 
search strategy to select new candidates
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Objective function

g Objective functions are divided in two groups
n Filters: The objective function evaluates feature subsets by their 

information content, typically interclass distance, statistical dependence 
or information-theoretic measures

n Wrappers: The objective function is a pattern classifier, which evaluates 
feature subsets by their predictive accuracy (recognition rate on test 
data) by statistical resampling or cross-validation

Filter FSS
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Filter types
g Distance or separability measures

n These methods use distance metrics to measure class separability:
g Distance between classes: Euclidean, Mahalanobis, etc.
g Determinant of SW

-1SB (LDA eigenvalues)

g Correlation and information-theoretic measures
n These methods assume that “good” subsets contain features highly

correlated with (predictive of) the class, yet uncorrelated with each other
g Linear relation measures

n Linear relationship between variables can be 
measured using the correlation coefficient J(YM)

g where ρ is a correlation coefficient 

g Non-Linear relation measures
n Correlation is only capable of measuring linear dependence. A more powerful 

method is the mutual information I(Yk;C)

g The mutual information between feature vector and class label I(YM;C) 
measures the amount by which the uncertainty in the class H(C) is 
decreased by knowledge of the feature vector H(C|YM), where H(·) is the 
entropy function
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Filters Vs. Wrappers
g Wrappers

n Advantages
g Accuracy: wrappers generally achieve better recognition rates than filters since they 

are tuned to the specific interactions between the classifier and the dataset
g Ability to generalize: wrappers have a mechanism to avoid overfitting, since they 

typically use cross-validation measures of predictive accuracy 

n Disadvantages
g Slow execution: since the wrapper must train a classifier for each feature subset (or 

several classifiers if cross-validation is used), the method is unfeasible for 
computationally intensive classifiers

g Lack of generality: the solution lacks generality since it is tied to the bias of the 
classifier used in the evaluation function

g Filters
n Advantages

g Fast execution: Filters generally involve a non-iterative computation on the dataset, 
which can execute much faster than a classifier training session

g Generality: Since filters evaluate the intrinsic properties of the data, rather than their 
interactions with a particular classifier, their results exhibit more generality: the solution 
will be “good” for a larger family of classifiers

n Disadvantages
g Tendency to select large subsets: Since the filter objective functions are generally 

monotonic, the filter tends to select the full feature set as the optimal solution. This 
forces the user to select an arbitrary cutoff on the number of features to be selected
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Naïve sequential feature selection
g One may be tempted to evaluate each 

individual feature separately and select those 
M features with the highest scores

n Unfortunately, this strategy will very rarely work 
since it does not account for feature dependence

g An example will help illustrate the poor 
performance of this naïve approach

n The scatter plots show a 4-dimensional pattern 
recognition problem with 5 classes

g The objective is to select the best subset of 2 
features using the naïve sequential FSS procedure

n A reasonable objective function will generate the 
following feature ranking: J(x1)>J(x2)≈J(x3)>J(x4)

g The optimal feature subset turns out to be {x1, x4}, 
because x4 provides the only information that x1
needs: discrimination between classes ω4 and ω5

g If we were to choose features according to the 
individual scores J(xk), we would choose x1 and 
either x2 or x3, leaving classes ω4 and ω5 non 
separable
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Search strategies

g FSS search strategies can be grouped in three categories*
n Sequential

g These algorithms add or remove features sequentially, but have a tendency 
to become trapped in local minima

n Sequential Forward Selection
n Sequential Backward Selection

n Sequential Floating Selection

n Exponential
g These algorithms evaluate a number of subsets that grows exponentially 

with the dimensionality of the search space
n Exhaustive Search (already discussed)
n Branch and Bound
n Beam Search

n Randomized
g These algorithms incorporating randomness into their search procedure to 

escape local minima
n Simulated Annealing
n Genetic Algorithms

*The subsequent description of FSS is borrowed from [Doak, 1992]
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Sequential Forward Selection (SFS)

g Sequential Forward Selection is a simple greedy search

1. Start with the empty set Y={∅}
2. Select the next best feature
3. Update Yk+1=Yk+x; k=k+1
4. Go to 2

1. Start with the empty set Y={∅}
2. Select the next best feature
3. Update Yk+1=Yk+x; k=k+1
4. Go to 2

( )[ ]xYJmaxargx k
YXx k

+=
−∈

+

Empty feature set

Full feature set

g Notes
n SFS performs best when the optimal subset has a 

small number of features
g When the search is near the empty set, a large number 

of states can be potentially evaluated

g Towards the full set, the region examined by SFS is 
narrower since most of the features have already been 
selected

g The main disadvantage of SFS is that it is unable to 
remove features that become obsolete with the addition 
of new features



Ricardo Gutierrez-Osuna
Wright State University

Statistical Pattern Recognition
46

NOSE 2nd Summer School
Lloret de Mar, Spain, October 2-5, 2000

Sequential Backward Selection (SBS)

g Sequential Backward Selection works in the opposite manner as 
SFS

1. Start with the full set Y=X
2. Remove the worst feature
3. Update Yk+1=Yk-x; k=k+1
4. Go to 2

1. Start with the full set Y=X
2. Remove the worst feature
3. Update Yk+1=Yk-x; k=k+1
4. Go to 2

( )[ ]xYJmaxargx k
Yx k

−=
∈

−

g Notes
n SBS works best when the optimal feature subset 

has a large number of features, since SBS 
spends most of its time visiting large subsets

n The main limitation of SBS is its inability to 
reevaluate the usefulness of a feature after it has 
been discarded

Empty feature set

Full feature set
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Branch and Bound
g The Branch and Bound algorithm is 

guaranteed to find the optimal feature subset 
under the monotonicity assumption

n The monotonicity assumption states that the 
addition of features can only increase the value of 
the objective function, this is

n Branch and Bound starts from the full set and 
removes features using a depth-first strategy

g Nodes whose objective function are lower than the 
current best are not explored since the monotonicity 
assumption ensures that their children will not 
contain a better solution

( ) ( ) ( ) ( )
N21321211 iiiiiiiii  x,, x,xJ x, x,xJ x,xJxJ LL <<<<

Empty feature set

Full feature set
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Branch and Bound
g Algorithm

n The algorithm is better explained by considering the subsets of M’=N-M 
features already discarded, where N is the dimensionality of the state 
space and M is the desired number of features

n Since the order of the features is irrelevant, we will only consider an 
increasing ordering i1<i2<...iM’ of the feature indices, this will avoid 
exploring states that differ only in the ordering of their features

n The Branch and Bound tree for N=6 and M=2 is shown below (numbers 
indicate features that are being removed)

g Notice that at the level directly below the root we only consider removing 
features 1, 2 or 3, since a higher number would not allow sequences 
(i1<i2<i3<i4) with four indices

4 5 6 5 6 6 5 6 6 6 5 6 6

3 4 5

2

4 5

3

5

4

1

4 5

3

6

5

4

2

6

5

4

3



Ricardo Gutierrez-Osuna
Wright State University

Statistical Pattern Recognition
49

NOSE 2nd Summer School
Lloret de Mar, Spain, October 2-5, 2000

1. Initialize: α=-∞, k=0
2. Generate successors of the current node and store them in LIST(k)
3. Select new node

if LIST(k) is empty 
go to Step 5

else

4. Check bound
if

go to 5
else if k=M’ (we have the desired number of features)

go to 6
else

k=k+1
go to 2

5. Backtrack to lower level
set k=k-1
if k=0

terminate algorithm
else

go to 3
6. Last level

go to 5

1. Initialize: α=-∞, k=0
2. Generate successors of the current node and store them in LIST(k)
3. Select new node

if LIST(k) is empty 
go to Step 5

else

4. Check bound
if

go to 5
else if k=M’ (we have the desired number of features)

go to 6
else

k=k+1
go to 2

5. Backtrack to lower level
set k=k-1
if k=0

terminate algorithm
else

go to 3
6. Last level

go to 5
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Beam Search

g Beam Search is a variation of best-first 
search with a bounded queue to limit the 
scope of the search
n The queue organizes states from best to worst, 

with the best states placed at the head of the 
queue

n At every iteration, BS evaluates all possible 
states that result from adding a feature to the 
feature subset, and the results are inserted into 
the queue in their proper locations
g It is trivial to notice that BS degenerates to 

Exhaustive search if there is no limit on the size of 
the queue. Similarly, if the queue size is set to one, 
BS is equivalent to Sequential Forward Selection

Empty feature set

Full feature set
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Beam Search

g This example illustrates BS for a 4D space and a queue of size 3
n BS cannot guarantee that the optimal subset is found: 

g in the example, the optimal is 2-3-4(9), which is never explored
g however, with the proper queue size, Beam Search can avoid local minimal by 

preserving solutions from varying regions in the search space
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LIST={∅}

LIST={1(5), 3(4), 2(3)}

LIST={1-2(6), 1-3(5), 3(4)}

LIST={1-2-3(7), 1-3(5), 3(4)}
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Genetic Algorithms

g Genetic algorithms are optimization techniques that mimic the 
evolutionary process of “survival of the fittest”

n Starting with an initial random population of solutions, evolve new 
populations by mating (crossover) pairs of solutions and mutating 
solutions according to their fitness (an objective function)

n The better solutions are more likely to be selected for the mating and 
mutation operators and, therefore, carry their “genetic code” from 
generation to generation

n In FSS, individual solutions are represented with a 
binary number (1 if the feature is selected, 0 otherwise)

1. Create an initial random population
2. Evaluate initial population
3. Repeat until convergence (or a number of generations)

3a. Select the fittest individuals in the population
3b. Perform crossover on selected individuals to create offspring
3c. Perform mutation on selected individuals
3d. Create new population from old population and offspring
3e. Evaluate the new population

1. Create an initial random population
2. Evaluate initial population
3. Repeat until convergence (or a number of generations)

3a. Select the fittest individuals in the population
3b. Perform crossover on selected individuals to create offspring
3c. Perform mutation on selected individuals
3d. Create new population from old population and offspring
3e. Evaluate the new population

Empty feature set

Full feature set
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Genetic operators

g Single-point crossover
n Select two individuals (parents) according to their fitness
n Select a crossover point 

n With probability Pc (0.95 is reasonable) create two offspring by 
combining the parents

g Binary mutation
n Select an individual according to its fitness

n With probability PM (0.01 is reasonable) mutate each one of its bits 

01001010110

11010110000

11011010110

01000110000

Parenti

Parentj

Offspringi

Offspringj

Crossover

Crossover point selected randomly

11010110000Individual Mutation 11001010111 Offspringi

Mutated bits
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Selection methods

g The selection of individuals is based on their fitness 
g We will describe a selection method called Geometric selection

n Several methods are available: Roulette Wheel, Tournament Selection…
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g Geometric selection
n The probability of selecting the rth best 

individual is given by the geometric 
probability mass function

g q is the probability of selecting the best 
individual (0.05 is a reasonable value)

n The geometric distribution assigns 
higher probability to individuals ranked 
better, but also allows unfit individuals 
to be selected

g In addition, it is typical to carry the 
best individual of each population to 
the next one

n This is called the Elitist Model

( ) ( ) 1-rq-1qrP =
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GAs, parameter choices for Feature selection

g The choice of crossover rate PC is not critical
n You will want a value close to 1.0 to have a large number of offspring

g The choice of mutation rate PM is very critical
n An optimal choice of PM will allow the GA to explore the more promising 

regions while avoiding getting trapped in local minima
g A large value (i.e., PM>0.25) will not allow the search to focus on the better 

regions, and the GA will perform like random search
g A small value (i.e., close to 0.0) will not allow the search to escape local 

minima

g The choice of ‘q’, the probability of selecting the best individual 
is also critical

n An optimal value of ‘q’ will allow the GA to explore the most promising 
solution, and at the same time provide sufficient diversity to avoid early 
convergence of the algorithm

g In general, poorly selected control parameters will result in sub-
optimal solutions due to early convergence
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Accuracy Complexity Advantages Disadvantages

Exhaustive Always finds the
optimal solution Exponential High accuracy High complexity

Sequential
Good if no

backtracking
needed

Quadratic O(NEX

2) Simple and fast
Cannot

backtrack

Randomized
Good with proper

control
parameters

Generally low
Designed to
escape local

minima

Difficult to
choose good
parameters

Search Strategies, summary

g A highly recommended review of this material

Justin Doak
“An evaluation of feature selection methods and their application to Computer Security”
University of California at Davis, Tech Report CSE-92-18
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SECTION III: Classification

g Discriminant functions
g The optimal Bayes classifier
g Quadratic classifiers
g Euclidean and Mahalanobis metrics
g K Nearest Neighbor Classifiers
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Discriminant functions
g A convenient way to represent a pattern classifier is in terms of 

a family of discriminant functions gi(x) with a simple MAX gate 
as the classification rule

g How do we choose the discriminant functions gi(x)
n Depends on the objective function to minimize

g Probability of error
g Bayes Risk

x2
x2 x3

x3 xd
xd

g1(x)g1(x)

x1
x1

g2(x)g2(x) gC(x)gC(x)

Select maxSelect max

CostsCosts

Class assignment

Discriminant functions

Features

ij(x)jg(x)gifclasstoxAssign ii ≠∀>
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Minimizing probability of error

g Probability of error P[error|x] is “the probability of assigning x 
to the wrong class”

n For a two-class problem, P[error|x] is simply

g It makes sense that the classification rule be designed to minimize the 
average probability of error P[error] across all possible values of x

g To ensure P(error) is minimum we minimize P(error|x) by choosing the 
class with maximum posterior P(ωi|x) at each x

n This is called the MAXIMUM A POSTERIORI (MAP) RULE
g And the associated discriminant functions become







=
12

21

decideweifx)|P(

decideweifx)|P(
x)|P(error

∫∫
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== x)P(x)dx|P(errorx)dxP(error,P(error)
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Minimizing probability of error
g We “prove” the optimality of 

the MAP rule graphically
n The right plot shows the 

posterior for each of the two 
classes

n The bottom plots shows the  
P(error) for the MAP rule and 
another rule

n Which one has lower P(error) 
(color-filled area) ?

x

P
(w

i|x
)

Choose
RED

Choose
BLUE

Choose
RED

THE MAP RULE

Choose
RED

Choose
BLUE

Choose
RED

THE “OTHER” RULE
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Quadratic classifiers

g Let us assume that the likelihood densities are Gaussian

g Using Bayes rule, the MAP discriminant functions become

n Eliminating constant terms

n We take natural logs (the logarithm is monotonically increasing)

g This is known as a Quadratic Discriminant Function
g The quadratic term is know as the Mahalanobis distance
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Mahalanobis distance

g The Mahalanobis distance can be thought of vector distance 
that uses a ∑i

-1 norm

n ∑-1 can be thought of as a stretching factor on the space
n Note that for an identity covariance matrix (∑i=I), the Mahalanobis 

distance becomes the familiar Euclidean distance

g In the following slides we look at special cases of the Quadratic 
classifier

n For convenience we will assume equiprobable priors so we can drop 
the term log(P(ωi))

µ
x2

x1

 -x
2

i =

K -x
2

i 1 =−∑

y)(xy)(xy-x 1
i

T2
1

i
−∑−= −
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DistancesMahalanobi
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Special case I: Σi=σ2I
g In this case, the discriminant 

becomes

n This is known as a MINIMUM 
DISTANCE CLASSIFIER

n Notice the linear decision 
boundaries

)(x)(x(x)g i
T

ii −−−=
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Special case 2: Σi= Σ (Σ diagonal)
g In this case, the discriminant 

becomes

n This is known as a MAHALANOBIS 
DISTANCE CLASSIFIER

n Still linear decision boundaries

)(x)(x
2
1

(x)g i
1T

ii −∑−−= −
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Special case 3: Σi=Σ (Σ non-diagonal)
g In this case, the discriminant 

becomes

n This is also known as a 
MAHALANOBIS DISTANCE 
CLASSIFIER

n Still linear decision boundaries

)(x)(x
2
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(x)g i
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g In this case the quadratic 
expression cannot be 
simplified any further

g Notice that the decision 
boundaries are no longer 
linear but quadratic

Case 4: Σi=σi
2I, example

Zoom
out
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g In this case there are no 
constraints so the quadratic 
expression cannot be 
simplified any further

g Notice that the decision 
boundaries are also quadratic

Case 5: Σi≠Σj general case, example

Zoom
out



Ricardo Gutierrez-Osuna
Wright State University

Statistical Pattern Recognition
68

NOSE 2nd Summer School
Lloret de Mar, Spain, October 2-5, 2000

Limitations of quadratic classifiers

g The fundamental limitation is the unimodal Gaussian 
assumption
n For non-Gaussian or multimodal 

Gaussian, the results may be 
significantly sub-optimal

g A practical limitation is associated with the minimum 
required size for the dataset
n If the number of examples per class is less than the number of 

dimensions, the covariance matrix becomes singular and, 
therefore, its inverse cannot be computed

g In this case it is common to assume the same covariance structure 
for all classes and compute the covariance matrix using all the 
examples, regardless of class
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Conclusions
g We can extract the following conclusions

n The Bayes classifier for normally distributed classes is quadratic
n The Bayes classifier for normally distributed classes with equal

covariance matrices is a linear classifier
n The minimum Mahalanobis distance classifier is optimum for

g normally distributed classes and equal covariance matrices and equal priors
n The minimum Euclidean distance classifier is optimum for

g normally distributed classes and equal covariance matrices proportional to 
the identity matrix and equal priors

n Both Euclidean and Mahalanobis distance classifiers are linear

g The goal of this discussion was to show that some of the most 
popular classifiers can be derived from decision-theoretic 
principles and some simplifying assumptions

n It is important to realize that using a specific (Euclidean or Mahalanobis) 
minimum distance classifier implicitly corresponds to certain statistical 
assumptions

n The question whether these assumptions hold or don’t can rarely be 
answered in practice; in most cases we are limited to posting and 
answering the question “does this classifier solve our problem or not?”
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K Nearest Neighbor classifier

g The kNN classifier is based on non-parametric density 
estimation techniques

n Let us assume we seek to estimate the density function P(x) from a 
dataset of examples

n P(x) can be approximated by the expression

n The volume V is determined by the
D-dim distance Rk

D(x) between x
and its k nearest neighbor

g Where cD is the volume of the 
unit sphere in D dimensions
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K Nearest Neighbor classifier
g We use the previous result to estimate the posterior probability

n The unconditional density is, again, estimated with

n And the priors can be estimated by

n The posterior probability then becomes

n Yielding discriminant functions

g This is known as the k Nearest Neighbor classifier
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K Nearest Neighbor classifier

g The kNN classifier is a very intuitive method 
n Examples are classified based on their similarity with training data

g For a given unlabeled example xu∈ℜD, find the k “closest” labeled examples 
in the training data set and assign xu to the class that appears most 
frequently within the k-subset

g The kNN only requires
n An integer k
n A set of labeled examples

n A measure of “closeness”
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kNN in action: example 1

g We generate data for a 2-dimensional 3-
class problem, where the class-conditional 
densities are multi-modal, and non-linearly 
separable

g We used kNN with
n k = five
n Metric = Euclidean distance
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kNN in action: example 2

g We generate data for a 2-dim 3-class 
problem, where the likelihoods are 
unimodal, and are distributed in rings 
around a common mean 

n These classes are also non-linearly separable

g We used kNN with
n k = five
n Metric = Euclidean distance
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kNN versus 1NN
1-NN 5-NN 20-NN
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Characteristics of the kNN classifier
g Advantages

n Analytically tractable, simple implementation
n Nearly optimal in the large sample limit (N→∞)

g P[error]Bayes<P[error]1-NNR<2P[error]Bayes

n Uses local information, which can yield highly adaptive behavior
n Lends itself very easily to parallel implementations

g Disadvantages
n Large storage requirements
n Computationally intensive recall
n Highly susceptible to the curse of dimensionality

g 1NN versus kNN
n The use of large values of k has two main advantages

g Yields smoother decision regions
g Provides probabilistic information: The ratio of examples for each class 

gives information about the ambiguity of the decision

n However, too large values of k are detrimental
g It destroys the locality of the estimation
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Section IV: Validation

g Motivation
g The Holdout
g Re-sampling techniques
g Three-way data splits
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Motivation

g Validation techniques are motivated by two 
fundamental problems in pattern recognition: model 
selection and performance estimation

g Model selection
n Almost invariably, all pattern recognition techniques have one or 

more free parameters
g The number of neighbors in a kNN classification rule
g The network size, learning parameters and weights in MLPs

n How do we select the “optimal” parameter(s) or model for a 
given classification problem?

g Performance estimation
n Once we have chosen a model, how do we estimate its 

performance?
g Performance is typically measured by the TRUE ERROR RATE, 

the classifier’s error rate on the ENTIRE POPULATION



Ricardo Gutierrez-Osuna
Wright State University

Statistical Pattern Recognition
79

NOSE 2nd Summer School
Lloret de Mar, Spain, October 2-5, 2000

Motivation

g If we had access to an unlimited number of examples these 
questions have a straightforward answer

n Choose the model that provides the lowest error rate on the entire 
population and, of course, that error rate is the true error rate

g In real applications we only have access to a finite set of 
examples, usually smaller than we wanted

n One approach is to use the entire training data to select our classifier 
and estimate the error rate

g This naïve approach has two fundamental problems
n The final model will normally overfit the training data

g This problem is more pronounced with models that have a large number of 
parameters

n The error rate estimate will be overly optimistic (lower than the true error rate)
g In fact, it is not uncommon to have 100% correct classification on training 

data

n A much better approach is to split the training data into disjoint subsets: 
the holdout method
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The holdout method
g Split dataset into two groups

n Training set: used to train the classifier
n Test set: used to estimate the error rate of the trained classifier

g A typical application the holdout method is determining a 
stopping point for the back propagation error

Training Set Test Set

Total number of examples

Epochs

MSE

Training set error

Test set errorStopping point
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The holdout method 

g The holdout method has two basic drawbacks
n In problems where we have a sparse dataset we may not be able to

afford the “luxury” of setting aside a portion of the dataset for testing
n Since it is a single train-and-test experiment, the holdout estimate of 

error rate will be misleading if we happen to get an “unfortunate” split

g The limitations of the holdout can be overcome with a family of 
resampling methods at the expense of more computations

n Cross Validation
g Random Subsampling
g K-Fold Cross-Validation

g Leave-one-out Cross-Validation

n Bootstrap
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Random Subsampling

g Random Subsampling performs K data splits of the dataset
n Each split randomly selects a (fixed) no. examples without replacement
n For each data split we retrain the classifier from scratch with the training 

examples and estimate Ei with the test examples

g The true error estimate is obtained as the average of the 
separate estimates Ei

n This estimate is significantly better than the holdout estimate

Total number of examples

Experiment 1

Experiment 2

Experiment 3

Test example

∑
=

=
K
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iE

K
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E
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K-Fold Cross-validation

g Create a K-fold partition of the the dataset
n For each of K experiments, use K-1 folds for training and the remaining 

one for testing 

g K-Fold Cross validation is similar to Random Subsampling 
n The advantage of K-Fold Cross validation is that all the examples in the 

dataset are eventually used for both training and testing

g As before, the true error is estimated as the average error rate

Total number of examples

Experiment 1

Experiment 2

Experiment 3
Test examples

Experiment 4
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E
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Leave-one-out Cross Validation

g Leave-one-out is the degenerate case of K-Fold Cross 
Validation, where K is chosen as the total number of examples
n For a dataset with N examples, perform N experiments
n For each experiment use N-1 examples for training and the remaining 

example for testing

g As usual, the true error is estimated as the average error rate on 
test examples

∑
=

=
N

1i
iE

N
1

E

Total number of examples

Experiment 1

Experiment 2

Experiment 3

Experiment N

Single test example
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How many folds are needed?

g With a large number of folds 
+ The bias of the true error rate estimator will be small (the estimator will 

be very accurate)
- The variance of the true error rate estimator will be large
- The computational time will be very large as well (many experiments)

g With a small number of folds 
+ The number of experiments and, therefore, computation time are 

reduced
+ The variance of the estimator will be small
- The bias of the estimator will be large (conservative or larger than the 

true error rate)

g In practice, the choice of the number of folds depends on the 
size of the dataset

n For large datasets, even 3-Fold Cross Validation will be quite accurate
n For very sparse datasets, we may have to use leave-one-out in order to 

train on as many examples as possible

g A common choice for K-Fold Cross Validation is K=10
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Three-way data splits

g If model selection and true error estimates are to be computed 
simultaneously, the data needs to be divided into three disjoint
sets

n Training set: a set of examples used for learning the parameters of the 
model

g In the MLP case, we would use the training set to find the “optimal” weights 
with the back propagation rule

n Validation set: a set of examples used to tune the meta-parameters of 
a model

g In the MLP case, we would use the validation set to find the “optimal” 
number of hidden units or determine a stopping point for the back 
propagation algorithm

n Test set: a set of examples used only to assess the performance of a 
fully-trained classifier

g In the MLP case, we would use the test to estimate the error rate after we 
have chosen the final model (MLP size and actual weights)

g After assessing the final model with the test set, YOU MUST NOT further 
tune the model
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Three-way data splits

g Why separate test and validation sets?
n The error rate estimate of the final model on validation data will 

be biased (smaller than the true error rate) since the validation 
set is used to select the final model

n After assessing the final model with the test set, YOU MUST 
NOT tune the model any further

g Procedure outline

n This outline assumes a holdout method
g If CV or Bootstrap are used, steps 3 and 4 have to be repeated for 

each of the K folds

1. Divide the available data into training, validation and test set
2. Select architecture and training parameters
3. Train the model using the training set
4. Evaluate the model using the validation set
5. Repeat steps 2 through 4 using different architectures and training parameters
6. Select the best model and train it using data from the training and validation set
7. Assess this final model using the test set 

1. Divide the available data into training, validation and test set
2. Select architecture and training parameters
3. Train the model using the training set
4. Evaluate the model using the validation set
5. Repeat steps 2 through 4 using different architectures and training parameters
6. Select the best model and train it using data from the training and validation set
7. Assess this final model using the test set 
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Three-way data splits

ΣModel1 Error1

ΣModel2 Error2

ΣModel3 Error3

ΣModel4 Error4
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Section V: Clustering

g Unsupervised learning concepts
g K-means
g Agglomerative clustering
g Divisive clustering
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Unsupervised learning
g In this section we investigate a family of techniques which use 

unlabeled data: the feature vector X without the class label ω
n These methods are called unsupervised since they are not provided the 

correct answer
g Although unsupervised learning methods may appear to have 

limited capabilities, there are several reasons that make them 
extremely useful

n Labeling large data sets can be costly (i.e., speech recognition)
n Class labels may not be known beforehand (i.e., data mining)
n Very large datasets can be compressed by finding a small set of 

prototypes (i.e., kNN)

g Two major approaches for unsupervised learning
n Parametric (mixture modeling)

g A functional form for the underlying density is assumed, and we seek to 
estimate the parameters of the model

n Non-parametric (clustering)
g No assumptions are made about the underlying densities, instead we seek 

a partition of the data into clusters
n These methods are typically referred to as clustering
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Unsupervised learning

g Non-parametric unsupervised learning involves three steps
n Defining a measure of similarity between examples
n Defining a criterion function for clustering

n Defining an algorithm to minimize (or maximize) the criterion function

g Similarity measures
n The most straightforward similarity measure is distance: Euclidean, city 

block or Mahalanobis
g Euclidean and city block measures are very sensitive to scaling of the axis, 

so caution must be exercised

g Criterion function
n The most widely used criterion function for clustering is the sum-of-

square-error criterion

g This criterion measures how well the data set X={x(1, x(2, …, x(N} is 
represented by the cluster centers µ={µ(1, µ(2, …, µ(N}
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Unsupervised learning
g Once a criterion function has been defined, we must find a partition of 

the data set that minimizes the criterion
n Exhaustive enumeration of all partitions, which guarantees the optimal solution, 

is unfeasible
n For example, a problem with 5 clusters and 100 examples yields 1067 different 

ways to partition the data

g The common approach is to proceed in an iterative fashion
n Find some reasonable initial partition and then 
n Move samples from one cluster to another in order to reduce the criterion 

function

g These iterative methods produce sub-optimal solution but are 
computationally tractable

g We will consider two groups of iterative methods
n Flat clustering algorithms

g These algorithms produce a set of disjoint clusters (a.k.a. a partition)
g Two algorithms are widely used: k-means and ISODATA

n Hierarchical clustering algorithms: 
g The result is a hierarchy of nested clusters
g These algorithms can be broadly divided into agglomerative and divisive approaches
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The k-means algorithm
g The k-means algorithm is a simple clustering procedure that 

attempts to minimize the criterion function JMSE iteratively

n The k-means algorithm is widely used in the fields of signal processing 
and communication for Vector Quantization

g Scalar signal values are usually quantized into a number of levels (typically 
a power of 2 so the signal can be transmitted in binary)

g The same idea can be extended for multiple channels
n However, rather than quantizing each separate channel, we can obtain a more 

efficient signal coding if we quantize the overall multidimensional vector by 
finding a number of multidimensional prototypes (cluster centers)

g The set of cluster centers is called a “codebook”, and the problem of finding 
this codebook is normally solved using the k-means algorithm

1. Define the number of clusters
2. Initialize clusters by

• an arbitrary assignment of examples to clusters or 
• an arbitrary set of cluster centers (examples assigned to nearest centers)

3. Compute the sample mean of each cluster
4. Reassign each example to the cluster with the nearest mean
5. If the classification of all samples has not changed, stop, else go to step 3

1. Define the number of clusters
2. Initialize clusters by

• an arbitrary assignment of examples to clusters or 
• an arbitrary set of cluster centers (examples assigned to nearest centers)

3. Compute the sample mean of each cluster
4. Reassign each example to the cluster with the nearest mean
5. If the classification of all samples has not changed, stop, else go to step 3
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Hierarchical clustering
g k-means creates disjoint clusters, resulting in a “flat” data 

representation (a partition)
g Sometimes it is desirable to obtain a hierarchical representation 

of data, with clusters and sub-clusters arranged in a tree-
structured fashion
n Hierarchical representations are commonly used in the sciences (i.e., 

biological taxonomy)

g Hierarchical clustering methods can be grouped in two general 
classes
n Agglomerative (bottom-up, merging): 

g Starting with N singleton clusters, successively merge clusters until one 
cluster is left

n Divisive (top-down, splitting)
g Starting with a unique cluster, successively split the clusters until N singleton 

examples are left
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Hierarchical clustering

g The preferred representation for hierarchical clusters is the 
dendrogram
n The dendrogram is a binary tree that shows the structure of the clusters

g In addition to the binary tree, the dendrogram provides the similarity measure 
between clusters (the vertical axis)

n An alternative representation is based on sets: {{x1, {x2, x3}}, {{{x4, x5}, 
{x6, x7}}, x8}} but, unlike the dendrogram, sets cannot express 
quantitative information

x1 x2 x3 x4 x5 x6 x7 x8

High similarity

Low similarity
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Divisive clustering
g Outline

n Define
g NC: Number of clusters
g NEX: Number of examples

g How to choose the “worst” cluster
n Largest number of examples
n Largest variance
n Largest sum-squared-error
n ...

g How to split clusters
n Mean-median in one feature direction
n Perpendicular to the direction of largest variance
n …

g The computations required by divisive clustering are more 
intensive than for agglomerative clustering methods and, thus, 
agglomerative approaches are more common

1. Start with one large cluster

2. Find “worst” cluster
3. Split it

4. If NC<NEX go to 1

1. Start with one large cluster

2. Find “worst” cluster
3. Split it

4. If NC<NEX go to 1
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Agglomerative clustering

g Outline
n Define

g NC: Number of clusters
g NEX: Number of examples

g How to find the “nearest” pair of clusters

n Minimum distance

n Maximum distance

n Average distance

n Mean distance

1. Start with NEX singleton clusters
2. Find nearest clusters

3. Merge them
4. If NC>1 go to 1

1. Start with NEX singleton clusters
2. Find nearest clusters

3. Merge them
4. If NC>1 go to 1
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Agglomerative clustering
g Minimum distance

n When dmin is used to measure distance between clusters, the algorithm is called 
the nearest-neighbor or single-linkage clustering algorithm

n If the algorithm is allowed to run until only one cluster remains, the result is a 
minimum spanning tree (MST)

n This algorithm favors elongated classes

g Maximum distance
n When dmax is used to measure distance between clusters, the algorithm is called 

the farthest-neighbor or complete-linkage clustering algorithm
n From a graph-theoretic point of view, each cluster constitutes a complete sub-

graph
n This algorithm favors compact classes

g Average and mean distance
n The minimum and maximum distance are extremely sensitive to outliers since 

their measurement of between-cluster distance involves minima or maxima

n The average and mean distance approaches are more robust to outliers
n Of the two, the mean distance is computationally more attractive

g Notice that the average distance approach involves the computation of NiNj distances 
for each pair of clusters
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Conclusions

g Dimensionality reduction
n PCA may not find the most discriminatory axes
n LDA may overfit the data

g Classifiers
n Quadratic classifiers are efficient for unimodal data
n kNN is very versatile but is computationally inefficient

g Validation
n An fundamental subject, oftentimes overlooked

g Clustering
n Helps understand the underlying structure of the data
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