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Neural NetworksNeural Networks

Supervised Learning
• Perceptrons
• ADALINE
• Multilayer perceptrons
• Radial basis function networks
• Modular neural networks
• LVQ (Learning Vector Quantization)

Unsupervised Learning
• Competitive learning networks
• Kohonen self-organizing networks
• ART (Adaptive Resonance Theory)

Others
• Hopfield networks
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Supervised Neural Networks I: OutlineSupervised Neural Networks I: Outline

•Introduction

•Perceptrons

•Adaline

•Backpropagation Multilayer Perceptrons
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IntroductionIntroduction

•Artificial Neural Networks (ANN) have been studied 
since the 1950s

•Minsky & Papert in their report on perceptrons
(proposed by Rosenblatt) expressed pessimism over 
multilayer systems, the interest in ANN dwindled in the 
1970s

•In the 1980s the work of Rumelhart, Hinton, Williams & 
others, in learning algorithms created a resurgence of 
the lost interest in the field of ANN
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PerceptronsPerceptrons

Architecture & learning rule

• The perceptron was derived from a biological 
brain neuron model introduced by McCulloch and 
Pitts in 1943

• Rosenblatt designed the perceptron with a view 
toward explaining & modeling pattern recognition 
abilities of biological visual systems

• The following figure illustrate a two-class problem 
that consists of determining whether the input 
pattern is a “p” or not
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PerceptronsPerceptrons
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• A signal xi is binary; it could be active (or 
excitatory) if its value is 1, inactive if its value is 0 
and inhibitory if its value is -1
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PerceptronsPerceptrons

Architecture & learning rule

• f(.) is the activation function of the perceptron and 
is either a signum function sgn(x) or a step 
function step (x)
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PerceptronsPerceptrons

Algorithm (Single-layer perceptron)

0. Start with a set of random connection weights
1. Select an input vector x from the training data 

set 
2. If the perceptron provides a wrong response 

then modify 
all connection weights wi with ∆wi = η t xi
where: t is a target output

η is a learning rate
3. Test the weight convergence: if converge stop 

else go to 1
This learning algorithm is based on gradient descent
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PerceptronsPerceptrons

Network architecture

x1

w2

w1 w0

x2

y = sgn(Σwi xi + w0)w3

x3

∆wi = η t xi

Learning rule
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PerceptronsPerceptrons

Example: Gender classification
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PerceptronsPerceptrons

Exclusive-OR problem (XOR)

Goal: classify a binary input vector to 
class 0 if the vector has an even number of 1’s, 
otherwise assign it to class 1 

011Desired i/o pair 4

101Desired i/o pair 3

110Desired i/o pair 2

000Desired i/o pair 1

ClassYX
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PerceptronsPerceptrons

Exclusive-OR problem (XOR)
• From figure below, we can say that the XOR 

problem is not linearly separable
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PerceptronsPerceptrons

• Using a single-layer perceptron and the step function to solve 
this problem requires satisfying the following inequalities

0 * w1 + 0 * w2 + w0 ≤ 0 ⇔ w0 ≤ 0
0 * w1 + 1 * w2 + w0 > 0 ⇔ w0 > - w2

1 * w1 + 0 * w2 + w0 > 0 ⇔ w0 > - w1

1 * w1 + 1 * w2 + w0 ≤ 0 ⇔ w0 ≤ - w1 – w2

This set of inequalities is self-contradictory
⇒ Minsky & Pappert criticism of the perceptron

was justified in part by this result.
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PerceptronsPerceptrons

• The XOR problem can be solved using a two-layer 
perceptron illustrated by the following figure
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PerceptronsPerceptrons

(x1 = 0, x2 = 0 ⇒ 0) 
results at the hidden layer
0 * (+1) + 0 * (+1) = 0 < 1.5 ⇒ x3 = 0
0 * (+1) + 0 * (+1) = 0 < 0.5 ⇒ x4 = 0
results at the output layer
0 * (-1) + 0 * (+1) = 0 < 0.5 ⇒ x5 = output = 0

(x1 = 0, x2 = 1 ⇒ 1) 
results at the hidden layer
0 * (+1) + 1 * (+1) = 1 < 1.5 ⇒ x3 = 0
0 * (+1) + 1 * (+1) = 1 > 0.5 ⇒ x4 = 1
results at the output layer
0 * (-1) + 1 * (+1) = +1 > 0.5 ⇒ x5 = output = 1

In summary, multilayer perceptrons can solve nonlinearly 
separable problems and are thus more powerful than the 
single-layer perceptrons
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Multilayer Perceptrons (MLPs)Multilayer Perceptrons (MLPs)

Example: XOR problem

Training data

x1

x2

y

Network Architecture

x1 x2 y
0    0    0
0    1    1
1    0    1
1    1    0

x1

x2

x1

x2

y
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ADALINEADALINE

•Developed by Widrow & Hoff
•The ADALINE model represents a simple 
intelligent self-learning system that can adapt 
itself to achieve a given modeling or pattern 
recognition task
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ADALINEADALINE
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One possible implementation of ADALINE is the 
following:

• The input signals are voltages
• The weights wi are conductances of controllable 

resistors
• The network output is the summation of the currents 

caused by the input voltages

The problem consists of finding a suitable set of 
conductances such that the input-output behavior of 
ADALINE is close to a set of desired input-output data 
points
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ADALINEADALINE

The ADALINE model can be solved using a linear least-
square method, (d +1) linear parameters in order to 
minimize the error 

(n training samples)

However, since this method can be slow (requires very 
many calculations) if d is large, therefore Widrow & Hoff 
fell back on gradient descent 
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Multilayer Neural NetworksMultilayer Neural Networks

• Goal: Classify objects by learning nonlinearity

• There are many problems for which linear 
discriminants are insufficient for minimum error

• In previously discussed neural network methods, 
a major difficulty was the choice of the appropriate 
nonlinear functions
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Multilayer Neural NetworksMultilayer Neural Networks

• There is no automatic method for determining 
the nonlinearities when no information is 
provided to the classifier

• In using the Multilayer Neural Networks, the 
form of the nonlinearity is learned from the 
training data  

• A two-layer neural network consists of a 
hidden layer and an output layer 
interconnected by modifiable weights 
represented by links between layers
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Multilayer Neural NetworksMultilayer Neural Networks

A single “bias unit” is connected to each unit other 
than the input units
Net activation:

where the subscript i indexes units in the input 
layer, j in the hidden; wji denotes the input-to-
hidden layer weights at the hidden unit j. (In 
neurobiology, such weights or connections are 
called “synapses”)

Each hidden unit emits an output that is a nonlinear
function of its activation, that is: yj = f(netj) 

≡∑ ∑
d d

t
j j ji j0 i ji j

i=1 i=0
Net = x W + W = X W W .x,
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Multilayer Neural NetworksMultilayer Neural Networks

≥
≡  <

1 if net 0
f(net) = sgn(net)

-1 if net 0

• Figure 6.1 shows the use of the simple threshold 
function 

There are more general activation functions with 
desirables properties 

Each output unit similarly computes its net activation 
based on the hidden unit signals as: 

where the subscript k indexes units in the ouput layer and 
nH denotes the number of hidden units 

∑ ∑
H Hn n

t
k j kj k0 j kj k

j=1 j=0
net = y w + w = y w = w .y,
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Multilayer Neural NetworksMultilayer Neural Networks
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Multilayer Neural NetworksMultilayer Neural Networks

The previous slide:
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Multilayer Neural NetworksMultilayer Neural Networks

•More than one output are referred to as zk. 
•An output unit computes the nonlinear function of 
its net, emitting 

zk = f(netk)

In the case of c outputs (classes), we can view the 
network as computing c discriminant functions 
zk = gk(x) and classify the input x according to the 
largest discriminant function gk(x)  ∀ k = 1, …, c 

The two-layer network with the weights listed in 
Fig. 6.1 solves the XOR problem
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Multilayer Neural NetworksMultilayer Neural Networks
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• General Feedforward Operation – case of c output units 

• Hidden units enable us to express more complicated 
nonlinear functions and thus improve the classification 

• The activation function is often required to be continuous and 
differentiable 

• We can allow the activation in the output layer to be different 
from the activation function in the hidden layer or have 
different activation for each individual unit 

• We assume for now that all activation functions to be identical 
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Multilayer Perceptrons (MLPs)Multilayer Perceptrons (MLPs)

Learning rule:
• Steepest descent (Backprop)
• Conjugate gradient method
• All optim. methods using first derivative
• Derivative-free optim.

Network architecture

x1

x2

y1

y2

hyperbolic tangent
or logistic function
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Multilayer PerceptronsMultilayer Perceptrons

• Any function from input to output can be 
implemented as a three-layer neural network
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MLPs Decision BoundariesMLPs Decision Boundaries

A B

B A

A
B

XOR Interwined General

1-layer: Half planes

A B

B A

A
B

2-layer: Convex

A B

B A

A
B

3-layer: Arbitrary
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Backpropagation AlgorithmBackpropagation Algorithm

• Our goal now is to set the interconnection weights 
based on the training patterns and the desired 
outputs

• In a two-layer network, it is a straightforward 
matter to understand how the output, and thus the 
error, depend on the hidden-to-output layer 
weights

• The power of backpropagation is that it enables us 
to compute an effective error for each hidden unit, 
and thus derive a learning rule for the input-to-
hidden weights.
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Backpropagation AlgorithmBackpropagation Algorithm

Network have two modes of operation:

• Feedforward: The feedforward operations 
consists of presenting a pattern to the input 
units and passing (or feeding) the signals 
through the network in order to get output 
units (no cycles)  

• Learning: The supervised learning consists of 
presenting an input pattern and modifying the 
network parameters (weights) to reduce 
distances between the computed output and 
the desired output
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Backpropagation AlgorithmBackpropagation Algorithm
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Backpropagation AlgorithmBackpropagation Algorithm

Backpropagation learning rule

Principle:
The net input of a node       is defined as the 

weighted sum of the incoming signals plus a bias term:

(Logistic function)

Where: xi = ouptput of node i at any of the previous layers
wij = weight associated with the link connecting 

nodes i & j
wj = bias of node j

x
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Backpropagation AlgorithmBackpropagation Algorithm

Network Learning 
• Let tk be the k-th target (or desired) output and zk

be the k-th computed output with k = 1, …, c and w 
represents all the weights of the network

The training error:    The backpropagation learning 
rule is based on gradient descent 

The weights are initialized with pseudo-
random values and are changed in a 
direction that will reduce the error:

( )∑
c

22
k k
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Backpropagation AlgorithmBackpropagation Algorithm

• Error on the hidden–to-output weights is

where the sensitivity of unit k is defined as:   

and describes how the overall error changes 
with the activation of the unit’s net 
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Backpropagation AlgorithmBackpropagation Algorithm

The signum and the step functions are not differentiable, the 
use of logistic (hyperbolic) functions contribute for an 
improved learning scheme

• Logistic: f(x) = 1 / (1 + e-x)
• Hyperbolic tangent: f(x) = 
tanh(x/2) 

= (1 – e-x) / (1 + e-x)
• Identity: f(x) = x

The signum function is approximated by the hyberbolic
tangent function & the step function is approximated by the 
logistic function
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Backpropagation AlgorithmBackpropagation Algorithm
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• Since netk = wk
t.y we get: 

Conclusion: the weight update (or learning rule) 
for the hidden-to-output weights is: 

∆wkj = ηδkyj = η(tk – zk) f’ (netk)yj

Error on the input-to-hidden units
∂ ∂∂ ∂
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j j
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Backpropagation AlgorithmBackpropagation Algorithm

•However, 
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Backpropagation AlgorithmBackpropagation Algorithm

The sensitivity for a hidden unit is now defined: 

which means that: “The sensitivity at a hidden unit 
is simply the sum of the individual sensitivities at 
the output units weighted by the hidden-to-output 
weights wkj; all multipled by f’(netj)”

Conclusion: The learning rule for the input-to-
hidden weights is: 

( )′≡ ∑
c

j j kj k
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δ f net w δ
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Backpropagation AlgorithmBackpropagation Algorithm

Stopping criterion

The algorithm terminates when the change in the 
criterion function J(w) is smaller than some 
preset value θ

There are other stopping criteria that lead to better 
performance than this one

So far, we have considered the error on a single 
pattern, but we want to consider an error defined 
over the entirety of patterns in the training set
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Backpropagation AlgorithmBackpropagation Algorithm

Stopping Criterion:
The total training error is the sum over the errors 

of n individual patterns

• A weight update may reduce the error on the 
single pattern being presented but can increase 
the error on the full training set

• However, given a large number of such 
individual updates, the total error of equation (1)
above decreases

∑
n

p
p=1

J = J (1)
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Backpropagation AlgorithmBackpropagation Algorithm

Learning Curves

• Before training starts, the error on the training 
set is high; through the learning process, the 
error becomes smaller

• The error per pattern depends on the amount 
of training data and the expressive power 
(such as the number of weights) in the network

• The average error on an independent test set is 
always higher than on the training set, and it 
can decrease as well as increase
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Backpropagation AlgorithmBackpropagation Algorithm

Learning Curves:

• A validation set is used in order to decide 
when to stop training ; we do not want to 
overfit the network and decrease the power of 
the classifier generalization

“we stop training at a minimum of the error on 
the validation set”
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Backpropagation AlgorithmBackpropagation Algorithm
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• Architectures & Learning Methods
•Interpolation & Approximation RBFN



Radial Basis Function NetworksRadial Basis Function Networks
Architectures & Learning Methods

• Inspired by research in regions of the cerebral cortex & 
the visual cortex, RBFNs were proposed by Moody & 
Darken in 1988 as a supervised learning neural 
networks

• The activation level of the ith receptive field unit is:
wi = Ri(x) = Ri (||x – ui|| / σi), i = 1, 2, …, H

- x is a multidimensional input vector
- ui is a vector with same dimension as x
- H is the number of radial basis functions called also 

receptive field units
- Ri(.) is the ith radial basis function with a single 

maximum at the origin





Radial Basis Function NetworksRadial Basis Function Networks

Architectures & Learning Methods

• Ri(.) is either a Gaussian function

or a logistic function
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Radial Basis Function NetworksRadial Basis Function Networks

Architectures & Learning Methods

• The output of an RBFN 

- (weighted sum)

where ci = output value associated with the ith 
receptive field

- (weighted average)
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Radial Basis Function NetworksRadial Basis Function Networks

Architectures & Learning Methods

• Moody-Darken’s RBFN may be extended by 
assigning a linear function to the output function of 
each receptive field

(ai is a parameter vector & bi is a scalar parameter)

• Supervised adjustments of the center & shape of 
the receptive field (or radial basis) functions may 
improve RBFNs approximation capacity

• Several learning algorithms have been proposed to 
identify the parameters (ui, σI & ci) of an RBFN

bxac T
ii +=



Radial Basis Function NetworksRadial Basis Function Networks
Interpolation & approximation RBFN

• The interpolation case: each RBF is assigned to each 
training pattern

Goal: Estimate a function d(.) that yields exact desired 
outputs for all training data

- Our goal consists of finding ci (i = 1, 2, …, n) 
(n = H) such that d(xi) = oi = desired output 

since 
- wi = Ri (||x – ui||) = exp [- (x – ui)2 / (2     )]

Therefore, starting with xi as centers for the 
RBFNs, 
we can write:
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Radial Basis Function NetworksRadial Basis Function Networks

Interpolation & approximation RBFN

• The interpolation case (cont.)

- For given σi (i = 1, …, n), we obtain the 
following n simultaneous linear equations 
with respect to unknown weights ci (i = 1, 2, 
…, n)
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• The interpolation case
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Radial Basis Function NetworksRadial Basis Function Networks

Interpolation & approximation RBFN

• Approximation RBFN

- This corresponds to the case when there 
are fewer basis functions than there are 
available training patterns

- In this case, the matrix G is not square & 
the least square methods are commonly 
used in order to find the vector C


	Chapters 5 and 6.  Supervised Neural Networks
	Supervised Neural Networks I:  Multilayer Perceptrons
	Neural Networks
	Supervised Neural Networks I: Outline
	Introduction
	Perceptrons
	Perceptrons
	Perceptrons
	Perceptrons
	Perceptrons
	Perceptrons
	Perceptrons
	Perceptrons
	Perceptrons
	Perceptrons
	Perceptrons
	Multilayer Perceptrons (MLPs)
	ADALINE
	ADALINE
	ADALINE
	Multilayer Neural Networks
	Multilayer Neural Networks
	Multilayer Neural Networks
	Multilayer Neural Networks
	Multilayer Neural Networks
	Multilayer Neural Networks
	Multilayer Neural Networks
	Multilayer Neural Networks
	Multilayer Perceptrons (MLPs)
	Multilayer Perceptrons
	MLPs Decision Boundaries
	Backpropagation Algorithm
	Backpropagation Algorithm
	Backpropagation Algorithm
	Backpropagation Algorithm
	Backpropagation Algorithm
	Backpropagation Algorithm
	Backpropagation Algorithm
	Backpropagation Algorithm
	Backpropagation Algorithm
	Backpropagation Algorithm
	Backpropagation Algorithm
	Backpropagation Algorithm
	Backpropagation Algorithm
	Backpropagation Algorithm
	Backpropagation Algorithm
	Supervised Neural Networks II: Radial Basis Function Neural Networks
	Radial Basis Function Networks (RBFNs)
	Radial Basis Function Networks
	Radial Basis Function Networks
	Radial Basis Function Networks
	Radial Basis Function Networks
	Radial Basis Function Networks
	Radial Basis Function Networks
	Radial Basis Function Networks
	Radial Basis Function Networks

