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Chapter 4. Non-Parametric
Techniques




Introduction

Non-Parametric Classification

« All Parametric densities are unimodal (have a
single local maximum), whereas many practical
problems involve multi-modal densities

 Nonparametric procedures can be used with
arbitrary distributions and without the
assumption that the forms of the underlying
densities are known

* We will consider
* Parzen Density Estimation
* K, Nearest Neighbor Estimation
e k-Nearest Neighbor Rule




Introduction

Non-Parametric Classification

- Basic idea:
Probability that a vector x will fall in region R is:

P = jp(x')dx’ (1)

P is a smoothed (or averaged) version of the density
function p(x) if we have a sample of size n;
therefore, the probability that k points fall in R is
then:

and the expected value for k is:
E(k) = nP (3)
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Non-Parametric Classification

ML estimation of P=0

~_ K
- is reached for | N P

*Therefore, the ratio k/n is a good estimate for the
probability P and hence for the density function p.

*p(x) is continuous and the region R is so small that p
does not vary significantly within it, we can write:

[p(<)dx = p(x)V (4)

R

where is a point within R and V the volume enclosed by
R.
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Non-Parametric Classification

Combining equations (1) , (3) and (4) yields:

relative
probability

k/n
0 P=0.7 1

FIGURE 4.1. The relative probability an estimate given by Eq. 4 will yield a particular
value for the probability density, here where the true probability was chosen to be 0.7.
Each curve is labeled by the total number of patterns n sampled, and is scaled to give
the same maximum (at the true probability). The form of each curve is binomial, as

given by Eq. 2. For large n, such binomials peak strongly at the true probability. In the
limit n — oo, the curve approaches a delta function, and we are guaranteed that our
estimate will give the true probability. From: Richard O. Duda, Peter E. Hart, and David
G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.
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Density Estimation

*There are two different ways of obtaining sequences of
regions that satisfy these conditions:
(a) Shrink an initial region where V_ = 1/n and
show that

P, (X) = P(x)

N—o0

This is called “the Parzen-window estimation
method”
(b) Specify k, as some function of n, such as

k., =n; the volume V_ is grown until it
encloses k,, neighbors of x. This is called
“the k,-nearest neighbor estimation
method”
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Density Estimation

n=4

O

Hr

i gk T
I R

FIGURE 4.2. There are two leading methods for estimating the density at a point, here
at the center of each square. The one shown in the top row is to start with a large volume
centered on the test point and shrink it according to a function such as V,, = 1/4/n. The
other method, shown in the bottom row, is to decrease the volume in a data-dependent
way, for instance letting the volume enclose some number k, = 4/n of sample points.
The sequences in both cases represent random variables that generally converge and
allow the true density at the test point to be calculated. From: Richard O. Duda, Peter
E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley &
Sons, Inc.




Introduction

Parzen Density Estimation

Properties:

 Also known as kernel estimator or Parzen
windows

« Can be used for multiple features

 Window width is an important parameter in the
Parzen Density Estimation.

* The width is usually found by trial and error
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Parzen Density Estimation

‘Use the Parzen-window approach to estimate densities
assume that the region R, is a d-dimensional
hypercube

. = h{ (h,:length of the edge of R )
@(u) be the following window function:

1 Jul<
J 2 J=1,"',d
0 otherwise

(u) =

o((x-x:)/h.) is equal to unity if x; falls within the

hypercube of volume V _ centered at x.. It is equal to
zero otherwise.
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Parzen Density Estimation

*The number of samples in this hypercube is:

p,(x) estimates p(x) as an average of functions of x and
the samples (x;) (i = 1,... ,n). These functions ¢ can be

general.
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Parzen Density Estimation

*The behavior of the Parzen-window method.
Case where p(x) ->N(0,1)

‘Let o(u) = (1/7(2r) exp(-u?/2) and

h, = h,/A\n (n>1)  (h,: known parameter)
Thus:

is an average of normal densities
centered at the samples x..
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Parzen Density Estimation
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Parzen Density Estimation

eNumerical results:

For n=1 and h,=1

For n =10 and h = 0.1, the contributions of the
individual samples are clearly observable
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Parzen Density Estimation
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Parzen Density Estimation

\

Figure 4.5: Parzen-window estimates of a univariate normal density using different
window widths and numbers of samples. The vertical axes have been scaled to best
show the structure in each graph. Note particularly that the n = oo estimates are the
same (and match the true generating function), regardless of window width h.
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Parzen Density Estimation
*Analogous results are also obtained in two dimensions:

Figure 4.6: Parzen-window estimates of a bivariate normal density using different
window widths and numbers of samples. The vertical axes have been scaled to best
show the structure in each graph. Note particularly that the n = oo estimates are the
same (and match the true generating distribution), regardless of window width h.




Introduction

Parzen Density Estimation
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Parzen Density Estimation

*Case where p(x) = A, U(a,b) + A,T(c,d) (unknown
density) (mixture of a uniform and triangle densities)
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Parzen Density Estimation
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Figure 4.7: Parzen-window estimates of a bimodal distribution using different window
widths and numbers of samples. Note particularly that the n = oo estimates are the
same (and match the true generating distribution), regardless of window width h.
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Parzen Density Estimation

Classification Example

In classifiers based on Parzen-window estimation:

‘We estimate the densities for each category and
classify a test point by the label corresponding to the
maximum posterior

*The decision region for a Parzen-window classifier
depends upon the choice of the window function as
illustrated in the following figure.
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Parzen Density Estimation

Figure 4.8: The decision boundaries in a two-dimensional Parzen-window di-
chotomizer depend on the window width h. At the left a small h leads to boundaries
that are more complicated than for large h on same data set, shown at the right.
Apparently, for this data a small h would be appropriate for the upper region, while
a large h for the lower region; no single window width is ideal overall.
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K. Nearest Neighbor Estimation

Goal: a solution for the problem of the unknown “best” window

function
Let the cell volume be a function of the training data

Center a cell about x and let it grows until it captures
k, samples (k, = f(n))

k., are called the k. nearest-
neighbors of x

Two possibilities can occur:
Density is high near x; therefore, the cell will be small

which provides a good resolution

Density is low; therefore the cell will grow large and
stop until higher density regions are reached

We can obtain a family of estimates by setting k_=k,/vn and
choosing different values for k,
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K. Nearest Neighbor Estimation
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Figure 4.10: Eight points in one dimension and the k-nearest-neighbor density esti-
mates, for k = 3 and 5. Note especially that the discontinuities in the slopes in the
estimates generally occur away fom the positions of the points themselves.
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K. Nearest Neighbor Estimation

I

Figure 4.11: The k-nearest-neighbor estimate of a two-dimensional density for k = 5.
Notice how such a finite n estimate can be quite “jagged,” and that discontinuities in
the slopes generally occur along lines away from the positions of the points themselves.




Introduction

lllustration: K. Nearest Neighbor
Estimation

‘Previous example for Parzen

‘Forn = 1 and k, = Vn = 1; the estimate
becomes:

Pn(X) — 1 / Vl
= 1/ 2|x-X,]
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K. Nearest Neighbor Estimation
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FIGURE 4.12. Several k-nearest-neighbor estimates of two unidimensional densities:
a Gaussian and a bimodal distribution. Notice how the finite n estimates can be quite
“spiky.” From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright © 2001 by John Wiley & Sons, Inc.
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K. Nearest Neighbor Estimation
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Estimation of a-posteriori probabilities

- Goal: estimate P(w, | x) from a set of n
labeled samples

- Let us place a cell of volume V around x
and capture k samples

- ki samples amongst k turned out to be
labeled o, then:

- An estimate for p (o;| x) Is:
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Estimation of a-posteriori probabilities

- k/k is the fraction of the samples within the
cell that are labeled o,

- For minimum error rate, the most
frequently represented category within the
cell is selected

- If k is large and the cell sufficiently small,
the performance will approach the best
possible
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The k-Nearest Neighbor Rule

- Let D, = {x,, x,, ..., X,,} be a set of n labeled prototypes

- Let X’ € D, be the closest prototype to a test point x
then the nearest- -neighbor rule for cIassﬁymg X is to
assign it the label associated with x’

- The nearest-neighbor rule leads to an error rate greater
than the minimum possible: the Bayes rate

- If the number of prototype is large (unlimited), the error
rate of the nearest-neighbor classifier is never worse
than twice the Bayes rate (it can be demonstrated)

- If n > oo, it is always possible to find x’ sufficiently close
so that:

P(w; | X’) = P(w; | x)



Introduction

The k-Nearest Neighbor Rule
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e

Figure 4.16: The error-rate for the k-nearest-neighbor rule for a two-category problem
is bounded by Ci(P*) in Eq. 55. Each curve is labelled by k; when k = oo, the
estimated probabilities match the true probabilities and thus the error rate is equal
to the Bayes rate, i.e., P = P*.
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Example

Figure 4.13: In two dimensions, the nearest-neighbor algorithm leads to a partitioning
of the input space into Voronoi cells, each labelled by the category of the training point
it contains. In three dimensions, the cells are three-dimensional, and the decision
boundary resembles the surface of a crystal.
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Decision Boundary for 1-NNR

Voronoi diagram: piecewise linear boundary
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K-Nearest Neighbor Rule (K-NNR)

Steps:

1. Find the first k nearest neighbors of a given point.

2. Determine the class of the given point by a voting
mechanism among these k nearest neighbors.

A

x . class-A point

. . class-B point
x e : point with unknown class

" \ Circle of 3-nearest neighbors

Feature 2

X X

X

>
Feature 1
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The k-Nearest Neighbor Rule

- Goal: Classify x by assigning it the label
most frequently represented among the k
nearest samples and use a voting scheme
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The k-Nearest Neighbor Rule
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Figure 4.15: The k-nearest-neighbor query starts at the test point and grows a spher-
ical region until it encloses k training samples, and labels the test point by a majority
vote of these samples. In this k = 5 case, the test point x would be labelled the
category of the black points.
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Example

Example: k = 3 (odd value) and x = (0.10, 0.25)t

Prototype Labels
(0.15,0.35)
(0.10,0.28)

(0.09,0.30)
(0.12,0.20)

oClosest vectors to x with their labels are: {(0.10, 0.28, coz);

(0.12, 0.20, »_); (0.09, 0.30, » )}
One voting scﬁeme assigns theslabel ®
i i 2
to x since coz is the most frequently represented
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Flowchart for Nearest Neighbor

General flowchart: Particle example:

F eature From image to features
extraction

Data
None

reduction

Distance

measure Distance Computation
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Distance Metrics

L-d norms (aka Minkowski distance):

dd(i) :(

« d =1: City block distance, Manhattan metric,

taxicab distance (X) = Z I .|

* d =2: Euclidean distance # (X)) = > Ix .

i

e d = inf: maximum distance metric

d_(X) = rn.ax‘xi
1
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