
Pattern Classification

Chapters 5 and 6. Supervised
Neural Networks

Chapters 5 and 6. Supervised
Neural Networks

Intro. to Pattern Recognition

Supervised Neural Networks
I: Multilayer Perceptrons

Supervised Neural Networks
I: Multilayer Perceptrons

IntroductionPattern Recognition:

3

Neural NetworksNeural Networks

Supervised Learning
• Perceptrons
• ADALINE
• Multilayer perceptrons
• Radial basis function networks
• Modular neural networks
• LVQ (Learning Vector Quantization)

Unsupervised Learning
• Competitive learning networks
• Kohonen self-organizing networks
• ART (Adaptive Resonance Theory)

Others
• Hopfield networks

IntroductionPattern Recognition:

4

Supervised Neural Networks I: OutlineSupervised Neural Networks I: Outline

•Introduction

•Perceptrons

•Adaline

•Backpropagation Multilayer Perceptrons

IntroductionPattern Recognition:

5

IntroductionIntroduction

•Artificial Neural Networks (ANN) have been studied
since the 1950s

•Minsky & Papert in their report on perceptrons
(proposed by Rosenblatt) expressed pessimism over
multilayer systems, the interest in ANN dwindled in the
1970s

•In the 1980s the work of Rumelhart, Hinton, Williams &
others, in learning algorithms created a resurgence of
the lost interest in the field of ANN

IntroductionPattern Recognition:

6

PerceptronsPerceptrons

Architecture & learning rule

• The perceptron was derived from a biological
brain neuron model introduced by McCulloch and
Pitts in 1943

• Rosenblatt designed the perceptron with a view
toward explaining & modeling pattern recognition
abilities of biological visual systems

• The following figure illustrate a two-class problem
that consists of determining whether the input
pattern is a “p” or not

IntroductionPattern Recognition:

8

PerceptronsPerceptrons

1 x,

 w,

o
0

o
1

1

≡







=

−≡







+=

=







−

∑

∑

∑

=

=

=

=

=

=

ni

i
ii

ni

i
oii

ni

i
ii

xwf

wxwf

Outputxwf

θ

θ

• A signal xi is binary; it could be active (or
excitatory) if its value is 1, inactive if its value is 0
and inhibitory if its value is -1

IntroductionPattern Recognition:

9

PerceptronsPerceptrons

Architecture & learning rule

• f(.) is the activation function of the perceptron and
is either a signum function sgn(x) or a step
function step (x)



 >

=





−
>

=

otherwise 0
0x if 1

)x(step

otherwise 1
0x if 1

)xsgn(

IntroductionPattern Recognition:

10

PerceptronsPerceptrons

Algorithm (Single-layer perceptron)

0. Start with a set of random connection weights
1. Select an input vector x from the training data

set
2. If the perceptron provides a wrong response

then modify
all connection weights wi with ∆wi = η t xi
where: t is a target output

η is a learning rate
3. Test the weight convergence: if converge stop

else go to 1
This learning algorithm is based on gradient descent

IntroductionPattern Recognition:

11

PerceptronsPerceptrons

Network architecture

x1

w2

w1 w0

x2

y = sgn(Σwi xi + w0)w3

x3

∆wi = η t xi

Learning rule

IntroductionPattern Recognition:

12

PerceptronsPerceptrons

Example: Gender classification

h

v

w1

w2

w0

Network Arch.

y = sgn(hw1+vw2+w0)
-1 if female
1 if male=

y

Training data

h (hair length)

v
(v

oi
ce

 fr
eq

.)

IntroductionPattern Recognition:

13

PerceptronsPerceptrons

Exclusive-OR problem (XOR)

Goal: classify a binary input vector to
class 0 if the vector has an even number of 1’s,
otherwise assign it to class 1

011Desired i/o pair 4

101Desired i/o pair 3

110Desired i/o pair 2

000Desired i/o pair 1

ClassYX

IntroductionPattern Recognition:

14

PerceptronsPerceptrons

Exclusive-OR problem (XOR)
• From figure below, we can say that the XOR

problem is not linearly separable

IntroductionPattern Recognition:

15

PerceptronsPerceptrons

• Using a single-layer perceptron and the step function to solve
this problem requires satisfying the following inequalities

0 * w1 + 0 * w2 + w0 ≤ 0 ⇔ w0 ≤ 0
0 * w1 + 1 * w2 + w0 > 0 ⇔ w0 > - w2

1 * w1 + 0 * w2 + w0 > 0 ⇔ w0 > - w1

1 * w1 + 1 * w2 + w0 ≤ 0 ⇔ w0 ≤ - w1 – w2

This set of inequalities is self-contradictory
⇒ Minsky & Pappert criticism of the perceptron

was justified in part by this result.

IntroductionPattern Recognition:

16

PerceptronsPerceptrons

• The XOR problem can be solved using a two-layer
perceptron illustrated by the following figure

IntroductionPattern Recognition:

17

PerceptronsPerceptrons

(x1 = 0, x2 = 0 ⇒ 0)
results at the hidden layer
0 * (+1) + 0 * (+1) = 0 < 1.5 ⇒ x3 = 0
0 * (+1) + 0 * (+1) = 0 < 0.5 ⇒ x4 = 0
results at the output layer
0 * (-1) + 0 * (+1) = 0 < 0.5 ⇒ x5 = output = 0

(x1 = 0, x2 = 1 ⇒ 1)
results at the hidden layer
0 * (+1) + 1 * (+1) = 1 < 1.5 ⇒ x3 = 0
0 * (+1) + 1 * (+1) = 1 > 0.5 ⇒ x4 = 1
results at the output layer
0 * (-1) + 1 * (+1) = +1 > 0.5 ⇒ x5 = output = 1

In summary, multilayer perceptrons can solve nonlinearly
separable problems and are thus more powerful than the
single-layer perceptrons

IntroductionPattern Recognition:

18

Multilayer Perceptrons (MLPs)Multilayer Perceptrons (MLPs)

Example: XOR problem

Training data

x1

x2

y

Network Architecture

x1 x2 y
0 0 0
0 1 1
1 0 1
1 1 0

x1

x2

x1

x2

y

IntroductionPattern Recognition:

19

ADALINEADALINE

•Developed by Widrow & Hoff
•The ADALINE model represents a simple
intelligent self-learning system that can adapt
itself to achieve a given modeling or pattern
recognition task

IntroductionPattern Recognition:

21

ADALINEADALINE

∑
=

+=
d

i
iip wxwo

1
0

One possible implementation of ADALINE is the
following:

• The input signals are voltages
• The weights wi are conductances of controllable

resistors
• The network output is the summation of the currents

caused by the input voltages

The problem consists of finding a suitable set of
conductances such that the input-output behavior of
ADALINE is close to a set of desired input-output data
points

IntroductionPattern Recognition:

22

ADALINEADALINE

The ADALINE model can be solved using a linear least-
square method, (d +1) linear parameters in order to
minimize the error

(n training samples)

However, since this method can be slow (requires very
many calculations) if d is large, therefore Widrow & Hoff
fell back on gradient descent

()∑
=

−
n

p
pp ot

1

2

() ()

()
4434421

g

ipp
p
now

p
next

ipp
i

p2
ppp

x*otww :provides which

x*ot2
w
E

otE if

−η+=

−−=
∂

∂
⇒−=

(Least-mean square
(LMS) learning
procedure)

IntroductionPattern Recognition:

23

Multilayer Neural NetworksMultilayer Neural Networks

• Goal: Classify objects by learning nonlinearity

• There are many problems for which linear
discriminants are insufficient for minimum error

• In previously discussed neural network methods,
a major difficulty was the choice of the appropriate
nonlinear functions

IntroductionPattern Recognition:

24

Multilayer Neural NetworksMultilayer Neural Networks

• There is no automatic method for determining
the nonlinearities when no information is
provided to the classifier

• In using the Multilayer Neural Networks, the
form of the nonlinearity is learned from the
training data

• A two-layer neural network consists of a
hidden layer and an output layer
interconnected by modifiable weights
represented by links between layers

IntroductionPattern Recognition:

25

Multilayer Neural NetworksMultilayer Neural Networks

A single “bias unit” is connected to each unit other
than the input units
Net activation:

where the subscript i indexes units in the input
layer, j in the hidden; wji denotes the input-to-
hidden layer weights at the hidden unit j. (In
neurobiology, such weights or connections are
called “synapses”)

Each hidden unit emits an output that is a nonlinear
function of its activation, that is: yj = f(netj)

≡∑ ∑
d d

t
j j ji j0 i ji j

i=1 i=0
Net = x W + W = X W W .x,

IntroductionPattern Recognition:

26

Multilayer Neural NetworksMultilayer Neural Networks

≥
≡  <

1 if net 0
f(net) = sgn(net)

-1 if net 0

• Figure 6.1 shows the use of the simple threshold
function

There are more general activation functions with
desirables properties

Each output unit similarly computes its net activation
based on the hidden unit signals as:

where the subscript k indexes units in the ouput layer and
nH denotes the number of hidden units

∑ ∑
H Hn n

t
k j kj k0 j kj k

j=1 j=0
net = y w + w = y w = w .y,

IntroductionPattern Recognition:

27

Multilayer Neural NetworksMultilayer Neural Networks

IntroductionPattern Recognition:

28

Multilayer Neural NetworksMultilayer Neural Networks

The previous slide:

IntroductionPattern Recognition:

29

Multilayer Neural NetworksMultilayer Neural Networks

•More than one output are referred to as zk.
•An output unit computes the nonlinear function of
its net, emitting

zk = f(netk)

In the case of c outputs (classes), we can view the
network as computing c discriminant functions
zk = gk(x) and classify the input x according to the
largest discriminant function gk(x) ∀ k = 1, …, c

The two-layer network with the weights listed in
Fig. 6.1 solves the XOR problem

IntroductionPattern Recognition:

30

Multilayer Neural NetworksMultilayer Neural Networks

  
≡   

  
∑ ∑

Hn d

k k kj ji i j0 k0
j=1 i=1

g x) z = f w f w x + w + w (1)

• General Feedforward Operation – case of c output units

• Hidden units enable us to express more complicated
nonlinear functions and thus improve the classification

• The activation function is often required to be continuous and
differentiable

• We can allow the activation in the output layer to be different
from the activation function in the hidden layer or have
different activation for each individual unit

• We assume for now that all activation functions to be identical

IntroductionPattern Recognition:

31

Multilayer Perceptrons (MLPs)Multilayer Perceptrons (MLPs)

Learning rule:
• Steepest descent (Backprop)
• Conjugate gradient method
• All optim. methods using first derivative
• Derivative-free optim.

Network architecture

x1

x2

y1

y2

hyperbolic tangent
or logistic function

IntroductionPattern Recognition:

32

Multilayer PerceptronsMultilayer Perceptrons

• Any function from input to output can be
implemented as a three-layer neural network

IntroductionPattern Recognition:

33

MLPs Decision BoundariesMLPs Decision Boundaries

A B

B A

A
B

XOR Interwined General

1-layer: Half planes

A B

B A

A
B

2-layer: Convex

A B

B A

A
B

3-layer: Arbitrary

IntroductionPattern Recognition:

34

Backpropagation AlgorithmBackpropagation Algorithm

• Our goal now is to set the interconnection weights
based on the training patterns and the desired
outputs

• In a two-layer network, it is a straightforward
matter to understand how the output, and thus the
error, depend on the hidden-to-output layer
weights

• The power of backpropagation is that it enables us
to compute an effective error for each hidden unit,
and thus derive a learning rule for the input-to-
hidden weights.

IntroductionPattern Recognition:

35

Backpropagation AlgorithmBackpropagation Algorithm

Network have two modes of operation:

• Feedforward: The feedforward operations
consists of presenting a pattern to the input
units and passing (or feeding) the signals
through the network in order to get output
units (no cycles)

• Learning: The supervised learning consists of
presenting an input pattern and modifying the
network parameters (weights) to reduce
distances between the computed output and
the desired output

IntroductionPattern Recognition:

36

Backpropagation AlgorithmBackpropagation Algorithm

IntroductionPattern Recognition:

37

Backpropagation AlgorithmBackpropagation Algorithm

Backpropagation learning rule

Principle:
The net input of a node is defined as the

weighted sum of the incoming signals plus a bias term:

(Logistic function)

Where: xi = ouptput of node i at any of the previous layers
wij = weight associated with the link connecting

nodes i & j
wj = bias of node j

x

() ()jjj

i
jiijj

x
xfx

wxwx

−+
==

+= ∑

exp1
1

IntroductionPattern Recognition:

38

Backpropagation AlgorithmBackpropagation Algorithm

Network Learning
• Let tk be the k-th target (or desired) output and zk

be the k-th computed output with k = 1, …, c and w
represents all the weights of the network

The training error: The backpropagation learning
rule is based on gradient descent

The weights are initialized with pseudo-
random values and are changed in a
direction that will reduce the error:

()∑
c

22
k k

k=1

1 1J(w) = t - z = t - z
2 2

∂
∂

J∆w = -η
w

IntroductionPattern Recognition:

39

Backpropagation AlgorithmBackpropagation Algorithm

• Error on the hidden–to-output weights is

where the sensitivity of unit k is defined as:

and describes how the overall error changes
with the activation of the unit’s net

∂ ∂ ∂ ∂
⋅

∂ ∂ ∂ ∂
k k

k
kj k kj kj

J J net net= = -δ
w net w w

∂
∂k

k

Jδ = -
net

() ()∂ ∂ ∂ ′⋅
∂ ∂ ∂

k
k k k k

k k k

J J zδ = - = - = t - z f ne t
net z net

IntroductionPattern Recognition:

40

Backpropagation AlgorithmBackpropagation Algorithm

The signum and the step functions are not differentiable, the
use of logistic (hyperbolic) functions contribute for an
improved learning scheme

• Logistic: f(x) = 1 / (1 + e-x)
• Hyperbolic tangent: f(x) =
tanh(x/2)

= (1 – e-x) / (1 + e-x)
• Identity: f(x) = x

The signum function is approximated by the hyberbolic
tangent function & the step function is approximated by the
logistic function

IntroductionPattern Recognition:

42

Backpropagation AlgorithmBackpropagation Algorithm

∂
∂

k
j

kj

net = y
w

• Since netk = wk
t.y we get:

Conclusion: the weight update (or learning rule)
for the hidden-to-output weights is:

∆wkj = ηδkyj = η(tk – zk) f’ (netk)yj

Error on the input-to-hidden units
∂ ∂∂ ∂

⋅
∂ ∂ ∂ ∂

j j

ji j j ji

y netJ J= ×
w y net w

IntroductionPattern Recognition:

43

Backpropagation AlgorithmBackpropagation Algorithm

•However,

() ()

() () ()

∂ ∂ ∂ 
 ∂ ∂ ∂ 

∂ ∂ ′⋅
∂ ∂

∑ ∑

∑ ∑

c c
2 k

k k k k
k=1 k=1j j j

c c
k k

k k k k k kj
k=1 k=1k j

J 1 z= t - z = - t - z
y y 2 y

z net= - t - z = - t - z f net w
net y

IntroductionPattern Recognition:

44

Backpropagation AlgorithmBackpropagation Algorithm

The sensitivity for a hidden unit is now defined:

which means that: “The sensitivity at a hidden unit
is simply the sum of the individual sensitivities at
the output units weighted by the hidden-to-output
weights wkj; all multipled by f’(netj)”

Conclusion: The learning rule for the input-to-
hidden weights is:

()′≡ ∑
c

j j kj k
k=1

δ f net w δ

()′  14243
j

ji i j kj k j i

δ

∆w = ηxδ = η Σw δ f net x

IntroductionPattern Recognition:

45

Backpropagation AlgorithmBackpropagation Algorithm

Stopping criterion

The algorithm terminates when the change in the
criterion function J(w) is smaller than some
preset value θ

There are other stopping criteria that lead to better
performance than this one

So far, we have considered the error on a single
pattern, but we want to consider an error defined
over the entirety of patterns in the training set

IntroductionPattern Recognition:

46

Backpropagation AlgorithmBackpropagation Algorithm

Stopping Criterion:
The total training error is the sum over the errors

of n individual patterns

• A weight update may reduce the error on the
single pattern being presented but can increase
the error on the full training set

• However, given a large number of such
individual updates, the total error of equation (1)
above decreases

∑
n

p
p=1

J = J (1)

IntroductionPattern Recognition:

47

Backpropagation AlgorithmBackpropagation Algorithm

Learning Curves

• Before training starts, the error on the training
set is high; through the learning process, the
error becomes smaller

• The error per pattern depends on the amount
of training data and the expressive power
(such as the number of weights) in the network

• The average error on an independent test set is
always higher than on the training set, and it
can decrease as well as increase

IntroductionPattern Recognition:

48

Backpropagation AlgorithmBackpropagation Algorithm

Learning Curves:

• A validation set is used in order to decide
when to stop training ; we do not want to
overfit the network and decrease the power of
the classifier generalization

“we stop training at a minimum of the error on
the validation set”

IntroductionPattern Recognition:

49

Backpropagation AlgorithmBackpropagation Algorithm

Intro. to Pattern Recognition

Supervised Neural Networks
II: Radial Basis Function

Neural Networks

Supervised Neural Networks
II: Radial Basis Function

Neural Networks

Radial Basis Function Networks (RBFNs)Radial Basis Function Networks (RBFNs)

• Architectures & Learning Methods
•Interpolation & Approximation RBFN

Radial Basis Function NetworksRadial Basis Function Networks
Architectures & Learning Methods

• Inspired by research in regions of the cerebral cortex &
the visual cortex, RBFNs were proposed by Moody &
Darken in 1988 as a supervised learning neural
networks

• The activation level of the ith receptive field unit is:
wi = Ri(x) = Ri (||x – ui|| / σi), i = 1, 2, …, H

- x is a multidimensional input vector
- ui is a vector with same dimension as x
- H is the number of radial basis functions called also

receptive field units
- Ri(.) is the ith radial basis function with a single

maximum at the origin

Radial Basis Function NetworksRadial Basis Function Networks

Architectures & Learning Methods

• Ri(.) is either a Gaussian function

or a logistic function

if x = ui ⇒ = 1 (Maximum) & = ½ (Maximum)G
iR L

iR













 −
−= 2

2

2
exp)(

i

iG
i

ux
xR

σ

]/uxexp[1
1)x(R

2
i

2
i

L
i

σ−+
=

Radial Basis Function NetworksRadial Basis Function Networks

Architectures & Learning Methods

• The output of an RBFN

- (weighted sum)

where ci = output value associated with the ith
receptive field

- (weighted average)

∑ ∑== iiii)x(Rcwc)x(d

== == 1i
ii

1i
ii

)x(d

=

=

=

=

Hi

1i

Hi

1i

∑

∑

∑

∑
=

=

=

=

=

=

Hi

1i
i

Hi

Hi

1i
i

Hi

)x(R

)x(Rc

w

wc

Radial Basis Function NetworksRadial Basis Function Networks

Architectures & Learning Methods

• Moody-Darken’s RBFN may be extended by
assigning a linear function to the output function of
each receptive field

(ai is a parameter vector & bi is a scalar parameter)

• Supervised adjustments of the center & shape of
the receptive field (or radial basis) functions may
improve RBFNs approximation capacity

• Several learning algorithms have been proposed to
identify the parameters (ui, σI & ci) of an RBFN

bxac T
ii +=

Radial Basis Function NetworksRadial Basis Function Networks
Interpolation & approximation RBFN

• The interpolation case: each RBF is assigned to each
training pattern

Goal: Estimate a function d(.) that yields exact desired
outputs for all training data

- Our goal consists of finding ci (i = 1, 2, …, n)
(n = H) such that d(xi) = oi = desired output

since
- wi = Ri (||x – ui||) = exp [- (x – ui)2 / (2)]

Therefore, starting with xi as centers for the
RBFNs,
we can write:

2
iσ

()∑
= 












σ
−

−=
n

1i
2
i

2
i

i 2
xxexpc)x(d

Radial Basis Function NetworksRadial Basis Function Networks

Interpolation & approximation RBFN

• The interpolation case (cont.)

- For given σi (i = 1, …, n), we obtain the
following n simultaneous linear equations
with respect to unknown weights ci (i = 1, 2,
…, n)

Radial Basis Function NetworksRadial Basis Function Networks
• The interpolation case

()

()

()

[] []

)nonsigular isG if weights (optimal DGC

values function onentialexpG and

,c,...,c,cC,d,...,d,d D where GCD

d
2

xxexpc)d(x pattern nth

d
2

xxexpc)d(x pattern Second

d
2

xxexpc)d(x pattern First

1-

T
n21

T
n21

n

n

1i
2
i

2
in

in

2

n

1i
2
i

2
i2

i2

1

n

1i
2
i

2
i1

i1

=

⇓

=

===

=












σ
−

−=

=












σ
−

−=

=












σ
−

−=

∑

∑

∑

=

=

=

M

Radial Basis Function NetworksRadial Basis Function Networks

Interpolation & approximation RBFN

• Approximation RBFN

- This corresponds to the case when there
are fewer basis functions than there are
available training patterns

- In this case, the matrix G is not square &
the least square methods are commonly
used in order to find the vector C

	Chapters 5 and 6. Supervised Neural Networks
	Supervised Neural Networks I: Multilayer Perceptrons
	Neural Networks
	Supervised Neural Networks I: Outline
	Introduction
	Perceptrons
	Perceptrons
	Perceptrons
	Perceptrons
	Perceptrons
	Perceptrons
	Perceptrons
	Perceptrons
	Perceptrons
	Perceptrons
	Perceptrons
	Multilayer Perceptrons (MLPs)
	ADALINE
	ADALINE
	ADALINE
	Multilayer Neural Networks
	Multilayer Neural Networks
	Multilayer Neural Networks
	Multilayer Neural Networks
	Multilayer Neural Networks
	Multilayer Neural Networks
	Multilayer Neural Networks
	Multilayer Neural Networks
	Multilayer Perceptrons (MLPs)
	Multilayer Perceptrons
	MLPs Decision Boundaries
	Backpropagation Algorithm
	Backpropagation Algorithm
	Backpropagation Algorithm
	Backpropagation Algorithm
	Backpropagation Algorithm
	Backpropagation Algorithm
	Backpropagation Algorithm
	Backpropagation Algorithm
	Backpropagation Algorithm
	Backpropagation Algorithm
	Backpropagation Algorithm
	Backpropagation Algorithm
	Backpropagation Algorithm
	Backpropagation Algorithm
	Backpropagation Algorithm
	Supervised Neural Networks II: Radial Basis Function Neural Networks
	Radial Basis Function Networks (RBFNs)
	Radial Basis Function Networks
	Radial Basis Function Networks
	Radial Basis Function Networks
	Radial Basis Function Networks
	Radial Basis Function Networks
	Radial Basis Function Networks
	Radial Basis Function Networks
	Radial Basis Function Networks

