Pattern Classification

Chapter 2. Bayesian Decision ITheory




Introduction

Statistical Decision Theory

-What is a pattern?

.In statistical pattern recognition, a
pattern is a d-dimensional feature
vector

X = (Xqy Xpy 2aey Xg)"




Introduction

Statistical Decision Theory

* The sea bass/salmon example

« State of nature
* prior

« State of nature is a random variable
* The catch of salmon and sea bass is equiprobable
P(®,) = P(®,) (Prior)
P(w,) + P( ®,) =1 (exclusivity and
exhaustivity)




Introduction

Statistical Decision Theory

‘Decision rule with only the prior information
* Decide o, if P(0,) > P(®,)

otherwise decide o,
‘Use of the class—conditional information

‘P(x | ®,) and P(x | ®,) describe the difference
in lightness between populations of sea
and salmon
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Statistical Decision Theory
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Figure 2.1: Hypothetical class-conditional probability density functions show the
probability density of measuring a particular feature value = given the pattern is
in category w;. If z represents the length of a fish, the two curves might describe
the difference in length of populations of two types of fish. Density functions are
normalized, and thus the area under each curve is 1.0.
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Statistical Decision Theory

Posterior, likelihood, evidence
P(o; | x) = P(x | ;) P (o;) / P(x)

Where in case of two categories

Posterior = (Likelihood * Prior) / Evidence
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Statistical Decision Theory
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Figure 2.2: Posterior probabilities for the particular priors P(w;) = 2/3 and P(w;) =
1/3 for the class-conditional probability densities shown in Fig. 2.1. Thus in this case,
given that a pattern is measured to have feature value x = 14, the probability it is
in category w, is roughly 0.08, and that it is in w; is 0.92. At every z, the posteriors
sum to 1.0.
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Statistical Decision Theory

*Decision given the posterior probabilities

X is an observation for which:

if P(o, | X) > P(o, | X) True state of nature = o,
if P(o, | X) < P(®, | X) True state of nature = o,
*Therefore:

whenever we observe a particular x, the probability of
erroris:

P(error | x) = P(», | x) if we decide o,

P(error | x) = P(», | x) if we decide o,
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Statistical Decision Theory

*Minimizing the probability of error
* Decide o, if P(0, | X) > P(o, | X);
» otherwise decide o,

Therefore:

P(error | x) = min [P(w, | X), P(®, | X)]
(Bayes decision)
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Probability of Error
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Figure 2.17: Components of the probability of error for equal priors and (non-optimal)
decision point z*. The pink area corresponds to the probability of errors for deciding
w; when the state of nature is in fact wq; the gray area represents the converse, as
given in Eq. 68. If the decision boundary is instead at the point of equal posterior
probabilities, g, then this reducible error is eliminated and the total shaded area is
the minimum possible — this is the Bayes decision and gives the Bayes error rate.
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Statistical Decision Theory

Generalization of the preceding ideas

— Use of more than one feature
— Use more than two states of nature

— Allowing actions and not only decide on the state
of nature

— Introduce a loss function which is more general
than the probability of error
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Statistical Decision Theory

Allowing actions other than classification,
primarily allows the possibility of rejection —
refusing to make a decision in close or bad
cases

*The loss function states how costly each
action taken is




Introduction

Statistical Decision Theory

‘Let {0, ®,,..., ®_} be the set of c states of
nature (“categories”)

‘Let {a,, 0,,..., o} be the set of possible actions

‘Let A(; | ;) be the loss incurred for taking
action o; when the state of nature is o,




Introduction

Statistical Decision Theory

‘Overall risk R =Sum of all R(a, | x) fori=1,...,a

*Minimizing R(o, | x) fori=1,..., a




Introduction

Statistical Decision Theory

Select the action o, for which R(a.; | x) is
minimum

= R is minimum and R in this case is called
the Bayes risk = best performance that
can be achieved.
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Statistical Decision Theory

Two-category classification
* a4 : deciding o,
* a, : deciding o,
* Ay = Moy | o)
loss incurred for deciding o; when the true state of
nature is o,

Conditional risk:
‘R(ay | X) = Aq4P(04 | X) + 1,,P(0, | X)
‘R(a, | X) = Ay P04 | X) + A,5,P (0, | X)




Introduction

Statistical Decision Theory

Our rule is the following:

if R(a, | x) < R(a, | x)
action o,: “decide »,” Iis taken

This results in the equivalent rule :
decide o, if:
(A21= A44) P(X | ®1) P(®;) > (A45- Xp5) P(X | @) P(w,)

- and decide o, otherwise



Introduction

Statistical Decision Theory
Likelihood ratio:

The preceding rule is equivalent to the
following rule:

‘Then take action o, (decide »,)
‘Otherwise take action o, (decide ,)
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Statistical Decision Theory
*Optimal decision property

 “If the likelihood ratio exceeds a threshold
value independent of the input pattern x, we
can take optimal actions”




Introduction

Minimum-Error-Rate Classification

Actions are decisions on classes

If action o, is taken and the true state of nature
is o; then:
- the decision is correct ifi =j and in error if i # |

.Seek a decision rule that minimizes the
probability of error which is the error rate
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Minimum-Error-Rate Classification

Introduction of the zero-one loss function:

-Therefore, the conditional risk is:

R(afx ZA(O&\w) P(uw]x

—ZP( w[x) =1-P(ox)

jA

B Sy he risk (Xlllespﬂnding to this loss ﬂln(:”.()n

Is the average probability error”
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Minimum-Error-Rate Classification

. Minimizing the risk requires maximizing

. For Minimum error rate

Decide o; if P (o; | X) > P(w; | x) Vj #1i
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Minimum-Error-Rate Classification

‘Investigate the loss function:

P(xw)
P(x]ow)

Let B, = hohy  Pl) = then decide w, if:

>eA

)‘21')‘11 P((*%)

If A is the zero-one loss function which means:
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Decision Regions: Effect of Loss Functions

p(zlw, )
p(ftlwg)

Figure 2.3: The likelihood ratio p(z|w;)/p(z|w;) for the distributions shown in Fig. 2.1.
If we employ a zero-one or classification loss, our decision boundaries are determined
by the threshold é,. If our loss function penalizes miscategorizing we as w; patterns
more than the converse, (i.e., A\j2 > A21), we get the larger threshold ;, and hence
R, becomes smaller.
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Classifiers, Discriminant
Functions and Decision Surfaces

THE MULTICATEGORY CASE

Set of discriminant functions
gi(x),i=1,...,c

The classifier assigns a feature
vector x to class o,

if: gi(x) > g;(x) Vj =1
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Classifiers, Discriminant
Functions and Decision Surfaces

-Let g;(x) = - R(o; | x)
(max. discriminant corresponds to min. risk)

-For the minimum error rate, we take

gi(x) = P(o; | x)
(max. discrimination corresponds to max. posterior)

In this case, we can also write:
gi(x) = P(x | o;) P(w;) or
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General Statistical Classifier

Action

Figure 2.5: The functional structure of a general statistical pattern classifier which
includes d inputs and ¢ discriminant functions g;(x). A subsequent step determines
which of the discriminant values is the maximum, and categorizes the input pat-
tern accordingly. The arrows show the direction of the flow of information, though
frequently the arrows are omitted when the direction of flow is self-evident.
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Classifiers, Discriminant
Functions and Decision Surfaces

. Feature space divided into c decision regions
if gi(x) > g;(x) Vj=ithen xis inR,
R; means assign x to o,

. The two-category case:

A classifier is a dichotomizer with two
discriminant functions g, and g,

. Let g(x) = g4(x) — g,(x)

. Decide o, if g(x) > 0;
. Otherwise decide o,
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Classifiers, Discriminant
Functions and Decision Surfaces

-The computation of g(x)




Introduction

Classifiers, Discriminant
Functions and Decision Surfaces

Figure 2.6: In this two-dimensional two-category classifier, the probability densities
are Gaussian (with 1/e ellipses shown), the decision boundary consists of two hyper-
bolas, and thus the decision region Rz is not simply connected.
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The Normal Density

Univariate density
-Density which is analytically tractable

-Continuous density
-A lot of processes are asymptotically Gaussian

-Handwritten characters, speech sounds are
examples or prototypes corrupted by
random process (central limit theorem)

Where: LU = mean or expected value of x

o2 = the variance of x
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The Normal Density

M-206 uU-0 U+ 20

Figure 2.7: A univariate normal distribution has roughly 95% of its area in the range
|z — p| < 20, as shown. The peak of the distribution has value p(u) = 1/v270.
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The Normal Density

-Multivariate density
-Multivariate normal density in d dimensions is:

where: X = (X4, Xoy «ury Xg)!
1= (g, Uy ---5 HUy)t mean vector
> = d*d covariance matrix
|Z] and X-1 are the determinant
and inverse,
respectively
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Discriminant Functions for the Normal
Density

‘We saw that the minimum error-rate

classification can be achieved by the
discriminant function

gi(x) = In P(x | @;) + In P(w;)

-Case of multivariate normal distribution
d

1 t 1 1
g(x) = -E(X-ui) > (x—ui)-EInZTr-Eln|Zi|+|nP(wi)




Introduction

Discrimination and Classification for
Different Cases

Case ) =07l
g,(x) = w;x+w, (linear discriminant function)
where:

1
20°

IJit“i +InP(w;)

y Wip =+

(W, is called the threshold for the ith

category!)
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Discrimination and/ Classification for
Different Cases

—A classifier that uses linear discriminant
functions is called “a linear machine”

—The decision surfaces for a linear machine are
pieces of hyperplanes defined by: g;(x) = g;(x)
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Equal Covariances

Figure 2.10: If the covariances of two distributions are equal and proportional to the
identity matrix, then the distributions are spherical in d dimensions, and the boundary
is a generalized hyperplane of d — 1 dimensions, perpendicular to the line separating
the means. In these 1-, 2-, and 3-dimensional examples, we indicate p(x|w;) and the
boundaries for the case P(w;) = P(wz). In the 3-dimensional case, the grid plane
separates R, from Ra.
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Discrimination and/ Classification for
Different Cases

-The hyperplane separating R; and R;
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Shift in Priors

Figure 2.11: As the priors are changed, the decision boundary shifts; for sufficiently
disparate priors the boundary will not lie between the means of these 1-, 2- and
3-dimensional spherical Gaussian distributions.
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Shift in Priors




Introduction

Discrimination and/ Classification for
Different Cases

Case X, = X (covariance of all classes are
identical but arbitrary)

Hyperplane separating R; and R;

(the hyperplane separating R; and R;is
generally not orthogonal to the Ilne

between the means)
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Decision Surfaces

Figure 2.12: Probability densities (indicated by the surfaces in two dimensions and
ellipsoidal surfaces in three dimensions) and decision regions for equal but asymmetric
Gaussian distributions. The decision hyperplanes need not be perpendicular to the
line connecting the means.
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Decision Surfaces




Introduction

Discrimination and Classification for
Different Cases

Case X, = arbitrary

— The covariance matrices are different for each category

g, (x) = x'W,x + wix+w,

(Hyperquadratics which are: hyperplanes, pairs of hyperplanes,
hyperspheres, hyperellipsoids, hyperparaboloids, etc.)
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Decision Boundaries

Figure 2.14: Arbitrary Gaussian distributions lead to Bayes decision boundaries that

are general hyperquadrics. Conversely, given any hyperquadratic, one can find two
Gaussian distributions whose Bayes decision boundary is that hyperquadric.




Decision Boundaries
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Decision Boundaries

Figure 2.16: The decision regions for four normal distributions. Even with such a low
number of categories, the shapes of the boundary regions can be rather complex.
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Bayesian Decision Theory — Discrete
Features

Components of x are binary or integer valued, x
can take only one of m discrete values

Vis Vo, weey Vi

Case of independent binary features in 2 category
problem

Let x = (x4, X,, ..., X4)' Where each x; is either 0 or 1,
with probabilities:

p; =P(x;=1] ®)




Introduction

Bayesian Decision Theory — Discrete
Features

The discriminant function in this case is:

decide w, if g(x)> 0 and w, if g(x) <0
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