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DTREG builds classification and regression decision trees, support vector 
machine (SVM), discriminant analysis and logistic regression models that 
describe data relationships and can be used to predict values for future 
observations 
 
DTREG accepts a dataset containing of number of rows with a column for each 
variable.  One of the variables is the “target variable” whose value is to be 
modeled and predicted as a function of the “predictor variables”.  DTREG 
analyzes the data and generates a model showing how best to predict the values 
of the target variable based on values of the predictor variables. 
 
DTREG can create classical, single-tree models and also TreeBoost and 
Decision Tree Forest models consisting of ensembles of many trees.  DTREG 
also can generate Support Vector Machine (SVM), Discriminant Analysis and 
Logistic Regression models. 
 
DTREG includes a full Data Transformation Language (DTL) for transforming 
variables, creating new variables and selecting which rows to analyze. 
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Data Mining and Modeling 
 
 
     “Predicting the future is hard, especially if it hasn’t happened yet.” 
      – Yogi Berra 
 
 

Data Mining 
The process of extracting useful information from a set of data values is called “data 
mining”.  Many techniques have been developed for data mining, and there is an art to 
selecting and applying the best method for a particular situation.  Experience over the last 
40 years has shown decision trees to be a highly effective method for analyzing and 
modeling many types of data.  DTREG builds classification and regression decision trees 
that describe data relationships and predict values for future observations. 
 
Data mining has great commercial and scientific value.  Consider these cases: 
 

1. A company has collected data showing how much of their product consumers 
buy.  For each consumer, the company has demographic and economic 
information such as age, gender, education, hobbies, income and occupation.  
Since the company has a limited advertising budget, they want to determine how 
to use the demographic data to predict which people are the most likely buyers of 
their product so they can focus their advertising on that group.  A decision tree is 
an excellent tool for this type of analysis because it shows which combination of 
attributes best predict the purchase of the product.  And, a decision tree can be 
used to “score” a set of individuals and rank them by the probability that they will 
respond positively to a marketing effort.  For information about how Lift and 
Gain tables and charts are used for customer targeting, please see page 122. 
 

2. A political campaign wants to maximize the turnout of their supporters on 
Election Day.  Exit polling has been done during previous elections giving a 
breakdown of voting patterns by precinct, race, gender, age and other factors.  
DTREG can analyze this data and generate a decision tree identifying which sets 
of voters should be targeted for get-out-the-vote efforts for upcoming elections. 
 

3. A bank wants to reduce the default rate on personal loans.  Using historical data 
collected for previous borrowers, the bank can use DTREG to generate a decision 
tree that can then be used to “score” candidate borrowers to predict the likelihood 
that they will default on their loans. 
 

4. An emergency room treats patients with chest pain.  Based on factors such as 
blood pressure, age, gender, severity of pain, location of pain, and other 
measurements, the caregiver must decide whether the pain indicates a heart attack 
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or some less critical problem.  A decision tree can be generated to decide which 
patients require immediate attention. 

 

Data Modeling 
One of the most useful applications of statistical analysis is the development of a model 
to represent and explain the relationship between data items (variables).  Many types of 
models have been developed, including linear and nonlinear regression (function fitting), 
discriminant analysis, logistic regression, support vector machines, neural networks and 
decision trees.  Each method has its advantages: there is no single modeling method that 
is best for all applications.  DTREG provides the best, state-of-the-art modeling methods 
including single tree, TreeBoost, decision tree forests, support vector machines (SVM), 
discriminant analysis and logistic regression.  By applying the right method to the 
problem, the analyst using DTREG should be able to match or exceed the predictive 
ability of any other modeling program. 
 

Decision Trees 
 
One of the most flexible modeling methods is decision trees and “ensemble” tree method 
such as TreeBoost and Decision Tree Forests. 
 
The DTREG program analyzes (“mines”) a set of data values and generates a decision 
tree that can be used to predict the value of a “target variable” based on the values of a 
set of “predictor variables”. (For information about target and predictor variables, see 
page 17.)  Like a real tree, a decision tree has a “root”, “branches” and “leaves”.  A 
prediction is made by entering the tree at the root and following the branches left or right 
based on values of the predictor variables until a leaf is reached.  Each leaf shows the 
most likely value for the target variable given the set of predictor values that led to the 
leaf.  (See the example tree on page 13.) 
 
The concept of decision trees is ancient – it is rooted (no pun intended) in the basic idea 
of deductive reasoning.  But the ability to analyze a large set of data records with many 
variables requires so much computational power that it was impractical until modern, 
high-speed computers were developed. 
 
Decision trees have a number of advantages over competing procedures: 
 

• Decision trees are easy to build.  Just feed a dataset into DTREG, and it will do all 
the work of building a decision tree and pruning it to the optimal size. 

• Decision trees are easy to understand.  Unlike nonlinear regression models, or, 
worse, neural networks, decision trees provide a clear, logical representation of 
the data model.  They can be understood and used by people who do not have to 
be mathematicians and statisticians. 
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• Decision trees handle both continuous (ordinal, interval) and categorical 
(nominal) variables.  Categorical variables such as gender, race, religion, marital 
status and geographic region are difficult to model using numerically-oriented 
techniques such as regression and neural networks.  In contrast, categorical 
variables are handled easily by decision trees.  DTREG uses advanced techniques 
that enable it to build classification trees even when there are a large number of 
predictor categories. 

• Decision trees can perform classification as well as regression.  The predicted 
value from a decision tree is not simply a numerical value but can be a predicted 
category such as male/female, malignant/benign, frequent buyer/occasional buyer, 
etc. 

• DTREG accepts text data as well as numeric data.  If you have categorical 
variables with data values such as “Male”, “Female”, “Married”, “Tennessee”, 
“Protestant”, etc., there is no need to code them as numeric values. 

• Decision trees automatically handle interactions between variables.  For example, 
men in the North may have different characteristics than men in the South; 
likewise, there may be differences between southern women and northern women.  
So it is necessary to consider both gender and region when making a prediction.  
Decision trees automatically deal with these interactions by partitioning the cases 
and then analyzing each group. 

• Decision trees identify important variables.  By examining which variables are 
used to split nodes near the top of the tree, you can quickly determine the most 
important variables.  DTREG carries this further by analyzing all the splits 
generated by each variable and the selection of surrogate splitters.  A table 
ranking overall variable importance is included in the analysis report (see page 
129).  The determination of variable importance is particularly useful in studies 
where many variables are available (for example, demographic data). 

• Decision trees handle missing data values well.  DTREG uses a sophisticated 
technique involving “surrogate splitters” (see page 188) to handle cases with 
missing values.  This allows cases with some available values and some missing 
values to be utilized to the maximum extent when building models.  It also 
enables DTREG to predict values for cases with missing data. 
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• Decision trees do not require the specification of the form of a function to be 
fitted to the data as is required by nonlinear regression. 

• DTREG can generate both single-tree models and also TreeBoost and Decision 
Tree Forest models consisting of a ensembles of trees.  See the chapter beginning 
on page 147 for information about TreeBoost models; see the chapter beginning 
on page 151 for information about decision tree forests. 

• DTREG can generate Support Vector Machine (SVM) models which are similar 
to neural networks.  SVM models are particularly good at pattern recognition such 
as facial recognition and identifying printed or hand-written characters. 

• DTREG includes a full implementation of Linear Discriminant Analysis that is 
fast and works well for many types of data analyses. 

• DTREG can perform Logistic Regression to model data that has a categorical 
target variable with two categories.  See the chapter beginning on page 177 for 
information about logistic regression. 

• DTREG includes a full Data Transformation Language (DTL) for transforming 
variables, creating new variables and selecting which cases are to be analyzed.  
See the chapter starting on page 81 for information about DTL. 
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Introduction to Decision Trees 
 
 
 
A decision tree is a logical model represented as a binary (two-way split) tree that shows 
how the value of a target variable can be predicted by using the values of a set of 
predictor variables.  An example of a decision tree is shown below: 
 

 
Decision Tree Nodes 
The rectangular boxes shown in the tree are called “nodes”.  Each node represents a set of 
records (rows) from the original dataset.  Nodes that have child nodes (nodes 1 and 3 in 
the tree above) are called “interior” nodes.  Nodes that do not have child nodes (nodes 2, 
4 and 5 in the tree above) are called “terminal” or “leaf” nodes.  The topmost node (node 
1 in the example) is called the “root” node.  (Unlike a real tree, decision trees are drawn 
with their root at the top).  The root node represents all the rows in the dataset. 
 
In the top of the node box is the node number.  Use the node number to find information 
about the node in the reports generated by DTREG.  The “N = nn” line shows how many 
rows (cases) fall in the node.  The “W = nn” line shows the sum of the weights of the 
rows in the node.  For details on the information presented in each node, see “What’s in a 
node” on page 130. 
 
Splitting Nodes 
A decision tree is constructed by a binary split that divides the rows in a node into two 
groups (child nodes).  The same procedure is then used to split the child groups.  This 
process is called “recursive partitioning”.  The split is selected to construct a tree that can 
be used to predict the value of the target variable. 
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For each split, two decisions are made by DTREG: (1) which predictor variable to use for 
the split (this is called the “splitting variable”), and (2) which set of values of the 
predictor variable go into the left child node and which set go into the right child node; 
this is called the “split point”.  The same predictor variable can be used to split many 
nodes.  For a more detailed explanation of how trees are built, please see page 185. 
 
The name of the predictor variable used to construct a node is shown in the node box 
below the node number.  For example, in the tree shown on page 13, nodes 2 and 3 were 
formed by splitting node 1 on the predictor variable “Petal length”.  The split point is 
2.45.  If the splitting variable is continuous (numeric) as in this split, the values going 
into the left and right child nodes will be shown as values less than or greater than some 
split point (2.45 in this example).  Node 2 consists of all rows with the value of “Petal 
length” less than or equal to 2.45, whereas node 3 consists of all rows with Petal length 
greater than 2.45.  If the splitting variable is categorical, the categories of the splitting 
variable going into each node will be listed. 
 

Building a Decision Tree Model 
There are two steps to making productive use of decision trees (1) building a decision 
tree model, and (2) using the decision tree to draw inferences and make predictions.  The 
following sections provide an overview of how decision trees are built and used. 
 

Overview of the Tree Building Process 
The first step in building a decision tree is to collect a set of data values that DTREG can 
analyze.  This data is called the learning or training dataset because it is used by DTREG 
to learn how the value of a target variable is related to the values of predictor variables.  
This dataset must have instances for which you know the actual value of the target 
variable and the associated predictor variables.  You might have to perform a study or 
survey to collect this data, or you might be able to obtain it from previously-collected 
historical records. 
 
Each entry in the learning dataset provides values for the target and predictor variables 
for a specific customer, patient, company, etc.  Each entry is known as a “case,” “row,” 
“record,” “observation” or “vector”.  See page 35 for information about the format of 
datasets. 
 
The question “How much data is required for the learning dataset?” is answered by 
addressing the level of precision you desire in the resulting tree.  In general, DTREG will 
not split a node with fewer than 10 rows.  So, a tree with three levels and four terminal 
nodes must have an absolute minimum of 20 records, but the predictive accuracy would 
be greatly improved by having four or more times that many records.  DTREG is 
designed to handle virtually an unlimited number of records; it is quite feasible to analyze 
datasets with millions of records, although the computation time may be lengthy. 
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Once you obtain enough data for the learning dataset, this data is fed into DTREG which 
performs a complex analysis on it and builds a decision tree that models the data.  See 
page 185 for additional information about the tree building process. 
 

Overview of Using Decision Trees 
Once DTREG has created a decision tree, you can use it in the following ways: 
 

• You can use the tree to make inferences that help you understand the “big picture” 
of the model.  One of the great advantages of decision trees is that they are easy to 
interpret even by non-technical people.  For example, if the decision tree models 
product sales, a quick glance might tell you that men in the South buy more of 
your product than women in the North.  If you are developing a model of health 
risks for insurance policies, a quick glance might tell you that smoking and age 
are important predictors of health. 

 
• You can use the decision tree to identify target groups.  For example, if you are 

looking for the best potential customers for a product, you can identify the 
terminal nodes in the tree that have the highest percentage of sales, and then focus 
your sales effort on individuals described by those nodes. 

 
• You can predict the target value for specific cases where you know only the 

predictor variable values.  This is known as “scoring”.  Scoring is described in the 
following section and, in more detail, on page 91. 
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Using a Decision Tree to Predict Target Variable Values (Scoring) 
A decision tree can be used to predict the values of the target variable based on values of 
the predictor variables. 

 
To determine the predicted value of a row, begin with the root node (node 1 above).  
Then decide whether to go into the left or right child node based on the value of the 
splitting variable.  Continue this process using the splitting variable for successive child 
nodes until you reach a terminal, leaf node.  The value of the target variable shown in the 
leaf node is the predicted value of the target variable. 
 
For example, let’s use the decision tree shown above to classify a case that has the 
following predictor values: 
 
     Petal length = 3.5 
     Petal width = 2.1 
 
Begin the analysis by starting in the root node, node 1.  The first split is made using the 
Petal length predictor.  Since the value of Petal length in our case is 3.5, which is greater 
than the split point of 2.45, we move from node 1 into node 3.  If we stopped at that 
point, the best estimate of Species would be Versicolor.  Node 3 is split on a different 
predictor variable, Petal width.  Our value of Petal width is 2.1, which is greater than the 
split point of 1.75, so we move into node 5.  This is a terminal node, so we classify the 
species as Virginica, which is the category assigned to the terminal node. 
 
In the case of regression trees where the target variable is continuous, the mean value of 
the target variable for the rows falling in a leaf node is used as the predicted value of the 
target variable. 
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Classes of Variables 
You can specify three classes of variables when performing analyses: 
 
Target variable --  The “target variable” is the variable whose values are to be modeled 
and predicted by other variables.  It is analogous to the dependent variable (i.e., the 
variable on the left of the equal sign) in linear regression.  There must be one and only 
one target variable. 
 
Predictor variable --  A “predictor variable” is a variable whose values will be used to 
predict the value of the target variable.  It is analogous to the independent variables (i.e., 
the variables on the right side of the equal sign) in linear regression.  There must be at 
least one predictor variable specified, and there may be many predictor variables.  If more 
than one predictor variable is specified, DTREG will determine how the predictor 
variables can be combined to best predict the values of the target variable. 
 
Weight variable --  Optionally, you can specify a “weight variable”.  If a weight variable 
is specified, it must a numeric (continuous) variable whose values are greater than or 
equal to 0 (zero).  The value of the weight variable specifies the weight given to a row in 
the dataset.  For example, a weight value of 2 would cause DTREG to give twice as much 
weight to a row as it would to rows with a weight of 1; the effect is the same as two 
occurrences of the row in the dataset.  Weight values may be real (non-integer) values 
such as 2.5.  A weight value of 0 (zero) causes the row to be ignored.  If you do not 
specify a weight variable, all rows are given equal weight. 
 

Types of Variables 
Variables may be of two types: continuous and categorical. 
 
Continuous variables with ordered values --  A continuous variable has numeric values 
such as 1, 2, 3.14, -5, etc.  The relative magnitude of the values is significant (e.g., a 
value of 2 indicates twice the magnitude of 1).  Examples of continuous variables are 
blood pressure, height, weight, income, age, and probability of illness.  Some programs 
call continuous variables “ordered”, “ordinal”, “interval” or “monotonic” variables.  If a 
variable is numeric and the values indicate relative magnitude or order, then the variable 
should be declared as continuous even if the numbers are discrete and do not form a 
continuous scale. 
 
Categorical variables with unordered values --  A categorical variable has values that 
function as labels rather than as numbers.  Some programs call categorical variables 
“nominal” variables.  For example, a categorical variable for gender might use the value 
1 for male and 2 for female.  The actual magnitude of the value is not significant; coding 
male as 7 and female as 3 would work just as well.  As another example, marital status 
might be coded as 1 for single, 2 for married, 3 for divorced and 4 for widowed.  DTREG 
allows you to use non-numeric (character string) values for categorical variables.  So 
your dataset could have the strings “Male” and “Female” or “M” and “F” for a 
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categorical gender variable.  Because categorical values are stored and compared as 
string values, a categorical value of 001 is different than a value of 1.  In contrast, values 
of 001 and 1 would be equal for continuous variables. 
 

Regression and Classification Models 
DTREG will generate a regression model or a classification model depending on whether 
the target variable is continuous or categorical. 
 
Regression Models -- If the target variable is continuous, a regression model is 
generated.  When using a regression tree to predict the value of the target variable, the 
mean value of the target variable of the rows falling in a terminal (leaf) node of the tree is 
the predicted value. 
 
An example of a regression tree is shown below.  In this example, the target variable is 
“Median value”.  From the tree we see that if the value of the predictor variable “Num. 
rooms” is greater than 6.941, then the estimated (average) value of the target variable is 
37.238; whereas, if the number of rooms is less than or equal to 6.941, then the average 
value of the target variable is 19.934. 
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Classification Models -- If the target variable is categorical, then a classification model 
is generated.  To predict the value (category) of the target variable using a classification 
tree, use the values of the predictor variables to move through the tree until you reach a 
terminal (leaf) node, then predict the category shown for that node.  An example of a 
classification tree is shown below.  The target variable is “Species”, the species of Iris.  
We can see from the tree that if the value of the predictor variable “Petal length” is less 
than or equal to 2.45 the species is Setosa.  If the petal length is greater than 2.45, then 
additional splits are required to classify the species. 
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Using DTREG 
 
Once you understand the concept of decision trees, it is very easy to use DTREG to 
analyze data and build decision trees to model data. 
 

Installing DTREG 
To install DTREG, run the installation program named DTREGsetup.exe.  A “wizard” 
screen will guide you through the installation process.  You can accept the default 
installation location (C:\Program files\DTREG) or select a different folder location.  When 
the installation finishes, you should see this icon for DTREG on your desktop: 
 

 
 
To launch DTREG, double-click the Shortcut to DTREG icon on your desktop. 
 

DTREG’s Main Screen 
When you launch DTREG, its main screen displays: 
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From this screen, you can 
• Create a new project to build a decision tree by clicking  
• Open an existing decision tree project by clicking  

 

Creating a New Project 

To create a new project, click the leftmost icon on the toolbar that looks like this:  
Project “wizard” screens will guide you through setting up the project.  The first screen 
looks like this: 
 

 
 
There are several fields on this page. 
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• Title of project – This is an optional field.  If you wish, you can specify a title to 
be displayed for this project. 

• Input data file – This is a required field.  Specify the device, folder and name of 
the file containing the input (learning) dataset to be used to build the tree.  The 
data must be in a comma separated value (CSV) file with the names of the 
variables on the first line.  Please see page 35 for detailed information about the 
format of input data files.  You can click the “Browse files” button to browse for 
the file rather than typing it in. 

• Character used for a decimal point in the input data file – Select whether a 
period or a comma will be used to indicate the decimal point in numeric values in 
the input data file.  The American standard decimal point marker is a period while 
the European standard is a comma.  This setting affects only data read from the 
input file; a period always is used as the decimal point marker in the generated 
report. 

• Character used to separate columns – Select the character that will be used to 
separate columns in the input file.  The default separator is a comma, but you may 
select any character you wish to use. 

• Data subsetting – If you wish, you can tell DTREG to use only a subset of the 
records in the data file for the analysis.  This speeds up the analysis and is useful 
when experimenting with different model settings.  If you tell DTREG to use a 
subset of the data, specify the percentage of the rows that you want it to use.  
Since random selection is used to select the rows, the actual number of rows used 
may be slightly different than the percent you specify. 

• File where information about this project is to be stored – This is a required 
field.  Specify the name of the project file where DTREG will store parameters 
and computed values for the project.  DTREG project files are stored with the 
type “.dtr” (for example, “Iris.dtr”).  You can click the “Browse file” button to 
browse for the directory where you want to store the file. 

• Notes about this project – This is an optional field.  You can enter any notes that 
you want to store with the project data. 

 
After you finish filling in these fields, click the “Next” button at the bottom of the screen 
to advance to the next screen.  The following property pages will be displayed: 

• Variables (see page 38) 
• Class labels (see page 65) 
• Design (see page 33) 
• Initial split (see page 67) 
• Category weights (see page 69) 
• Misclassification Costs (see page 71) 
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New Project Example 
To illustrate the process of creating a new project, let’s consider a concrete case.  We will 
look at the steps involved in setting up a DTREG project to classify species of irises 
based on measurements of the plants.  The data we will use is from the classic study 
devised by R. A. Fisher in 1936 (Fischer, 1936).  First, we need to prepare a data file to 
be read by DTREG.  Such an example data file is provided with the DTREG distribution 
and installed in the Examples directory under the DTREG installation directory.  The 
name of the file is Iris.csv.  Here are a few lines from that file: 
 
Species,"Sepal length","Sepal width","Petal length","Petal width" 
Setosa,5.1,3.5,1.4,0.2 
Setosa,4.9,3,1.4,0.2 
Setosa,4.7,3.2,1.3,0.2 
Versicolor,7,3.2,4.7,1.4 
Versicolor,6.4,3.2,4.5,1.5 
Versicolor,6.9,3.1,4.9,1.5 
Virginica,6.3,3.3,6,2.5 
Virginica,5.8,2.7,5.1,1.9 
Virginica,7.1,3,5.9,2.1 
 
The first line of the file has the names of the variables separated by whatever character 
you selected as the column delimiter (by default it is a comma).  In this case, there are 5 
variables: Species, Sepal length, Sepal width, Petal length and Petal width.  Variable 
names and values that contain spaces or the column separator character should be 
enclosed in quote marks.  The records following this are the actual data observations (one 
per plant).  There is one value for each of the five variables.  See page 35 for additional 
information about the format of data files. 
 
In this example, we are trying to predict the species of iris, so “Species” is a categorical 
target variable.  The other four variables are continuous predictor variables. 
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Here is the first screen we set up for this project: 
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On the second screen, specify information about the variables: 
 

 
 
Species is the target variable, and it is categorical.  The other four variables are 
continuous predictor variables. 
 
After setting information about variables, click the “Next” button to advance through the 
setup screens. 
 
After you finish the last setup screen for the project, DTREG asks if you want to save the 
settings for the project: 
 

 
 
We will click “Yes” and save the project settings in a file named Iris.dtr. 
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Opening an Existing Project 
All of the information about a DTREG project is stored in a project database.  This 
includes parameters that control the analysis, information about variables, the name of the 
data input file, the generated report, and information required to construct and display the 
generated decision tree.  These project files have the file type “.dtr”.  You can open 
project files, examine the report and tree, modify parameters and rerun the analysis. 
 
The actual input data is not stored in the project file but remains in the original comma 
separated value (CSV) file.  The project file stores only the name of the input data file. 
 
To open an existing project file, click the  icon on the toolbar. 
 
If you are reopening a project that was opened recently, you can click the “File” entry on 
the main menu line, and select the project from the list of recent projects. 
 
Once you open a project, the last report generated for it will be displayed in the right 
panel, and the left panel will show a list of property pages you can select to review and 
change option settings. 
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Example Projects Installed With DTREG 
The DTREGsetup installation program installs a set of example projects in a folder 
named “Examples” under the DTREG installation directory.  This is C:\Program 
files\DTREG\Examples, unless you selected a different folder during installation.  A good 
way to get started using DTREG is to browse the examples in that directory and run some 
of them.  See page 201 for additional information about example analyses. 
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Running an Analysis to Build a Decision Tree 
Once you have created a new project or opened an existing project, you can tell DTREG 
to perform an analysis and build a decision tree.  To do this, click the  icon on the 
toolbar.  You can also click “Run-analysis” on the main menu. 
 
While an analysis is running, a progress screen similar to this will be displayed: 
 

 
 
When the analysis finishes, the new report will be displayed in the main right panel. 
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Viewing the Generated Decision Tree 
Once an analysis has been completed, you can view the generated decision tree by 
clicking the  toolbar icon or by clicking “View-tree” on the main menu.  To save the 
decision tree in a jpg, png or bmp disk file, click the disk icon.  To print the decision tree, 
click the printer icon. 
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Specifying Properties for a Model 

 
You can specify properties for a model when you create it initially or you can change the 
properties for a project you have already created.  The properties for a model display in 
the left panel and correspond to the project property screens. 
 
To specify properties for a model, click one of the items shown under “Model” in the left 
panel: 
 

 
 
The Model screen displays with tabs for each property, similar to the one shown below: 
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Each property page is described below. 
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Design Property Page 
The Design property page specifies general information about the model. 
 

 
 
Title of project – Specify a descriptive title for the project.  This is simply 
commentary information and may be omitted if you wish. 
 
Write a report of the analysis to a project_Log.txt disk file – If this box is 
checked, DTREG will generate an analysis log file named project_Log.txt where project 
is the name of the DTREG project file.  The log file contains the same information that is 
displayed in the analysis output panel. 
 
Type of model to build – Select the type of model that DTREG should build. 
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Tree fitting algorithm – Select which algorithm you want DTREG to use to split 
nodes in the tree.  TreeBoost models are always built using an algorithm that minimizes 
misclassification costs, so the algorithm selection boxes will be disabled for TreeBoost 
models.  Here are the choices: 
 

• Gini -- The Gini splitting method is the default and recommended method for 
classification trees.  Each split is chosen to maximize the heterogeneity of the 
categories of the target variable in the child nodes. 

 
• Entropy – The Entropy splitting method is an alternate method that can be 

selected for classification trees.  Experiments have shown that entropy and Gini 
generally yield similar trees after pruning. 

 
• Misclassification cost -- This method causes DTREG to use the split that 

minimizes the misclassification cost among the child nodes. 
 

• Variance -- The variance splitting method is always used for regression trees.  It 
causes DTREG to use the split that minimizes the sum of variance (i.e. sum of 
squared errors) in the child nodes. 

 
How to categorize continuous variables – The values of continuous predictor 
variables are grouped into categories before they are used to build the decision tree.  
Specify in this field the maximum number of categories that are to be used to group 
continuous predictor variable values.  The more categories you allow, the smaller and 
more precise the category ranges will be.  However, as you increase the number of 
categories, the computation time also increases.  If you allow up to 100 categories, then 
each category will be 1% of the range of the values. 
 
Cluster analysis control – This value tells DTREG when to switch from an 
exhaustive search of predictor categories to a faster but slightly less accurate clustering 
method.  This control is enabled only when building a classification tree.  When the 
target variable is categorical and a predictor variable is also categorical, an exhaustive 
search would require DTREG to evaluate a potential split for every possible combination 
of categories of the predictor variable.  The number of splits is equal to 2(k-1)-1 where k is 
the number of categories of the predictor variable.  For example, if there are 5 predictor 
categories, 15 splits are tried; if there are 10 categories, 511 splits are tried; if there are 16 
categories, 32767 splits are tried.  Because of this exponential growth, the computational 
time makes it impractical to do an exhaustive search for more than about 12 predictor 
categories.  To handle this situation, DTREG will switch to a faster but slightly less 
accurate method when the number of categories of a predictor variable exceeds the value 
you specify for this parameter.  This allows DTREG to build classification trees even 
when a categorical predictor has hundreds or even thousands of categories. 
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Data Property Page 
The Data Property Page allows you to select the data file you want to use for the project. 
 

 
 

Data File Format 
The data file must be a text (ASCII) file with the values for one row (case) per line.  Most 
database and spreadsheet programs such as Access and Excel can generate Comma 
Separated Value (CSV) formatted files that you can use as input to DTREG. 
 
Data Subsetting – If you wish, you can tell DTREG to use only a subset of the records in 
the data file for the analysis.  This speeds up the analysis and is useful when 
experimenting with different model settings.  If you tell DTREG to use a subset of the 
data, specify the percentage of the rows that you want it to use.  Since random selection is 
used to select the rows, the actual number of rows used may be slightly different than the 
percent you specify. 
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Write validation hold-back records to a file – If you check this box, you can specify a 
file where DTREG will write the records held back for validation.  This is useful when 
you want to use the records selected for validation for your own, external tests.  Note that 
this option is effective only when you specify that validation is to be done by holding 
back a percentage of the input dataset. 
 
There are three selections related to the format of the input data file: 
 

1. Character used for a decimal point in the input data file – Select whether a 
period or a comma will be used to indicate the decimal point in numeric values in 
the input data file.  The American standard decimal point marker is a period while 
the European standard is a comma.  This setting affects only data read from the 
input file; a period always is used as the decimal point marker in the generated 
report. 

2. Character used to separate columns – Select the character that will be used to 
separate columns in the input file.  The default separator is a comma, but you may 
select any character you wish to use. 

3. Custom missing value indicator – Specify the character that will be used to 
indicate missing values in the data file.  If a data field is entirely blank or consists 
only of the question mark character (“?”) DTREG treats it as a missing value.  If 
wish to specify a character to denote missing values in addition to question mark, 
check this box and specify the character in the associated edit box. 

 
The first row in the file must contain the names of the variables.  If a variable name 
contains commas, you must enclose it in quote marks.  You may enclose variable names 
in quotes even if they do not contain commas.  If a variable name or a data value contains 
a quote character (“) you must enclose the value in quote marks and specify a double 
quote mark to represent each single quote mark in the value.  For example a value Toys 
“R” Us would be specified “Toys “”R”” Us”. 
 
Here is an example of a data file.  Note that the third variable, “Gross income” is 
enclosed in quotes. 
 
Age, Sex, “Gross income” 
20,Male,25000 
30,Female,42000 
55,Male,76000 
43,Male,44000 
50,Female,82000 
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Continuing Data Lines 
Long data lines can be continued to the following line by placing a backslash (‘\’) 
character as the last character on the line being continued.  For example, the following 
continued line: 
 
Age, Sex,\ 
“Gross income” 
 
is equivalent to: 
 
Age, Sex, “Gross income” 
 

Specifying Missing Values in Data Files 
To indicate a missing value in a dataset, use the following: 

• A field that is entirely empty (nothing between the commas). 
• The question mark character (‘?’) 
• A single period (‘.’). 
• A character you specify using the “Custom missing value indicator” specification. 

 
 
For example, in the following data set the value of Age is missing in the first row, the 
value of Sex is missing in the second row, and the value of Gross income is missing in 
the third row. 
 
Age, Sex, “Gross income” 
.,Male,25000 
30,,42000 
55,Male,? 
43,Male,44000 
50,Female,82000 
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Variables Property Page 
The Variables property page is used to specify the class and category of each variable. 
 

 
 
The list will show the name of each variable as was found on the first row of the data file 
for the project (see description of the Data property screen on page 35). 
 
The following columns are shown next to the variable names.  Click on a box in a column 
to turn a property on or off for a variable. 
 

• Target – If this box is checked, the selected variable is the target variable for the 
model.  One and only one variable may be designated as the target variable. 

 
• Predictor – If this box is checked, the selected variable will be used as a predictor 

variable when creating the decision tree.  You must select at least one predictor 
variable, and you may select many predictor variables. 

 
• Weight – If this box is checked, the selected variable will be used as the weight 

variable.  If a weight variable is selected, its values will be used to weight the 
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rows of the data.  If no weight variable is selected, all rows receive the same 
weight. 

 
• Categorical – Check this box if the variable is categorical (nominal).  Leave the 

box unchecked if the variable is continuous or ordinal.  Categorical variables may 
have either numeric or text (e.g. “Male” or “Female”) values in the data file.  
Continuous variables must have numeric values. 

 
• Character – Check this box if the values of the variable can have general 

character values such as “Male”, “Female”, “Yes”, “No”, etc.  Leave the box 
unchecked if the values of the variable are strictly numeric.  Only categorical 
variables can store character values; continuous variables store only numeric 
values.  The default setting for categorical variables is character type.  Note: the 
setting of this attribute only affects the code generated by the Translate function 
(see page 97).  It does not affect the building of the model or the operation of the 
Score function.  C and C++ code generated for variables declared to have 
character values are defined with char[nnn] declarations.  Numeric variables are 
defined as type long.  SAS® code initializes character or numeric variables 
depending on this setting.  It is legal to declare a categorical variable to be of type 
character even if it has only numeric values. 

 
Several buttons are shown at the right side of the list: 
 

• All predictors – Click this button to check the predictor boxes for all variables.  
Note, you must then select one of the variables as the target variable. 

 
• All categorical – Click this button to set the categorical checkboxes for all 

variables. 
 

• All continuous – Click this button to uncheck the categorical checkboxes for all 
variables (i.e. to set the class of all variables to be continuous). 

 
• All numeric – Click this button to uncheck all of the character checkboxes for all 

variables (i.e., set all variables to hold only numeric values).  The boxes for 
variables that are known to have non-numeric values will remain checked. 

 
• All character – Click this button to check the character attribute boxes for all 

variables.  Continuous variables can never store character values, so only 
categorical variables are affected. 

 
• All reset – Click this button to reset (uncheck) all boxes. 
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There are two category distribution report options available at the bottom of the page: 
 

• Report category statistics for categorical variables – If selected, a Summary of 
Categories report will be generated with information about the categories for all 
categorical predictor and target variables.  For additional information, please see 
page 109. 

• Report category statistics for continuous variables – If selected, a report will 
be generated with information about the categories for all continuous predictor 
and target variables. 

 
Cross-validation Control Variable 
Normally when cross validation is used to evaluate the quality of a model, DTREG 
assigns a random set of rows to each validation fold after stratifying on the target 
variable.  If you wish, you can select a variable whose values will determine which cross 
validation fold each row will be placed in rather than using random selection.  If a 
variable is used, it must be a categorical variable; there will be one fold for each category 
of the variable. 
 
A cross validation control variable is useful for a situation where you have a number of 
similar observations that are clustered in a small number of groups.  If the observations 
within a cluster are very similar (i.e., cohorts), then performing cross validation where 
observations from the same cluster are both used to build a validation model and evaluate 
it will result in overly optimistic results.  In this case, it would be proper to use the cluster 
number to control the cross validation folds so nearly similar cases are grouped in a fold. 
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Single Tree Model Property Page 
The Single Tree property page is used to specify parameters for single tree models.  Use 
the TreeBoost and Decision Tree Forest pages to specify parameters for those types of 
models. 
 

 
 
Type of model to build – Select the type of model that DTREG should build.  The 
controls on this screen are disabled for any type of model other than single tree. 
 
Minimum size node to split – This specifies that a node (group) should never be 
split if it contains fewer rows than the specified value. 
 
Maximum tree levels – Specify the maximum number of levels in the tree that you 
want DTREG to construct when it is building the tree.  It is best to let DTREG initially 
build a large tree with many levels and then allow the pruning phase of the analysis to 
remove levels.  See page 190 for information about how pruning is done. 
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Method for validating and pruning the tree – select the method to be used by 
DTREG to test the tree that it builds. 
 
No validation, use full tree – If you check this button, DTREG will build the full 
decision tree for the model and will do no testing or pruning.  A full, unpruned tree is 
sometimes called an “exploratory tree”. 
 
V-Fold cross-validation – If you check this button, DTREG will use V-fold cross-
validation to determine the statistically optimal tree size.  You may specify how many 
“folds” (cross-validation trees) are to be used for the validation; a value of 10 is 
recommended.  Specifying a larger value increases the computation time and rarely 
results in a more optimal tree.  For a detailed description of V-fold cross validation, 
please see page 193. 
 
Random percent of rows – If you check this button, DTREG will hold back from the 
model building process the specified percent of the data rows.  The rows are selected 
randomly from the full dataset, but they are chosen so as to stratify the values of the 
target variable.  Once the model is built, the rows that were held back are run through the 
tree and the misclassification rate is reported.  If you enable tree pruning, the tree will be 
pruned to the size that optimizes the fit to the random test rows.  The advantage of this 
method over V-fold cross-validation is speed – only one tree has to be created rather than 
(V+1) trees that are required for V-fold cross-validation.  The disadvantage is that the 
random rows that are held back do not contribute to the model as it is constructed, so the 
model may be an inferior representation of the training data.  Generally, V-fold cross-
validation is the recommended method for small to medium size data sets where 
computation time is not significant, and random-holdback validation can be used for 
large datasets where the time required to build (V+1) trees would be excessive. 
 
Fixed number of terminal nodes – If you check this button, DTREG will prune the tree 
to the specified number of terminal nodes.  The cost-complexity values computed for the 
tree are used to guide the pruning so that the least significant nodes are pruned to reduce 
the tree to the specified size.  When this option is selected, cross-validation trees are not 
generated, so it is much faster than doing full cross-validation on large trees; however, 
there is no assurance that the generated tree has the optimal number of nodes.  This 
option is useful when you are generating exploratory trees. 
 
Smooth minimum spikes – If you check this button, DTREG will smooth out 
fluctuations in the error rate for various size models by averaging the misclassification 
rates for neighboring tree sizes.  During the pruning process, DTREG must identify the 
tree size that produces the minimum misclassification error (residual) for the validation 
data; this is the optimal size to which the tree will be pruned.  Sometimes the error rate 
fluctuates as the tree size increases, and an anomalous minimum “spike” may occur in a 
region where the surrounding error rates are much higher.  This happens more often when 
using random-row-holdback validation than when using V-fold cross-validation which 
tends to average out error rate values.  If you enable smoothing of minimum spikes, 
DTREG averages each error-rate/tree-size value with its neighboring values.  The effect 
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is to cause DTREG to seek regions where the minimum values are consistently low rather 
than isolated low values.  The generated trees may be larger, but they usually are more 
stable when used for scoring.  The value associated with this button specifies how many 
values are to be averaged for smoothing.  For example, a smoothing value of 3 causes 
DTREG to compute the average of three points – the center point and the neighboring 
points on the left and right. 
 
Tree Pruning Control – Select options in this group to control how DTREG prunes 
the tree to the optimal size.  Note: You must select V-fold cross validation to enable tree 
pruning.  For additional information about how tree pruning is performed, please see 
page 190. 
 
Prune to minimal cross-validated error – If you select this option, DTREG will prune 
the tree to the number of nodes that produce the minimal error in the cross-validation 
trees.  This is the theoretically optimal tree size, but it may be only marginally better than 
a smaller tree with a slightly larger error value.  For additional information, please see 
page 195. 
 
Allow one standard error from minimum – If you select this option, DTREG will be 
allowed to prune the tree to a smaller number of nodes such that the cross-validated error 
cost of the smaller tree is no more than one standard error from the minimal cross-
validated error value.  The advantage of selecting this option is that DTREG generates a 
smaller and simpler tree; however, the tree may not be quite as good at predicting future 
values as the larger, optimal tree.  Research has shown that the misclassification cost 
values tend to decrease to a valley as the tree size is pruned and then increase gradually 
once the pruned tree size passes the optimal size.  Typically, the decrease is not smooth 
and there is some roughness in the cost values around the optimal point; so, allowing 
pruning to a smaller, slightly less optimal tree is probably not statistically significant, and 
you end up with a smaller, simpler model. 
 
Allow this many S.E. from min. – If you check this box, you can specify an exact 
number of standard error intervals to allow the pruning to select a smaller tree.  If you 
specify 1 for the standard error interval, then this option is equivalent to selecting “Allow 
one standard error from minimum”. 
 
Do not prune the tree – Select this option if you want DTREG to perform cross-
validation but not prune the tree.  You will get the cross-validation statistics, but the full, 
unpruned tree will be generated. 
 

TreeBoost Property Page 
 
TreeBoost models often can provide greater predictive accuracy than single-tree models, 
but they have the disadvantage that you cannot visualize them the way you can a single 
tree; TreeBoost models are more of a “black box”. 
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For more technical information about TreeBoost, please see the chapter starting on page 
147. 
 
When you select the TreeBoost property page, you will see a screen like this: 
 

 
 
Type of model to build:  Select the type of model you want DTREG to build.  If you 
select a type of model other than TreeBoost, the other controls on this screen will be 
disabled. 
 
Maximum number of trees in series:  Specify how many trees you want DTREG to 
generate in the TreeBoost series.  If you select the appropriate options in the right panel, 
DTREG will prune (truncate) a series to the optimal size after building it.  You can click 
Charts on the main menu followed by Model Size to view a chart that shows how the 
error rates vary with the number of trees in the series. 
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Depth of individual trees:  Specify how many levels of splits each tree in the TreeBoost 
series should have.  The number of terminal nodes in a tree is equal to 2k where k is the 
number of levels.  So, for example, a tree with a depth of 1 has two terminal nodes, a tree 
with a depth of 2 has 4 terminal nodes, and a tree with a depth of 3 has 8 terminal nodes.  
Because many trees contribute to the model generated by TreeBoost, usually it is not 
necessary for individual trees to be very large.  Experiments have shown that trees with 4 
to 8 levels generally perform well, but if there are a large number of predictor variables 
or there are many categories for the predictors, you should try increasing the tree depth to 
10 or 12.  The depth should be at least as large as the number of variable interactions.  If 
you have a categorical predictor variable with many classes (for example, postal zip 
code) it may be necessary to increase the tree depth to allow DTREG to partition the data 
into more groups.  If the predictions from a TreeBoost model are not as accurate as those 
from the corresponding single-tree model, try increasing the depth of the TreeBoost trees. 
 
Minimum size node to split – This specifies that a node should never be split if it 
contains fewer rows than the specified value. 
 
Proportion of rows in each tree:  Research has shown (Friedman, 1999b) that 
TreeBoost generates the most accurate models with minimum over fitting if only a 
portion of the data rows are used to build each tree in the series.  Specify for this 
parameter the proportion of rows that are to be used to build each tree in the series; a 
value of 0.5 is recommended (i.e., half of the rows).  The specified proportion of the rows 
are chosen randomly from the full set of rows.  (This is the stochastic part of stochastic 
gradient boosting.) 
 
Huber’s quantile cutoff:  The TreeBoost algorithm uses Huber’s M-regression loss 
function to evaluate error measurements for regression models (Huber, 1964).  This loss 
function is a hybrid of ordinary least-squares (OLS) and least absolute deviation (LAD).  
For residuals less than a cutoff point, the squared error values are used.  For residuals 
greater than the cutoff point, absolute values are used.  The virtue of this method is that 
small to medium residuals receive the traditional least-squares treatment, but large 
residuals (which may be anomalous cases, mismeasurements or incorrectly coded values) 
do not excessively perturb the function.  After the residuals are calculated, they are sorted 
by absolute value and the ones below the specified quantile cutoff point are then squared 
while those in the quantile above the cutoff point are used as absolute values.  The 
recommended value is 0.9 which causes the smaller 90% of the residuals to be squared 
and the most extreme 10% to be used as absolute values.  Huber’s quantile cutoff 
parameter is used only for regression analyses and not for classification analyses. 
 
Influence trimming factor:  This parameter is strictly for speed optimization; in most 
cases it has little or no effect on the final TreeBoost model.  When building a TreeBoost 
model, the residual values from the existing tree series are used as the input data for the 
next tree in the series.  As the series grows, the existing model may do an excellent job of 
fitting many of the data rows, and the new trees being constructed are only dealing with 
the unusual cases.  “Influence trimming” allows DTREG to exclude from the next tree 
build process rows whose residual values are very small.  The default parameter setting 
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of 0.1 excludes rows whose total residual represent only 10% of the total residual weight.  
In some case, a small minority of the rows represent most of the residual weight, so most 
of the rows can be excluded from the next tree build.  Influence trimming is only used 
when building classification models. 
 
Shrinkage factor:  Research has shown (Friedman, 2001) that the predictive accuracy of 
a TreeBoost series can be improved by apply a weighting coefficient that is less than 1 (0 
< v < 1) to each tree as the series is constructed.  This coefficient is called the “shrinkage 
factor”.  The effect is to retard the learning rate of the series, so the series has to be longer 
to compensate for the shrinkage, but its accuracy is better.  Tests have shown that small 
shrinkage factors in the range of 0.1 yield dramatic improvements over TreeBoost series 
built with no shrinkage (v = 1).  The tradeoff in using a small shrinkage factor is that the 
TreeBoost series is longer and the computational time increases. 
 
If “Auto” shrinkage factor is selected, the shrinkage factor is calculated by DTREG based 
on the number of data rows in the training data set. 
 
Let NumRows = the number of data rows in the training data set. 
Then, ShrinkFactor = max(0.01, 0.1 * min(1.0, NumRows/10000)) 
 
If you prefer, you can select the “Fixed” option and specify a shrinkage factor. 
 
If you experience significant over fitting of the TreeBoost model (much better fit on 
training data than test data), try decreasing the shrinkage factor.  Note that “Auto” mode 
will never use a shrinkage factor less than 0.1.  If over fitting is a problem, try switching 
to the “fixed” setting and specify values in the range of 0.05. 
 
Limit max. nodes per tree: If you enable this option, DTREG will build each tree in the 
TreeBoost series to the maximum depth and then prune it by removing the least 
significant nodes so that it has no more than the specified number of terminal (leaf) 
nodes.  It is recommended that you leave this box unchecked and limit the size of trees by 
setting the maximum tree depth.  The main reason for pruning trees in the series is to 
reduce the amount of memory space required by very large models. 
 
Pruning Methods for TreeBoost Series 
 
TreeBoost series are less prone to problems with over fitting than single-tree models, but 
they can benefit from validation and pruning to the optimal size to minimize the error on 
a test dataset.  In the case of a TreeBoost series, “pruning” consists of truncating the 
series to the optimal number of trees. 
 
No validation, use full tree series:  All of the data rows are used to “train” the 
TreeBoost series.  No validation or pruning is performed. 
 
Random percent of rows – If you check this button, DTREG will hold back from the 
model building process the specified percent of the data rows.  The rows are selected 
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randomly from the full dataset, but they are chosen so as to stratify the values of the 
target variable.  Once the model is built, the rows that were held back are run through the 
tree and the misclassification rate is reported.  If you enable tree pruning, the tree will be 
pruned to the size that optimizes the fit to the random test rows.  The advantage of this 
method over V-fold cross-validation is speed – only one TreeBoost series has to be 
created rather than (V+1) tree series that are required for V-fold cross-validation.  The 
disadvantage is that the random rows that are held back do not contribute to the model as 
it is constructed, so the model may be an inferior representation of the training data.  
Generally, V-fold cross-validation is the recommended method for small to medium size 
data sets where computation time is not significant, and random-holdback validation can 
be used for large datasets where the time required to build (V+1) tree series would be 
excessive. 
 
V-Fold cross-validation – If you check this button, DTREG will use V-fold cross-
validation to determine the statistically optimal size for the TreeBoost series.  You may 
specify how many “folds” (cross-validation trees) are to be used for the validation; a 
value in the range 3 to 10 is recommended.  Specifying a larger value increases the 
computation time and rarely results in a more optimal tree.  For additional information 
about V-fold cross validation, please see page 193. 
 
This is the process used for cross validation of a TreeBoost series: 
 
First, a primary series is created using all of the data rows.  This series is grown to the 
maximum allowable length. 
 
The data rows are randomly divided into V sets, where V is the number of folds.  Hence, 
each set has 1/V of the total rows. 
 
A TreeBoost series is created for each of the V folds (i.e., V TreeBoost series are created).  
The nth series is built using all of the row data sets except for the nth data set.  In other 
words, one set of data (1/V rows) is excluded (held back) from each series, and it is a 
different set of rows that is held back each time. 
 
After the nth series is created using all data rows except for those in the nth set, the rows 
in the nth set that were held back are used to compute the misclassification rate for the 
series.  The misclassification rate is computed for the series using only the first tree, then 
the first two trees in the series, then the first three, up to the total length of the series.  The 
error rate is stored for each possible number of trees in the series. 
 
One the V cross-validation series have been created and their error rates have been 
computed using the held-back rows, the error rates for each length of series is averaged 
across the V series and the length with the minimum error average is used. 
 
If pruning was requested, the primary series that was created using all data rows is then 
pruned to the length with the minimum error rate as determined by cross validation. 
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Smooth minimum spikes – If you check this button, DTREG will smooth out 
fluctuations in the error rate for various size models by averaging the misclassification 
rates for neighboring tree series sizes.  Sometimes, the error rate fluctuates as the tree size 
increases, and an anomalous minimum “spike” may occur in a region where the 
surrounding error rates are much higher.  This happens more often when using random-
row-holdback validation than when using V-fold cross-validation which tends to average 
out error rate values.  If you enable smoothing of minimum spikes, DTREG averages 
each error-rate/tree-size value with its neighboring values.  The effect is to cause DTREG 
to seek regions where the minimum values are consistently low rather than isolated low 
values.  The generated TreeBoost series may be longer, but they usually are more stable 
when used for scoring.  The value associated with this button specifies how many values 
are to be averaged for smoothing.  For example, a smoothing value of 3 causes DTREG 
to compute the average of three points – the center point and the neighboring points on 
the left and right. 
 
Minimum trees in series – If you check this box, you can specify the minimum number 
of trees in the series after pruning.  DTREG will not prune the series to a length shorter 
than the specified value.  Some TreeBoost series have erratic behavior with small 
numbers of trees.  Sometimes the error rate is very low with series consisting of one or 
two trees, then the error rate jumps up and gradually declines.  In cases like this, the short 
series is unreliable, and it is undesirable to prune to that length even if the minimum error 
occurs with one or two trees.  By specifying the minimum number of trees in the series, 
you can guarantee that pruning will not truncate the series below a specified length. 
 
Prune (truncate) series to minimum error:  If this box is checked, DTREG will 
truncate the TreeBoost series at the length that has the minimum validation error as 
determined by the validation method selected above.  If this box is not checked, then 
DTREG will use the validation method to measure the error rate, but the full series will 
be retained. 
 
Prune tolerance percent:  Check this box to allow DTREG to prune the series to a 
smaller number of trees than the minimum validation point.  In many cases, the 
improvement from adding trees to a series may be small, and the error rate will decline 
slowly with a long, nearly-horizontal “tail” on the model-size chart.  In cases like this, it 
is possible to prune many trees from the series with only a small increase in the error rate.  
If you enable this option, then DTREG will prune the series to a smaller size than the 
absolute minimum as long as the error rate does not increase by more than the percentage 
factor that you specify.  For example, if the minimum error point in the series has an error 
(misclassification) rate of 20% and you specify a pruning tolerance factor of 10%, then 
DTREG will be allowed to prune the series to a shorter length as long as the error rate 
does not exceed 22% (20 + 0.10*20). 
 
Cross validate after pruning:  If this box is checked and V-fold cross validation is 
selected, DTREG will recomputed the cross-validated error rate after pruning the series 
so that the validation error accurately reflects the truncated series.  This doubles the time 
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required for cross validation.  If this box is not checked, the error rate for the full, un-
truncated TreeBoost series is used for validation statistics. 
 
Predictor variable selection:  In some cases, it may be possible to improve the quality 
of a TreeBoost model by considering only a random subset of the predictors for each split 
rather than all predictors.  This is somewhat similar to the predictor selection method 
used by Decision Tree Forest Models.  However, most of the time it is better to allow all 
predictors to be considered for each split, so you should always try building the model 
that way. 
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Decision Tree Forest Property Page 
 
Decision tree forest models often can provide greater predictive accuracy than single-tree 
models, but they have the disadvantage that you cannot visualize them the way you can a 
single tree; decision tree forest models are more of a “black box”. 
 
For more technical information about decision tree forests, please see the chapter starting 
on page 151. 
 
When you select the decision tree forest property page, you will see a screen like this: 
 

 
 
Type of model to build:  Select the type of model you want DTREG to build.  If you 
select a model type other than decision tree forest, all of the other controls on this screen 
will be disabled. 
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Forest size controls 
Generally, the larger a decision tree forest is, the more accurate the prediction.  There are 
two types of size controls available (1) the number of trees in the forest and (2) the size of 
each individual tree. 
 
Number of trees in forest -- This specifies how many trees are to be constructed in the 
decision tree forest.  It is recommended that a minimum value of 100 be used. 
 
Minimum size node to split – A node in a tree in the forest will not be split if it has 
fewer than this number of rows in it. 
 
Maximum tree levels – Specify the maximum number of levels (depth) that each tree in 
the forest may be grown to.  Some research indicates that it is best to grow very large 
trees, so the maximum levels should be set large and the minimum node size control 
would limit the size of the trees. 
 

Random Predictor Control 
When a tree is constructed in a decision tree forest, a random subset of the predictor 
variables are selected as candidate splitters for each node.  The controls in this group set 
how many candidate predictors are considered as splitters for each node. 
 
Square root of total predictors – If you select this option, DTREG will use the square 
root of the number of total predictor variables as the candidates for each node split.  Leo 
Breiman recommends this as a default setting. 
 
Search using trial forests – If you select this option, DTREG will built a set of trial 
decision tree forests using a different numbers of predictors and determine the optimal 
number of predictors to minimize the misclassification error.  When doing the search, 
DTREG starts with 2 predictors and checks each possible number of predictors in steps of 
2 up to but not including the total number of predictors.  Once the optimal number of 
predictors is determined from the trial runs, that number is used to build the final decision 
tree forest.  Clearly this method involves more computation than the other methods since 
multiple decision tree forests must be constructed.  To save time, you can specify in the 
box on the option line a smaller number of trees in the trial forest than in the final forest. 
 
Once the optimal number of predictors is determined, it is shown as the value with “Fixed 
number of predictors”, so you can select that option for subsequent runs without having 
to repeat the search. 
 
Fixed number of predictors – If you select this option, you can specify exactly how 
many predictors you want DTREG to use as candidates for each node split. 
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How to Handle Missing Values 
Surrogate splitters – If this option is selected, DTREG will compute the association 
between the primary splitter selected for a node and all other predictors including 
predictors not considered as candidates for the split.  If the value of the primary predictor 
variable is missing for a row, DTREG will use the best surrogate splitter whose value is 
known for the row.  Use the Missing Data property page (see page 74) to control whether 
DTREG always computes surrogate splitters or only computes them when there are 
missing values in a node. 
 
Use median value – If this option is selected, DTREG replaces missing values for 
predictor variables with the median value of the variable over all data rows.  While this 
option is less exact than using surrogate splitters, it is much faster than computing 
surrogates, and it often yields very good results if there aren’t a lot of missing values; so 
it is the recommended option when building exploratory models. 
 

How to Compute Variable Importance 
DTREG offers three methods for computing the importance of predictor variables: 
 
Use split information – DTREG calculates the importance of each variable by adding up 
the improvement in classification gained by each split that used the predictor.  This is the 
same method used to compute the importance for single-tree and TreeBoost models.  
Generally, this method produces good results, and it can be calculated quickly. 
 
Type 1 margins – DTREG first calculates the misclassification rate for the model using 
the actual data values for all predictors.  Then for each predictor, it randomly permutes 
(rearranges) the values of the predictor and computes the misclassification rate for the 
model using the permuted values.  The difference between the misclassification rate with 
the correctly ordered values and the misclassification rate for the permuted values is used 
as the measure of importance of the predictor.  This method of calculating variable 
importance often is more accurate than calculating the importance from split information, 
but it takes much longer to compute because of the time required to permute the rows for 
each predictor. 
 
Type 1 + 2 margins – DTREG first calculates the importance using type 1 margins as 
described above.  It then examines each data row and determines how many trees in the 
forest correctly voted for the row with the original data minus the number of trees that 
correctly voted for the row using the permuted data.  The two measures of importance are 
then averaged.  This is usually the most accurate measure of importance, but it is also the 
slowest to compute.  In the case of a regression tree forest (i.e., continuous target 
variable), this method is the same as the “Type 1 margins” method. 
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Support Vector Machine (SVM) Property Page 
 
A Support Vector Machine (SVM) is a relatively new modeling method that has shown 
great promise at generating accurate models for a variety of problems.  SVM seems to be 
particularly good at pattern recognition, but it also applicable to all other types of 
modeling applications. 
 
For more technical information about support vector machine models, please see the 
chapter starting on page 155. 
 
When you select the SVM property page, you will see a screen like this: 
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Type of model to build:  Select the type of model you want DTREG to build.  If you 
select a model type other than support vector machine, all of the other controls on this 
screen will be disabled. 
 
Type of SVM model – DTREG offers several types of SVM models.  For classification 
models with a categorical target variable, you can select either C-SVC or ν-SVC models.  
For regression models with a continuous target variable, you can select either ε-SVR or 
ν-SVR models.  For most applications, the results generated by the different models are 
quite similar.  There is no way to predict in advance which method will perform better for 
a particular problem, so it is best to try each one. 
 
Kernel function – SVM models are built around a kernel function that transforms the 
input data into an n-dimensional space where a hyperplane can be constructed to partition 
the data.  DTREG provides four kernel functions, Linear, Polynomial, Radial Basis 
Function (RBF) and Sigmoid (S-shaped).  There is no way in advance to know which 
kernel function will be best for an application, but the RBF function has been found to do 
best job in the majority of cases. 
 
Linear:  u’*v  
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Polynomial:  (gamma*u’*v + coef0)^degree  
See the following figure from Kecman, 2004. 
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Radial basis function:  exp(-gamma*|u-v|^2)  
A Radial Basis Function (RBF) is the default and recommended kernel function.  The 
RBF kernel non-linearly maps samples into a higher dimensional space, so it can handle 
nonlinear relationships between target categories and predictor attributes; a linear basis 
function cannot do this.  Furthermore, the linear kernel is a special case of the RBF.  A 
sigmoid kernel behaves the same as a RBF kernel for certain parameters.  The RBF 
function has fewer parameters to tune than a polynomial kernel, and the RBF kernel has 
less numerical difficulties.  The following chart fromYang, 2003 illustrates RBF 
mapping. 

 
 

   
 
An SVM model using a radial basis function kernel has the architecture of an RBF 
network.  However, the method for determining the number of nodes and their centers is 
different from standard RBF networks with the centers of the RBF notes on the support 
vectors (see the figure below from C. Campbell).  
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Sigmoid (feed-forward neural network):  tanh(gamma*u’*v + coef0)  
 

 
 
Stopping criteria – This is a tolerance factor that controls when DTREG stops the 
iterative optimization process.  The default value usually works well; you can reduce the 
tolerance to generate a more accurate model or increase the value to reduce the 
computation time. 
 
Cache size – DTREG uses a cache to store truncated rows of the reordered kernel matrix.  
This cache avoids recomputing components of the kernel matrix and can speed up the 
computation by a significant amount in some cases.  The cache size value is specified in 
units of mega-bytes (MB).  The default value is 256 (MB).  Research has shown that on 
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machines with lots of memory increasing the cache size up to 512 (MB) or even 1000 (1 
GB) can improve performance. 
 
Use shrinking heuristics – A SVM model is formed by selecting a hyperplane that 
partitions the data with maximum margin between the feature vectors that define points 
near overlap.  Shrinking improves performance by allowing DTREG to ignore points that 
are far from overlapping and which are unlikely to influence the choice of the optimal 
separating hyperplane.  Essentially, shrinking eliminates outlying vectors from 
consideration.  Enabling shrinking heuristics can significantly speed up performance 
when the training data set is large; it is recommended that shrinking be enabled. 
 
Calculate importance of variables – If this option is selected, DTREG will analyze the 
generated SVM model and generate a report on the relative significance of predictor 
variables. 
 
Compute probability estimates – If this option is selected, DTREG generates an SVM 
model that is capable of estimating the probability for each target category rather than 
simply predicting the most likely category.  This option is especially useful for problems 
with only two target categories because you can use the probability threshold features in 
DTREG to adjust the proportion of cases assigned each category.  Note: when this option 
is selected, a different type of model is constructed, and the misclassification rate for the 
model may be different than for a model without probability calculations. 
 
Model testing and validation – DTREG offers two methods for validating an SVM 
model: 
 
Random percent holdback – If this option is selected, DTREG will select a random set 
of data rows and hold them out of the model building process.  These rows will then be 
run through the generated model and the misclassification error rate will be reported. 
 
V-fold cross validation – If this option is selected, V SVM models will be constructed 
with (V-1)/V proportion of the rows being used in each model.  The remaining rows are 
then used to measure the accuracy of the model.  The final model is built using all data 
rows.  This method has the advantage of using all data rows in the final model, but the 
validation is performed in separately constructed models so there is some possibility that 
the misclassification rate for the final model may be different than the validation models. 
 
How to handle missing predictor values – DTREG offers two choices for dealing with 
predictor variables that have missing values.  You can either exclude those rows from the 
analysis, or you can replace the missing values with the median values for the variable.  
In the case of categorical variables, the most common category is used as the 
replacement.  Rows are always excluded if the value of the target variable is missing. 
 
Parameter optimization search control – The accuracy of an SVM model is largely 
dependent on the selection of the model parameters such as C, Gamma, P, etc.  DTREG 
provides two methods for finding optimal parameter values, a grid search and a pattern 

 58



 

search.  A grid search tries values of each parameter across the specified search range 
using geometric steps.  A pattern search (also known as a “compass search” or a “line 
search”) starts at the center of the search range and makes trial steps in each direction for 
each parameter.  If the fit of the model improves, the search center moves to the new 
point and the process is repeated.  If no improvement is found, the step size is reduced 
and the search is tried again.  The pattern search stops when the search step size is 
reduced to a specified tolerance. 
 
Grid searches are computationally expensive because the model must be evaluated at 
many points within the grid for each parameter.  For example, if a grid search is used 
with 10 search intervals and an RBF kernel function is used with two parameters (C and 
Gamma), then the model must be evaluated at 10*10 = 100 grid points.  An Epsilon-SVR 
analysis has three parameters (C, Gamma and P) so a grid search with 10 intervals would 
require 10*10*10 = 1000 model evaluations.  If cross-validation is used for each model 
evaluation, the number of actual SVM calculations would be further multiplied by the 
number of cross-validation folds (typically 4 to 10).  For large models, this approach may 
be computationally infeasible. 
 
A pattern search generally requires far fewer evaluations of the model than a grid search.  
Beginning at the geometric center of the search range, a pattern search makes trial steps 
with positive and negative step values for each parameter.  If a step is found that 
improves the model, the center of the search is moved to that point.  If no step improves 
the model, the step size is reduced and the process is repeated.  The search terminates 
when the step size is reduced to a specified tolerance.  The weakness of a pattern search 
is that it may find a local rather than global optimal point for the parameters.  If the value 
of the model within the parameter space has ridges rather than being purely convex, the 
pattern search may get trapped in a local valley and miss the globally optimal point. 
 
DTREG allows you to use both a grid search and a pattern search.  When you check both 
boxes the grid search is performed first.  Once the grid search finishes, a pattern search is 
performed over a narrow search range surrounding the best point found by the grid 
search.  Hopefully, the grid search will find a region near the global optimum point and 
the pattern search will then find the global optimum by starting in the right region. 
 
Do grid search for optimal parameters – If this option is selected, DTREG will 
perform a grid search to try to determine the optimal parameter values.  For each relevant 
parameter, you can specify the lower and upper range to be searched.  DTREG will try 
values in the range using geometric steps and use cross validation to measure how well 
the model fits the data.  SVM models are among the most accurate, but their performance 
is highly dependent on the parameters you specify, so a grid search is recommended.  
Generally, the search gets slower as the value of the C parameter gets larger, so it is best 
to restrict it to a reasonable range.  For classification problems, the optimal value of C 
typically is in the range of 1 to 100.  For regression problems, the optimal value of C may 
be much larger – a million or more. 
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The grid search Intervals value specifies how many values will be tried between the low 
and high values (including those values).  The value specified in the field to the right of 
intervals is the refinement iteration value.  Once DTREG has identified the best set of 
parameter values using the initial grid search, it will then perform smaller grid searches in 
the vicinity of the optimal point to further refine the optimal values.  A refinement value 
of 1 (the default) does only the primary grid search. A value of 2 would do the grid 
search and then one finer-level search.  You can specify large refinement values to 
increase the number of searches.  Caution: the time required to do a grid search is 
proportional to the number of parameters times the number of intervals times the number 
of refinement steps; this can add up to a lot of time. 
 
Do pattern search for optimal parameters – If this option is selected, DTREG will 
perform a pattern search to try to determine the optimal parameter values. 
 
The pattern search Intervals value controls the starting step size.  The first step will be 
set so that the number of steps required to cross the entire search range equals the 
specified number of intervals.  The pattern search Tolerance value controls when the 
pattern search terminates.  The search stops when the value of all parameters divided by 
the step size is less than the tolerance value. 
 
Percent rows to use for search specifies what percent of the training rows are to be used 
for the search operation.  Since a search operation is a very computationally expensive 
procedure, you can select a subset of the full training rows to use for the search. 
 
Cross validate; folds Specifies if V-fold cross-validation is to be used by the search to 
calculate the optimal parameter values.  If this option is selected, DTREG will perform 
cross validation when it is performing the search to determine the optimal parameters.  If 
this option is not selected, DTREG searches for the optimal parameters using the error 
computed for the training data.  For the most accurate parameter calculations it is best to 
use cross validation, but this will increase the time required to do the search. 
 
Search optimization criterion – When performing a search for optimal parameters, you 
can select which criterion is to be used to determine the optimum function value: 
 

• Minimize total error – The total misclassification error (or mean square error for 
regression) is minimized.  This is the only available option for regression 
analyses. 

• Minimize weighted error – The misclassification errors are weighted by 
multiplying errors by a factor to compensate for differences in the frequencies of 
the target categories.  Misclassifications of categories with low frequencies 
receive more weight to help balance them compared to categories with higher 
frequencies. 

• Maximize AUC – The parameter search finds the point that maximizes the area 
under the ROC curve (AUC).  This option is only available for classification 
analyses where the target variable has two categories.  Maximizing the AUC 
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tends to balance the misclassifications between the classes and improves the 
discrimination. 

 
Model parameters – There are a number of parameters such as C, Nu, Gamma that 
apply to the SVM model and the selected kernel function.  Selecting the optimal values 
can significantly impact the accuracy of the model.  DTREG will enable the appropriate 
parameter value boxes depending on the type of SVM model and kernel function that is 
selected.  If a grid or pattern search is enabled, then additional boxes will be enabled 
where you can specify the lower and upper range of the search interval. 
 
Write Support Vectors to a File – Click this button to open a dialog box where you can 
specify a file where the support vectors for the generated model should be written.  This 
button is enabled only if a model has been built and support vectors have been found. 
 

Discriminant Analysis Property page 
 
Discriminant analysis is a classical method of classification that usually is able to build 
models that rival the more sophisticated models for accuracy. 
 
For additional information about discriminant analysis, please see the chapter starting on 
page 171. 
 
When you select the discriminant analysis property page, you will see a screen like this: 
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Type of model to build:  Select the type of model you want DTREG to build.  If you 
select a model type other than discriminant analysis, all of the other controls on this 
screen will be disabled. 
 
Prior probabilities for target categories:  Select the assumed prior probability 
distribution for the target variable categories.  Traditionally (and in most benchmarks) the 
distribution in the training data set is used.  If you wish to specify a custom set of prior 
probabilities, select the option “Use priors on category weight page”, and set the values 
of the priors on the Category weight property page (see page 69). 
 
Compute importance of variables:  If this option is selected, DTREG will provide an 
estimate of the relative importance of each predictor variable.  This is usually a fairly fast 
procedure unless there are a very large number of predictor variables and a lot of data. 
 
Model testing and validation:  Select which procedure (if any) is to be used to validate 
the model.  The recommended method is 10-fold cross validation which builds 10 models 
using 90% of the data for each model and 10% for validation. 
 
How to handle missing predictor variable values:  Select whether you want DTREG to 
replace missing values of predictor variables with the median value or whether you want 
it to reject data rows that have any missing predictor values.  The mode (most common 
category) is used rather than the median for categorical predictors.  Note: if all of the 
predictor values are missing or if the target or weight variable values are missing, the 
record is always rejected. 
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Logistic Regression Property Page 
 
Logistic regression is a popular method for modeling data that has a categorical target 
variable with two categories. 
 
For more technical information about logistic regression, please see the chapter starting 
on page 177. 
 
When you select the logistic regression property page, you will see a screen like this: 
 

 
 
Type of model to build:  Select the type of model you want DTREG to build.  If you 
select a model type other than logistic regression, all of the other controls on this screen 
will be disabled. 
 
Convergence criteria – An iterative (Newton-Raphson) algorithm is used to compute the 
maximum likelihood values of the logistic regression parameters.  Two parameters are 
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available to control the algorithm.  The tolerance factor is used to decide when the 
parameter values have converged to acceptable tolerance.  If the absolute value of the 
maximum change of any parameter during the last iteration is less than the convergence 
tolerance, then convergence is achieved.  The maximum iteration parameter specifies a 
safety stop for the algorithm if convergence is not reached. 
 
Confidence interval percent – In addition to computing the maximum likelihood values 
of the parameters, confidence intervals also are calculated.  You can specify the percent 
confidence to be computed.  For example, specifying a value of 95 for this parameter will 
cause the confidence intervals to span a range that is 95% likely to cover the true values. 
 
Category to be predicted – Select which category of the target variable is to be 
predicted by the model.  If the target variable is continuous and contains probability 
values, then this field will be disabled. 
 
Testing and validation parameters – Select the type of validation you want DTREG to 
use to test the model.  V-fold cross-validation is recommended. 
 
Missing value controls – Two methods are available for handling missing values on 
predictor variables.  If you select the option “Don’t use rows with missing values”, then if 
a data row has a missing value on any predictor variable, the entire row is excluded from 
the analysis.  If you select “Replace missing predictors with medians” then any missing 
predictor values will be replaced by the median value of the predictor.  In the case of a 
categorical predictor, the most commonly occurring category of the predictor will be 
used.  If the target or weight variables have missing values, rows are always excluded.  If 
all of the predictor values for a row are missing, the row is excluded. 
 
Include constant (intercept) term – Check this box to include a constant term in the 
logistic regression equation.  Generally, this box should be checked because regression 
models that contain a constant term are more accurate than those that don’t. 
 
Use Firth’s procedure – Check this box to cause “Firth’s procedure” to be used in the 
calculation of the maximum likelihood parameter values.  Enabling Firth’s procedure has 
three effects: (1) it may make it possible to converge to a solution when convergence 
cannot be achieved otherwise; (2) it reduces the bias of the computed parameters; (3) it 
significantly increases the computation time.  Since the bias-correct parameter values 
computed using Firth’s procedure may be different than those computed without Firth’s 
procedure, be careful about comparing the parameter values with those computed by 
another program not using Firth’s procedure.  Generally, it is recommended that you do 
not enable Firth’s procedure unless parameter convergence cannot be achieved without it. 
 
Compute likelihood ratio significance tests – Check this box to request that likelihood 
ratio significance tests be computed for the parameters.  Likelihood ratio significance 
tests are a more accurate method of accessing which parameters are significant in the 
model than the usual Wald significance tests.  The likelihood ratio significance test for an 
individual parameter is computed by comparing the deviance of the model including the 
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parameter with the deviance excluding the parameter.  Since the model must be 
recomputed with each parameter excluded, the computation time increases in direct 
proportion to the number of predictor variables.  In the case of a predictor variable with 
multiple categories, the likelihood ratio is computed with the predictor included and 
removed rather than testing each possible category of the predictor. 
 
Compute importance of variables – If you select this option, DTREG will compute the 
relative importance of each predictor variable and display it in the analysis report. 
 

Class Labels Property Page 
The Labels property page is used to specify display labels for categorical variables. 
Optionally, you can designate a “Focus Category” of the target variable. 
 

 
 
The name of each categorical variable will be shown.  If you wish to set display labels for 
the categories of a variable, select the variable and then click the “Set labels” button.  A 
screen similar to this will be shown: 
 

 65



 

 
 
The first column displays values found in the data file for the categories of the variable.  
In this example, the values 1 and 2 occurred in the data file for the variable “Liver 
condition”. 
 
In the second column, enter text strings that you want displayed in the generated tree 
nodes and in the report, instead of the corresponding actual value.  In this example, when 
the value of Liver condition is 1, the string “Normal” will be displayed, and when the 
value is 2, “Abnormal” will be displayed. 
 
You can assign text labels to categorical variables that have textual values in the data file 
as well as those that have numeric values.  For example, the values of sex might be coded 
as ‘M’ and ‘F’ in the data file, but by assigning labels, you could have the categories 
display as “Male” and “Female”. 
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Assigned label strings are used for esthetic purposes only, and they have no effect on the 
generation of the decision tree, and class labels are not written to the output file when 
data is scored. 
 

Designating a Focus Category 
 
In addition to setting labels for variable categories, you also can designate a “Focus 
Category” of the target variable.  If a focus category is designated, then DTREG will 
collect additional information about the designated category and display them in the 
report and charts. 
 
 

Initial Split Property Page 
The Initial Split property page is used to designate a predictor variable that is to be used 
for the initial split and predictor variables that are to be preferred for splits. 
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The name of each predictor variable will be shown in the list.  Next to the variable names 
are two columns: 
 
Initial split – If you check this box, the selected variable will be used for the initial split 
even if it is not the best splitting variable.  This is useful if you want to force a split so as 
to compare the trees generated by the categories of a particular variable.  For example, if 
sex is one of your predictor variables, you could force an initial split on it and then 
compare the trees generated under the male and female categories. 
 
Preferred – If you check this box, then the selected variable will be used in preference to 
a non-preferred variable if they generate equally good splits.  You may designate more 
than one variable as preferred. 
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Category Weights Property Page 
The Category Weights property page is used to specify the weights for the categories of 
the target variable when you are performing a classification analysis.  (Note, category 
weights are sometimes referred to as “priors” (a priori) probabilities for the categories of 
the target variable.) 
 

 
 
The property page for category weights is only available when performing a classification 
analysis (i.e., with a categorical target variable).  Category weights do not apply to 
regression analyses. 
 
The category weights determine how DTREG will attempt to balance the 
misclassifications across the categories.  The greater the weight given to a category, the 
fewer misclassifications it will have.  If equal (balanced) category weights are selected, 
then DTREG will attempt to build a model so that the proportion of misclassified rows is 
approximately equal across the categories.  If you tell DTREG to use the frequency 
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distribution in the data set, then categories with a higher frequency of cases will receive 
greater weight, and the misclassification proportions for those categories will be lower 
than for other, less common categories. 
 
When category weights are set equal, the category assigned to a node is determined by 
the proportion of cases having each category in the node compared to the proportion in 
the root node.  As a result, the assigned category may not be the same as the category 
with the most number of cases.  For example, if the data from a disease treatment had 
80% survival and 20% death (Live/Die target variable), then a node would be classified 
as death if the proportion of death cases represents more than 20% of the cases in the 
node – even if it is less than 50%.  One surprising consequence of this is that the nodes of 
a binary category tree may end up with more than 50% misclassified cases. 
 
TreeBoost and Decision Tree Forest models handle category weights by adjusting the 
weights of the data rows so that the sums of the weights for the rows with each target 
category match the proportions specified for the target category weights.  For example, if 
equal (balanced) category weights was specified and there are twice as many rows with 
the “Yes” category as “No”, then the weights for rows with the “No” category would be 
increased so that their combined weight matches the combined weight of the rows with 
the “Yes” category. 
 
Category Weight Options 
DTREG allows you to select several options for category weights: 
 
Equal (balanced) – If you select this option, DTREG will attempt to build a model with 
roughly equal misclassification proportions for the categories.  This is the default and 
recommended setting for category weights. 
 
Use frequency distribution in data set – If you select this option, DTREG will compute 
the distribution of the categories of the target variable in the training dataset and use 
those proportions as the category weights.  If the training sample was drawn at random 
from the whole population, and the category distributions are reflective of the whole 
population, then this is a good option to use. 
 
Mix (average data frequency and equal) – If you select this option, DTREG sets the 
category weights to an average of the equal proportions and the data frequency 
proportions. 
 
Use category weights specified below – If you select this option, a matrix will be 
displayed in the lower portion of the screen where you can enter custom category 
weights.  Each category of the target variable will be displayed in the first column.  You 
can enter weight values in the second column.  At the beginning of an analysis, DTREG 
scales the category weights so their sum is 1.0; hence, only the relative values specified 
for each category matter. 
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Misclassification Cost Property Page 
The Misclassification Cost property page is used to specify how much weight (cost) to 
give to misclassifications of categories of the target variable.  It is only available when 
generating classification trees with categorical target variables. 
 

 
 
In some cases, it may be more costly to misclassify some categories of the target variable 
than others.  For example, consider a decision tree that will be used to diagnose heart 
attacks in patients arriving at an emergency room.  Assume the target variable 
(Diagnosis) has several categories including heart attack, indigestion, pneumonia, bruised 
rib and several other possible causes of chest pain.  When creating the tree, the researcher 
might want to assign a higher misclassification cost value to the heart attack category 
than the other categories, because misclassifying a heart attack is much more serious than 
misclassifying indigestion. 
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Misclassification cost and probability threshold options 
You have several choices for assigning misclassification costs or selecting probability 
thresholds: 
 
Use equal (unitary) misclassification costs for all categories – If you select this option, 
DTREG will use the same misclassification costs (1.00) for all categories. 
 
Select threshold to minimize total (unweighted) errors – If this option is selected, 
DTREG will use a probability threshold that minimizes the total error rate for all cases.  
This may result in the error rates for each category being very different.  This option is 
only available when creating a TreeBoost, Decision Tree Forest, Discriminant Analysis 
or Logistic Regression model with two target categories. 
 
Select threshold to minimize weighted errors – If this option is selected, DTREG will 
use the probability threshold that minimizes the weighted misclassification errors.  The 
weighted misclassification error is computed by multiplying the misclassification rate for 
each target category by a factor that corrects for the relative frequency of cases with that 
category in the data.  Target categories that occur infrequently in the data receive a 
greater weight to prevent them from being overwhelmed by frequently occurring 
categories.  This option is only available when creating a TreeBoost, Decision Tree 
Forest, Discriminant Analysis or Logistic Regression model with two target categories. 
 
Select threshold to balance misclassification percents – If this option is selected, 
DTREG will use the probability threshold that approximately balances the 
misclassification error proportion for the target categories.   This option is only available 
when creating a TreeBoost, Decision Tree Forest, Discriminant Analysis or Logistic 
Regression model with two target categories. 
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Use probability threshold to predict category – This option is enabled only if the target 
variable has two categories and you are performing a TreeBoost, Decision Tree Forest, 
Discriminant Analysis or Logistic Regression analysis.  If you select this option, then the 
probability threshold section of this screen will be enabled. 
 

 
 
Select which category of the target variable you are trying to predict and specify a 
probability threshold value that must be reached for a case to get assigned that category.  
If the probability of a case is lower than the specified threshold, then it is assigned the 
other category.  For example, if the two target categories are Yes and No and the 
corresponding predicted probabilities are Pyes and Pno, then if you select Yes as the 
target category on this section and specify 0.60 as the threshold, a case will be assigned 
the Yes category if Pyes is greater than or equal to 0.60.  Otherwise it will be assigned 
the No category.  Note: Selecting Yes as the category and specifying a threshold of 0.60 
is exactly the same as selecting No as the category and specifying a threshold of 0.40 
 
The Probability Threshold Chart described on page 141 and the Probability Threshold 
Report described on page 119 can be used to determine how a probability threshold will 
affect the predictions. 
 
Use the misclassification costs specified below – If you select this option, a matrix will 
be displayed in the lower portion of the screen (see the example screen on the previous 
page).  The categories of the target variable will be shown in the left column and in the 
top row.  An entry in a specified row/column position is the cost of misclassifying the 
category in the selected column as the category in the selected row.  The diagonal 
elements of the matrix are the cost of correctly classifying a category; their values are 
usually 0.00 since there is no misclassification cost for a correct classification. 
 
DTREG uses the altered priors method to convert the specified misclassification costs 
into values of category weights (prior probabilities) that perform the misclassification 
weighting.  See Breiman, Friedman, Olshen and Stone (1984) for information about the 
use of altered priors. 
 

 73



 

Missing Data Property Page 
The Missing Data property page tells DTREG how to handle missing data values. 
 

 
 
Missing values are an unfortunate but common occurrence in surveys and research 
projects: subjects refuse (or forget) to answer some questions, forms are redesigned 
adding or dropping questions, and subjects sometimes drop out of studies (or die) before 
all of the information can be collected. 
 
If the value of the target variable or the weight variable is missing, the entire row (case) is 
dropped.  Obviously, if all of the predictor variable values are missing, the row also must 
be dropped.  However, if the value of the target variable is known and some of the 
predictor variables are available, then it is desirable to use that data rather than dropping 
the entire row. 
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Missing Data Options 
DTREG offers two methods for salvaging rows with missing values on the predictor 
variable used for splitting a group.  You may check either or both of the boxes 
corresponding to the methods you want DTREG to use. 
 
DTREG attempts to use the methods in the following order.  Once a method is found that 
can classify the row, the process stops at that point.  If the row cannot be classified by 
any enabled method, the row is not assigned to either child group, and the last node the 
row ends up in becomes its terminal node. 
 
1. Use surrogate splits – If this option is selected, DTREG attempts to classify rows by 
using “surrogate” splitter variables. 
 
Surrogate splitters provide the most accurate classification of rows with missing values.  
This is the default and recommended method. 
 
Surrogate splitter variables are predictor variables that are not as good at splitting a group 
as the primary splitter but which yield similar splits.  DTREG compares which rows are 
sent to the left and right child groups by the primary splitter with the rows sent to the 
corresponding child groups by every other predictor variable.  The predictors whose 
splits most closely mimic the split by the primary splitter are the surrogate splitters. 
 
The association between the primary splitter and each alternate predictor is computed as 
a function of how closely the alternate predictor matches the primary splitter.  (This 
roughly corresponds to a count of how many rows each predictor sends left and right, but 
the actual calculation is more complex.)  The surrogate splitter variables are ranked in 
decreasing order of association. 
 
When a row is encountered that has a missing value on the primary splitter, DTREG 
searches the list of surrogate splitters and uses the one with the highest association to the 
primary splitter that has a non-missing value for the row. 
 
For additional information about surrogate splitters, please see page 188. 
 
2. Put rows in the most probable group – If the value of the splitting variable is 
missing, the row is put into whichever child group has the greatest likelihood of receiving 
an unknown, random case.  When this method of used, none of the predictor values for 
the row contribute to its classification; it is simply dumped into whichever child group 
has the larger probability of picking up random cases.  Usually, the “most probable” 
group is the group with the largest number of rows assigned to it.  However, the most 
probable group may not necessarily be the largest group if the distribution of categories is 
not uniform or if unequal category weight values are specified. 
 
Always compute surrogate predictors – If you check this box, DTREG always will 
compute the association between the primary splitter and all other potential surrogate 
splitters.  If you don’t check this box, DTREG will only determine surrogate splitters if 
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they are needed because rows in a group that is being split have missing values on the 
primary splitter variable. 
 
Leaving this box unchecked can significantly speed up the generation of the tree, but it 
has several disadvantages: 
 
1. If you later use the generated tree to “score” a dataset that has missing values, and 
surrogate splitters were not generated when the tree was built, they will not be available 
to guide scoring of rows with missing values on splitters.  If you do not plan to use the 
generated tree to score data, then this is not a factor. 
 
2. The association values assigned to surrogate predictors are used as a component in 
calculating the overall importance of variables.  So if surrogate splitters are not 
calculated, the overall importance scores will be less accurate. 
 
Check all predictor variables (for surrogates) – If you check this button, then DTREG 
will check every predictor variable to see how well it functions as a surrogate splitter for 
the primary splitter.  If there are many predictor variables, this is a time-consuming 
operation, but it guarantees that the best surrogate predictors will be found. 
 
Check only competitor splitters – If you check this button, DTREG will check only the 
five predictors that were the best “competitors” (runners up) to the primary splitter to see 
how well they function as surrogates.  In about 80% of the cases, predictors that are good 
surrogates for the primary splitter are also good competitors to the primary splitter.  
Selecting this operation can dramatically speed up many analyses with minimal loss of 
accuracy.  For example, if there are 100 predictor variables, selecting this operation 
would reduce the number of surrogate checks from 100 to 5.  However, in some cases, 
predictor variables may be good surrogates without being good competitors; so it is 
recommended that for the final, definitive tree build, you select the option to check all 
predictor variables as surrogates. 
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Variable Weights Property Page 
The Variable Weights property page allows you to assign weights to predictor variables 
so that the improvements derived by splitting on variables are not treated equally. 
 

 
 
The left column of this screen shows the names of all predictor variables.  The right 
column shows the weight values.  You can assign values between 0 and 100 for weights. 
 
If the weight values are not equal, then the improvement value computed by potentially 
splitting a group on a predictor is multiplied by the proportion of its weight before being 
compared with the possible improvements from splitting on other predictors.  By 
reducing the weighting for a variable, you can cause it to be used as a splitter only if its 
improvement is better than other predictors with higher weights.  Hence, DTREG is less 
likely to use the predictor for splitting. 
 
Reasons for Weighting Variables 
There are several reasons why you might want to use weighting to reduce the likelihood 
of splitting on a variable: 
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1. The variable may be difficult or expensive to obtain, so you don’t want to have it enter 
the decision tree too early.  For example, the variable might correspond to the result of 
some unpleasant or expensive invasive medical test that you don’t want to use unless it is 
very significant. 
 
2. The variable may correlate with the target variable in such a way that its value tends to 
dominate over other predictors too much.  For example, if you are analyzing sales data, 
the quantity of an item sold to a customer might be the target variable, and predictor 
variables might include the size of the customer’s company, their type of business, the 
area of the country, etc.  Since large companies tend to buy more than small companies, 
the company size predictor may dominate.  However, it may be harder to sell to large 
companies than smaller ones; so, you may want to discount the value of the company size 
predictor so that other factors such as geographic region and company type play a more 
significant role in the model. 
 

Miscellaneous Property Page 
The Miscellaneous property page currently contains settings for random number seeds.  
 

 
 

Random Number Starting Seeds 
Random numbers are used for a number of stochastic processes in DTREG.  If you want 
to test whether the random number seeds (starting values) affect the generated model, you 
can specify the seed values on this screen. 
 
Model build – This is the primary random number generator used for model building.  
For example, it is used to select the rows and variables used for each tree in a decision 
tree forest. 
 
Subset rows – This random number generator is used to select rows when a subset of the 
rows is being used to train the model. 
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Validation – This random number generator is used to select the rows that go into cross 
validation folds. 
 
Variable importance – This random number generator is used when sensitivity analysis 
is being performed to estimate the relative importance of variables. 

 79





 

DTL:  Data Transformation Language 
 
 
The Data Transformation Language (DTL) can be used to transform variables, create new 
variables and select which data records should be included in the analysis. 
 

DTL Property Page 
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DTL is a full-featured programming language.  The full manual for DTL can be 
downloaded from http://www.dtreg.com/DTL.pdf  This chapter does not provide a full 
reference for DTL, instead it presents some typical uses of DTL with DTREG analyses. 
 

The main() function 
 
Every DTL program must have a main() function that is executed by DTREG for each 
data record.  The main() function must contain a return statement that signals DTREG 
whether the current record is to be used in the analysis or excluded.  If the return 
statement returns a value of 1, the record is used in the analysis.  If the return statement 
returns a value of 0 (zero), the record is excluded from the analysis. 
 
Here is a simple main program that accepts all records: 
 
int main() 
{ 
 return(1); 
} 

 
Here is an example that accepts records that have a value of “M” for Sex and rejects other 
records: 
 
int main() 
{ 
 if (Sex == “M”) { 
  return(1); 
 } else { 
  return(0); 
 } 
} 

 
Here is an example that accepts records that have a value of “M” for Sex variable and a 
value of 65 or greater for Age: 
 
int main() 
{ 
 if (Sex == “M” && Age >= 65) { 
  return(1); 
 } else { 
  return(0); 
 } 
} 
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Here is a main program that accepts about half of the records and rejects half: 
 
int main() 
{ 
 if (random() > 0.5) { 
  return(1); 
 } else { 
  return(0); 
 } 
} 

 

Global Variables 
 
A global variable is a variable defined outside the scope of any function; usually, global 
variables are defined at the top of the program.  Global variables can be accessed by any 
function in the DTL program.  Global variables may have any of the three data types, int, 
double or string.  Global variables you define are called explicit global variables.  
Global variables defined automatically by DTREG are called implicit global variables. 
 

Implicit Global Variables 
 
DTREG defines implicit global variables for each variable in the input data file.  This 
includes all data variables, even variables not designated as predictor, target or weight 
variables.  The implicit global variables are not visible in the DTL source program, but 
they can be used by the program. 
 
If a variable is specified as categorical in the DTREG model, the implicit definition has 
type string.  If the variable is specified as continuous, the implicit definition has type 
double.  For example, if a data file contains four continuous variables, Age, 
BloodPressure, Height, Weight and one categorical variable Sex, then the implicit 
definitions (which you will not see) would be: 
 
double Age; 
double BloodPressure; 
double Height; 
double Weight; 
string Sex; 

 
The main() function and any other functions in the DTL program can reference these 
implicit global variables. 
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In addition to generating a global variable for each variable in the data file, DTREG also 
generates several other global variables: 
 
int RECORDNUMBER;  /* The number of the current data record */ 
int DOINGSCORE;  /* 1 if scoring, 0 if analysis is being run */ 
double MISSINGVALUE; /* Value used to indicate missing value */ 

 
Any changes your program makes to the values of implicit global variables are not used 
in the analysis.  If you want to transform variables, you must define your own global 
variables as described below and store values into them. 
 

Explicit Global Variables 
 
You can define your own global variables by putting their definitions outside the scope of 
any function.  It is recommended that they be put at the top of the DTL program before 
main(). 
 
Any global variable you define in a DTL program that does not have the “static” 
declaration will be available as a variable in the DTREG analysis.  This is the way you 
generate transformed variables.  For example, the following program generates a new 
variable, Size, which is the product of two input data variables, Height and Weight: 
 
double Size; 
int main() 
{ 
 Size = Height * Weight; 
 Return(1); 
} 

 
With this DTL program defined, the Size variable will be available for use in the DTREG 
analysis.  The Height and Weight variables also are available. 
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Here is an example that creates a variable called Republican that is 1 if the value of 
PartyAffiliation is “R” and 0 if PartyAffiliation is anything else: 
 
double Republican; 
int main() 
{ 
 if (PartyAffiliation == “R”) { 
  Republican = 1; 
 } else { 
  Republican = 0; 
 } 
 return(1); 
} 

 
Here is an example that creates a LogAge variable that is the natural logarithm of the Age 
variable: 
 
double LogAge; 
int main() 
{ 
 LogAge = log(Age); 
 return(1); 
} 

 
Here is an example that creates a variable named ZIP3 that has the first three digits of a 
zip code whose five-digit code is stored in ZIP5.  The substring operator,  [start:length], 
is used to extract the first three characters. 
 
string ZIP3; 
int main() 
{ 
 ZIP3 = ZIP5[0:3]; 
 return(1); 
} 
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Here is an example that uses the lag() function to generate variables with values of 
StockPrice from 1, 2 and 12 prior periods. Note, the missing value code is returned by the 
lag() function when a request is made for a prior value that has not yet been stored. 
 
double StockPriceBack1; 
double StockPriceBack2; 
double StockPriceBack12; 
int main() 
{ 
 StockPriceBack1 = lag(StockPrice,1); 
 StockPriceBack2 = lag(StockPrice,2); 
 StockPriceBack12 = lag(StockPrice,12); 
 return(1); 
} 

 
Sometimes missing values for numeric variables are coded with values like “999”. 
DTREG uses a special value called “MissingValue” to indicate missing values.  Here is 
an example DTL program that converts input data values of “999” on an Age variable to 
the internal missing value.  The new variable with the transformed values is called 
NewAge. 
 
double NewAge; 
int main() 
{ 
 if (Age == 999) { 
  NewAge = MissingValue; 
 } else { 
  NewAge = Age; 
 } 
 return(1); 
} 
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Static Global Variables 
 
Static global variables are used to store information between calls of the main() function 
for each data record.  They also can be used to hold information that must be accessed by 
multiple functions.  Static global variables may not be used as variables in the DTREG 
analysis.  To declare a static global variable, put the word “static” in front of the 
declaration like this: 
 
static int FileNumber; 
static int Count; 
static double LastAge; 
static string LastName; 

 

Using the StoreData() function to generate data records 
 
The main() function is called for each record in the input data file, and it returns 1 to 
keep the record or 0 to reject the record.  DTL provides a StoreData() function that you 
can call to generate additional records.  Each time you call StoreData(), the current 
values of the global variables are used to generate a new data record which is included in 
the analysis.  This allows you to generate multiple records from a single input record. 
 
Consider a data set that is to be analyzed using logistic regression.  The data set measures 
the response of patients to varying dose levels of a drug.  There are three variables in the 
input data file, Dose (the amount of the drug), Positive (the number of patients with 
positive responses) and Negative (the number of patients that did not respond).  Hence 
the implicit global definitions generated by DTREG for the DTL program are: 
 
double Dose; 
double Positive; 
double Negative; 

 
The following DTL program defines a new variable, Response, that has the value 1 if 
the patient responds positively and 0 if the patient does not respond.  The DTL program 
uses the StoreData() function to generate a separate record for each patient.  After 
calling StoreData() the appropriate number of times, it uses the return(0) statement to 
reject the original record. 
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double Response; /* Generated variable with 1 or 0 response */ 
int main() 
{ 
 int count; 
 /* Generate the positive response records */ 
 Response = 1; 
 for (count=0; count<Positive; count++) { 
  StoreData(); 
 } 
 /* Generate the negative response records */ 
 Response = 0; 
 For (count=0; count<Negative; count++) { 
  StoreData(); 
 } 
 /* Reject the original record */ 
 return(0); 
} 

 
 

The StartRun() and EndRun() Functions 
 
The optional StartRun() and EndRun() functions can be used to perform initialization 
and cleanup in a DTL program. 
 
If your DTL program contains a StartRun() function, it is called once at the beginning of 
the run before the first data record is processed.  It can perform initialization. 
 
If your DTL program contains an EndRun() function, it is called once after the last data 
record has been read. 
 
In the following example, the DTL program opens an output file in the StartRun() 
function, writes information about each data record in the main() function and closes the 
file in the EndRun() function.  Note the use of a static global variable to store the file 
handle number between iterations. 
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static int FileHandle; 
 
void StartRun() 
{ 
 FileHandle = fopen(“Data.dat”,”wt”); 
 return; 
} 
 
int main() 
{ 
 fprintf(FileHandle,”%f %f\n”,x,y); 
 return(1); 
} 
 
void EndRun() 
{ 
 fclose(FileHandle); 
 return; 
} 
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Scoring Data Values 

 
“Scoring” runs a set of data rows through a generated decision tree and generates a new 
data file showing the predicted value of the target variable and other information for each 
row. 
 
Scoring Property Page 
To score data, select the Scoring property page for the model. 
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Input and output scoring files 
 
Input file whose data is to be scored – This is the name of the data file that is to be read 
and scored using the decision tree.  This could be the same data file that was used to 
generate the tree, or it could be some other file for which you wish to use a decision tree 
to predict values. 
 
The input data file must have the same format as an input file used to build a decision 
tree: 

• The first row in the file must contain the names of the variables in the file. 
• Columns must be separated by the character specified by the “Character used to 

separate columns” parameter on the Data property page (see page 35). 
• Either a period or a comma may be used as the decimal point indicator.  Select 

which will be used on the Data property page using the parameter “Character used 
for a decimal point in the input data file” (see page 35). 

• Missing values must be indicated by empty fields, question marks or periods. 
 
The variables in the file being scored do not have to correspond to the variables in the 
data file that was used to build the tree.  DTREG uses the first row of the file to 
determine which variables are present and which rows they are in.  If a predictor variable 
is missing from the file being scored, then all of the values of that variable are treated as 
missing. 
 
The target variable may be omitted (and often is) since the purpose of scoring is to 
predict the target value for each row.  If target values are provided, they can be used to 
compute residual values for the prediction and misclassified rows. 
 
Output file where scored results are to be written – This is the name of the output file 
that will be created by DTREG as it scores the rows in the input file.  The generated 
output file will have the same format as the input file: the first row will have the names of 
the variables in the file. 
 

Variables written to the output scoring file 
 
Variables to be written to the output scoring file – There will be one entry in this table 
for each variable that was specified at the time that the tree was built.  Select which 
variables you want written to the output file.  If there are variables in the input scoring 
file that were not part of the input file used to construct the tree, they are written to the 
output file.  Variables can be used to classify rows even if they are not written to the 
output file. 
 
Variables DTREG should add to output records – Select which generated variables 
you want DTREG to add to the output file.  Check the box by each variable you want 
DTREG to add, and specify the name of the variable in the associated box. 
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• Predicted target value – This is the predicted value of the target variable for 

each data row in the scoring file.  The predicted target value is obtained by using 
the value of the predictor variables for the row to run the row through the tree 
until it reached a terminal node.  The value of the target variable in the terminal 
node is used as the predicted value of the target variable for the row. 

• Residual (Actual – Predicted) – If you are performing a regression analysis (i.e., 
the target variable is continuous), then this output variable is the “residual” value 
for the row which is the difference between the actual value of the target variable 
for the row and the predicted value.  In order to generate this variable, values for 
the target variable must be included in the input scoring file. 

• Misclassification indicator – If a classification analysis is being performed (i.e., 
the target variable is categorical), then this generated variable has the value 0 
(zero) if the predicted value of the target variable matches the actual value.  It has 
the value 1 (one) if the predicted value is different from the actual value (i.e., the 
row was misclassified).  Note, in order to generate this variable, values for the 
target variable must be included in the input scoring file. 

• Row number – If selected, this variable has the number of the row in the input 
scoring file.  The first row is numbered 1. 

• Terminal node number – If selected, this variable will have the number of the 
terminal node for the row.  That is, the last node the row ended up in after being 
run through the tree. 

• Probability scores for each category of the target – When a TreeBoost, SVM 
model with probability estimates enabled, Discriminant Analysis or Logistic 
Regression classification model is created, DTREG computes a likelihood 
probability value for each category of the target variable.  The predicted category 
for a row is computed by selecting the most likely category adjusted by the 
misclassification costs (technically, the category is selected so as to minimize the 
misclassification cost).  If you select this option, DTREG will write to the output 
scoring file the computed probability values for each target category.  The names 
of the columns have the form Prob_category where ‘category’ is the value of the 
category.  For example, if the target variable is Sex, the probability columns 
might have names of Prob_Male and Prob_Female.  When you build a decision 
tree forest model, probability scores are not computed.  Instead, DTREG uses the 
proportion of votes of the trees in the forest as a pseudo-probability value for each 
target category. 

 

Start scoring the data 
 
Once you have specified the input and output files and selected the variables to be 
included in the output file, click “Score the data” button to begin the process. 
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Using scoring for validation with a test dataset 
In addition to using scoring to generate predicted values for a dataset, you can use scoring 
to test a model against a dataset whose actual target values are known.  To do this, use the 
normal scoring procedure with a dataset that has the target variable along with the 
predictors.  When the scoring process finishes, DTREG displays a report showing the 
misclassification rate for the model applied to the dataset that was scored. 
 
For classification models, the report looks like this: 
 
Scoring was performed 23-Mar-2004 13:01:40 
 
Input file = C:\DTREG\Test\LiverDisorder.csv 
Output file = c:\DTREG\LiverDisorder2.csv 
 
Number of observations scored = 345 
 
             Actual   --Misclassified-- 
  Category    Count     Count   Percent 
  --------  --------  --------  ------- 
         1       145        24   16.552 
         2       200        53   26.500 
  --------  --------  --------  ------- 
     Total       345        77   22.319 
 
For regression models, the report looks like this: 
 
Scoring was performed 23-Mar-2004 13:27:44 
 
Input file = C:\DTREG\Test\Boston.csv 
Output file = C:\DTREG\TestScore.csv 
 
Number of observations scored = 506 
 
Mean target value for data being scored = 22.532806 
Mean target value for predicted target values = 22.532806 
 
Average absolute error after tree fitting = 2.126722 
 
Variance in scored data = 84.419556 
Residual (unexplained) variance after tree fitting = 7.806666 
Proportion of variance explained = 0.90753  (90.753%) 
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How missing values are handled during scoring 
If the value of a predictor variable used at a split is missing, DTREG attempts to use the 
surrogate predictors for the split.  It tries each surrogate splitter in the order of decreasing 
association values until it finds one that has a non-missing value on the row that is being 
scored.  If it is unable to find a surrogate splitter, then the last node that the row reached 
(i.e., the one for which no split could be found) becomes the terminal node for that row, 
and the predicted value for the group of rows in that node is used as the predicted value 
for the row being scored.  For additional information about surrogate splitters, please see 
page 188. 
 
If you anticipate scoring data that has missing values, you should select the option 
“Always create surrogate splitters” on the Missing Data property page when the tree is 
built. (See page 74.)  Surrogate splitters cannot be created when scoring is being done; 
they must be created at the time that the tree is constructed. 
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Translation:  Generating Code for Scoring 

 
“Translation” generates source code that can be compiled with an application program to 
perform scoring. 
 
DTREG is capable of generating source code for the C language (this code also can be 
used with C++ programs) and SAS®.  The Translate function can generate code for all 
types of models in the C language and for all types of models except for Support Vector 
Machine (SVM) in the SAS language.  You can use the DTREG.DLL COM library 
module to perform scoring for other types of applications.  See page 203 for information 
about the DTREG.DLL library module.  The primary advantage of generated source code 
is that it executes faster than using the DLL library. 
 
The Translate function is available only in the Enterprise Version of DTREG. 
 
Here is an overview of the process of generating and using scoring source code: 
  1.  Use DTREG to build a model. 
  2.  Use the Translate function to generate source code. 
  3.  Compile the source code with an application program you have written. 
  4.  Run the application to read data and call the scoring function generated by DTREG. 
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Translate Property Page 
To generate scoring source code, select the Translate property page for the model. 
 

 
 
Type of code to generate 
Check the button to select whether you want DTREG to generate a C or C++ or SAS® 
source file.  
 
Prefix for global function and variable names in generated code 
If you specify a string in this field, it will be added to the front of the names of all 
functions and global variables in the source code generated by DTREG.  This is useful 
when you want to call generated code for two different models from the same application 
program.  The specified string must be valid as the beginning of a variable and function 
name (it must begin with a letter, and it may not contain spaces). 
 
Output file where source code is to be written 
Specify the full name including device and directory where you want DTREG to write 
the generated source code.  If you omit the extension from the file name, DTREG will 
add it.  In addition to the .c file, DTREG also generates one or more .h header files using 
the same base file name.  In the case of SAS code generation, DTREG generates a file 
named “program.sas” and a header file named “program_header.sas”. 
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Split large files into multiple files 
If the decision tree model is very large, the generated source code may be too large to 
compile as a single unit.  This problem occurs most commonly with TreeBoost and 
Decision Tree Forest models composed of many trees.  If you turn on this option, 
DTREG will generate multiple source files that you can compile as separate modules and 
link together with the application.  When multiple source files are created, DTREG 
appends “_nnn” to the end of the file name, where nnn is a sequence number.  DTREG 
also generates a header file named “basename_Internal.h” that is used to transfer 
information between the generated modules; you should not include this header file in 
your application.  SAS source programs cannot be split. 
 
Maximum allowable file size 
If you turn on the option to generate multiple source files, DTREG uses the size you 
specify in this field to control when one source file ends and the next one begins.  The 
size is approximate since DTREG cannot split a function in the middle.  The size is 
specified in units of K bytes, so a value of 1000 corresponds to 1000 kb which is 1 MB.  
The maximum allowable source file size is dependent on the compiler you use.  The 
Microsoft Visual C++ compiler seems to be able to handle about 1.2 MB in each source 
file. 
 
Generate code to check for missing values 
If you turn on this option, DTREG will generate code to check for missing data values 
and take the appropriate action.  If you do not turn on this option, it is your responsibility 
to make sure that no missing values are passed to the generated scoring function. 
 
Generate code for surrogate splits 
If you turn on this option, DTREG will generate code to use surrogate splits to handle 
missing values.  In order to use this option, the model must have been created with 
surrogate split information, and you must turn on the option to tell DTREG to check for 
missing values.  See page 188 for additional about surrogate splits. 
 
Add #include “stdafx.h” header line 
If you check this box, DTREG will insert the following line in each generated source file: 
 
#include “stdafx.h” 
 
This is necessary when you are using Microsoft Developer’s Studio with the precompiled 
header option turned on. 
 
Generate placeholder definitions for unused variables 
If you check this box, DTREG will generate variable definitions for variables that are not 
used by the model.  This makes it possible to select which variables are used as predictors 
without having to modify the application program that sets up values for all variables. 
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How to call the scoring function – C and C++ programs 
The generated code will consist of one or more .c source files and a .h header file.   The 
header file will contain prototypes for the generated functions and for the global 
variables.  You must include the generated header file in the source modules of your 
application program that call the generated scoring function. 
 

Generated header file 
The values for predictor variables must be set in global variables prior to calling the 
function to perform scoring.  There will be one global predictor variable for each 
predictor variable specified in the model.  The generated .h header file contains external 
references to these variables.  Here is an example header file: 
 
#ifndef Iris_h 
#define Iris_h 
 
/*--------------------------------------------------------------- 
 *  Scoring header file generated by DTREG (http://www.dtreg.com) 
 *  This header file should be included in applications calling the 
 *  generated code. 
 *  DTREG version 3.5 
 *  Creation date: 21-Oct-2004 14:01:32 
 *  Project file: C:\DTREG\Test\Iris.dtr 
 *  Project title: Iris variety classification 
 */ 
 
/* 
 *  Type of model. 
 */ 
#define MODELTYPE_TREEBOOST 
/* 
 *  Values used to represent missing values. 
 */ 
extern double Missing_Continuous; /* Continuous variables */ 
extern char *Missing_Category;  /* Categorical variables */ 
extern long Missing_Index;  /* Category index */ 
/* 
 *  Predictor variables. 
 */ 
/* Continuous variables */ 
extern double Sepal_length; 
extern double Sepal_width; 
extern double Petal_length; 
extern double Petal_width; 
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/* 
 *  Variable that will receive predicted value of Species. 
 */ 
extern char PredictedValue[200]; /* Gets computed category /* 
 *  Variables that will receive probability values for the 
 *  categories of Species. 
 */ 
extern double Prob_Setosa; 
extern double Prob_Versicolor; 
extern double Prob_Virginica;/* 
*/ 
 *  Function prototypes. 
 */ 
void ScoreRecord(void); 
 
/* 
 *  End of header. 
 */ 
#endif 
 
Type of model 
The type of model will be defined by one of the following macros: 
MODELTYPE_SINGLETREE, MODELTYPE_TREEBOOST or MODELTYPE_FOREST.  
You can use #ifdef macros in your application program to determine which type of model 
was generated. 
 
Values used to represent missing values 
If you turn on the option to generate code to handle missing values, DTREG will generate 
references to Missing_Continuous and Missing_Cateogory.  These global variables have 
the values that you should use to represent missing values of predictor variables. 
 
Predictor variables 
There will be an external reference to each predictor variable.  If the predictor variables 
were specified with spaces in their names, the spaces will be converted to underscores in 
the generated code.  Continuous predictor variables are of type double, and categorical 
predictor variables are of type char[200].  Note that categorical variables must be 
specified as character string values even if all of the values are numeric.  If, for example, 
you had a predictor variable named sexcode that had values 1 and 2, you could use the 
sprintf function to format the value into the global variable: 
 
    sprintf(sex,”%d”,sexcode); 
 
Predicted target variable 
The predicted value computed by the scoring function will be returned in a global 
variable named PredictedValue.  If the target variable is continuous, then PredictedValue 
will be of type double.  If the target variable is categorical, then PredictedValue will be a 
char[200] variable.  If the target variable has numeric categorical values, you can use the 
atol() function to convert the returned string to a long integer value. 
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Predicted category probabilities 
If scoring code is generated for a categorical, TreeBoost, SVM, Discriminant Analysis or 
Logistic Regression model, there will be references to external variables that will have 
the probability for each category of the target variable.  These variables are named 
Prob_category where category is the name of the category of the target variable.  If a 
decision tree forest model is generated, the Prob_category variables will have the proportion 
of the votes for each category. 
 
Prototype for the scoring function 
The function called to compute the score is named ScoreRecord.  Its prototype is as 
follows: 
 
void ScoreRecord(void); 
 
Note that there are no arguments and no returned value because the predictor variable 
values are set in global variables before it is called, and the predicted target variable value 
is returned in a global variable. 
 
Here is an outline of the procedure you should use in your application program: 
 1.  Read values for the case you want to score. 
 2.  Set the values of the global predictor variables. 
 3.  Call the generated ScoreRecord() function. 
 4.  Get the predicted target value from the PredictedValue global variable. 
 

Generated Source File 
Usually, it will not be necessary for you to edit or be concerned with the contents of the 
generated .c source file.  You can simply compile it as a module of your application.  If 
you turn on the option to split the source into multiple files, then you must compile each 
generated source file as a separate source module. 
 
The top of a generated source file will be similar to this: 
 
/*--------------------------------------------------------------- 
 *  Scoring source file generated by DTREG (http://www.dtreg.com) 
 *  DTREG version 3.5 
 *  Creation date: 21-Oct-2004 14:44:09 
 *  Project file: C:\DTREG\Test\Iris.dtr 
 *  Project title: Iris variety classification 
 *  Model type: Single-tree 
 *  Depth of tree: 5 
 *  Number of terminal nodes: 5 
 *  Target variable: Species 
 *  Type of analysis: Classification with 3 target classes 
 */ 
 
#include <string.h> 
#include <math.h> 
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/* 
 *  Values used to represent missing values. 
 */ 
double Missing_Continuous = -1e+035; /* Continuous variables */ 
char *Missing_Category = "?";  /* Categorical variables */ 
long Missing_Index = -1;  /* Category index */ 
/* 
 *  Global definitions of predictor variables. 
 */ 
/* Continuous variables */ 
double Sepal_length = -1e+035; 
double Sepal_width = -1e+035; 
double Petal_length = -1e+035; 
double Petal_width = -1e+035; 
/* 
 *  Define variable that will receive predicted value of Species. 
 */ 
char PredictedValue[200] = {0}; /* Gets predicted category */ 
 
/*---------------------------------------------------------------- 
 *  Call this routine to compute the predicted value. 
 */ 
void ScoreRecord(void) 
{ 
 
 

How to call the scoring function – SAS® programs 
SAS source code generated by DTREG consists of two parts, a header file named 
“program_header.sas” and the model evaluation code named “program.sas”.   These 
files should be included in the DATA proc of the program that is doing the scoring.  The 
best way to include the files is to use the SAS %INCLUDE facility to insert the header file 
at the top and the evaluation code a the end after a RETURN statement.  Here is the 
outline of a DATA proc doing this: 
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Data Titanic; 
/* Include the generated header file */ 
%INCLUDE 'Titanic_Header.sas'; 
 
/* your statements to set up values for scoring */ 
 
length classc $1 agec $1 sexc $1; 
classc = left(put(class,best12.)); 
agec = left(put(age,best12.)); 
sexc = left(put(sex,best12.)); 
 
/* 
 * Use LINK to call the scoring code. 
 * It will return to the statement after LINK. 
 * The predicted value will be in _PredictedValue_. 
 
LINK ScoreRecord; 
 
/* Your statements to process the predicted value. 
 * For example: 
 */ 
 
DidSurvive = _PredictedValue_; 
 
/* Output the values and return */ 
 
RETURN; 
 
/* Put the generated scoring code here */ 
 
%INCLUDE 'Titanic.sas'; 
 

Data types of variables 
 
SAS has two types of variables, numeric and character string.  If the “Character” 
attribute is set for a variable on the variable property page (see page 38) then DTREG 
generates SAS code to treat the variable as a character string.  Otherwise, the generated 
code treats the variable as a numeric value. 
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Generated header file 
Here is an example header file: 
 
/*--------------------------------------------------------------- 
 *  Scoring header file generated by DTREG (http://www.dtreg.com) 
 *  This header file should be included in applications calling 
 * the generated code. 
 *  DTREG version 4.5 
 *  Creation date: 10-Nov-2005 15:01:50 
 *  Project file: C:\DTREG\Test\iris.dtr 
 *  Project title: Iris variety classification 
 * 
 *  To score a record use the statement: LINK ScoreRecord; 
 * 
 *  On return, the predicted value for 'Species' will be 
 *  in '_PredictedValue_'. 
 *  The predicted value is returned as a character string. 
 *  The terminal nodel number is returned in '_Node_'. 
 */ 
 
/* 
 *  Declare variables. 
 */ 
    _ModelType_ = 1; /* Single tree */ 
    length _PredictedValue_ $10; 
    _PredictedValue_ = '?'; 
    _Node_ = 0; 
/* 
 *  ---  End of scoring header  --- 
 */ 
 
Type of model 
The _ModelType_ variable has a value indicating what type of model was built.  The 
values are 1=Single Tree, 2=TreeBoost, 3=Decision Tree Forest, 4=Logistic Regression, 
5=Discriminant Analysis. 
 
Predicted target variable 
The predicted value computed by the scoring function will be returned in a variable 
named _PredictedValue_.  If the variable was declared to be of type character, then 
_PredictedValue_ will be declared as a character string; otherwise, it will be a numeric 
variable. 
 
Terminal node number 
For single-tree models, the terminal node in which a record ends is returned in the 
_Node_ variable.  This variable is not generated for other types of models. 
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Predicted category probabilities 
If scoring code is generated for a categorical, TreeBoost, SVM, Discriminant Analysis or 
Logistic Regression model, there will be variables that will have the probability for each 
category of the target variable.  These variables are named Prob_category where 
category is the name of the category of the target variable. 
 

Generated Model Execution Source File 
Usually, it will not be necessary for you to edit or be concerned with the contents of the 
generated program.sas source file.  You can simply use a %INCLUDE statement to insert 
into the end of the DATA proc. 
 
To score a record, use this statement to call the scoring code: 
 
LINK ScoreRecord; 
 
The LINK statement jumps to the ScoreRecord label in the generated code much as a 
GOTO statement would do.  When the generated code finishes computing the predicted 
value, it uses a RETURN statement to return execution control to the line following the 
LINK statement.  You can then do whatever processing is appropriate for the predicted 
value and then use a RETURN statement to terminate the DATA proc execution and write 
the record to the output dataset. 
 
The predicted value computed by the scoring code is returned in a variable named 
_PredictedValue_.  It will be either a character string value or a numeric value depending 
on whether the target variable was declared to be character or numeric. 
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The Output Report Generated by DTREG 
 
Once you run an analysis, DTREG will display in the main right panel a report of the 
results. 
 

 
 
There are several major sections in the report.  You can use the scroll bar to move to 
sections, or you can click on of the section names shown under “Analysis report” in the 
left panel to scroll instantly to a section. 
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Project Parameters 
 
  ============  Project Parameters  ============ 
 
Project title: Iris variety classification 
Project file: C:\DTREG\Test\iris.dtr 
Target variable: Species 
Number of predictor variables: 4 
Type of tree: Single tree 
Maximum splitting levels: 10 
Type of analysis: Classification 
Splitting algorithm: Gini 
Category weights: Equal (Balanced) 
Misclassification costs: Equal (unitary) 
Variable weights: Equal 
Minimum size node to split: 10 
Max. categories for continuous predictors: 200 
Use surrogate splitters for missing values: Yes 
Always compute surrogate splitters: Yes 
Tree pruning and validation method: V-fold 
Number of folds: 10 
Tree pruning criterion: Minimum cost complexity (0.00 S.E.) 
 
The Project Parameters section of the report displays a summary of the options and 
parameters you selected on the various property pages for the model. 
 

Input Data 
 
  ============  Input Data  ============ 
 
Input data file: C:\DTREG\iris.csv 
Number of variables (data columns): 5 
Number of data rows: 150 
Total weight for all rows: 150 
Rows with missing target or weight values: 0 
Rows with missing predictor values: 0 
 
The Input Data section displays information about the input data file used to construct the 
tree.  The entry for “Rows with missing target or weight values” indicates the number of 
rows that were discarded because these variables had missing values. 
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Summary of Variables 
 
  ============  Summary of Variables  ============ 
 
  Variable      Class       Type      Missing rows  Categories 
------------  ---------  -----------  ------------  ---------- 
Species       Target     Categorical          0           3 
Sepal length  Predictor  Continuous           0          35 
Sepal width   Predictor  Continuous           0          23 
Petal length  Predictor  Continuous           0          43 
Petal width   Predictor  Continuous           0          22 
 
The Summary of Variables section displays information about each variable that was 
present in the input dataset.  The first column shows the name of the variable, the second 
column shows how the variable was used; the possibilities are Target, Predictor, Weight 
and Unused.  The third column shows whether the variable is categorical or continuous, 
the forth column shows how many data rows had missing values on the variable, and the 
fifth column shows how many categories (discrete values) the variable has.  In the case of 
continuous variables, the number of categories will be limited by the value specified for 
“Max. categories for predictor variables” on the model design property page. 
 

Summary of Categories 
 
  ============  Summary of Categories  ============ 
 
Species 
     50   33.33%  Setosa 
     50   33.33%  Versicolor 
     50   33.33%  Virginica 
Sepal length 
      1    0.67%  4.3 
      3    2.00%  4.4 
 
The Summary of Categories section displays information about the categories of 
predictor and target variables.  This section is only displayed if you select one or both of 
the options on the Variables property page requesting category information (see page 38). 
 
Three columns of information are displayed for each category: 

1. The number of rows in the dataset having the category for the variable. 
2. The percent of the rows having the category. 
3. The label of the category. 

Tree Size and Validation Statistics 
 
This section of the report is composed of two sub-sections: Tree Size Summary Report 
and Validation Statistics Report. 

 109



 

 
  ============  Tree Size Summary Report  ============ 
 
The full tree has 5 terminal (leaf) nodes. 
The minimal cross-validated relative error occurs with 3 nodes. 
The relative error value is 0.0700 with a standard error of 0.0257 
You allowed up to 1 standard error for tree size reduction. 
With 1.000 S.E. allowance, the optimal tree has 3 nodes. 
The tree will be pruned from 5 to 3 terminal nodes. 
 
The Tree Size Summary Report displays information about the maximum size tree that 
was built, and it shows summary information about the parameters that were used to 
prune the tree.   
 
  ============  Tree Size Summary Report  ============ 
 
The full tree has 5 terminal (leaf) nodes. 
The minimum validation relative error occurs with 5 nodes. 
The relative error value is 0.0700 with a standard error of 0.0280 
You allowed up to 1 standard error for tree size reduction. 
With 1 S.E. allowance, the optimal tree has 3 nodes. 
The tree will be pruned from 5 to 3 nodes. 
 
   ------  Validation Statistics  ------ 
 
Nodes  Val cost  Val std. err.  RS cost    Complexity   
-----  --------  -------------  -------  -------------- 
    5   0.0700        0.0280     0.0300      0.000000 <-- Min.error 
    4   0.0800        0.0297     0.0400      0.006667 
    3   0.0700        0.0257     0.0600      0.013333 <-- Pruned size 
    2   0.5000        0.0000     0.5000      0.293333 
    1   1.0000        0.0000     1.0000      0.333333 
 
In order to create a tree that can be generalized to predict data values other than those in 
the learning dataset, DTREG builds an overly-large tree and then prunes it to the optimal 
size.  For information about how pruning is done, please see page 190. 
 
The Validation Statistics section displays information about the size of the generated 
tree and statistics used to prune the tree.  There are five columns in the table: 
 

1. Nodes – This is the number of terminal nodes in a particular pruned version of the 
tree.  It will range from 1 up to the maximum nodes in the largest tree that was 
generated.  The maximum number of nodes will be limited by the maximum 
depth of the tree and the minimum node size allowed to be split on the Design 
property page for the model. 

2. Val cost – This is the validation cost of the tree pruned to the reported number of 
nodes.  It is the error cost computed using either cross-validation or the random-
row-holdback data.  The displayed cost value is the cost relative to the cost for a 
tree with one node.  See page 193 for a detailed description of the cross-validation 
procedure.  The validation cost is the best measure of how well the tree will fit an 
independent dataset different from the learning dataset.  The pruned size with the 
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minimum validation cost is marked with “ Min. validation error” in the margin.  
Note, if you enable DTREG to smooth the minimum values by checking the box 
labeled “Smooth minimum spikes” on the Validation and Pruning property page 
(see page Error! Bookmark not defined.), then the minimum value selected may 
not be the absolute minimum. 

3. Val std. err. – This is the standard error of the validation cost value.  If you wish, 
you can allow DTREG to prune to a smaller tree with a larger validation cost 
value than the absolute minimum by using a multiple of the validation cost 
standard error.  See page 195 for information about controlling the pruning point.  
If you allow DTREG to prune the tree to a smaller size than the minimum 
validation cost size, the pruned size will be indicated by “ Pruned size” in the 
report. 

4. RS cost – This is the resubstitution cost computed by running the learning dataset 
through the tree.  The displayed resubstitution cost is scaled relative to the cost for 
a tree with one node.  Since the tree is being evaluated by the same data that was 
used to build it, the resubstitution cost does not give an honest estimate of the 
predictive accuracy of the tree for other data. 

5. Complexity – This is a “Cost Complexity” measure that shows the relative 
tradeoff between the number of terminal nodes and the misclassification cost.  See 
Breiman, Friedman, Olshen and Stone (1984) for information about the 
calculation and use of the cost complexity measure. 

 

Node Splits 
The node splits section provides information about each node in the tree and how it was 
split to produce its child nodes. 
 
There are five subsections: (1) the node summary, (2) the distribution of categories of the 
target variable in the group; (3) splitting information; (4) competitor splits; (5) surrogate 
splits. 
 

Node Summary 
 
 =======================   Group 1   ======================= 
Number of rows in group: 149 
Sum of weights for all rows: 149 
Rows with missing values on the splitting variable: 37 
Rows with missing values classified using surrogates: 37 
Rows with missing values classified using target values: 0 
Rows with missing values classified into most probable group: 0 
Rows with missing values that stop in this node: 0 
Improvement in misclassification from split: 0.251146 
Complexity: 0.161633 
Category of Species assigned to group: Versicolor 
Misclassified rows = 66.44% 
Misclassification cost = 0.6667 
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This section provides information about the node: 
 

• Number of rows in group – This is the total number of rows that made it through 
the tree to this node. 

• Sum of weights for all rows – This is the sum of the weights for all rows that 
made it to this node.  If you did not specify a weight variable, all rows get a 
weight of 1.00, and the sum of the weights will equal the number of rows. 

• Rows with missing values on the splitting variable – This is a count of how 
many rows in this node had missing values on the variable that DTREG selected 
to split the node.  The counts that appear on the following lines show how these 
rows were classified. 

• Rows with missing values classified using surrogates – This is a count of the 
rows that had missing values on the primary splitting variable that DTREG was 
able to classify using surrogate splitting variables.  See the list of surrogate 
splitters that appears later in the node report. 

• Rows with missing values classified using target values – This is the number of 
rows that could not be classified using surrogate splitters but instead were forced 
into the appropriate child group based on the actual value of their target variable.  
When the target variable is categorical, this method of assignment is used only if 
the actual target category for the row matches the target category assigned to one 
of the child rows.  If the target variable is continuous (i.e., a regression tree is 
being built), then the row is put in the child group whose mean value on the target 
variable is closest to the row’s target variable value. 

• Rows with missing values classified into the most probable group – This is the 
number of rows that could not be classified by either of the two methods listed 
above but rather were dumped into the child group that is the most probable group 
to receive a random row without consideration of any predictor variables.  
Usually, this is the child group with the most number of rows, but it could be the 
smaller group depending on category weight values and other factors. 

• Rows with missing values that stop in this node – This is the number of rows 
with missing values on the splitting variable that could not be classified by any 
means, so they stopped in this node as their terminal node. 

 

Target Category Distribution 
 
  -- Distribution of categories of target variable in group -- 
 
   Category    Num. Rows   Total Weight   Category Wt. 
  ----------   ---------   ------------   ------------ 
      Setosa *        50             50         0.3333 
  Versicolor          50             50         0.3333 
   Virginica          50             50         0.3333 
 
If the target variable is categorical, the next section of the node report is a table showing 
information about the categories of the target variable occurring in the node.  For each 
category, the table displays the category name, the number of rows with that category in 
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the node, the total weight of the rows, and the weight that was assigned to the category.  
This table is not displayed if the target variable is continuous. 
 

Node Split Information 
 
--  Group 1 was split on Petal length  -- 
 
Left child group = 2.  Number of rows = 49 
  A case goes left if Petal length <= 2.35 
 
Right child group = 3.  Number of rows = 100 
  A case goes right if Petal length > 2.35 
 
This section displays information about how the node was split.  The first line gives the 
number of the node being split and the name of the predictor variable that was selected as 
the splitting variable. 
 
The next two parts of this section display information about the left and right child nodes 
generated by the split.  For each child node, the number of the node is displayed along 
with the number of rows that were assigned to that node.  In the example above, the 
parent node is number 1.  It is split into two child nodes; the left node is number 2 and the 
right node is number 3. 
 
The condition that controls whether rows are sent to the left or right node is displayed.  In 
the example above, a row is sent to the left child node if its value on the “Petal length” 
predictor variable is less than or equal to 2.35.  The row is sent to the right node if the 
value of “Petal length” is greater than 2.35. 
 
If the predictor variable used for the split is categorical, the categories of the variable 
being sent to the left and right child nodes are listed.  Here is an example: 
 
Left child group = 2.  Number of rows = 17800 
  Categories of Relationship going left: {Not-in-family, 
                   Other-relative, Own-child, Unmarried} 
 
Right child group = 3.  Number of rows = 14761 
  Categories of Relationship going right: {Husband, Wife} 
 
In this example, the split is being made using the “Relationship” predictor variable.  
Rows with values of “Not-in-family”, “Other-relative”, “Own-child” and “Unmarried” 
are sent to the left child group.  Rows with values of “Husband” or “Wife” are sent to the 
right child group. 
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Competitor Predictor Variables 
 
--  Competitor Splits  -- 
 
Order    Variable     Improvement   Left Categories 
-----  ------------  -------------  --------------- 
  1    Petal width           0.247  <= 0.8 
  2    Sepal length          0.227  <= 5.45 
  3    Sepal width           0.124  <= 3.35 
 
For each node being split, DTREG examines all predictor variables and performs the split 
using the one that provides the greatest improvement.  The competitor split table lists up 
to five predictor variables that were the runners-up splitters.  They are listed in decreasing 
order of improvement. 
 

Surrogate Splitters 
 
--  Surrogate Splits  -- 
 
Order    Variable    Assoc  Dir   Improvement   Left Categories 
-----  ------------  -----  ---  -------------  --------------- 
  1    Petal width   0.748   +           0.247  <= 0.8 
  2    Sepal length  0.665   +           0.227  <= 5.45 
  3    Sepal width   0.427   -           0.115  <= 3.25 
 
A surrogate splitter is a predictor variable that mimics the split performed by the primary 
splitter.  That is, it sends the same rows to the left and right child groups as the primary 
splitter.  Surrogate splitters are used to classify rows when the value of the primary 
splitter is missing.  For detailed information about surrogate splitters, please see page 
188. 
 
The following information is shown for each surrogate splitter: 
 

• Order – This is the order of the surrogate splitters in decreasing order of 
association.  When attempting to classify a row that has a missing value for the 
primary splitter, DTREG will try the surrogate splitters in the order shown until it 
finds one that has a non-missing value for the row. 

• Variable – This is the name of the predictor variable that will be used for the 
surrogate split. 

• Association – This is a measure of how well the surrogate split mimics the 
primary split.  The largest possible association value is 1.0 which means the 
surrogate sends exactly the same set of rows to the left and right groups as the 
primary splitter.  An association value of 0.0 means that the surrogate does no 
better at assigning rows than simply putting them in the most probable group. 

• Direction – This indicates whether the split generated by the surrogate splitter 
assigns rows to the same or opposite child group as the primary splitter.  This is 
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roughly equivalent to variables that have a negative correlation – you can predict 
the value of one by going in the opposite direction on the other. 

• Improvement – This is the improvement in misclassification that would be 
gained by using the surrogate split.  Note that surrogate splits are not ranked by 
improvement but rather by association with the primary splitter. 

• Left categories – This shows what values of the surrogate predictor send rows to 
the left child group.  The other values of the predictor send rows to the right child 
group. 

 
Note that if a predictor is listed as both a competitor and as a surrogate, the split 
categories and improvement values may be different.  The reason for this is that when 
evaluated as a competitor, the split point is chosen so as to maximize the improvement, 
just as is done for the primary splitter.  But when evaluated as a surrogate, the split point 
is chosen not to maximize the improvement, but rather to maximize the association 
between the surrogate and the primary splitter. 
 

Analysis of Variance 
The analysis of variance summary table is displayed when the target variable is 
continuous and a regression tree is being constructed.  The variance explained by the 
generated tree is the best measure of how well the tree fits the data. 
 
  ============  Analysis of Variance  ============ 
 
Variance in initial data sample = 84.419556 
Residual (unexplained) variance after tree fitting = 7.806666 
Proportion of variance explained = 0.90753  (90.753%) 
 
The following items are displayed in the summary: 
 

• Variance in initial data sample – This is the variance in the entire learning 
dataset before any splits have been made.  The following algorithm is used to 
compute variance:  (1) Compute the mean value of the target variable for all rows.  
(2) For each row, subtract the row’s target value from the mean target value, 
square the difference and sum the squared differences.  The difference between 
the target value of a row and the mean value of the target value is called the 
residual value for the row.  The sum of the squared residuals is the variance. 

• Residual (unexplained) variance after tree fitting – This is the remaining 
variance after the tree is applied to the data to predict the target values.  This is 
computed by (1) computing the mean value of the target variable for all rows in a 
terminal node; (2) use this mean to compute the residual for each row in the node; 
(3) add the residuals to compute the variance within the node; (4) add the variance 
for all nodes.  If the tree perfectly predicted the dataset, the residual variance 
would be 0.0. 

• Proportion of variance explained – This is the proportion of the initial, total 
variance explained by the fitted tree.  The larger the value, the better the tree fits 
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and explains the data.  If the tree perfectly fitted the data and exactly predicted the 
target value for every row, the explained variance proportion would be 1.0 
(100%). 

 

Misclassification Summary Table 
If the target variable is categorical and you are building a classification tree, then a 
misclassification summary table is displayed. 
 
  ============  Misclassification Tables  ============ 
 
 ---  Training Data  --- 
 
              --------Actual--------  -------------Misclassified------------- 
   Category     Count      Weight       Count      Weight     Percent   Cost 
  ----------  --------  ------------  --------  ------------  -------  ------ 
      Setosa        50            50         0             0    0.000   0.000 
  Versicolor        50            50         3             3    6.000   0.060 
   Virginica        50            50         0             0    0.000   0.000 
  ----------  --------  ------------  --------  ------------  -------  ------ 
       Total       150           150         3             3    2.000   0.020 
 
 ---  Validation Data  --- 
 
              --------Actual--------  -------------Misclassified------------- 
   Category     Count      Weight       Count      Weight     Percent   Cost 
  ----------  --------  ------------  --------  ------------  -------  ------ 
      Setosa        50            50         0             0    0.000   0.000 
  Versicolor        50            50         2             2    4.000   0.040 
   Virginica        50            50         5             5   10.000   0.100 
  ----------  --------  ------------  --------  ------------  -------  ------ 
       Total       150           150         7             7    4.667   0.047 

 
There are two sections to the table – one for the misclassifications for the training dataset 
and one for the misclassification for the validation data (either cross-validation or 
random-holdback rows).  See page 193 for information about how cross-validation is 
done. 
 
Each category of the target variable is listed along with the following items of 
information: 

• Category – The target category. 
• Actual count – The number of rows that have this target category. 
• Actual weight – The sum of the weights for the rows with this category. 
• Misclassified count – The number of rows with this category that were 

misclassified by the tree. 
• Misclassified weight – The sum of the weights for the rows with this category 

that were misclassified. 
• Misclassified percent – The percent of the rows with this category that were 

misclassified. 
• Cost – The misclassification cost for the rows with this category. 
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Confusion Matrix 
 
A “Confusion Matrix” provides detailed information about how data rows are classified 
by the model.  The matrix has a row and column for each category of the target variable.  
The categories shown in the first column are the actual categories of the target variable.  
The categories shown across the top of the table are the predicted categories.  The 
numbers in the cells are the weights of the data rows with the actual category of the row 
and the predicted category of the column.  Here is an example confusion matrix: 
 
  ============  Confusion Matrix  ============ 
 
   --------  Training Data  -------- 
 
  Actual  : -------Predicted Category------- 
 Category :   Setosa   Versicolor  Virginica 
----------: ---------- ---------- ---------- 
    Setosa:        50          0          0  
Versicolor:         0         47          3  
 Virginica:         0          0         50  
 
The numbers in the diagonal cells are the weights for the correctly classified cases where 
the actual category matches the predicted category.  The off-diagonal cells have 
misclassified row weights.  For example, the Versicolor category was misclassified as 
Virginica three times. 
 

Focus Category Report 
 
The Focus Category Report provides information about the “focus category” of the target 
variable.  This section of the report is generated only if you designate a focus category on 
the Class Labels property page for the model (see page 65).  Designating a focus category 
does not affect the model that DTREG generates; all it does is tell DTREG to generate 
additional statistics about the focus category. 
 
Two statistics are reported for the focus category: 
 
The Impurity of the focus category is the percentage of the rows predicted to be the 
focus category which are actually some other category.  In other words, it is the percent 
of the misclassified cases predicted to be the focus category.  If every case that is 
predicted to be the focus category is actually the focus category, then the impurity is 0.0. 
 
The Loss of the focus category is the percentage of actual focus category cases which are 
misclassified as some other category.  If every case of the focus category is correctly 
predicted to be the focus category, then the loss is 0.0. 
 
Here is an example of the focus category model size report: 
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  ============  Focus Category Report  ============ 
 
The target variable is Species 
Focus Category = Versicolor 
The full tree has 5 nodes. 
The minimum impurity occurs with 4 nodes. 
The minimum loss occurs with 2 nodes. 
 
   ------  Focus Category Vs. Model Size  ------ 
 
       ---- Training ----   --- Validation --- 
Nodes  Impurity %  Loss %   Impurity %  Loss % 
-----  ----------  ------   ----------  ------ 
    4      2.08      6.00       7.00      4.00 <-- Minimum impurity 
    3      9.26      2.00       8.67      4.00 
    2     50.00      0.00      50.00      0.00 <-- Minimum loss 
 
This report shows how the impurity and loss for the focus category change with varying 
model sizes.  For single-tree models, the model size is the number of terminal nodes in 
the tree.  For TreeBoost and Decision Tree Forest models, the model size is the number 
of trees in the model.  DTREG also generates charts showing the impurity and loss as a 
function of model size (see pages 134 and 135). 
 
The second table in the Focus Category Report shows which categories contributed to the 
impurity and loss. 
 
   ------  Focus Impurity and Loss Table  ------ 
 
           --- Training ---   -- Validation -- 
 Category  Impurity %  Loss %   Impurity %  Loss % 
---------  ----------  ------   ----------  ------ 
   Setosa      0.00      0.00       0.00      0.00 
Virginica      0.00      6.00       4.17      8.00 
 
In this example, the focus category is Versicolor, so all of the categories other than 
Versicolor are listed.  This table shows that the validation data for the model had 4.17% 
impurity due to Virginica cases that were misclassified as Versicolor.  The focus category 
had an 8% loss due to Versicolor cases being misclassified as Virginica. 
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Probability Threshold Report 
 
The probability threshold report provides information about how different probability 
thresholds would affect target category assignments.  The threshold report provides a 
convenient way to see the tradeoff between impurity and loss as the probability threshold 
is varied.  The probability threshold report is generated only when a classification 
analysis is performed and there are two target categories and a TreeBoost, decision tree 
forest, SVM, discriminant analysis or logistic regression model is generated.  A graphical 
depiction of the probability threshold response is available in the Probability Threshold 
Chart described on page 141. 
 
Classification methods such as TreeBoost, Decision Tree Forest, Discriminant Analysis 
and Logistic Regression not only predict a specific category for each case but also 
generate probability scores that indicate the relative likelihood for each possible category.  
In the case of Decision Tree Forest models where an ensemble of trees “vote” on the 
category, the proportion of votes for each category can be used as an approximate 
likelihood measure (although it is not a true probability).  Support Vector Machine 
(SVM) models also can generate probability estimates if you enable the appropriate 
option on the SVM property page. 
 
Usually the category with the highest probability is selected as the predicted category.  In 
other words, the probability threshold is set at 0.5.  You can specify a probability 
threshold to control classifications on the Misclassification Cost Property Page described 
on page 71. 
 
Here is an example of a probability threshold report: 
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 -----   Threshold analysis for Liver condition = 2   ----- 
 
Probability  Proportion  Error   Impurity   Loss 
-----------  ----------  ------  --------  ------ 
    0.00       1.0000    0.4203   0.4203   0.0000 
    0.05       0.9985    0.4188   0.4194   0.0000 
    0.10       0.9961    0.4164   0.4180   0.0000 
    0.15       0.9571    0.3773   0.3943   0.0000 
    0.20       0.8790    0.2993   0.3405   0.0000 
    0.25       0.7872    0.2075   0.2636   0.0000 
    0.30       0.7431    0.1634   0.2198   0.0000 
    0.35       0.6972    0.1232   0.1726   0.0050 
    0.40       0.6696    0.0957   0.1386   0.0050 
    0.45       0.6177    0.0670   0.0850   0.0250 
    0.50       0.5856    0.0581   0.0547   0.0450 
    0.55       0.5503    0.0749   0.0413   0.0900 
    0.60       0.5161    0.0810   0.0168   0.1247 
    0.65       0.4629    0.1168   0.0000   0.2015 
    0.70       0.3924    0.1873   0.0000   0.3231 
    0.75       0.2817    0.2980   0.0000   0.5140 
    0.80       0.1709    0.4088   0.0000   0.7052 
    0.85       0.0626    0.5171   0.0000   0.8920 
    0.90       0.0062    0.5735   0.0000   0.9892 
    0.95       0.0000    0.5797   0.0000   1.0000 
    1.00       0.0000    0.5797   0.0000   1.0000 
 
  Area under ROC curve (AUC) for training data = 0.987897 
  Threshold to minimize misclassification for training data = 0.517651 
  Threshold to minimize weighted misclassification for training data = 0.517651 
  Threshold to balance misclassifications for training data = 0.514761 

 
For each probability threshold, several items of information are reported: 
 
Proportion of cases – This column shows the proportion of cases that will be assigned 
the target category given a probability threshold.  In other words, if the probability that a 
case has the target category exceeds the threshold, then it is assigned the category.  For 
example, in the table shown above if the probability threshold is set to 0.20, then about 
0.8790 (87.9%) of the cases will be assigned the selected target category (Liver 
Condition = 2 in this example).  If the probability threshold is increased to 0.80, then 
fewer cases quality and only 0.1709 (17%) of the cases would be assigned the target 
category; all other cases would be assigned the other target category.  Note in this 
example that if the default threshold of 0.50 is used, about 0.5856 (58.56%) of the cases 
will be assigned the target category.  If the threshold is set to 0.0, all cases are assigned 
the target category and the proportion is 1.0.  If the threshold is set to 1.0, no cases 
qualify. 
 
Error – This is the proportion of cases that would be misclassified if a specified 
threshold is selected. 
 
Impurity – The “impurity” is the proportion of cases whose actual (true) category is 
different than the selected category but which are misclassified as having the target 
category.  In other words, it is the proportion of cases that are given the selected target 
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category that actually belong in the other category group.  In the example table shown 
above, if the probability threshold is set to 0.10 then about 0.4180 (41.8%) of the cases 
classified as Liver Condition = 2 will actually have a different category.  As the 
probability threshold is increased, the impurity decreases.  In the example above, when 
the threshold is 0.50 the impurity is only 0.0547 (5%).  When the probability threshold is 
set to 0.0 all cases are assigned to the target category, so the impurity is equal to the 
proportion of all cases that do not have the selected target category. 
 
Loss – The “loss” is the proportion of cases whose actual (true) category matches the 
selected target category but which are assigned a different category.  In the example table 
shown above we see that if rows are required to have a probability of 0.80 to be classified 
as Liver Condition = 2, then about 0.7052 (70.52%) of the cases with that actual 
classification will be misclassified.  If the threshold is set to 0.0 then all cases are 
assigned the target category and the loss is 0.0.  If the threshold is set to 1.0, then no 
cases qualify and the loss is 1.0. 
 
Area under ROC chart – This is the area under the Receive Operating Characteristic 
(ROC) curve for the model.  Sometimes this statistic is known as “AUC”.  The closer the 
value of the area is to 1.0, the better the model is. 
 
Threshold to minimize misclassification for training data – This is the probability 
threshold that would minimize the total misclassification error for all data. 
 
Threshold to minimize weighted misclassification for training data – This is the 
probability threshold that would minimize the weighted misclassification error.  The 
weighted misclassification error is computed by multiplying the misclassification rate for 
each target category by a factor that corrects for the relative frequency of cases with that 
category in the data.  Target categories that occur infrequently in the data receive a 
greater weight to prevent them from being overwhelmed by frequently occurring 
categories. 
 
Threshold to balance misclassifications for training data – This is the probability 
threshold that would approximately equalize the number proportion of cases misclassified 
for each target category. 
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Lift and Gain Table 
The lift and gain table is a useful tool for measuring the value of a predictive model.  Lift 
and gain values are especially useful when a model is being used to target (prioritize) 
marketing efforts.  Here is an example of a Lift and Gain table: 
 
  ============  Lift and Gain  ============ 
 
  ---  Lift and Gain for training data  --- 
 
Lift/Gain for Survived = Yes 
 
 Bin   Class %     Cum %      Cum %     Cum      % of       % of 
Index  of bin   Population  of class   Gain   Population   Class   Lift 
-----  -------  ----------  --------  ------  ----------  ------  ------ 
   1     96.38     10.04      29.96     2.98     10.04     29.96    2.98 
   2     59.28     20.08      48.38     2.41     10.04     18.42    1.83 
   3     33.03     30.12      58.65     1.95     10.04     10.27    1.02 
   4     17.65     40.16      64.14     1.60     10.04      5.49    0.55 
   5     26.24     50.20      72.29     1.44     10.04      8.16    0.81 
   6     20.81     60.25      78.76     1.31     10.04      6.47    0.64 
   7     28.05     70.29      87.48     1.24     10.04      8.72    0.87 
   8      7.69     80.33      89.87     1.12     10.04      2.39    0.24 
   9     23.53     90.37      97.19     1.08     10.04      7.31    0.73 
  10      9.43    100.00     100.00     1.00      9.63      2.81    0.29 
 
   Average gain = 1.612 
   Percent of cases with Survived = Yes:  32.30% 

 
The lift and gain tables for a single-tree model have an entry for each terminal node.  The 
lift and gain charts for other types of models have a fixed number of bins – usually 10. 
 
The basic idea of lift and gain is to sort the predicted target values in decreasing order of 
purity on some target category (Survived=Yes in the example above) and then compare 
the proportion of cases with the category in each bin with the overall proportion.  In the 
case of a model with a continuous target variable, the predicted target values are sorted in 
decreasing target value order and then compared with the mean target value.  The lift and 
gain values show how much improvement the model provides in picking out the best 
10%, 20%, etc. of the cases. 
 
Most of the numbers in the table are relative to the overall percentage of cases with the 
selected target category.  This value is shown below the table (for example, “Percent of 
cases with Survived = Yes: 32.30%”).  Note that this percentage is calculated from the 
data rows used to build the table, so the percentage for the training and validation data 
may differ slightly. 
 
The Lift value (last column) is calculated by dividing the percent of rows in a bin with 
the specified target category (column 2) by the overall percent of cases.  In the table 
above, the lift for the first row is calculated as 2.98 = 96.38/32.30. 
 
The Cumulative Gain (column 5) is calculated by dividing the cumulative percent of 
rows with the target category in all bins up to the row (column 4) by the cumulative 
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percentage of all rows in all bins up to the row (column 3).  In the table above, the 
cumulative gain for the second bin is calculated as 2.41 = 48.38/20.08. 
 
Class % of bin – This is the percentage of the cases in the bin that have the specified 
category of the target variable.  In the example above, the target variable is “Survived” 
and this lift/gain table is for category “Yes” of Survived. 
 
Cumulative % population – This is the cumulative percentage of the total cases (with 
any category) falling in bins up to and including the current one. 
 
Cumulative % of class – This is the cumulative percentage of the rows with the 
specified category (Survived=Yes in this example) falling in bins up to and including the 
current one.  In the example above, the first two bins have 48.38% of all of the 
Survived=Yes cases. 
 
Cumulative gain – This is the ratio of the cumulative percent of class divided by the 
cumulative percent of the population.  In the example above, the cumulative gain for bin 
2 is 2.41 which is calculated by dividing 48.38 by 20.08. 
 
% of population – This is the percentage of the total cases falling in the bin.  This will 
be approximately 100/number-of-bins.  For single-tree lift/gain charts, it will be the 
percentage of the cases that end up in the terminal node. 
 
% of class – This is percent of the cases with the specified category (Survived=Yes in 
this example) that were placed in this bin.  In this example, 29.96% of all the cases with 
category Yes ended up in the first bin. 
 
Lift – This is computed by dividing the percent of the cases with the specified category 
(“% of class”) in the bin by the percent of the total cases in the bin (“% of population”). 
 
To understand lift and gain, consider the example of a company that wants to do a mail 
marketing campaign.  The company has a database of 100,000 potential customers, and 
they calculate that each mailed advertisement will cost $1.00.  Prior experience has 
shown that the average response rate is 10%.  So if they send the advertisement to all of 
the prospects, they will incur an expense of $100,000 and they will likely receive 
approximately 10,000 sales. 
 
Hoping to improve their return on investment (ROI), the company uses DTREG to build 
a predictive model using data from previous campaigns with Sale/No-sale as the target 
variable and various demographic variables as predictors.  The predictive model is used 
to prioritize the prospects so that they can be sorted in decreasing order of expected sales 
(i.e., the best sales candidates are sorted to the front of the list). 
 
Using the “Cum % Population”, “Cum % of class”, “Cum Gain” and “Lift” columns from 
the Lift/Gain chart, the marketing director of the company prepares the following table: 
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Ads Mailed Cum. % Class Expected Sales Cum. Gain Lift 
 10000  30  3000 3.00 3.00 
 20000  50  5000 2.50 2.00 
 30000  65  6500 2.17 1.50 
 40000  72  7200 1.80 0.70 
 50000  80  8000 1.60 0.80 
 60000  85  8500 1.42 0.50 
 70000  90  9000 1.29 0.50 
 80000  95  9500 1.19 0.50 
 90000  98  9800 1.09 0.30 
100000 100 10000 1.00 0.20 

 
The table divides the total prospect set into 10 bins with the best 10% of the prospects (as 
predicted by DTREG) in the first bin, the second-best 10% in the second bin, and so 
forth.  The table has five columns: 
 
Ads mailed – This is the cumulative number of ads mailed starting with the best 
prospects and advancing to less well qualified prospects. 
 
Cum. % class – This is the cumulative percentage of the sales expected from ads sent to 
prospects in the bins up to and including the one with the percentage.  For example, we 
expect to receive 50% of total sales from ads sent to the prospects in the two highest-
priority bins. 
 
Expected sales – This is the total number of sales that can be expected from the 
cumulative number of ads mailed to customers in bins up to and including the current 
one.  In this example, it is believed that of the total population (100,000) about 10% will 
respond resulting in sales of 10,000 units if all customers are targeted.  So the expected 
cumulative sales for a bin are calculated by multiplying the expected total sales (10,000) 
by the cumulative percentage of the class up to and including the bin (“Cum. % class”).  
For example, if ads are mailed to customers falling in bins 1 and 2, then about 50% of the 
10,000 expected sales will be achieved resulting in cumulative expected sales of 5,000 
units. 
 
Cum. Gain – This is the ratio of the expected sales using the model to prioritize the 
prospects divided by the expected sales if a random mailing was done.  In this example 
we see that by targeting the customers in bins 1 and 2, we will get about 2.50 times as 
many sales as if we mailed the same number of ads to a random set of customers.  Thus 
our return on investment (ROI) is increased by 2.5 if we target this group.  Note that if we 
increase the number of ads mailed to include less qualified customers in higher bins, the 
gain decreases because we are now mailing to people who are less likely to respond.  If 
we send ads to all 100,000 potential customers then the gain is 1.00 because are not doing 
any selective targeting. 
 
Lift – This is the ratio of the expected sales for the prospects in a bin (“% of class”) 
divided by the percent of the population in the bin (“% of population”).  As you send ads 
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to less well qualified customers the number of proportion of sales decreases; this is 
reflected by the lift decreasing in higher bins. 
 
What we learn from the table is that by targeting the campaign at the best 20% of the 
prospects (i.e., the prospects falling in the first two bins), we can expect 5000 sales which 
constitute 50% of the total expected sales.  By targeting the best 50000 prospects, we can 
expect 8000 sales which constitute 80% of the total.  The mailings done to the 10,000 
prospects in the last (worst) bin are likely to yield only 200 sales for a return of 2%. 
 

How Lift and Gain Values are calculated 
 
Using the predictive model generated by DTREG, predicted target values are calculated 
for each row.  A one-dimensional array (i.e., a “vector”) is allocated with an entry for 
each row, and predicted target values are stored for each row.  In the case of a 
classification problem (categorical target variable), the value is set to 1 if the predicted 
target category for a row matches the target value selected for the table (a separate 
Lift/Gain table is generated for each target category).  A value of 0 is stored for rows 
where the predicted category is different from the target value selected for the table.  For 
a regression analysis (target variable is continuous), the predicted value for each row is 
stored in the vector. 
 
The vector of row values is then sorted in decreasing order.  In the case of a classification 
problem, the rows that were assigned 1 because their predicted category matches the 
category of the table get sorted to the front of the list.  In the case of a regression 
problem, the rows with the largest predicted target values get sorted the front of the list.  
The sort is done in a manner so that the row numbers that correspond to the sorted values 
are also rearranged; so we know which row has the largest value, which row has the 
smallest value, etc. 
 
Another one-dimensional array is allocated with an entry for each bin in the lift/gain 
table.  Usually there are 10 bins for TreeBoost and Decision Tree Forest models.  In the 
case of a single-tree model, there is a bin for each terminal node in the tree.  The sorted 
row index numbers computed in the previous step are divided into n partitions, where n is 
the number of bins (it is actually a little more complex than this because row weights are 
factored into the partitioning).  So the first bin has the set of rows whose predicted values 
are the ones that best match the target category for classification trees or the largest 
numerical values for regression trees. 
 
Values are then calculated for each bin using the rows that were partitioned into the bin. 
 
For classification trees, the Lift for the bin is the ratio of the weight of rows whose 
predicted target categories match the category of the table divided by the weight of the 
rows in the bin whose actual target category matches the category for the Lift/Gain table.  
For regression trees, the Lift for the bin is the ratio of the sum of predicted target values 
in the bin divided by the sum of the actual target values for the bin. 
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Since the row values were sorted in decreasing value, the first bins are likely to have the 
best predicted values, so their lift values will usually be greater than 1.00.  Bins at the 
bottom of the table have rows that were not predicted well (or which had small predicted 
values), and their lift will usually be less than 1.00.  If the model simply generated 
random predictions, the lift values for all bins would be approximately 1.00. 
 
The Cumulative Gain for each bin is the ratio of the proportion of all rows with 
predicted categories matching the table category up to and including the bin divided by 
the proportion of rows with the actual target category of the table up through the current 
bin.  Or, for regression trees, it is the proportion of the total predicted values for all rows 
up to the bin divided by the proportion of the actual target values up through the bin.  The 
Cumulative Gain for the final bin will always be 1.00 because the proportion of the 
predicted values for the entire set of rows is 1.00 as is the proportion of the actual values. 
 
Here is a summary of how lift/gain values are calculated: 
 
Let: 
 
ActualTarget = The actual value of the target variable for each row. 
 
PredictedTarget = The predicted value of the target variable for each row as predicted 
by the model. 
 
NumBins = Number of bins that will be in the lift/gain chart.  In the case of a single-tree 
model, the number of bins matches the number of terminal nodes. 
 
1. For a single-tree model, sort the terminal nodes in descending order based on 
PredictedTarget.  For a TreeBoost or Decision Tree Forest model, sort the data rows in 
descending order of PredictedTarget. 
 
2. For a TreeBoost or Decision Tree Forest model, divide the sorted rows into NumBins 
bins with approximately the same number of rows in each bin.  For a single-tree model, 
the bins contain the rows in each terminal node. 
 
3. Calculate and report the following values: 
 
Mean Target = For a regression model, this is the weighted mean of ActualTarget 
values in the bin.  The bins are sorted in decreasing order on this column. 
 
Class % of bin = For a classification model, this is the percentage of the rows in the bin 
that have the selected category.  For example, if “Purchased-Product” is the selected 
category, then the value shown in this column is the number of rows representing people 
who purchased the product.  The bins are sorted in decreasing order on this column, so 
the top row in the table has the purest set of rows for the category. 
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Cum. % Population = This is the cumulative percentage of the rows in all bins up to and 
including the current bin. 
 
Cum % Target = For a regression model, this is the cumulative percent of the sum of 
the weighted target values (ActualTarget) occurring in the bins up to and including the 
current bin.  (The percentage is relative to the total weighted sum of ActualTarget values 
in all rows.) 
 
Cum % Class = For a classification model, this is the cumulative percent of the total 
rows having the selected category (ActualTarget) that fall in bins up to and including the 
bin. 
 
Cum Gain = Cum % Target divided by Cum % Population.  The gain shows how 
much of an improvement is provided by the model by using the high priority bins up to 
the one with the value. 
 
% of Population = Percent of the total rows that are included in the bin. 
 
% of Target = For a regression model, this is the sum of the ActualTarget values in the 
bin divided by the total sum of ActualTarget values for the population times 100. 
 
% of Class = For a classification model, this is the number of rows having the designated 
category in the bin divided by the total number of rows having the designated category 
times 100. 
 
Lift = % of Target (or % of Class) divided by % of Population times 100. 
 
See page 136 for information about generating lift and gain charts. 
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Terminal Node Table 
The terminal node table displays summary statistics about each terminal node in the tree. 
 
  ============  Terminal Nodes  ============ 
 
Terminal (leaf) tree nodes sorted by target category 
 
Category   Node   Misclassification  Num. Rows     Weight 
--------  ------  -----------------  ---------  ------------ 
1              5        25.00%              80            80 
1              7        31.25%              16            16 
1             58        33.33%              27            27 
1              8        33.33%               6             6 
1             77        34.29%              35            35 
1             78        40.00%              10            10 
2              9        10.53%              38            38 
2             42        11.48%              61            61 
2             57        14.71%              34            34 
2             79        16.67%              24            24 
2             59        21.43%              14            14 
 
The terminal nodes are ordered by the categories of the target variable.  For each 
category, the table shows each terminal node that predicts that category and the 
misclassification rate.  Within a category, the nodes are ordered by increasing 
misclassification rate:  so, the first terminal node listed for a category is the node that has 
the lowest misclassification rate for the category (i.e., it is the purest node for the 
category). 
 
If the target variable is continuous, then the target node table has this format: 
 
Terminal (leaf) tree nodes sorted by Sales value 
 
 Node   Target mean   Target std.dev.  Num. rows     Weight 
 ----  -------------  ---------------  ---------  ------------ 
   93        9.91364         2.485375         44            44 
   92       13.92222         2.044384         18            18 
   65       14.04167         2.803854         24            24 
  119       14.40000         3.050683          3             3 
   86       16.63333         4.313416         12            12 
 
In this case, the node number is shown in the first column, the mean value of the target 
variable for rows in the node is shown next followed by the standard deviation of the 
target mean then the number of rows and their weight.  The nodes are ordered by 
increasing value of the target variable means. 
 
The terminal node table is very useful for identifying focus groups.  For example, if the 
target variable is customer sales and you are trying to identify the type of customers who 
are most likely to buy a product, then you would focus your attention on the terminal 
nodes that have the highest mean value on the customer sales target variable. 
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Variable Importance Table 
The variable importance table gives a ranking of the overall importance of the predictor 
variables. 
 
  ============  Overall Importance of Variables  ============ 
 
     Variable          Importance 
-------------------    ---------- 
Lower status              100.000 
Num. rooms                 88.439 
Distance                   28.388 
Pupil-teacher ratio        24.965 
Nitric oxides              24.739 
Industrial                 22.049 
Tax rate                   19.691 
Old houses                 15.584 
Crime rate                 12.341 
Large lots                 11.772 
Radial highways             4.867 
Black                       1.648 
Charles River               0.509 
 
Importance scores are computed by using information about how variables were used as 
primary splitters and also as surrogate splitters.  Obviously, a variable that is selected as a 
primary splitter early in the tree is important.  What is less obvious is that surrogate 
splitters that closely mimic the primary splitter are also important because they may be 
nearly as good as the primary splitter in producing the tree.  If a primary splitter is 
slightly better than a surrogate, then the primary splitter may “mask” the significance of 
the other variable.  By considering surrogate splits, the importance measure calculated by 
DTREG gives a more accurate measure of the actual and potential value of a predictor. 
 
To get the most accurate measure of importance, you should select the option “Always 
compute surrogate predictors” on the Missing Data property page (see page 74). 
 
The importance score for the most important predictor is scaled to a value of 100.00.  
Other predictors will have lower scores.  Only predictors with scores greater than zero are 
shown in the table. 
 
See page 144 for information about displaying a chart of variable importance. 
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Viewing a Decision Tree 
 
I think that I shall never see a poem lovely as a tree. 
 – Joyce Kilmer 
 
Once an analysis has been completed, you can view the generated decision tree by 
clicking the  toolbar icon or by clicking “View-tree” on the main menu. 
 

 
 

What’s in a node – Classification tree 
The information displayed in each node depends on whether it is part of a classification 
tree (categorical target variable) or a regression tree (continuous target variable).  Here is 
an example of a node from a classification tree: 
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Five lines of information are presented in this node: 
 

1. Node number – The top line displays the number of the node.  This number 
allows you to match the node to the textual report for the analysis. 

2. Predictor variable used for split – The second line displays the name of the 
predictor variable that was used to generate the split from the parent node (i.e., the 
split that generated this node).  In this example, the parent node was split on 
“Petal length”.  Following the name of the predictor variable is either a “<=” or 
“>” sign indicating if values less than or equal or greater than the split point go 
into this node.  In this example, it shows that records with values of Petal length 
less than or equal to 2.45 were placed in this node.  The sibling node received 
records with Petal length greater than 2.45.  If the predictor variable is categorical, 
the categories of the variable that were placed in this node are shown after the 
variable name. 

3. Record and weight counts – The “N=nn” and “W=nn” values show how many 
rows (N) were placed in this node and the sum of the row weights (W).  If no 
weight variable was specified, or all weights are 1.0, and the sum of the weights 
will equal the number of rows. 

4. Target variable category – This line displays the name of the target variable 
(“Species”) and the category of it that was assigned to this node (“Setosa”).  See 
page 188 for information about how target categories are assigned to nodes. 

5. Misclassification percent – This is the percentage of the rows in this node that 
had target variable categories different from the category that was assigned to the 
node.  In other words, it is the percentage of rows that were misclassified. 

 

What’s in a node – Regression tree 
The information shown in a node for a regression tree is illustrated below: 

 
 
In his example, this node was produced by splitting its parent node on the predictor 
variable “Number of rooms”.  There were 430 rows with values of “Number of rooms” 
less than or equal to 6.941 that were assigned to this node. 
 
The bottom two lines are different for regression trees than classification trees.  The next-
to-bottom line displays the name of the target variable (“House value”) and the mean 
value of the target variable for all rows in this node.  So, in this example, the mean value 
of “House value” is 19.934, and this would be the best predicted value for the target 
variable for rows falling in this node. 
 
The bottom line displays the standard deviation for the mean target value. 
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Charts and Graphs 
 
DTREG generates a number of charts and graphs to show statistics for models.  To view 
a chart, click “Charts” on the main menu, and select the desired chart from the drop-
down menu. 
 

 
 
Each of the charts is described below. 
 

Model Size Chart 
 

 
 
The Model Size chart shows how the error rate (residual or misclassifications) change 
with the size of the model.  For a single-tree model, the model size is the number of 
terminal nodes in the tree.  For a TreeBoost model, the model size is the number of trees 
in the TreeBoost model series.  For a Decision Tree Forest mode, the model size is the 
number of trees in the forest. 
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The blue line on the chart represents the error rate for the training data.  The red line 
shows the error rate for the validation (test) data.  A blue vertical line shows the size with 
the minimum error on the training data line; a red vertical line shows the size with the 
minimum error for the validation data.  A green vertical line shows the size to which the 
tree is pruned. 
 

Focus Category Impurity Chart 
 
 

 
 
The Focus Category Impurity Chart shows the impurity of the designated focus category 
of the target variable as a function of the size of the model.  For a single-tree model, the 
model size is the number of terminal nodes in the tree.  For a TreeBoost model, the model 
size is the number of trees in the TreeBoost model series.  For a Decision Tree Forest 
mode, the model size is the number of trees in the forest. 
 
The blue line on the chart represents the impurity percentage for the training data.  The 
red line shows the impurity for the validation (test) data.  A blue vertical line shows the 
size with the minimum impurity on the training data line; a red vertical line shows the 
size with the minimum impurity for the validation data.  A green vertical line shows the 
size to which the tree is pruned. 
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The Impurity of the focus category is the percentage of the rows predicted to be the 
focus category which are actually some other category.  In other words, it is the percent 
of the misclassified cases predicted to be the focus category.  If every case that is 
predicted to be the focus category is actually the focus category, then the impurity is 0.0. 
 
A Focus Category Impurity chart is generated only if you designate a focus category on 
the Class Table property page (see page 65). 
 

Focus Category Loss Chart 
 
 

 
 
The Focus Category Loss Chart shows the loss of the designated focus category of the 
target variable as a function of the size of the model.  For a single-tree model, the model 
size is the number of terminal nodes in the tree.  For a TreeBoost model, the model size is 
the number of trees in the TreeBoost model series.  For a Decision Tree Forest mode, the 
model size is the number of trees in the forest. 
 
The blue line on the chart represents the loss for the training data.  The red line shows the 
loss for the validation (test) data.  A blue vertical line shows the size with the minimum 
loss on the training data line; a red vertical line shows the size with the minimum loss for 
the validation data.  A green vertical line shows the size to which the tree is pruned. 
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The Loss of the focus category is the percentage of actual focus category cases which are 
misclassified as some other category.  If every case of the focus category is correctly 
predicted to be the focus category, then the loss is 0.0. 
 
A Focus Category Loss chart is generated only if you designate a focus category on the 
Class Table property page (see page 65). 
 

Lift and Gain Chart 
 
When you select the “Lift & Gain” chart item, DTREG displays a screen with options 
related to these charts.  See page 125 for information about how Lift and Gain values are 
calculated. 
 

 
 
Select the type of chart you want to view (Gain, Lift or Cumulative lift) and the data to be 
used for the chart (Training or Test).  For a TreeBoost or Decision Tree Forest model, 
you also can select the number of bins to divide the data into.  For single-tree models, 
there is always one bin for each terminal node.  For classification models, select which 
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category of the target variable the lift/gain is to be calculated for.  See page 122 for 
information about how lift and gain values are computed and used. 
 

Gain Chart 
 
A gain chart displays cumulative percent of the target value on the vertical axis and 
cumulative percent of population on the horizontal axis.  The straight, diagonal line 
shows the expected return if no model is used for the population.  The curved line shows 
the expected return using the model.  The shaded area between the lines shows the 
improvement (gain) from the model. 
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Lift Chart 
 
A lift chart displays the lift for each bin on the vertical axis and the cumulative 
population on the horizontal axis. 
 

 
 

Cumulative Lift Chart 
 
A cumulative lift chart displays gain on the vertical axis and percent of population on the 
horizontal axis. 
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ROC Chart 
 
A Receiver Operating Characteristic (ROC) chart is available when a classification 
analysis has been run using TreeBoost, Decision Tree Forest, SVM (with the probability 
option turned on), Discriminant Analysis or Logistic Regression models.  ROC charts are 
not available for regression analyses or for single-tree models. 
 

 
 
Classification methods such as TreeBoost, SVM, Discriminant Analysis and Logistic 
Regression not only predict a specific category for each case but also generate probability 
scores that indicate the relative likelihood for each possible category.  Usually the 
category with the highest probability is selected as the predicted category.  In the case of 
Decision Tree Forest models where an ensemble of trees “vote” on the category, the 
proportion of votes for each category can be used as an approximate likelihood measure 
(although it is not a true probability). 
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A Receiver Operating Characteristic (ROC) chart displays the True Positive Rate (TPR) 
for predictions of a specific category on the vertical (Y) axis and the False Positive Rate 
(FPR) on the horizontal (X) axis.  An ROC chart shows the trade-off between missed 
classifications (low TPR) and false classifications (high FPR) as different probability 
thresholds are considered. 
 
The (0,1) point in the upper left corner represents perfect classification – the true 
classification rate is 1.0 and the false classification rate is 0.0.  The closer the ROC curve 
gets to the upper left corner of the chart, the better it is.  The (0,0) point is reached when 
the probability threshold is set so high that that no cases are assigned the category, and no 
other categories are misclassified as the designated category.  The (1,1) point is reached 
when the probability threshold is set so low that all cases receive the category 
classification even if their actual category is something else.  The diagonal line from (0,0) 
to (1,1) represents the response that would be expected from randomly assigning the 
category.  The yellow area between the diagonal line and the ROC line is the benefit 
gained by the model.  The larger the yellow area, the better job the model is doing. 
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Probability Threshold Chart 
 
A Probability Threshold Chart is available when a classification analysis has been run 
using TreeBoost, Decision Tree Forest, SVM, Discriminant Analysis or Logistic 
Regression models.  Threshold charts are not available for regression analyses or for 
single-tree models.  A table showing the probability threshold response is generated in 
the analysis report.  See page 119 for a description of the Probability Threshold Report. 
 

 
 
Classification methods such as TreeBoost, SVM, Discriminant Analysis and Logistic 
Regression not only predict a specific category for each case but also generate probability 
scores that indicate the relative likelihood for each possible category.  In the case of 
Decision Tree Forest models where an ensemble of trees “vote” on the category, the 
proportion of votes for each category can be used as an approximate likelihood measure 
(although it is not a true probability).  Usually the category with the highest probability is 
selected as the predicted category.  In other words, the probability threshold is set at 0.5. 
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A Probability Threshold Chart shows how varying probability threshold values would 
affect the proportion of cases assigned the selected target category.  The horizontal (X) 
axis of the threshold chart has probability threshold values varying from 0.0 to 1.0.  The 
vertical (Y) axis shows a proportion value.  Three colored lines are shown on the chart: 
 
Blue line, proportion of cases – The blue line shows the proportion of cases that will be 
assigned the target category given a probability threshold.  In other words, if the 
probability that a case has the target category exceeds the threshold, then it is assigned 
the category.  For example, in the chart shown above if the probability threshold is set to 
0.2, then about 0.88 (88%) of the cases will be assigned the selected target category 
(Liver Condition = 2 in this example).  If the probability threshold is increased to 0.8, 
then fewer cases quality and only 0.17 (17%) of the cases would be assigned the target 
category; all other cases would be assigned the other target category.  Note in this 
example that if the default threshold of 0.5 is used, about 0.59 (59%) of the cases will be 
assigned the target category.  If the threshold is set to 0.0, all cases are assigned the target 
category and the proportion is 1.0.  If the threshold is set to 1.0, no cases qualify. 
 
Green line, impurity – The “impurity” is the proportion of cases whose actual (true) 
category is different than the selected category but which are misclassified as having the 
target category.  In other words, it is the proportion of cases that are given the selected 
target category that actually belong in the other category group.  In the example chart 
shown above, if the probability threshold is set to 0.1 then about 0.42 (42%) of the cases 
classified as Liver Condition = 2 will actually have a different category.  As the 
probability threshold is increased, the impurity decreases.  In the example above, when 
the threshold is 0.5 the impurity is only 0.05 (5%).  When the probability threshold is set 
to 0.0 all cases are assigned to the target category, so the impurity is equal to the 
proportion of all cases that do not have the selected target category. 
 
Yellow line, loss – The “loss” is the proportion of cases whose actual (true) category 
matches the selected target category but which are assigned a different category.  In the 
example chart shown above we see that if rows are required to have a probability of 0.8 
to be classified as Liver Condition = 2, then about 0.71 (71%) of the cases with that 
actual classification will be misclassified.  If the threshold is set to 0.0 then all cases are 
assigned the target category and the loss is 0.0.  If the threshold is set to 1.0, then no 
cases qualify and the loss is 1.0. 
 
The probability threshold chart provides a convenient way to see the tradeoff between 
impurity and loss as the probability threshold is varied.  You can specify the probability 
threshold to use for classifications on the Misclassification Cost Property Page described 
on page 71. 
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Threshold Balance Chart 
 
The Threshold Balance Chart shows how the misclassification error rate for each 
category is affected by varying probability thresholds.  A Threshold Balance Chart is 
available when a classification analysis has been run using TreeBoost, Decision Tree 
Forest, SVM, Discriminant Analysis or Logistic Regression models.  Threshold balance 
charts are not available for regression analyses or for single-tree models.  A table 
showing the probability threshold response is generated in the analysis report.  See page 
119 for a description of the Probability Threshold Report. 
 

 
 
A Threshold Balance Chart shows how varying probability threshold values would affect 
the misclassification proportion for cases with each target category.  The horizontal (X) 
axis of the threshold chart has probability threshold values varying from 0.0 to 1.0.  The 
vertical (Y) axis shows a misclassification proportion value.  Three colored lines are 
shown on the chart: 
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Green line – Proportion of cases misclassified for one of the target categories. 
 
Blue line – Proportion of cases misclassified for the other target category. 
 
Red line – Weighted misclassification rate.  The weighted misclassification error is 
computed by multiplying the misclassification rate for each target category by a factor 
that corrects for the relative frequency of cases with that category in the data.  Target 
categories that occur infrequently in the data receive a greater weight to prevent them 
from being overwhelmed by frequently occurring categories. 
 

Variable Importance Chart 
 
The Variable Importance chart is a bar chart showing the relative importance for the 10 
most important variables. 
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Actual versus Predicted (Residual) Chart 
 
The Actual versus Predicted chart is available only after building a model where the 
target variable is continuous.  It displays a point for each data row.  The X coordinate of a 
point is the actual target value.  The Y coordinate of the point is the corresponding 
predicted target value.  This type of chart is sometimes called a Residual Chart.  With a 
perfect model, the predicted values would equal the actual values, the X and Y 
coordinates for each point would be equal, and all points would be located on the 
diagonal line where X=Y.  When the predicted value differs from the actual value, the 
points are offset from the diagonal line, and the vertical distance from the line to the point 
corresponds to the error (residual).  The error is denoted by red vertical lines. 
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TreeBoost – Stochastic Gradient Boosting 

 
“Boosting” is a technique for improving the accuracy of a predictive function by 
applying the function repeatedly in a series and combining the output of each function 
with weighting so that the total error of the prediction is minimized.  In many cases, the 
predictive accuracy of such a series greatly exceeds the accuracy of the base function 
used alone. 
 
See page 43 for the TreeBoost property page where you select TreeBoost models and set 
parameters. 
 
One of the original boosting algorithms, called “AdaBoost.M1,” was developed in 1997 
by Freund and Schapire.  This algorithm has been studied extensively, and it has shown 
promise when applied to neural networks. 
 
The TreeBoost algorithm used by DTREG was developed by Jerome H. Friedman 
(Friedman 1999) and is optimized for improving the accuracy of models built on decision 
trees.  Research has shown that models built using TreeBoost are among the most 
accurate of any known modeling technique.  TreeBoost is also known as “Stochastic 
Gradient Boosting” and “Multiple Additive Regression Trees” (MART).  
 
The TreeBoost algorithm is functionally similar to decision tree forests because it 
creates a tree ensemble, but a TreeBoost model consists of a series of trees whereas a 
decision tree forest consists of a collection of trees grown in parallel.  See the following 
chapter for information about decision tree forests. 
 
Mathematically, a TreeBoost model can be described as: 
 
   PredictedTarget = F0 + B1*T1(X) + B2*T2(X) + … + BM*TM(X) 
 
Where F0 is the starting value for the series (the median target value for a regression 
model), X is a vector of “pseudo-residual” values remaining at this point in the series, 
T1(X), T2(X) are trees fitted to the pseudo-residuals and B1, B2, etc. are coefficients of the 
tree node predicted values that are computed by the TreeBoost algorithm. 
 
Graphically, a TreeBoost model can be represented like this: 
 

 
The first tree is fitted to the data.  The residuals (error values) from the first tree are then 
fed into the second tree which attempts to reduce the error.  This process is repeated 
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through a series of successive trees.  The final predicted value is formed by adding the 
weighted contribution of each tree. 
 
Usually, the individual trees are fairly small (typically 3 levels deep with 8 terminal 
nodes), but the full TreeBoost additive series may consist of hundreds of these small 
trees. 
 

Features of TreeBoost Models 
 

• TreeBoost models often have a degree of accuracy that cannot be obtained using a 
large, single-tree model.  TreeBoost models are often equal to or superior to any 
other predictive functions including neural networks. 

• TreeBoost models have been shown to produce more accurate results than 
competing composite-tree methods such as bagging or boosting using other 
methods such as AdaBoost. 

• TreeBoost models are as easy to create as single-tree models.  By simply setting a 
control button, you can direct DTREG to create a single-tree model or a 
TreeBoost model for the same analysis. 

• TreeBoost models can handle hundreds or thousands of potential predictor 
variables. 

• Irrelevant predictor variables are identified automatically and do not affect the 
predictive model. 

• TreeBoost uses the Huber M-regression loss function (Huber, 1964) which makes 
it highly resistant to outliers and misclassified cases. 

• TreeBoost procedures are invariant under all (strictly) monotone transformations 
of the predictor variables.  So transformations such as (a*x+b), log(x) or exp(x) do 
not affect the model.  Hence, there is no need for input transformations. 

• The sophisticated and accurate method of surrogate splitters is used for handling 
missing predictor values. 

• The stochastic (randomization) element in the TreeBoost algorithm makes it 
highly resistant to over fitting. 

• Cross-validation and random-row-sampling methods can be used to evaluate the 
generalization of a TreeBoost model and guard against over fitting. 

• TreeBoost can be applied to regression models and k-class classification 
problems. 

• TreeBoost can handle both continuous and categorical predictor and target 
variables.  Variables with textual values like “Male” and “Female” can be used as 
well as numeric variables. 

• TreeBoost models are grown quickly – in some cases up to 100 times as fast as 
neural networks. 

• The TreeBoost algorithm achieves the accuracy of other boosting methods such as 
AdaBoost with much lower sensitivity to misclassified cases and outliers. 
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The primary disadvantage of TreeBoost is that the model is complex and cannot be 
visualized like a single tree.  It is more of a “black box” like a neural network.  Because 
of this, it is advisable to create both a single-tree and a TreeBoost model.  The single-tree 
model can be studied to get an intuitive understanding of how the predictor variables 
relate, and the TreeBoost model can be used to score the data and generate highly 
accurate predictions. 
 

How TreeBoost Models Are Created 
Here is an outline of the TreeBoost algorithm for regression models.  For more details, 
see Friedman (1999). 
 

1. Find the median value of the target variable.  This is the starting value for the 
series (F0 in the mathematical description above). 

2. Determine which rows will be used to build the next tree in the series.  A 
specified proportion of the rows are chosen randomly, with the target variable 
values stratified.  (In the case of a classification model, influence trimming may 
reduce the set of rows by removing insignificant ones.) 

3. Sort the residual values for the rows being used and find the quantile cutoff point 
for the Huber-M loss function.  The quantile cutoff point is specified as a 
TreeBoost parameter.  The residual values are then transformed by Huber’s 
method to reduce the effect of outliers.  The transformed residual values are 
known as “pseudo residuals”. 

4. Fit a tree (T1) to the pseudo residual values. 
5. Compute the median of the pseudo residual values for the rows ending in each 

terminal node of the tree.  This median becomes the predicted value for the 
terminal node. (In a single-tree model, the mean value of the target variable for 
rows ending in a node is the predicted value for the node.) 

6. Sum the differences (residuals) between the predicted node value and the pseudo 
residuals that went into the tree build (with Huber’s adjustment for outliers).  
Then compute the mean value of these residuals. 

7. Compute the boost coefficient (B1) for the node based on the difference between 
the mean residual values for the node and the median (predicted) value for the 
node. 

8. Multiply the boost coefficient by the shrink factor to reduce the rate of learning. 
 
For 2-category classification models, the TreeBoost method is essentially the same as for 
regression except logit (probability) values are fitted rather than raw target values.  At the 
end of the process, the category that minimizes the misclassification cost is chosen as the 
predicted value. 
 
K-category classification is more complex: In this case, the algorithm builds K parallel 
TreeBoost series to model the probability of each possible category.  At the end of the 
process, the probability values for the categories are compared and the one that 
minimizes misclassification cost is chosen as the best predicted category.  Since K 
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TreeBoost series must be built in parallel, this process is computationally expensive if the 
target variable has many categories. 
 
The TreeBoost algorithm generates the most accurate models with minimum over fitting 
if only a portion of the data rows are used to build each tree in the series (Friedman, 
1999).  This is the stochastic part of stochastic gradient boosting.  You can specify the 
proportion of the rows used for each tree on the TreeBoost parameter screen (see page 
43). 
 
Research has shown (Friedman, 2001) that the predictive accuracy of a TreeBoost series 
can be improved by apply a weighting coefficient that is less than 1 (0 < v < 1) to each 
tree as the series is constructed.  This coefficient is called the “shrinkage factor”.  The 
effect is to retard the learning rate of the series, so the series has to be longer to 
compensate for the shrinkage but its accuracy is better.  Tests have shown that small 
shrinkage factors in the range of 0.1 yield dramatic improvements over TreeBoost series 
built with no shrinkage (v = 1).  The tradeoff in using a small shrinkage factor is that the 
TreeBoost series is longer and the computational time increases.  You can select the 
shrinkage factor on the TreeBoost parameter screen. 
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Decision Tree Forests 

 
You can’t see the forest for the trees. 

                                                

 – Anon. 
 
A Decision Tree Forest consists of an ensemble (collection) of decision trees whose 
predictions are combined to make the overall prediction for the forest.  A decision tree 
forest is similar to a TreeBoost model in the sense that a large number of trees are grown.  
However, TreeBoost generates a series of trees with the output of one tree going into the 
next tree in the series.  In contrast, a decision tree forest grows a number of independent 
trees in parallel, and they do not interact until after all of them have been built. 
 
Both TreeBoost and decision tree forests produce high accuracy models.  Experiments 
have shown that TreeBoost works better with some applications and decision tree forests 
with others, so it is best to try both methods and compare the results. 
 
The Decision Tree Forest technique used by DTREG is an implementation of the 
“Random Forest”™ algorithm developed by Leo Breiman (Breiman, 2001).1
 

Features of Decision Tree Forest Models 
 

• Decision tree forest models often have a degree of accuracy that cannot be 
obtained using a large, single-tree model.  Decision tree forest models are among 
the most accurate models yet invented. 

• Decision tree forest models are as easy to create as single-tree models.  By simply 
setting a control button, you can direct DTREG to create a single-tree model or a 
decision tree forest model or a TreeBoost model for the same analysis. 

• Decision tree forests use the “out of bag” data rows for validation of the model.  
This provides an independent test without requiring a separate data set or holding 
back rows from the tree construction. 

• Decision tree forest models can handle hundreds or thousands of potential 
predictor variables. 

• The sophisticated and accurate method of surrogate splitters is used for handling 
missing predictor values. 

• The stochastic (randomization) element in the decision tree forest algorithm 
makes it highly resistant to over fitting. 

• Decision tree forests can be applied to regression and classification models. 
 
The primary disadvantage of decision tree forests is that the model is complex and cannot 
be visualized like a single tree.  It is more of a “black box” like a neural network.  

 
1 “Random Forest” is a trademark of Leo Breiman and Adele Cutler and is licensed exclusively to Salford 
Systems, San Diego, CA. 
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Because of this, it is advisable to create both a single-tree and a decision tree forest 
model.  The single-tree model can be studied to get an intuitive understanding of how the 
predictor variables relate, and the decision tree forest model can be used to score the data 
and generate highly accurate predictions. 
 

How Decision Tree Forests Are Created 
Here is an outline of the algorithm used to construct a decision tree forest: 
 
Assume the full data set consists of N observations. 
 
1.  Take a random sample of N observations from the data set with replacement (this is 
called “bagging”).  Some observations will be selected more than once, and others will 
not be selected.  On average, about 2/3 of the rows will be selected by the sampling.  The 
remaining 1/3 of the rows are called the “out of bag (OOB)” rows.  A new random 
selection of rows is performed for each tree constructed. 
 
2. Using the rows selected in step 1, construct a decision tree.  Build the tree to the 
maximum size, and do not prune it.  As the tree is built, allow only a subset of the total 
set of predictor variables to be considered as possible splitters for each node.  Select the 
set of predictors to be considered as a random subset of the total set of available 
predictors.  For example, if there are ten predictors, choose a random five as candidate 
splitters.  Perform a new random selection for each split.  Some predictors (possibly the 
best one) will not be considered for each split, but a predictor excluded from one split 
may be used for another split in the same tree. 
 
3. Repeat steps 1 and 2 a large number of times constructing a forest of trees. 
 
4. To “score” a row, run the row through each tree in the forest and record the predicted 
value (i.e., terminal node) that the row ends up in (just as you would score using a single-
tree model).  For a regression analysis, compute the average score predicted by all of the 
trees.  For a classification analysis, use the predicted categories for each tree as “votes” 
for the best category, and use the category with the most votes as the predicted category 
for the row. 
 
Decision tree forests have two stochastic (randomizing) elements: (1) the selection of 
data rows used as input for each tree, and (2) the set of predictor variables considered as 
candidates for each node split.  For reasons that are not well understood, these 
randomizations along with combining the predictions from the trees significantly improve 
the overall predictive accuracy. 
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No Overfitting or Pruning 
“Overfitting” is a problem in large, single-tree models where the model begins to fit noise 
in the data.  When such a model is applied to data not used to build the model, the model 
does not perform well (i.e., it does not generalize well).  To avoid this problem, single-
tree models must be pruned to the optimal size.  In nearly all cases, decision tree forests 
do not have a problem with overfitting, and there is no need to prune the trees in the 
forest.  Generally, the more trees in the forest, the better the fit. 
 

Internal Measure of Test Set (Generalization) Error 
When a decision tree forest is constructed using the algorithm outlined above, about 1/3 
of data rows are excluded from each tree in the forest.  The rows that are excluded from a 
tree are called the “out of bag (OOB)” rows for the tree; each tree will have a different set 
of out-of-bag rows.  Since the out of bag rows are (by definition) not used to build the 
tree, they constitute an independent test sample for the tree. 
 
To measure the generalization error of the decision tree forest, the out of bag rows for 
each tree are run through the tree and the error rate of the prediction is computed.  The 
error rates for all of the trees in the forest are then averaged to give the overall 
generalization error rate for the entire forest. 
 
There are several advantages to this method of computing generalization error: (1) all of 
the rows are used to construct the model, and none have to be held back as a separate test 
set, (2) the testing is fast because only one forest has to be constructed (as compared to V-
fold cross-validation where additional trees have to be constructed). 
 
See page 50 for the Decision Tree Forest property page where you select Decision Tree 
Forest models and set parameters. 
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Support Vector Machines (SVM) 

 
 
It’s not enough to help the feeble up, but to support him after. 
 – William Shakespeare 

Introduction to Support Vector Machine (SVM) Models 
A Support Vector Machine (SVM) performs classification by constructing an N-
dimensional hyperplane that optimally separates the data into two categories.  SVM 
models are closely related to neural networks.  In fact, a SVM model using a sigmoid 
kernel function is equivalent to a two-layer, feed-forward neural network. 
 
Support Vector Machine (SVM) models are a close cousin to classical neural networks.  
Using a kernel function, SVM’s are an alternative training method for polynomial, radial 
basis function and multi-layer perceptron classifiers in which the weights of the network 
are found by solving a quadratic programming problem with linear constraints, rather 
than by solving a non-convex, unconstrained minimization problem as in standard neural 
network training. 
 
In the parlance of SVM literature, a predictor variable is called an attribute, and a 
transformed attribute that is used to define the hyperplane is called a feature.  The task of 
choosing the most suitable representation is known as feature selection.  A set of features 
that describes one case (i.e., a row of predictor values) is called a vector.  So the goal of 
SVM modeling is to find the optimal hyperplane that separates clusters of vector in such 
a way that cases with one category of the target variable are on one side of the plane and 
cases with the other category are on the other size of the plane.  The vectors near the 
hyperplane are the support vectors. 
 
The figure below presents an overview of the SVM process. 
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A Two-Dimensional Example 
Before considering N-dimensional hyperplanes, let’s look at a simple 2-dimensional 
example.  Assume we wish to perform a classification, and our data has a categorical 
target variable with two categories.  Also assume that there are two predictor variables 
with continuous values.  If we plot the data points using the value of one predictor on the 
X axis and the other on the Y axis we might end up with an image such as shown below.  
One category of the target variable is represented by rectangles while the other category 
is represented by ovals. 
 

 
 
In this idealized example, the cases with one category are in the lower left corner and the 
cases with the other category are in the upper right corner; the cases are completely 
separated.  The SVM analysis attempts to find a 1-dimensional hyperplane (i.e. a line) 
that separates the cases based on their target categories.  There are an infinite number of 
possible lines; two candidate lines are shown above.  The question is which line is better, 
and how do we define the optimal line. 
 
The dashed lines drawn parallel to the separating line mark the distance between the 
dividing line and the closest vectors to the line.  The distance between the dashed lines is 
called the margin.  The vectors (points) that constrain the width of the margin are the 
support vectors.  The following figure which is used with the kind permission of Jaiwei 
Han (Han, Jiawei and Micheline Kamber) illustrates this. 
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An SVM analysis finds the line (or, in general, hyperplane) that is oriented so that the 
margin between the support vectors is maximized.  In the figure above, the line in the 
right panel is superior to the line in the left panel. 
 
If all analyses consisted of two-category target variables with two predictor variables, and 
the cluster of points could be divided by a straight line, life would be easy.  
Unfortunately, this is not generally the case, so SVM must deal with (a) more than two 
predictor variables, (b) separating the points with non-linear curves, (c) handling the 
cases where clusters cannot be completely separated, and (d) handling classifications with 
more than two categories. 
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Flying High on Hyperplanes 
In the previous example, we had only two predictor variables, and we were able to plot 
the points on a 2-dimensional plane.  If we add a third predictor variable, then we can use 
its value for a third dimension and plot the points in a 3-dimensional cube.  Points on a 2-
dimensional plane can be separated by a 1-dimensional line.  Similarly, points in a 3-
dimensional cube can be separated by a 2-dimensional plane. See the figure below from 
Fung, 1998. 
 

 
 
As we add additional predictor variables (attributes), the data points can be represented in 
N-dimensional space, and a (N-1)-dimensional hyperplane can separate them. 
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When Straight Lines Go Crooked 
The simplest way to divide two groups is with a straight line, flat plane or an N-
dimensional hyperplane.  But what if the points are separated by a nonlinear region such 
as shown below? 
 

 
 
In this case we need a nonlinear dividing line. 
 
Rather than fitting nonlinear curves to the data, SVM handles this by using a kernel 
function to map the data into a different space where a hyperplane can be used to do the 
separation. 
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The kernel function may transform the data into a higher dimensional space to make it 
possible to perform the separation.  The following figure by Florian Markowetz 
illustrates this: 
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The concept of a kernel mapping function is very powerful.  It allows SVM models to 
perform separations even with very complex boundaries such as shown below. 
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The Kernel Trick 
Many kernel mapping functions can be used – probably an infinite number.  But a few 
kernel functions have been found to work well in for a wide variety of applications.  The 
default and recommended kernel function is the Radial Basis Function (RBF).  
 
Kernel functions supported by DTREG: 
 
Linear:  u’*v  
 

 
(This example was generated by pcSVMdemo:  
http://www.procoders.net/en/Procoders/open_source/pcSVMdemo)
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Polynomial:  (gamma*u’*v + coef0)^degree  
See the following figure from Kecman, 2004. 
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Radial basis function:  exp(-gamma*|u-v|^2)  
A Radial Basis Function (RBF) is the default and recommended kernel function.  The 
RBF kernel non-linearly maps samples into a higher dimensional space, so it can handle 
nonlinear relationships between target categories and predictor attributes; a linear basis 
function cannot do this.  Furthermore, the linear kernel is a special case of the RBF.  A 
sigmoid kernel behaves the same as a RBF kernel for certain parameters.  The RBF 
function has fewer parameters to tune than a polynomial kernel, and the RBF kernel has 
less numerical difficulties.  The following figure from Yang, 2003 illustrates RBF 
mapping. 
 

 
 

   
 
An SVM model using a radial basis function kernel has the architecture of an RBF 
network.  However, the method for determining the number of nodes and their centers is 
different from standard RBF networks with the centers of the RBF notes on the support 
vectors (see the figure below from C. Campbell).  

 164



 

 

 
 
Sigmoid (feed-forward neural network):  tanh(gamma*u’*v + coef0)  
 

 
 

 165



 

Parting Is Such Sweet Sorrow 
Ideally an SVM analysis should produce a hyperplane that completely separates the 
feature vectors into two non-overlapping groups.  However, perfect separation may not 
be possible, or it may result in a model with so many feature vector dimensions that the 
model does not generalize well to other data; this is known as over fitting.  The following 
figure from a slide by Florian Markowetz of Max Planck Institute for Molecular Genetics 
illustrates a non-separable training set. 
 

 
 
To allow some flexibility in separating the categories, SVM models have a cost 
parameter, C, that controls the trade off between allowing training errors and forcing 
rigid margins.  It creates a soft margin that permits some misclassifications.  The penalty 
associated with a misclassified point is the distance from the point to the hyperplane 
multiplied by the cost factor C.  Increasing the value of C increases the cost of 
misclassifying points2 and forces the creation of a more accurate model that may not 
generalize well.  DTREG provides grid and pattern search facilities that can be used to 
find the optimal value of C. 
 

                                                 
2 Technically, C is the cost of the sum of the distances of wrong-size points from the margins. 
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Classification With More Than Two Categories 
The idea of using a hyperplane to separate the feature vectors into two groups works well 
when there are only two target categories, but how does SVM handle the case where the 
target variable has more than two categories?  Several approaches have been suggested, 
but two are the most popular: (1) “one against many” where each category is split out and 
all of the other categories are merged; and, (2) “one against one” where k(k-1)/2 models 
are constructed where k is the number of categories.  DTREG uses the more accurate (but 
more computationally expensive) technique of “one against one”.  For a discussion of 
why this method is used and comparisons with other approaches see Hsu and Lin, 2002. 
 

Optimal Fitting Without Over fitting 
 
The accuracy of an SVM model is largely dependent on the selection of the kernel 
parameters such as C, Gamma, P, etc.  DTREG provides two methods for finding optimal 
parameter values, a grid search and a pattern search.  A grid search tries values of each 
parameter across the specified search range using geometric steps.  A pattern search (also 
known as a “compass search” or a “line search”) starts at the center of the search range 
and makes trial steps in each direction for each parameter.  If the fit of the model 
improves, the search center moves to the new point and the process is repeated.  If no 
improvement is found, the step size is reduced and the search is tried again.  The pattern 
search stops when the search step size is reduced to a specified tolerance. 
 
To avoid over fitting, cross-validation is used to evaluate the fitting provided by each 
parameter value set tried during the grid or pattern search process. 
 
The following figure by Florian Markowetz illustrates how different parameter values 
may cause under or over fitting: 
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Standing On The Shoulders of Giants 
The SVM implementation used by DTREG is partially based on the outstanding 
LIBSVM project by Chih-Chung Chang and Chih-Jen Lin (Chang and Lin, 2005).  They 
have made both theoretical and practical contributions to the development of support 
vector machines, and their work on LIBSVM is acknowledged with gratitude.  Parts of 
LIBSVM are used under the following terms: 
 
LIBSVM: Copyright (c) 2000-2005 Chih-Chung Chang and Chih-Jen Lin 
All rights reserved. 
 
Redistribution and use in source and binary forms, with or without modification, are 
permitted provided that the following conditions are met: 
 
1. Redistributions of source code must retain the above copyright notice, this list of 
conditions and the following disclaimer. 
 
2. Redistributions in binary form must reproduce the above copyright notice, this list of 
conditions and the following disclaimer in the documentation and/or other materials 
provided with the distribution. 
 
3. Neither name of copyright holders nor the names of its contributors may be used to 
endorse or promote products derived from this software without specific prior written 
permission. 
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“This software(LIBSVM) is provided by the copyright holders and contributors ‘as is’ and 
any express or implied warranties, including, but not limited to, the implied warranties of 
merchantability and fitness for a particular purpose are disclaimed.  In no event shall the 
regents or contributors be liable for any direct, indirect, incidental, special, exemplary, or 
consequential damages (including, but not limited to, procurement of substitute goods or 
services; loss of use, data, or profits; or business interruption) however caused and on 
any theory of liability, whether in contract, strict liability, or tort (including negligence or 
otherwise) arising in any way out of the use of this software, even if advised of the 
possibility of such damage.” 
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Discriminant Analysis 
 

Introduction to Discriminant Analysis 
 
Originally developed in 1936 by R.A. Fisher (Fisher, 1936), Discriminant Analysis is a 
classic method of classification that has stood the test of time.  Discriminant analysis 
often produces models whose accuracy approaches (and occasionally exceeds) more 
complex modern methods. 
 
Discriminant analysis can be used only for classification (i.e., with a categorical target 
variable), not for regression.  The target variable may have two or more categories. 
 
To explain discriminant analysis, let’s consider a classification involving two target 
categories and two predictor variables.  The following figure (Balakrishnama and 
Ganapathiraju) shows a plot of the two categories with the two predictors on orthogonal 
axes: 
 

 
 
A visual inspection shows that category 1 objects (open circles) tend to have larger values 
of the predictor on the Y axis and smaller values on the X axis. However, there is overlap 
between the target categories on both axes, so we can’t perform an accurate classification 
using only one of the predictors. 
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Linear discriminant analysis finds a linear transformation (“discriminant function”) of the 
two predictors, X and Y, that yields a new set of transformed values that provides a more 
accurate discrimination than either predictor alone: 
 
  TransformedTarget = C1*X + C2*Y 
 
  The following figure (also from Balakrishnama and Ganapathiraju) shows the 
partitioning done using the transformation function: 
 

 
 
A transformation function is found that maximizes the ratio of between-class variance to 
within-class variance as illustrated by this figure produced by Ludwig Schwardt and 
Johan du Preez (Schwardt and Preez, 2005): 
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The transformation seeks to rotate the axes so that when the categories are projected on 
the new axes, the differences between the groups are maximized.  The following figure 
(also by Schwardt and du Preez) shows two rotates axes.  Projection to the lower right 
axis achieves the maximum separation between the categories; projection to the lower left 
axis yields the worst separation. 
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The following figure by Randy Julian (Julian, Lilly Labs) illustrates a distribution 
projected on the transformed axis labeled “D”.  Note that the projected values produce 
complete separation on the transformed axis, whereas there is overlap on both the original 
X and Y axes. 
 

 
 
In the ideal case, a projection can be found that completely separates the categories (such 
as shown above).  However, in most cases there is no transformation that provides 
complete separation, so the goal is to find the transformation that minimizes the overlap 
of the transformed distributions.  The following figure by Alex Park and Christine Fry 
illustrates a distribution of two categories (“switch” in blue and “non-switch” in red).  
The black line shows the optimal axis found by linear discriminant analysis that 
maximizes the separation between the groups when they are projected on the line. 
 

 174



 

 
 
The following figure (also by Alex Park and Christine Fry) shows the distribution of the 
switch and non-switch categories as projected on the transformed axis (i.e., the black line 
shown in the figure above): 
 

 
 
Note that even after the transformation there is overlap between the categories, but setting 
a cutoff point around -1.7 on the transformed axis yields a reasonable classification of the 
categories. 
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Logistic Regression 

 

Introduction to Logistic Regression 
 
Logistic Regression is a type of predictive model that can be used when the target 
variable is a categorical variable with two categories – for example live/die, has 
disease/doesn’t have disease, purchases product/doesn’t purchase, wins race/doesn’t win, 
etc.  A logistic regression model does not involve decision trees and is more akin to 
nonlinear regression such as fitting a polynomial to a set of data values. 
 
Logistic regression can be used only with two types of target variables: 
 
1.  A categorical target variable that has exactly two categories (i.e., a binary or 
dichotomous variable). 
2.  A continuous target variable that has values in the range 0.0 to 1.0 representing 
probability values or proportions. 
 
As an example of logistic regression, consider a study whose goal is to model the 
response to a drug as a function of the dose of the drug administered.  The target 
(dependent) variable, Response, has a value 1 if the patient is successfully treated by the 
drug and 0 if the treatment is not successful.  Thus the general form of the model is: 
 
   Response = f(dose) 
 
The input data for Response will have the value 1 if the drug is effective and 0 if the drug 
is not effective.  The value of Response predicted by the model represents the probability 
of achieving an effective outcome, P(Response=1|Dose).  As with all probability values, 
it is in the range 0.0 to 1.0. 
 
One obvious question is “Why not simply use linear regression?”  In fact, many studies 
have done just that, but there are two significant problems: 
 
1.  There are no limits on the values predicted by a linear regression, so the predicted 
response might be less than 0 or greater than 1 – clearly nonsensical as a response 
probability. 
 
2.  The response usually is not a linear function of the dosage.  If a minute amount of the 
drug is administered, no patients will respond.  Doubling the dose to a larger but still 
minute amount will not yield any positive response.  But as the dosage is increases a 
threshold will be reached where the drug begins to become effective.  Incremental 
increases in the dosage above the threshold usually will elicit an increasingly positive 
effect.  However, eventually a saturation level is reached, and beyond that point 
increasing the dosage does not increase the response. 
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The Dose-Response Curve 
 
The logistic regression dose-response curve has an S (sigmoidal) shape such as shown 
here: 
 

 
 
Notice that all of the Response values are 0 or 1.  The Dose varies from 0 to 25.  Below a 
dose of 9 all of the Response values are 0.  Above a dose of 10 all of the response values 
are 1. 
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The Logistic Model Formula 
 
The logistic model formula computes the probability of the selected response as a 
function of the values of the predictor variables. 
 
If a predictor variable is categorical variable with two values, then one of the values is 
assigned the value 1 and the other is assigned the value 0.  Note that DTREG allows you 
to use any value for categorical variables such as “Male” and “Female”, and it converts 
these symbolic names into 0/1 values.  So you don’t have to be concerned with recoding 
categorical values. 
 
If a predictor variable is a categorical variable with more than two categories, then a 
separate dummy variable is generated to represent each of the categories except for one 
which is excluded.  The value of the dummy variable is 1 if the variable has that 
category, and the value is 0 if the variable has any other category; hence, no more than 
one dummy variable will be 1.  If the variable has the value of the excluded category, 
then all of the dummy variables generated for the variable are 0.  DTREG automatically 
generates the dummy variables for categorical predictor variables; all you have to do is 
designate variables as being categorical. 
 
In summary, the logistic formula has each continuous predictor variable, each 
dichotomous predictor variable with a value of 0 or 1, and a dummy variable for every 
category of predictor variables with more than two categories less one category. 
 
The form of the logistic model formula is: 
 

)))...(exp(1/(1 22110 kkXXXP ββββ ++++−+=  
 
Where β0 is a constant and βi are coefficients of the predictor variables (or dummy 
variables in the case of multi-category predictor variables).  The computed value, P, is a 
probability in the range 0 to 1.  The exp() function is e raised to a power.  You can 
exclude the β0 constant by turning off the option “Include constant (intercept) term” on 
the logistic regression model property page. 
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Output Generated for a Logistic Regression Analysis 

Summary statistics for the model 
 
============  Logistic Regression Parameters  ============ 
 
Predict: DeathPenalty = 1  (Yes) 
 
Number of parameters calculated = 4 
Number of data rows used = 147 
 
Wald confidence intervals are computed for 95% probability. 
 
Log likelihood of model = -88.142490 
Deviance (-2 * Log likelihood) = 176.284981 
Akaike's Information Criterion (AIC) = 184.284981 
Bayesian Information Criterion (BIC) = 196.246711 
 
The summary statistics begin by showing the name of the target variable and the category 
of the target whose probability is being predicted by the model.  You can select the 
category on the logistic regression property page for the analysis. 
 
The log likelihood of the model is the value that is maximized by the process that 
computes the maximum likelihood value for the β parameters.  Technically, it is the value 
of the likelihood function, 
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The Deviance is equal to -2*log-likelihood. 
 
Akaike’s Information Criterion (AIC) is -2*log-likelihood+2*k where k is the number 
of estimated parameters. 
 
The Bayesian Information Criterion (BIC) is -2*log-likelihood + k*log(n) where k is 
the number of estimated parameters and n is the sample size.  The Bayesian Information 
Criterion is also known as the Schwartz criterion. 
 
 

Computed Beta Parameters 
 
  ------------------  Computed Parameter (Beta) Values  ------------------ 
 
   Variable      Parameter   Std. Error   Pr. Chi Sq.   Lower C.I.    Upper C.I. 
--------------  ----------  ------------  -----------  ------------  ------------ 
BlackDefendant      0.5952         0.394       0.1308        -0.177         1.367 
WhiteVictim         0.2565         0.400       0.5216        -0.528         1.041 
Serious             0.1871         0.061       0.0022         0.067         0.307 
Constant           -2.6516         0.675     < 0.0001        -3.974        -1.329 
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The computed beta parameters are the maximum likelihood values of the β parameters in 
the logistic regression model formula (see above).  By using them in an equation with the 
corresponding values of the predictor (X) variables, you can compute the expected 
probability, P, for an observation. 
 
In addition to the maximum likelihood value, the standard error for the estimate is 
displayed along with the Chi squared probability that the true value of the parameter is 
not zero.  The last two columns display the Wald upper and lower confidence intervals.  
You can select the confidence interval percentage range on the Logistic Regression 
property page. 
 
The odds ratios corresponding to the parameter values are displayed in the next table.  
The odds ratios are computed by raising e (base of natural logs) to the power of the 
parameter value. 
 
  ------------------  Odds Ratios  ------------------ 
 
   Variable       Odds Ratio      Lower C.I.      Upper C.I. 
--------------  --------------  --------------  -------------- 
BlackDefendant          1.8134          0.8378          3.9247 
WhiteVictim             1.2924          0.5898          2.8316 
Serious                 1.2057          1.0694          1.3594 

 
If a predictor variable is categorical, then a dummy variable is generated for each 
category except for one.  In this case, there is a β parameter for each dummy variable, and 
the categories are shown indented under the names of the variables like this: 
 
  ---------------  Computed Parameter (Beta) Values  --------------- 
 
Variable    Parameter  Std. Error  Pr. Chi Sq.  Lower C.I.  Upper C.I. 
---------  ----------  ----------  -----------  ----------  ---------- 
Class 
     Crew     0.8845      0.1643     < 0.0001      0.5624      1.2065 
    First     1.7733      0.1896     < 0.0001      1.4016      2.1450 
   Second     0.7742      0.1921     < 0.0001      0.3977      1.1507 
Age 
    Adult    -1.0225      0.2726       0.0002     -1.5568     -0.4881 
Sex 
     Male    -2.2831      0.1534     < 0.0001     -2.5838     -1.9825 
Constant      1.1915      0.2765     < 0.0001      0.6495      1.7334 
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Likelihood Ratio Statistics 
 
  ------  Likelihood Ratio Statistics  ------ 
 
   Variable      L. Ratio    DF   Pr. Chi Sq. 
--------------  ----------  ----  ----------- 
BlackDefendant       2.321    1       0.12763 
WhiteVictim          0.413    1       0.52020 
Serious             10.234    1       0.00138 
Constant            18.609    1       0.00002 
 
If you enable the option “Compute likelihood ratio significance tests” on the logistic 
regression property page, then a table similar to the one shown above will be printed.  
The likelihood ratio significance tests are computed by performing a logistic regression 
with each parameter omitted from the model and comparing the log likelihood ratio for 
the model with and without the parameter.  These significance tests are considered to be 
more reliable than the Wald significance test.  However, since the logistic regression 
must be recomputed with each predictor omitted, the computation time increases in 
proportion to the number of predictor variables.  If a predictor variable is a categorical 
variable with multiple categories, the significance test is performed with all of the 
categories included and all of them excluded. 
 
 

Computational Issues for Logistic Regression 

Failure to Converge 
 
An iterative Newton-Raphson algorithm is used to calculate the maximum likelihood 
values of the parameters.  This procedure uses the partial second derivatives of the 
parameters in the Hessian matrix to guide incremental parameter changes in an effort to 
maximize the log likelihood value for the likelihood function.  The algorithm iterates 
until the absolute value of the largest parameter change is less than the value specified for 
“Tolerance” on the logistic regression property page. 
 
Most logistic regression analyses converge to a solution in a dozen or so iterations, but 
you may occasionally run into one that does not converge.  If this happens, try enabling 
the option “Use Firth’s procedure” on the logistic regression property page.  Firth’s 
procedure slows down the calculations, but it usually results in achieving convergence.  
Note: if Firth’s procedure is enabled, unbiased parameter values are calculated which 
may be somewhat different than what you would get with Firth’s procedure turned off. 
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Singular Hessian Matrix 
 
The Hessian matrix with the partial second derivatives of the parameter values is used to 
guide the convergence process.  If the Hessian matrix is singular, the logistic regression 
procedure will be unsuccessful and a warning message will be displayed. 
 

Complete and Quasi-Complete Separation of Values 
 
Complete separation is a condition where one predictor or a linear combination of 
predictors perfectly predicts the target value.  For example, consider a situation where 
every value of the Response target variable is 0 if Dose is less than 10 and every value is 
1 if Dose is greater than 10.  Then the value of Response can be perfectly predicted by 
checking if Dose is less than or greater than 10.  In this case it is impossible to compute 
the maximum likelihood values for the β parameters because the slope of the logistic 
function would be infinite. 
 
At the beginning of each logistic regression analysis, a check is made for complete 
separation on each predictor variable.  If complete separation is detected, a report will be 
generated similar to this: 
 
-----------  Report On Separation of Variables  ----------- 
 
Warning: Complete separation of target values occurs on Age 
 
The example above indicates that values of the target variable are completely determined 
by the Age predictor variable.  If separation occurs for a particular category of a multi-
category predictor variable, the category will be shown in brackets after the variable 
name, for example “Race[2]”. 
 
Quasi-complete separation occurs when values of the target variable overlap or are tied 
at a single or only a few values of a predictor variable.  The analysis does not check for 
quasi-complete separation, but the symptoms are extremely large calculated values for 
the β parameters or large standard errors.  The analysis also may fail to converge. 
 
If complete or quasi-complete separation is detected, the predictor variable(s) showing 
separation should be removed from the analysis. 
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How Trees are Built and Pruned 
 
Train up a tree in the way it should go, and when you are old sit under the shade of it. 
 – Charles Dickens 
 
The process DTREG uses to build and prune a tree is complex and computationally 
intensive.  Here is an outline of the steps: 
 
1) Build the tree 

a) Examine each node and find the best possible split 
i) Examine each predictor variable 

(1) Examine each possible split on each predictor 
b) Create two child nodes 
c) Determine which child node each row goes into.  This may involve using 

surrogate splitters. 
d) Continue the process until a stopping criterion (e.g., minimum node size) is 

reached. 
2) Prune the tree 

a) Build a set of cross-validation trees 
b) Compute the cross validated misclassification cost for each possible tree size 
c) Prune the primary tree to the optimal size 

 

Building Trees 
The process used to split a node is the same whether the node is the root node with all of 
the rows or a child node many levels deep in the tree.  The only difference is the set of 
rows in the node being split. 
 

Splitting Nodes 
DTREG tries each predictor variable to see how well it can divide the node into two 
groups. 
 
If the predictor is continuous, a trial split is made between each discrete value (category) 
of the variable.  For example, if the predictor being evaluated is Age and there are 80 
values of Age ranging from 10 to 79, then DTREG makes a trial split putting the rows 
with a value of 10 for Age in the left node and the rows with values from 11 to 79 in the 
right node.  The improvement gained from the potential split is remembered, and then the 
next trial split is done putting rows with Age values of 10 and 11 in the left group and 
values from 12 to 79 in the right group.  The number of splits evaluated is equal to the 
number of discrete values of the predictor variable less one. 
 
You can control the maximum number of discrete values used for continuous variables 
by setting the value of “Max. categories for predictor variables” on the Design property 
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screen (see page 33).  If there are more actual discrete values than this parameter setting, 
values are grouped together into value ranges. 
 
This process is repeated by moving the split point across all possible division points.  The 
best improvement found from any split point is saved as the best possible split for that 
predictor variable in this node.  The process is then repeated for each other predictor 
variable.  The best split found for any predictor variable is used to perform the actual split 
on the node.  The next best five splits are saved as “competitor splits” for the node. 
 
When examining the possible splits for a categorical predictor variable, the calculations 
are more complex and potentially much more time consuming. 
 
If the predictor variable is categorical and the target variable is continuous, the categories 
of the predictor variable are sorted so that the mean value of the target variable for the 
rows having each category of the predictor are increasing.  For example, if the target 
variable is “Income” and the predictor variable has three categories, single, married and 
divorced, the categories are ordered so that the mean value of Income for the people in 
each predictor category is increasing.  The splitting process then tries each split point 
between each category of the predictor.  This is very similar to the process used for 
continuous predictor variables except the categories are arranged by values of the target 
variable rather than by values of the predictor variable.  The number of splits evaluated is 
equal to the number of categories of the predictor variable less one. 
 
If both the target variable and the predictor variable are categorical, the process gets more 
complex.  In this case, to perform an exhaustive search DTREG must evaluate a potential 
split for every possible combination of categories of the predictor variable.  The number 
of splits is equal to 2(k-1)-1 where k is the number of categories of the predictor variable.  
For example, if there are 5 categories, 15 splits are tried; if there are 10 categories, 511 
splits are tried; if there are 16 categories, 32,767 splits are tried; if there are 32 categories, 
2,147,483,647 splits are tried.  Because of this exponential growth, the computation time 
to do an exhaustive search becomes prohibitive when there are more than about 12 
predictor categories.  In this case, DTREG uses the clustering technique described below 
to group the target categories. 
 
There is one case where classification trees are efficient to build using exhaustive search 
even with categorical predictors having a large number of categories.  That is the case 
where the target variable has only two possible categories.  Fortunately, this situation 
occurs fairly often – the target categories might be live/die, bought-product/did-not-buy, 
malignant/benign, etc.  For this situation, DTREG has to evaluate only many splits as the 
number of categories for the predictor variable less one. 
 
In order to make it feasible to construct classification trees with target variables that have 
more than two categories and predictor variables that have a large number of categories, 
DTREG switches from using an exhaustive search to a cluster analysis method when the 
number of predictor categories exceeds a threshold that you can specify on the Model 
Design property page (see page 33).  This technique uses cluster analysis to group the 
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categories of the target variable into two groups.  DTREG is then able to try only (k-1) 
splits, where k is the number of predictor categories. 
 
Once DTREG has evaluated each possible split for each possible predictor variable, a 
node is split using the best split found.  The runner-up splits are remembered and 
displayed as “Competitor Splits” in the report. 
 

Evaluating Splits 
The ideal split would divide a group into two child groups in such a way so that all of the 
rows in the left child have the same value on the target variable and all of the rows in the 
right group have the same target value – but different from the left group.  If such a split 
can be found, then you can exactly and perfectly classify all of the rows by using just that 
split, and no further splits are necessary or useful.  Such a perfect split is possible only if 
the rows in the node being split have only two possible values on the target variable. 
 
Unfortunately, perfect splits do not occur often, so it is necessary to evaluate and 
compare the quality of imperfect splits.  Various criteria have been proposed for 
evaluating splits, but they all have the same basic goal which is to favor homogeneity 
within each child node and heterogeneity between the child nodes.  The heterogeneity – 
or dispersion – of target categories within a node is called the “node impurity”.  The goal 
of splitting is to produce child nodes with minimum impurity. 
 
The impurity of every node is calculated by examining the distribution of categories of 
the target variable for the rows in the group.  A “pure” node, where all rows have the 
same value of the target variable, has an impurity value of 0 (zero).  When a potential 
split is evaluated, the probability-weighted average of the impurities of the two child 
nodes is subtracted from the impurity of the parent node.  This reduction in impurity is 
called the improvement of the split.  The split with the greatest improvement is the one 
used.  Improvement values for splits are shown in the node information that is part of the 
report generated by DTREG. 
 
DTREG provides two methods for evaluating the quality of splits when building 
classification trees, (1) Gini and (2) Entropy,.  Only one method is provided when 
building regression trees, and that is minimum variance within nodes.  The minimum 
variance/least squares criteria is essential the same criteria used by traditional, numeric 
regression analysis (i.e., line and function fitting). 
 
Experience has shown that the splitting criterion is not very important, and Gini and 
Entropy yield trees that are very similar.  Gini is considered slightly better than Entropy, 
so it is the default criteria used for classification trees.  See Breiman, Friedman, Olshen 
and Stone Classification And Regression Trees (1984) for a technical description of the 
Gini and Entropy criteria. 
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Assigning Categories to Nodes 
When a decision tree is used to predict values of the target variable, rows are run through 
the tree down to the point where they reach a terminal node.  The category assigned to the 
terminal node is the predicted value for the row being evaluated.  So a natural question is 
how categories are assigned to nodes. 
 
For regression trees built with a continuous target variable, the value assigned to a node is 
simply the average value of the target variable for all rows that end up in the node 
weighted by the row weights. 
 
For classification trees built with a categorical target variable, the determination of what 
category to assign to a node is more complex: it is the category that minimizes the 
misclassification cost for the rows in the node.  The calculation of the misclassification 
cost is somewhat complex.  The formula involves the distribution of target categories in 
the node compared with the distribution in the total (learning) sample.  The category 
weights and the misclassification costs also affect the assigned category.  In the simplest 
case, every row that is misclassified has a cost of 1 and every row that is correctly 
classified has a cost of 0, so the category with the most rows in the node is assigned to the 
node.  The misclassification cost for every node is displayed in the report generated by 
DTREG.  A misclassification summary table is included near the end of the report. 
 
If you wish, you can specify specific costs for misclassifying one target category as 
another target category.  For example, you might want to assign a greater cost to 
classifying a heart attack as indigestion than classifying indigestion as a heart attack.  
These misclassification costs are implemented by generating altered prior  (category 
weight) values that are used in the calculation.  See Breiman, Friedman, et al (1984) for a 
detailed description of how misclassification costs are used. 
 

Missing Values and Surrogate Splitters 
Ideally, every row would have values for every variable.  Unfortunately, in the real 
world, missing values are encountered often: People being surveyed refuse or forget to 
answer questions, some questions may not apply to all people, some medical tests may 
not be performed on all patients, etc. 
 
Some simple programs discard rows that have any missing values.  But this is a waste of 
valuable information that may be available on other variables. 
 
DTREG uses a sophisticated technique involving surrogate splitters to estimate the 
values of predictor variables with missing values.   
 
Surrogate splitters are predictor variables that are not as good at splitting a group as the 
primary splitter but which yield similar splitting results; they mimic the splits produced 
by the primary splitter. 
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DTREG compares which rows are sent to the left and right child groups by the primary 
splitter with the rows sent to the corresponding child groups by every other predictor 
variable.  The association between the primary splitter and each alternate predictor is 
computed as a function of how closely the alternate predictor matches the primary 
splitter.  (This roughly corresponds to a count of how many rows each predictor sends left 
and right, but the actual calculation is more complex.)  The alternate predictor variables 
are then ranked in decreasing order of association. 
 
The largest possible association value is 1.0 which means the surrogate sends exactly the 
same set of rows to the left and right groups as the primary splitter.  An association value 
of 0.0 means that the surrogate does no better at assigning rows than simply putting them 
in the most probable group. 
 
Surrogate splitters are similar to competitor splitters in the sense that they both yield 
splits of benefit but are not as good as the primary splitter.  Often, the same variable will 
be listed as both a competitor and a surrogate.  However, there is a significant difference 
between the way variables are ranked as competitors and as surrogates.  Competitor splits 
are runners-up to the primary split: they are judged the same way the primary splitter is 
judged by how much improvement they make in reducing node impurity.  Surrogate 
splitters are not ranked by the amount of improvement they produce but rather by how 
closely they mimic the split selected for the primary splitter.  The optimal split point for a 
surrogate maximizes the association between the surrogate and the primary splitter; it 
does not necessarily maximize the improvement.  If you compare entries for the same 
variable in the competitor and surrogate lists, you may see different split points selected 
and different values for the improvement from the splits. 
 
Surrogate splitters are used to classify rows that have missing values in the primary 
splitter.  They function both when the tree is being built and later when the tree is used to 
score additional datasets. 
 
When a row is encountered that has a missing value on the primary splitter, DTREG 
searches the list of surrogate splitters and uses the one with the highest association to the 
primary splitter that has a non-missing value for the row. 
 
Surrogate splitters provide the most accurate classification of rows with missing values.  
This is the default and recommended method for handling missing predictor values. 
 
In addition to their function in classifying rows with missing predictor values, the 
association between the primary splitter and surrogate splitters is used in the calculation 
of the overall importance of variables.  To understand why this is done, consider two 
variables that are very similar and highly correlated, for example height and weight.  At 
some split point, weight may be selected as the primary splitter because it is slightly 
better than height.  If this preference for weight prevails at many split points, weight 
would appear to be extremely important and height as unimportant.  However, if you 
removed weight as a predictor variable and reran the analysis, an identical tree very well 
might be built using height as the splitting variable wherever weight was used before.  
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Hence, height is nearly as important as weight.  When one variable hides the importance 
of another variable, it is known as masking.  By considering not only which variables are 
used as primary splitters but also the association of the surrogates, DTREG is able to 
provide a more accurate evaluation of variable importance. 
 

Stopping Criteria 
If no limits were placed on the size of a tree, DTREG theoretically might build a tree so 
large that every row of the learning dataset ended up in its own terminal node.  But doing 
this would be computationally expensive, and the tree would be so large that it would be 
difficult or impossible to interpret and display. 
 
Several criteria are used to limit how large a tree DTREG constructs.  Once a tree is built, 
the pruning method described in a following section is used to reduce its size to the 
optimal number of nodes. 
 
The following criteria are used to limit the size of a tree as it is build: 
 

• Minimum size node to split.  On the Design property page, you can specify that 
nodes containing fewer than a specified number of rows are not to be split. 

• Maximum tree depth.  On the Design property page, you can specify the 
maximum number of levels in the tree that are to be constructed. 

 
 

Pruning Trees 
Every branch of mine that bears no fruit, he takes away, and every branch that does bear 
fruit he prunes, that it may bear more fruit. 
 – Jesus (John 15:2) 
 
One of the classic problems in building decision trees is the question of how large a tree 
to build.  Early programs such as AID (Automatic Interaction Detection) used stopping 
criteria such as those described in a preceding section along with other criteria such as the 
improvement from splits to decide when to stop.  This is known as forward pruning.  But 
analysis of trees generated by these programs showed that they often were not of the 
optimal size. 
 
DTREG does not use its stopping criteria as the primary means for deciding how large a 
tree should be.  Instead, it uses relaxed stopping criteria and builds an overly-large tree.  
It then analyzes the tree and prunes it back to the optimal size.  This is known as 
backward pruning.  Backward pruning requires significantly more calculations than 
forward pruning, but the optimal tree sizes are much more accurately calculated.  See 
page 133 for information about displaying a chart showing error rate versus model size. 
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Why Tree Size Is Important 
There are two reasons why it is desirable to generate trees of the optimal size. 
 
First, if a situation can be described and explained equally well by two descriptions, the 
description that is simpler and more concise is generally preferred.  The same is true with 
decision trees: if two trees provide equivalent predictive accuracy, the simpler tree is 
preferred because it is easier to understand and faster to use for making predictions. 
 
Second, and more importantly, smaller trees may provide greater predictive accuracy 
for unseen data than larger trees.  This is a non-intuitive fact that warrants explanation. 
 
When creating a decision tree, a learning dataset is used.  This dataset contains a set of 
rows that are a representative sample of the overall population.  The process used to build 
the decision tree selects optimal splits to fit the tree to the learning dataset.  Once the tree 
has been built, the records in the learning dataset can be run through the tree to see how 
well the tree fits the data.  The rate of classification errors measured when running the 
learning dataset through a tree built using that dataset is known as the “resubstitution 
cost” for the tree.  (It is called resubstitution because the same data is rerun through the 
tree.) 
 
For the learning dataset, the accuracy of the fit always improves (resubstitution cost 
decreases) as the tree is grown larger.  It is always possible to grow a sufficiently large 
tree to provide 100% accuracy in predicting the learning dataset.  In an extreme case, the 
tree might be grown so large that every row of the learning dataset ended up in its own 
terminal node.  Obviously, with such a tree, an exactly correct value of the target value 
for every row could be predicted. 
 
However, it is desirable that a decision tree not only accurately model the learning dataset 
from which it was built, but also that it be able to predict the values of other cases that are 
presented to it later after it has been constructed.  The ability to predict values for 
independent datasets is known as generalization. 
 
While a large tree may fit the learning dataset with extreme accuracy, its size may reduce 
its generalization accuracy.  As an analogy, consider fitting a suit of clothes.  
Manufactured clothes sold in stores are made to fit various sizes, but they are designed so 
that there is some slack and leeway around a specified size.  In contrast, a custom tailored 
suit is made precisely to fit a specific individual.  While the custom tailored suit will fit 
one person extremely well, it will not fit other people in the same size range as well as a 
generic suit.  In the same way, adding extra nodes to a tree to “custom tailor” it to the 
learning dataset may introduce misclassifications when it is later applied to a different 
dataset. 
 
Another way to understand why large trees can be inferior to smaller trees is that the 
large trees fit and model minor “noise” in the data, whereas smaller trees model only the 
significant data factors. 
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See page 133 for information about generating a chart showing misclassification error 
rate versus model size. 
 
The primary goal of the pruning process is to generate the optimal size tree that can 
be generalized to other data beyond the learning dataset. 
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V-Fold Cross Validation 
You’re dealing with the demon of external validation.  You can’t beat external validation.  
You want to know why?  Because it feels soooo good! 
 – Barbara Hall, Northern Exposure 
 
The method used by DTREG to determine the optimal tree size is V-fold cross validation.  
Research has shown that this method is highly accurate, and it has the advantage of not 
requiring a separate, independent dataset for assessing the accuracy and size of the tree. 
 
If a tree is built using a specific learning dataset, and then independent test datasets are 
run through the tree, the classification error rate for the test data will decrease as the tree 
increases in size until it reaches a minimum at some specific size.  It the tree is grown 
beyond that point, the classification errors will either remain constant or increase.  A 
graph showing how classification errors typically vary with tree size is shown below: 
 

 
 
In order to perform tests to measure classification error as a function of tree size, it is 
necessary to have test data samples independent of the learning dataset that was used to 
build the tree.  However, independent test data frequently is difficult or expensive to 
obtain, and it is undesirable to hold back data from the learning dataset to use for a 
separate test because that weakens the learning dataset.  V-fold cross validation is a 
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technique for performing independent tree size tests without requiring separate test 
datasets and without reducing the data used to build the tree. 
 
Cross validation would seem to be paradoxical: we need independent data that was not 
used to build the tree to measure the generalized classification error, but we want to use 
all data to build the tree.  Here is how cross validation avoids this paradox. 
 
All of the rows in the learning dataset are used to build the tree.  This tree is intentionally 
allowed to grow larger than is likely to be optimal.  This is called the reference, unpruned 
tree.  The reference tree is the best tree that fits the learning dataset. 
 
Next, the learning dataset is partitioned into some number of groups called “folds”.  The 
partitioning is done using stratification methods so that the distribution of categories of 
the target variable are approximately the same in the partitioned groups.  The number of 
groups that the rows are partitioned into is the ‘V’ in “V-fold cross classification”.  
Research has shown that little is gained by using more than 10 partitions, so 10 is the 
recommended and default number of partitions in DTREG. 
 
For the point of discussion, let’s assume 10 partitions are created.  DTREG then collects 
the rows in 9 of the partitions into a new pseudo-learning dataset.  A test tree is built 
using this pseudo-learning dataset.  The quality of the test tree for fitting the full learning 
dataset will, in general, be inferior to the reference tree because only 90% of the data was 
used to build it.  Since the 10% (1 out of 10 partitions) of the data that was held back 
from the test tree build is independent of the test tree, it can be used as an independent 
test sample for the test tree. 
 
The 10% of the data that was held back when the test tree was built is run through the test 
tree and the classification error for that data is computed.  This error rate is stored as the 
independent test error rate for the first test tree. 
 
A different set of 9 partitions is now collected into a new pseudo-learning dataset.  The 
partition being held back this time is selected so that it is different than the partition held 
back for the first test tree.  A second test tree is built and its classification error is 
computed using the data that was held back when it was built. 
 
This process is repeated 10 times, building 10 separate test trees.  In each case, 90% of 
the data is used to build a test tree and 10% is held back for independent testing.  A 
different 10% is held back for each test tree. 
 
Once the 10 test trees have been built, their classification error rate as a function of tree 
size is averaged.  This averaged error rate for a particular tree size is known as the “Cross 
Validation cost” (or “CV cost”).  The cross validation cost for each size of the test trees is 
computed.  The tree size that produces the minimum cross validation cost is found.  This 
size is labeled as “Minimum CV” in the tree size report DTREG generates.  See page 109 
for an example of a tree size report with cross validation statistics. 
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The reference tree is then pruned to the number of nodes matching the size that produces 
the minimum cross validation cost.  The pruning is done in a stepwise fashion, removing 
the least important nodes during each pruning cycle.  The decision as to which node is the 
“least important” is based on the cost complexity measure as described in Classification 
And Regression Trees by Breiman, Friedman, Olshen and Stone (1984). 
 
It is important to note that the test trees built during the cross-validation process are used 
only to find the optimal tree size.  Their structure (which may be different in each test 
tree) has no bearing on the structure of the reference tree which is constructed using the 
full learning dataset.  The reference tree pruned back to the optimal size determined by 
cross validation is the best tree to use for scoring future datasets. 
 

Adjusting the Optimal Tree Size 
If you plot the cross-validation error cost for a tree versus tree size, the error cost will 
drop to a minimum point at some tree size, then it will rise as the tree size is increased 
beyond that point.  Often, the error cost will bounce up and down in the vicinity of the 
minimum point, and there will be a range of tree sizes that produce approximately the 
same low error cost.  A graph illustrating this is shown below: 
 

 
 
Note that the absolutely smallest misclassification cost is only slightly smaller than the 
misclassification cost for a tree that is several nodes smaller.  Since smaller and simpler 
trees are preferred over larger trees that have the same predictive accuracy, you may 
prefer to prune back to the smaller tree if the increase in misclassification cost is minimal.  
The cross validation cost for each possible tree size is displayed in the Tree Size report 
that DTREG generates.  See page 109 for an example. 
 

 195



 

On the “Validation” property page for the model, DTREG provides several options for 
controlling the size that is used for pruning: 
 

• Prune to the minimum cross-validated error – If you select this option, 
DTREG will prune the tree to the size the produces the absolutely minimum 
cross-validated classification error. 

• Allow 1 standard error from minimum – Many researchers believe that it is 
acceptable to prune to a smaller tree as long as the increase in misclassification 
cost does not exceed one standard error of the variance in the cross validation 
misclassification cost.  The standard error for the cross validation cost values is 
displayed in the Tree Size report.  See page 109 for an example. 

• Allow this many S.E. from the minimum – Using this option, you can specify 
an exact number of standard errors from the minimum misclassification cost you 
will allow. 
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Decision Trees Compared To Other Modeling Methods 

 

Supervised and Unsupervised Machine Learning 
Methods for analyzing and modeling data can be divided into two groups: “supervised 
learning” and “unsupervised learning.”  Supervised learning requires input data that has 
both predictor (independent) variables and a target (dependent) variable whose value is to 
be estimated.  By various means, the process “learns” how to model (predict) the value of 
the target variable based on the predictor variables.  Decision trees, regression analysis 
and neural networks are examples of supervised learning.  If the goal of an analysis is to 
predict the value of some variable, then supervised learning is recommended approach. 
 
Unsupervised learning does not identify a target (dependent) variable, but rather treats all 
of the variables equally.  In this case, the goal is not to predict the value of a variable but 
rather to look for patterns, groupings or other ways to characterize the data that may lead 
to understanding of the way the data interrelates.  Cluster analysis, correlation, factor 
analysis (principle components analysis) and statistical measures are examples of 
unsupervised learning. 
 

Linear, Nonlinear and Logistic Regression 
One of the simplest and most popular modeling methods is linear regression.  Linear 
regression fits a straight line (known linear function) to a set of data values.  The form of 
the function fitted by linear regression is: 
 
   y = a0 + a1*x1 + a2*x2 + … 
 
Where y is the dependent (target) variable, x1, x2, etc. are the independent (predictor) 
variables, and a0, a1, etc. are parameters whose values are determined so the function 
best fits the data.  Linear regression is a popular modeling technique, and there are many 
programs available to perform linear regression.  However, linear regression is 
appropriate only if the data can be modeled by a straight line function, which is often not 
the case.  Also, linear regression cannot easily handle categorical variables nor is it easy 
to look for interactions between variables. 
 
Nonlinear regression extends linear regression to fit general (nonlinear) functions of the 
form: 
 
    y = f(x1,x2,…,a1,a2,…) 
 
Here are few examples of functions that can be modeled using nonlinear regression: 
 
    y = a0 + a1*exp(x1) 
    y = a0 + a1*sin(x1) 
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As with linear regression, nonlinear regression is not well suited for categorical variables 
or variables with interactions.  The other challenge involved in using nonlinear regression 
analysis is that the form (model) of the function must be specified.  For engineering and 
scientific problems, the function model may be dictated by theory, but for marketing, 
behavioral and medical problems, it can be very difficult to develop an appropriate 
nonlinear model.  The program recommended for linear or nonlinear regression analysis 
is NLREG (http://www.nlreg.com). 
 
Logistic regression is a variant of nonlinear regression that is appropriate when the 
target (dependent) variable has only two possible values (e.g., live/die, buy/don’t-buy, 
infected/not-infected).  Logistic regression fits an S-shaped logistic function to the data.  
As with general nonlinear regression, logistic regression is it good for detecting 
interactions between variables. 
 

Neural Networks 
Neural networks (also called “multilayered perceptron”) provide models of data 
relationships through highly interconnected, simulated “neurons” that accept inputs, 
apply weighting coefficients and feed their output to other “neurons” which continue the 
process through the network to the eventual output.  Some neurons may send feedback to 
earlier neurons in the network.  Neural networks are “trained” to deliver the desired result 
by an iterative (and often lengthy) process where the weights applied to each input at 
each neuron are adjusted to optimize the desired output. 
 
Support Vector Machine (SVM) models (see page 155) are a close cousin to classical 
neural networks.  In fact, a SVM model using a sigmoid kernel function is equivalent to a 
two-layer, feed-forward neural network.  Using a kernel function, SVM’s are an 
alternative training method for polynomial, radial basis function and multi-layer 
perceptron classifiers in which the weights of the network are found by solving a 
quadratic programming problem with linear constraints, rather than by solving a non-
convex, unconstrained minimization problem as in standard neural network training. 
 
SVM’s are proven to get the optimal solution for a given set of training data.  This is due 
to the fact that the space search is a convex function with a unique optimal solution, 
avoiding the local minima which are one of the pitfalls of perceptrons.  The optimal 
solution is always found because the method is based on Lagrangian Variational 
Calculus. 
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The History of Decision Tree Analysis 
The first widely-used program for generating decision trees was “AID” (Automatic 
Interaction Detection) developed in 1963 by J. N. Morgan and J. A. Sonquist3.  Written in 
FORTRAN and limited by the hardware of the time, AID was suitable only for small to 
medium size data sets, and it could generate only regression trees.  None the less, this 
pioneering program was well received and widely used during the 1960’s and 70’s. 
 
AID was followed by many other decision tree generators including THAID by Morgan 
and Messenger in 19734, and ID3 and, later, C4.5 by J. Ross Quinlan5. 
 
The theoretical underpinning of decision tree analysis was greatly enhanced by the 
research done by Leo Breiman, Jerome Friedman, Richard Olshen and Charles Stone that 
was published in their book Classification And Regression Trees6.  Much of their 
research was embedded in a program they developed called “CART”7. 
 
Recent advancements in decision tree analyses include the TreeBoost method developed 
by Jerome Friedman (Friedman, 1999b) and Decision Tree Forests developed by Leo 
Breiman (Breiman, 2001).  Both of these methods use ensembles of trees to increase the 
predictive accuracy over a single-tree model.  DTREG can generate single-tree, 
TreeBoost and Decision Tree Forest models. 
 

                                                 
3 Morgan & Sonquist (1963) "Problems in the analysis of survey data and a proposal", JASA, 58, 415-434. 
(Original AID) 
 
4 Morgan & Messenger (1973) THAID -- A sequential analysis program for the analysis of nominal scale 
dependent variables, Survey Research Center, U of Michigan. 
 
5 Quinlan, J.R. (1993), C4.5: Programs for Machine Learning, Morgan Kaufman: San Mateo, CA. 
 
6 Breiman, L., Friedman, J.H., Olshen, R.A. & Stone, C.J. (1984), Classification and Regression Trees, 
Wadsworth: Belmont, CA. 
 
7 CART® is a registered trademark of Salford Systems. 
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Example Analyses 
 
 
The DTREG installation program installs a set of example projects in a folder named 
“Examples” under the DTREG installation directory.  Normally, this is C:\Program 
files\DTREG\Examples.  A good way to get started using DTREG is to browse the 
examples in that directory and run some of them. 
 
Most of the example analyses came from the UCI Repository of Machine Learning 
Databases (http://www.ics.uci.edu/~mlearn/MLRepository.html).  Irvine, CA: University 
of California, Department of Information and Computer Science.  This repository has 
greatly benefited the development of many decision tree and machine learning programs. 
 
Summary information about some of the examples is presented below.  Other information 
can be found in the “Notes” section displayed on the Design property page within 
DTREG. 
 
TITANIC.DTR – The sinking of the Titanic is a famous event, and new books are still 
being published about it.  Many well-known facts - from the proportions of first-class 
passengers to the "women and children first" policy, and the fact that that policy was not 
entirely successful in saving the women and children in the third class - are reflected in 
the survival rates for various classes of passenger.  These data were originally collected 
by the British Board of Trade in their investigation of the sinking.  For each person on 
board the fatal maiden voyage of the ocean liner Titanic, this dataset records sex, age 
(adult/child), booking class (first/second/third class, or crew) and whether or not that 
person survived. 
 
IRIS.DTR – This is a classification problem dating back to 1936.  Its originator, R. A. 
Fisher, developed the problem to test clustering analysis and other types of classification 
programs prior to the development of computerized decision tree generation programs.  
The dataset is small consisting of 150 records.  The target variable is categorical 
specifying the species of iris.  The predictor variables are measurements of plant 
dimensions. 
 
BOSTON.DTR – This is a regression tree example to predict the value of houses in 
various areas around Boston based on characteristics of the locale such as proximity to 
the Charles River and major highways, socioeconomic status, air pollution and other 
factors. 
 
LIVERDISORDER.DTR – This is a dataset from England that generates a classification 
tree to predict liver disorders.  The target variable is liver condition (healthy or 
abnormal).  The predictor variables are various blood chemical measurements along with 
the number of alcoholic drinks consumed per day. 
 
HOUSEVOTES.DTR – This is a classification problem that attempts to predict the 
political party affiliation of U.S. House members based on how they voted on various 
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bills in 1984.  The target variable is political party (Republican/Democrat).  The predictor 
variables are Yes/No votes cast on various bills. 
 
LANDINGCONTROL.DTR – This is a classification problem to decide whether it is 
better to use manual or automatic (autopilot) control when landing the space shuttle.  The 
target variable has two categories, Automatic and Manual.  The predictor variables 
include wind direction, velocity and visibility. 
 
BRIDGES.DTR – This is a classification problem that attempts to classify the type of 
various bridges around Pittsburg based on predictors such as their length, type of material 
and date of construction. 
 
HORSECOLIC.DTR – This is a classification problem to decide if horses suffering 
from colic need to be treated surgically.  The target variable categories are surgical or 
non-surgical.  The predictor variables describe the horse’s condition such as age, 
temperature, degree of discomfort, etc. 
 
CLEVELANDHEART14.DTR – This is a classification problem that attempts to 
predict heart disease due to vessel narrowing.  The target variable, ‘num’, is the number 
of vessels showing narrowing.  The focus is on predicting a value of 0 (no disease) versus 
non-disease which indicates narrowing in some vessels. 
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DTREG COM Library 

 
The optional DTREG COM (Component Object Model) library makes it easy for 
production applications to call DTREG as an “engine” to compute the predicted value for 
data records using a decision tree model.  You must use the GUI version of DTREG to 
construct a decision tree model before you can use it with the DTREG COM library to 
predict values. 
 
Any type of model (Single Tree, TreeBoost or Decision Tree Forest) can be used with the 
DTREG COM library to generate predicted values.  All of the advanced scoring features 
such as the use of surrogate splitters to handle missing predictor values are used in the 
DTREG COM library. 
 
Because of the standardization of the COM interface, it is easy to call the DTREG COM 
library from programs written in Visual Basic, Visual C++, VBA, Excel, Access, ASP 
and other languages.  The DTREG COM library is designed to run as an in-process DLL 
for speed of execution. 
 
An example Visual Basic program illustrating the use of the DTREG COM library is 
provided below.  See the DTREG COM Library manual for details. 
 
Private Sub RunTest_Click() 
' 
'  Reference the DTREG COM library. 
' 
Dim dtreg As DTREGCOMLib.dtreg 
Set dtreg = New DTREGCOMLib.dtreg 
' 
'  Miscellaneous variable declarations. 
' 
Dim ProjectFile As String 
Dim ModelType, status, index As Long 
Dim NumVar, NumCat As Long 
Dim VarClass, VarType As Long 
Dim VarName, CatLabel As String 
Dim ixSepalLength, ixSepalWidth As Long 
Dim ixPetalLength, ixPetalWidth As Long 
Dim ixSpecies As Long 
Dim PredictedClass As String 
Dim CatProb As Double 
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' 
'  Open the DTREG project file (TreeBoostIris.dtr). 
' 
ProjectFile = "c:\DTREG\Test\TreeBoostIris.dtr" 
status = dtreg.OpenProjectFile(ProjectFile) 
If (status <> 0) Then 
    boxStatus = "Error opening project file: " + Format(status, "##") 
    Stop 
End If 
' 
'  Find out what type of model this is 
' 
ModelType = dtreg.ModelType 
' 
'  Find out how many variables are in the model. 
' 
NumVar = dtreg.NumberOfVariables 
' 
'  Check the name and properties of each variable. 
' 
For index = 0 To NumVar - 1 
    VarName = dtreg.VariableName(index) 
    VarClass = dtreg.VariableClass(index) 
    VarType = dtreg.VariableType(index) 
Next 
' 
'  Get the index numbers of the variables variables. 
' 
ixSpecies = dtreg.VariableIndex("Species") 
ixSepalLength = dtreg.VariableIndex("Sepal length") 
ixSepalWidth = dtreg.VariableIndex("Sepal width") 
ixPetalLength = dtreg.VariableIndex("Petal length") 
ixPetalWidth = dtreg.VariableIndex("Petal width") 
' 
'  Set the values of the predictors we want to score. 
' 
status = dtreg.SetVariableValue(ixSepalLength, 5.1) 
status = dtreg.SetVariableValue(ixSepalWidth, 3.5) 
status = dtreg.SetVariableValue(ixPetalLength, 1.4) 
status = dtreg.SetVariableValue(ixPetalWidth, 0.2) 
' 
'  Compute the predicted target category. 
' 
PredictedClass = dtreg.PredictedTargetCategory 
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' 
'  See if any error occurred during the computation. 
' 
status = dtreg.LastStatus 
If status <> 0 Then 
    boxStatus = "Error computing target: " + Format(status, "##") 
    Stop 
End If 
 
End Sub 
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Licensing and Use of DTREG 

 

Use and Distribution of DTREG 
There are two versions of the DTREG program: demonstration and registered.  You are 
welcome to make copies of the demonstration version of DTREG and pass them on to 
friends or post this program on bulletin boards or distribute it via disk catalog services, 
CD ROMS, or other means provided the entire DTREG distribution is included in its 
original, unmodified form.  A distribution fee may be charged for the cost of the diskette, 
shipping and handling.  Vendors are encouraged to contact the author to get the most 
recent version of DTREG. 
 
As a demonstration product, you are granted a no-cost, trial period of 30 days during 
which you may evaluate DTREG.  If you find DTREG to be useful, educational, and/or 
entertaining, and continue to use it beyond the 30 day trial period, you are required to 
compensate the author by purchasing it. 
 
In return for purchasing DTREG, you will be authorized to continue using DTREG 
beyond the trial period on a single computer.  Contact the author for information about 
multi-system licenses. 
 
The registered version of DTREG may not be redistributed or used on more than one 
computer system. 

Copyright Notice 
 
Both the DTREG program and documentation are copyright © 1991-2004 by Phillip H. Sherrod. 
You are not authorized to modify the program or documentation. "DTREG” is a trademark of 
Phillip H. Sherrod. 
 
Web page 
 
Up-to-date information about DTREG can be found on the web page: http://www.dtreg.com

Disclaimer 
This software and documentation are provided on an "as is” basis.  This program may 
contain "bugs” and inaccuracies, and its results should not be assumed to be correct 
unless they are verified by independent means. Phillip H. Sherrod disclaims all warranties 
relating to this software, whether expressed or implied, including but not limited to any 
implied warranties of merchantability or fitness for a particular purpose.  Neither Phillip 
H. Sherrod nor anyone else who has been involved in the creation, production, or 
delivery of this software shall be liable for any indirect, consequential, or incidental 
damages arising out of the use or inability to use such software, even if Phillip H. Sherrod 
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has been advised of the possibility of such damages or claims.  The person using the 
software bears all risk as to the quality and performance of the software. 
 
This agreement shall be governed by the laws of the State of Tennessee and shall inure to 
the benefit of Phillip H. Sherrod and any successors, administrators, heirs and assigns.  
Any action or proceeding brought by either party against the other arising out of or 
related to this agreement shall be brought only in a state or federal court of competent 
jurisdiction located in Williamson County, Tennessee.  The parties hereby consent to in 
personam jurisdiction of said courts. 
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