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Unsupervised AnalysisUnsupervised Analysis

Previously, all training samples were labeled: the 
methods based on these samples were said 
“supervised”

We now investigate a number of “unsupervised”
procedures which use unlabeled samples

Collecting and Labeling a large set of sample patterns 
can be costly

We can train with a large amount of (less expensive) 
unlabeled data, and only then use supervision to label 
the groupings found.  This is appropriate for large “data 
mining” applications where the contents of a large 
database are not known beforehand
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Unsupervised AnalysisUnsupervised Analysis

This is also appropriate in many applications 
when the characteristics of the patterns can 
change slowly with time

Improved performance can be achieved if 
classifiers running in a unsupervised mode 
are used

We can use unsupervised methods to identify 
features that will then be useful for 
categorization

We gain some insight into the nature (or 
structure) of the data
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Unsupervised Analysis: ClusteringUnsupervised Analysis: Clustering

Clustering is an unsupervised approach 
which attempts to find the major modes in 
data space
Several clustering approaches are available

We will only discuss partitional clustering:
• K-means algorithm
• Isodata algorithm
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What is a Cluster?What is a Cluster?

A cluster is a collection of data points with 
similar properties.
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Partitional Clustering: K-meansPartitional Clustering: K-means

K-means algorithm:
1. Begin with k cluster centers
2. For each sample, find the cluster center nearest to 

it. Put the sample in the cluster represented by the 
just-found cluster center.

3. If no samples changed clusters, stop.
4. Recompute cluster centers of altered clusters and 

go back to step 2.
Properties:

• The number of cluster k must be given in advance.
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Partitional Clustering: IsodataPartitional Clustering: Isodata

Similar to k-means with some enhancements:
• Clusters with too few elements are discarded
• Clusters are merged if the number of clusters 

grows too large or if clusters are too close 
together

• A cluster is split if the number of clusters is too 
few or if the cluster contains very dissimilar 
samples

Properties:
• The exact number of clusters k is not given in 

advance
• The algorithm may require extensive 

computational resources
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Data Reduction: OutlineData Reduction: Outline

Data reduction
• Editing and condensing
• Principal component analysis
• Discriminant analysis
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Data ReductionData Reduction
Purpose:

• Reduce computation load of a classifier
• Increase data consistency

Techniques:

• To reduce data size:
- Editing: To eliminate noisy (boundary) data
- Condensing: To eliminate redundant (deeply embedded) data
- Vector quantization: To find representative data

• To reduce data dimensions:
- Principal component analysis: To reduce the dimensions of the feature 

sets
- Discriminant analysis: To find the best set of vectors which best 

separates the patterns
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Data ReductionData Reduction

Feature extraction.  Here m<n.
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Data EditingData Editing

To remove noisy (boundary) data
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Data CondensingData Condensing

To remove redundant (deeply embedded) data



IntroductionPattern Recognition:

14

Principal Component AnalysisPrincipal Component Analysis
Projection onto eigenvectors that correspond to the first
few largest eigenvalues of the covariance matrix.

Ideal situation Adversary situation
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Principal Component AnalysisPrincipal Component Analysis

Eigenvalues of covariance matrix: λ1 > λ2 > λ3 > ... > λd

Projection on v1 & v2 Projection on v3 & v4
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Discriminant AnalysisDiscriminant Analysis
Projection onto directions that can best separate data
of different classes.

Adversary situation
for PCP

Ideal situation
for DP
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Discriminant AnalysisDiscriminant Analysis

Best discriminant vectors : v1, v2, ... , vd

Projection on v1 & v2 Projection on v3 & v4
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