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Non-Parametric ClassificationNon-Parametric Classification

• All Parametric densities are unimodal (have a 
single local maximum), whereas many practical 
problems involve multi-modal densities

• Nonparametric procedures can be used with 
arbitrary distributions and without the 
assumption that the forms of the underlying 
densities are known

• We will consider
• Parzen Density Estimation
• Kn Nearest Neighbor Estimation
• k-Nearest Neighbor Rule 
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Non-Parametric ClassificationNon-Parametric Classification

• Basic idea:
Probability that a vector x will fall in region R is: 

P is a smoothed (or averaged) version of the density 
function p(x) if we have a sample of size n; 
therefore, the probability that k points fall in R is 
then: 

and the expected value for k is:
E(k) = nP (3)

( ) (1)P p x dx′ ′= ∫
R

( ) (2)
 
 
 

n-kk
k

n
P = P 1-P

k
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Non-Parametric ClassificationNon-Parametric Classification

ML estimation of  P = θ

• is reached for
•Therefore, the ratio k/n is a good estimate for the 
probability P and hence for the density function p.  
•p(x) is continuous and the region R is so small that p 
does not vary significantly within it, we can write:  

where is a point within R and V the volume enclosed by 
R.

( )kθ
Max P θ

′ ′ ≅∫
R

p(x )dx p(x)V (4)

θ̂ ≅
k= P
n
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Non-Parametric ClassificationNon-Parametric Classification

•Combining equations (1) , (3) and (4) yields: p( ≅
k/nx)
V
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Density EstimationDensity Estimation

•There are two different ways of obtaining sequences of 
regions that satisfy these conditions:

(a) Shrink an initial region where Vn = 1/√n and 
show that 

This is called “the Parzen-window estimation 
method”

(b) Specify kn as some function of n,  such as 
kn = √n; the volume Vn is grown until it 
encloses kn neighbors of x. This is called 
“the kn-nearest neighbor estimation 
method”

→∞
→n

n
p (x) p(x)
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Density EstimationDensity Estimation
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Parzen Density EstimationParzen Density Estimation

Properties:
• Also known as kernel estimator or Parzen

windows
• Can be used for multiple features
• Window width is an important parameter in the

Parzen Density Estimation.
• The width is usually found by trial and error
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Parzen Density EstimationParzen Density Estimation

•Use the Parzen-window approach to estimate densities 
assume that the region Rn is a d-dimensional 
hypercube

ϕ((x-xi)/hn) is equal to unity if xi falls within the 
hypercube of volume Vn centered at xi. It is equal to 
zero otherwise.

ϕ

V
Let

( )
ϕ

 ≤



L

Rd
n n n n

j

= h h :length of the edge of
(u) be the following window function :

11 u
(u) = j = 1, ,d2

0 otherwise
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Parzen Density EstimationParzen Density Estimation

•The number of samples in this hypercube is:

By using we obtain the following estimate: 

pn(x) estimates p(x) as an average of functions of x and 
the samples (xi) (i = 1,… ,n). These functions ϕ can be 
general.

≅
k/np(x)

ϕ
 
 
 

∑
i=n

i
n

i=1 n

x - xk =
h

V

ϕ
 
 
 

∑
i=n

i
n

i=1 n n

1 1 x - xp (x) =
n V h
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Parzen Density EstimationParzen Density Estimation

•The behavior of the Parzen-window method.
Case where p(x) N(0,1) 

•Let ϕ(u) = (1/√(2π) exp(-u2/2) and 
hn = h1/√n (n>1) (h1: known parameter)
Thus:   

is an average of normal densities 
centered at the samples xi. 

ϕ
 
 
 

∑
i=n

i
n

i=1 n n

1 1 x - xp (x) =
n h h
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Parzen Density EstimationParzen Density Estimation

h = 0.1

h = 0.3



IntroductionPattern Recognition:

13

Parzen Density EstimationParzen Density Estimation

•Numerical results: 

For n = 1 and h1=1

For n = 10 and h = 0.1, the contributions of the 
individual samples are clearly observable

( ) ( ) ( )ϕ →
2

1-1/2 x-x
1 1 1

1p (x) = x - x = e N x ,1
2π
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Parzen Density EstimationParzen Density Estimation
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Parzen Density EstimationParzen Density Estimation
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Parzen Density EstimationParzen Density Estimation
•Analogous results are also obtained in two dimensions:
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Parzen Density EstimationParzen Density Estimation
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Parzen Density EstimationParzen Density Estimation

•Case where p(x) = λ1 U(a,b) + λ2T(c,d) (unknown 
density) (mixture of a uniform and triangle densities)
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Parzen Density EstimationParzen Density Estimation



IntroductionPattern Recognition:

20

Parzen Density EstimationParzen Density Estimation

Classification Example

In classifiers based on Parzen-window estimation:
•We estimate the densities for each category and 
classify a test point by the label corresponding to the 
maximum posterior

•The decision region for a Parzen-window classifier 
depends upon the choice of the window function as 
illustrated in the following figure.
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Parzen Density EstimationParzen Density Estimation
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Kn Nearest Neighbor EstimationKn Nearest Neighbor Estimation

Goal: a solution for the problem of the unknown “best” window 
function

Let the cell volume be a function of the training data 
Center a cell about x and let it grows until it captures 
kn samples (kn = f(n)) 

kn are called the kn nearest-
neighbors of x

Two possibilities can occur:
Density is high near x; therefore, the cell will be small 
which provides a good resolution 
Density is low; therefore the cell will grow large and 
stop until higher density regions are reached

We can obtain a family of estimates by setting kn=k1/√n and 
choosing different values for k1
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Kn Nearest Neighbor EstimationKn Nearest Neighbor Estimation
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Kn Nearest Neighbor EstimationKn Nearest Neighbor Estimation
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Illustration: Kn Nearest Neighbor 
Estimation
Illustration: Kn Nearest Neighbor 
Estimation

•Previous example for Parzen
•For n = 1 and kn =  √n = 1 ; the estimate 
becomes:

Pn(x) = 1 / V1

= 1 / 2|x-x1|
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Kn Nearest Neighbor EstimationKn Nearest Neighbor Estimation
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Kn Nearest Neighbor EstimationKn Nearest Neighbor Estimation
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Estimation of a-posteriori probabilitiesEstimation of a-posteriori probabilities

• Goal: estimate P(ωi | x) from a set of n 
labeled samples

• Let us place a cell of volume V around x 
and capture k samples 

• ki samples amongst k turned out to be 
labeled ωI then: 

• pn(x, ωi) = ki /nV 

• An estimate for pn(ωi| x) is: 

( ) ( )

( )∑
n i i

n i j=c

n j
j=1

p x,ω kp ω x = =
kp x,ω
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Estimation of a-posteriori probabilitiesEstimation of a-posteriori probabilities

• ki/k is the fraction of the samples within the 
cell that are labeled ωi

• For minimum error rate, the most 
frequently represented category within the 
cell is selected

• If k is large and the cell sufficiently small, 
the performance will approach the best 
possible 
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The k-Nearest Neighbor RuleThe k-Nearest Neighbor Rule

• Let Dn = {x1, x2, …, xn} be a set of n labeled prototypes

• Let x’ ∈ Dn be the closest prototype to a test point x 
then the nearest-neighbor rule for classifying x is to 
assign it the label associated with x’

• The nearest-neighbor rule leads to an error rate greater 
than the minimum possible: the Bayes rate

• If the number of prototype is large (unlimited), the error 
rate of the nearest-neighbor classifier is never worse 
than twice the Bayes rate (it can be demonstrated)

• If n → ∞, it is always possible to find x’ sufficiently close 
so that: 

P(ωi | x’) ≅ P(ωi | x) 
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The k-Nearest Neighbor RuleThe k-Nearest Neighbor Rule
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ExampleExample
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Decision Boundary for 1-NNRDecision Boundary for 1-NNR

Voronoi diagram: piecewise linear boundary
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K-Nearest Neighbor Rule (K-NNR)K-Nearest Neighbor Rule (K-NNR)

Steps:
1. Find the first k nearest neighbors of a given point. 
2. Determine the class of the given point by a voting    

mechanism among these k nearest neighbors.

Fe
at

ur
e 

2 : class-A point
: class-B point
: point with unknown class

Circle of 3-nearest neighbors
The point is class B via 3-NNR.

Feature 1
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The k-Nearest Neighbor RuleThe k-Nearest Neighbor Rule

• Goal: Classify x by assigning it the label 
most frequently represented among the k 
nearest samples and use a voting scheme
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The k-Nearest Neighbor RuleThe k-Nearest Neighbor Rule
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ExampleExample

1

2

5

2

Prototype Labels
(0.15,0.35) ω
(0.10,0.28) ω
(0.09,0.30) ω
(0.12,0.20) ω

•Example: k = 3 (odd value) and x = (0.10, 0.25)t

•Closest vectors to x with their labels are: {(0.10, 0.28, ω
2

); 
(0.12, 0.20, ω

2
); (0.09, 0.30, ω

5
)} 

One voting scheme assigns the label ω
2to x since ω

2
is the most frequently represented
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Flowchart for Nearest NeighborFlowchart for Nearest Neighbor

General flowchart: Particle example:

FeatureFeature
extraction

From image to features
extraction

DataData
reduction Nonereduction

DistanceDistance
measure Distance Computationmeasure
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Distance MetricsDistance Metrics

L-d norms (aka Minkowski distance):

• d = 1: City block distance, Manhattan metric, 
taxicab distance

• d = 2: Euclidean distance

• d = inf: maximum distance metric

d
d

d

1/

i
i |x|)x(d 








= ∑r

d ( x ) |x |i
i

1

r
= ∑

d ( x ) | x |i
i

2
2r

= ∑

d ( x ) m a x x
i

i∞ =
r
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