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• Data availability in a Bayesian framework
• We could design an optimal classifier if we knew: 

• P(ωi) (priors) 
• P(x | ωi) (class-conditional densities) 
• Unfortunately, we rarely have this complete 

information.

• Design a classifier from a training sample
• No problem with prior estimation 
• Samples are often too small for class-

conditional estimation (large dimension of 
feature space.) 
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• A priori information about the problem
Normality of P(x | ωi)
P(x | ωi) ~ N( µi, Σi)
Characterized by 2 parameters

• Estimation techniques
Maximum-Likelihood (ML) and Bayesian 
estimations 

• Results are nearly identical, but the 
approaches are different 

• Will only discuss ML here
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•Parameters in ML estimation are fixed but 
unknown

•Best parameters are obtained by maximizing the 
probability of obtaining the samples observed

•Here, we use P(ωi | x) for our classification rule.
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ML Estimation:

• Has good convergence properties as the 
sample size increases 

• Simpler than any other alternative 
techniques

• General principle
in a specific example.

• Assume we have c classes and 
• P(x | ωj) ~ N( µj, Σj) 
• P(x | ωj) ≡ P (x | ωj, θj) where:

( ) ( )( )L L1 2 11 22 m n
j j j j j j j jθ = µ ,Σ = µ ,µ , ,σ ,σ ,cov x ,x
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•Use the information provided by the training samples to 
estimate θ = (θ1, θ2, …, θc) each θi (i = 1, 2, …, c) is associated 
with each category

•Suppose that D contains n samples, x1, x2,…, xn 

•ML estimate of θ is, by definition the value that maximizes 
P(D | θ) 
•“It is the value of θ that best agrees with the actually 
observed training samples”

( ) ( )
( )

k=n

kk=1
P D θ = ΠP x θ = F(θ)

P D θ is called the likelihood of θ w.r.t. the set of samples)
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• Optimal estimation 
• Let θ = (θ1, θ2, …, θp)t and let ∇θ be the 

gradient operator

• We define l(θ) as the log-likelihood 
function:

l(θ) = ln P(D | θ)  
• New problem statement: determine θ

that maximizes the log-likelihood 

 ∂ ∂ ∂
∇  

∂ ∂ ∂  
L

t

θ
1 2 p

= , , ,
θ θ θ

ˆ
θ

θ = arg max l(θ)
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• Set of necessary conditions for an 
optimum is: 

( ) ( )∇ ∇

∇

∑
k=n

θ θ k
k=1

θ

l = lnP x θ)

l = 0
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• Example of a specific case: unknown µ
• P(xi | µ) ~ N(µ, Σ) (Samples are 

drawn from a multivariate normal 
population) 

θ = µ therefore: 
• The ML estimate for µ must satisfy: 

( )ˆ∑∑
k=n -1

k
k=1

x -µ = 0

( ) ( ) ( ) ( )

( ) ( )

1

1

−

−

 
 

∇

∑

∑

d t
k k k

θ=µ k k

1 1lnP x µ =- ln 2π Σ - x -µ x -µ
2 2

and lnP x µ = x -µ
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Multiplying by Σ and rearranging, we obtain:  

(Just the arithmetic average of the samples of the 
training samples) 

Conclusion: “If P(xk | ωj) (j = 1, 2, …, c) is supposed  to 
be Gaussian in a d dimensional feature space; then we 
can estimate θ = (θ1, θ2, …, θc) and perform an optimal 
classification”

ˆ ∑
k=n

k
k=1

1µ = x
n

∂
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• Gaussian Case: unknown µ and σ
θ = (θ1, θ2) = (µ, σ2) 

( ) ( )

( )( )

( )( )

( )

( )

2

1
2θ

− −

∂ 
 ∂ ∇
∂ 

 ∂ 







2
k 2 k 1

k
1

θ

k
2

k 1
2

2
k 1

2
2 2

1l = ln P x θ = ln 2πθ x -θ
2

ln P x θ
θ

l = = 0
ln P x θ

θ

1 x -θ = 0
θ

x -θ1- + = 0
2θ 2θ
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•Summation: 

•Combining (1) and (2), one obtains: 

( )

( )

ˆ
ˆ

ˆ

ˆ ˆ









∑

∑ ∑

k=n

k 1
k=1 2

2
k=n k=n k 1

2
k=1 k=12 2

1 x -θ = 0 (1)
θ

x -θ1- + = 0 (2)
θ θ

( )2
2 1

1

;
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kk n
k k

k

x
x
n n

µ
µ σ

=

=
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Bias

• ML estimate for σ2 is biased 

• An elementary unbiased estimator for Σ is: 

( )( )∑
1444442444443

k=n
t

k k
k=1

Sample covariance matrix

1C = x -µ x -µ
n-1

( )  ⋅ ≠  
2 2 2

i
1 n-1E Σ x - x = σ σ
n n
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Gaussian density function:

where µ and σ2 are estimated from sample (via 
maximum likelihood estimate):

p x e
x

( ) =
−

−



1

2

1

2

2

σ π

µ
σ

µ = ∑1

n
x i

i

22 )(1 µσ −= ∑
i

ixn
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Normal dist.
estimated by
normal dist.

Uniform dist.
estimated by
normal dist.
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