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Statistical Decision TheoryStatistical Decision Theory

•What is a pattern?

•In statistical pattern recognition, a 
pattern is a d-dimensional feature 
vector

x = (x1, x2, …, xd)t
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Statistical Decision TheoryStatistical Decision Theory

• The sea bass/salmon example

• State of nature
• prior

• State of nature is a random variable 
• The catch of salmon and sea bass is equiprobable 

P(ω1) = P(ω2)   (Prior) 
P(ω1) + P( ω2) = 1 (exclusivity and 

exhaustivity) 
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Statistical Decision TheoryStatistical Decision Theory

•Decision rule with only the prior information
• Decide ω1 if P(ω1) > P(ω2) 

otherwise decide ω2

•Use of the class–conditional information

•P(x | ω1) and P(x | ω2) describe the difference 
in lightness between populations of sea 
and salmon 
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Statistical Decision TheoryStatistical Decision Theory
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Statistical Decision TheoryStatistical Decision Theory

•Posterior, likelihood, evidence 

P(ωj | x) = P(x | ωj) P (ωj) / P(x) 

Where in case of two categories

Posterior = (Likelihood * Prior) / Evidence

( ) ( )∑
j=2

j j
j=1

P(x) = P x ω P ω
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Statistical Decision TheoryStatistical Decision Theory

•Decision given the posterior probabilities 

x is an observation for which:

if P(ω1 | x) > P(ω2 | x)  True state of nature = ω1 

if P(ω1 | x) < P(ω2 | x)   True state of nature = ω2 

•Therefore:  
whenever we observe a particular x, the probability of 
error is : 

P(error | x) = P(ω1 | x) if we decide ω2 
P(error | x) = P(ω2 | x) if we decide ω1
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Statistical Decision TheoryStatistical Decision Theory

•Minimizing the probability of error 
• Decide ω1 if P(ω1 | x) > P(ω2 | x); 
• otherwise decide ω2

Therefore: 
P(error | x) = min [P(ω1 | x), P(ω2 | x)]                            

(Bayes decision) 
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Probability of ErrorProbability of Error
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Statistical Decision TheoryStatistical Decision Theory

Generalization of the preceding ideas

– Use of more than one feature 
– Use more than two states of nature 
– Allowing actions and not only decide on the state 

of nature 
– Introduce a loss function which is more general 

than the probability of error
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Statistical Decision TheoryStatistical Decision Theory

•Allowing actions other than classification, 
primarily allows the possibility of rejection –
refusing to make a decision in close or bad 
cases
•The loss function states how costly each 
action taken is
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Statistical Decision TheoryStatistical Decision Theory

•Let {ω1, ω2,…, ωc} be the set of c states of 
nature (“categories”)

•Let {α1, α2,…, αa} be the set of possible actions

•Let λ(αi | ωj) be the loss incurred for taking 
action αi when the state of nature is ωj
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Statistical Decision TheoryStatistical Decision Theory

•Overall risk R = Sum of all R(αi | x) for i = 1,…,a 

•Minimizing R(αi | x) for i = 1,…, a                               

( ) ( ) ( )
j=c

i i j j
j=1

R α x = λ α ω P ω x

for i=1, ,a

∑
L
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Statistical Decision TheoryStatistical Decision Theory

•Select the action αi for which R(αi | x) is 
minimum

R is minimum and R in this case is called 
the Bayes risk = best performance that 
can be achieved.
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Statistical Decision TheoryStatistical Decision Theory

•Two-category classification  
• α1 : deciding ω1
• α2  : deciding ω2

• λij = λ(αi | ωj)
loss incurred for deciding ωi when the true state of 
nature is ωj

•Conditional risk: 
•R(α1 | x) =  λ11P(ω1 | x) + λ12P(ω2 | x) 
•R(α2 | x) =  λ21P(ω1 | x) + λ22P(ω2 | x) 
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Statistical Decision TheoryStatistical Decision Theory

Our rule is the following: 

if R(α1 | x) < R(α2 | x)              
action α1: “decide ω1” is taken 

This results in the equivalent rule : 
decide ω1 if: 
(λ21- λ11) P(x | ω1) P(ω1) > (λ12- λ22) P(x | ω2) P(ω2)

and decide ω2 otherwise
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Statistical Decision TheoryStatistical Decision Theory

•Likelihood ratio:

The preceding rule is equivalent to the 
following rule: 

•Then take action α1 (decide ω1) 
•Otherwise take action α2 (decide ω2) 

( )
( )

( )
( )

1 212 22

21 11 12

P x ω P ωλ -λif > ×
λ -λ P ωP x ω
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Statistical Decision TheoryStatistical Decision Theory

•Optimal decision property

• “If the likelihood ratio exceeds a threshold 
value independent of the input pattern x, we 
can take optimal actions”
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Minimum-Error-Rate ClassificationMinimum-Error-Rate Classification

•Actions are decisions on classes

•If action αi is taken and the true state of nature 
is ωj then: 

• the decision is correct if i = j and in error if i ≠ j

•Seek a decision rule that minimizes the 
probability of error which is the error rate 
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Minimum-Error-Rate ClassificationMinimum-Error-Rate Classification

( ) 
 ≠

Li j

0 i = j
λ α ,ω = i, j=1, ,c

1 i j

Introduction of the zero-one loss function: 

•Therefore, the conditional risk is: 

•“The risk corresponding to this loss function 
is the average probability error”

( ) ( ) ( )

( ) ( )
≠

∑

∑

j=c

i i j j
j=1

j i
j i

R α x = λ α ω P ω x

= P ω x =1-P ω x
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Minimum-Error-Rate ClassificationMinimum-Error-Rate Classification

• Minimizing the risk requires maximizing 
P(ωi | x) (since R(αi | x) = 1 – P(ωi | x))

• For Minimum error rate

Decide ωi if P (ωi | x) > P(ωj | x) ∀j ≠ i
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Minimum-Error-Rate ClassificationMinimum-Error-Rate Classification

( )
( )

( )
( )= 1212 22

λ 1 λ
21 11 1 2

P xωP ωλ -λLet θ × =thendecide ω if: >θ
λ -λ P ω P xω

•Investigate the loss function: 

If λ is the zero-one loss function which means: 

( )
( )

( )
( )

 
 
 

 
 
 

2
λ a

1

2
λ b

1

0 1
λ =

1 0
P ω

t h e n θ = = θ
P ω

0 2 2 P ω
i f λ = t h e n θ = = θ

1 0 P ω
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Decision Regions:  Effect of Loss FunctionsDecision Regions:  Effect of Loss Functions
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Classifiers, Discriminant 
Functions and Decision Surfaces
Classifiers, Discriminant 
Functions and Decision Surfaces

THE MULTICATEGORY CASE

Set of discriminant functions 
gi(x), i = 1,…, c

The classifier assigns a feature 
vector x to class ωi

if: gi(x) > gj(x) ∀j ≠ i
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Classifiers, Discriminant 
Functions and Decision Surfaces
Classifiers, Discriminant 
Functions and Decision Surfaces

•Let gi(x) = - R(αi | x) 
(max. discriminant corresponds to min. risk)

•For the minimum error rate, we take 

gi(x) = P(ωi | x)
(max. discrimination corresponds to max. posterior)

In this case, we can also write:

gi(x) = P(x | ωi) P(ωi) or

gi(x) = ln P(x | ωi) + ln P(ωi) (ln: natural logarithm)
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General Statistical ClassifierGeneral Statistical Classifier
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Classifiers, Discriminant 
Functions and Decision Surfaces
Classifiers, Discriminant 
Functions and Decision Surfaces

• Feature space divided into c decision regions 
if gi(x) > gj(x) ∀j ≠ i then x is in Ri 
Ri means assign x to ωi 

• The two-category case:
• A classifier is a dichotomizer with two 

discriminant functions g1 and g2 

• Let g(x) ≡ g1(x) – g2(x) 

• Decide ω1 if g(x) > 0; 
• Otherwise decide ω2 
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Classifiers, Discriminant 
Functions and Decision Surfaces
Classifiers, Discriminant 
Functions and Decision Surfaces

•The computation of g(x)

( ) ( )
( )
( )

( )
( )

1 2

1 1

22

g(x) = P ω x -P ω x

P x ω P ω
= ln + ln

P ωP x ω
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Classifiers, Discriminant 
Functions and Decision Surfaces
Classifiers, Discriminant 
Functions and Decision Surfaces
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The Normal DensityThe Normal Density

Univariate density
-Density which is analytically tractable 

-Continuous density 
-A lot of processes are asymptotically Gaussian 
-Handwritten characters, speech sounds are

examples or prototypes corrupted by 
random process (central limit theorem) 

Where:         µ = mean or expected value of x         
σ2 = the variance of x

p x e
x

( ) =
−

−



1

2

1

2

2

σ π

µ
σ
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The Normal Density The Normal Density 
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The Normal DensityThe Normal Density

•Multivariate density 
•Multivariate normal density in d dimensions is:

where: x = (x1, x2, …, xd)t 

µ = (µ1, µ2, …, µd)t mean vector
Σ = d*d covariance matrix             
|Σ| and Σ-1 are the determinant 

and inverse,
respectively 

( )
( ) ( ) 

  
t -1

1/2d/2
1 1P(x) = exp - x -µ Σ x -µ

22π Σ
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Discriminant Functions for the Normal 
Density 
Discriminant Functions for the Normal 
Density 

•We saw that the minimum error-rate 
classification can be achieved by the 
discriminant function

gi(x) = ln P(x | ωi) + ln P(ωi)

•Case of multivariate normal distribution

( ) ( ) ( )∑ -1t
i i i i ii

1 d 1g (x) = - x -µ x -µ - ln 2π - In Σ +InP ω
2 2 2
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Discrimination and Classification for 
Different Cases
Discrimination and Classification for 
Different Cases

i

∑ 2
i
t

i i i0

ti
i i0 i i i2 2

i0

Case =σ I

g (x) = w x + w (linear discriminant function)
where :

µ 1w = ; w = - µ µ +lnP(ω )
σ 2σ

(w is called the threshold for the th
category!)
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Discrimination and Classification for 
Different Cases
Discrimination and Classification for 
Different Cases

–A classifier that uses linear discriminant
functions is called “a linear machine”

–The decision surfaces for a linear machine are 
pieces of hyperplanes defined by: gi(x) = gj(x) 
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Equal CovariancesEqual Covariances
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Discrimination and Classification for 
Different Cases
Discrimination and Classification for 
Different Cases

( ) ( )
( ) ( )

2
i

0 i j i j2
ji j

P ω1 σx = µ +µ - ln µ -µ
2 P ωµ -µ

•The hyperplane separating Ri and Rj

• Always orthogonal to the line linking the means 

( ) ( ) ( )i j 0 i j
1if P ω = P ω then x = µ +µ
2
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Shift in PriorsShift in Priors
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Shift in PriorsShift in Priors
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Discrimination and Classification for 
Different Cases
Discrimination and Classification for 
Different Cases

Case Σi = Σ (covariance of all classes are 
identical but arbitrary)

Hyperplane separating Ri and Rj 

(the hyperplane separating Ri and Rj is 
generally not orthogonal to the line 
between the means)

( )
( ) ( )

( ) ( )
( )

  i j
0 i j i jt -1

i j i j

ln P ω P ω1x = µ +µ - × µ -µ
2 µ -µ Σ µ -µ



IntroductionPattern Recognition:

42

Decision SurfacesDecision Surfaces
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Decision SurfacesDecision Surfaces



IntroductionPattern Recognition:

44

Discrimination and Classification for 
Different Cases
Discrimination and Classification for 
Different Cases

Case Σi = arbitrary 

– The covariance matrices are different for each category 

(Hyperquadratics which are: hyperplanes, pairs of hyperplanes, 
hyperspheres, hyperellipsoids, hyperparaboloids, etc.) 

( )

( )

t
iw x+ +

∑

∑

∑ ∑

t
i i i0

-1
i i

-1
i ii

-1t
i0 i i ii i

g x = x W x w
where :

1W = -
2

w = µ

1 1w = - µ µ - ln + lnP ω
2 2
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Decision BoundariesDecision Boundaries
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Decision BoundariesDecision Boundaries
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Decision BoundariesDecision Boundaries
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Bayesian Decision Theory – Discrete 
Features
Bayesian Decision Theory – Discrete 
Features

Components of x are binary or integer valued, x 
can take only one of m discrete values 

v1, v2, …, vm

Case of independent binary features in 2 category 
problem 

Let x = (x1, x2, …, xd)t where each xi is either 0 or 1, 
with probabilities:

pi = P(xi = 1 | ω1)
qi = P(xi = 1 | ω2)
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Bayesian Decision Theory – Discrete 
Features
Bayesian Decision Theory – Discrete 
Features

The discriminant function in this case is:

( )
( )

( )
( )

≤

∑

∑

L

d

i i 0
i=1

i i
i

i i

d
1i

0
i=1 i 2

1 2

g (x ) = w x + w

w h e re
p 1 - q

w = ln i = 1 , , d
q 1 - p

a n d
P ω1 - pw = ln + ln

1 - q P ω
d e c id e ω if g (x ) > 0 a n d ω i f g (x ) 0
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