

CONTROL ENGINEERING LABORATORY

A GUIDE TO INDEPENDENT
COMPONENT ANALYSIS –

Theory and Practice

Jelmer van Ast and Mika Ruusunen

Report A No 23, March 2004

University of Oulu
Control Engineering Laboratory
Report A No 23, March 2004

A GUIDE TO INDEPENDENT COMPONENT ANALYSIS -
Theory and Practice

Jelmer van Ast and Mika Ruusunen

Control Engineering Laboratory,

Department of Process and Environmental Engineering,
University of Oulu

P.O.Box 4300, FIN-90014 University of Oulu, Finland

Abstract: Independent Component Analysis, or ICA, is a new technique for visualizing measured data.
Appropriate data representation is necessary for the extraction of important information that is hidden in the
measurements. Feature extraction and data reduction are two of the most important results of ICA that
enable the application of the technique in many different fields of engineering. This report presents the
theory and practical application of ICA in a way that is easy to understand for engineers from various kinds
of expertise and works towards a step-by-step guideline for practical usage of ICA.

ICA assumes a data model that states that a collection of measurements originate from a number of
independent sources that are linearly mixed. Based on higher order statistical properties of the
measurements, ICA is able to estimate these independent sources or Independent Components (ICs) very
accurately. It turns out that ICA is able to separate linearly mixed data from any distribution, but the
Gaussian. This being nongaussian is what enables ICA to find the ICs.

In this report, ICA is applied to two cases. The first case is about prediction of failures in a screw insertion
process. The second one is about the prediction of an upcoming paper break in a paper factory.

This work is the result of the three months internship of Jelmer van Ast at the Control Engineering
Laboratory of the Department of Process and Environmental Engineering at the University of Oulu. He is
an MSc student at the Delft Center for Systems and Control of Delft University of Technology under the
supervision of Prof. Robert Babuška. The research resulting in this report has been done under the
supervision of Mika Ruusunen.

Keywords: Independent Component Analysis, screw insertion, paper break, data analysis, FastICA,
feature extraction.

ISBN 951-42-7315-X University of Oulu
ISSN 1238-9390 Department of Process and Environmental
 Engineering

 Control Engineering Laboratory
 P.O.Box 4300, FIN-90014 University of Oulu

1 INTRODUCTION...1

2 THEORY OF INDEPENDENT COMPONENT ANALYSIS3

2.1 Introduction ...3
2.2 The ICA model..3
2.3 Describing data as random variables...5
2.4 Understanding the model ..9

2.4.1 Considering supergaussians ..9
2.4.2 Some statistical properties of random variables..11
2.4.3 Exploiting statistics ...13
2.4.4 Subgaussian distributions..17
2.4.5 Gaussian distributions ...19

2.5 Exploiting nongaussianity ...21
2.6 Estimating more than one Independent Component ...22
2.7 Summary and concluding remarks ..22

3 ICA APPLIED...24

3.1 Introduction ...24
3.2 Screw insertion analysis ..24

3.2.1 Introduction ...24
3.2.2 Data visualisation ..25
3.2.3 FastICA ...27
3.2.4 Analysis of the results ...29
3.2.5 Conclusions ...29

3.3 Paper Break analysis ...30
3.3.1 Introduction ...30
3.3.2 Description of the dataset ..31
3.3.3 How ICA can be applied ...32
3.3.4 Intrinsic dimensionality of the data ...32
3.3.5 Using all features for ICA ...36
3.3.6 Using selected features only for ICA ..43
3.3.7 Conclusions ...45

3.4 More practical considerations ...46
3.4.1 Pre-processing ...46
3.4.2 Overtraining ..48
3.4.3 Choice of the algorithm...48
3.4.4 Controlling the number of independent components49

3.5 Conclusions ...49

4 A GUIDELINE FOR ICA...50

5 CONCLUSIONS...52

REFERENCES..53

Appendix A M-files used for screw insertion analysis
Appendix B M-files used for paper break analysis

 1

1 INTRODUCTION

Science is all about understanding what is going on around us. Applied science, like
engineering, is especially focussed on how this understanding can be exploited to create
systems that are useful to us. In this report, Independent Component Analysis, or ICA, is
treated as a way to enhance our knowledge about measured signals. It assumes that many
signals that can be measured actually originate from independent sources and provides us
with a method to retrieve these sources. In ICA, these independent sources are called
Independent Components (ICs). Some clues can be given why knowing the independent
components is of value to engineers.

• Knowing the independent components and knowing in which way they contribute
to what has been measured can give insight to the process that generated the data.
If nothing is known about the process, it maybe possible to retrieve some of the
model parameters. Another application may be to estimate the ICs from both data
of normal and of abnormal process conditions. Possibly, analysing the ICs might
reveal what causes the process conditions to be abnormal.

• A finite number of independent components can be linearly combined in infinitely
many ways. According to /3/, natural images all have at their source the same
independent components. The way each IC contributes to the total signal then
determines the image. In this way, it would be possible to compress natural
images, based on their independent components.

• The most well known application of ICA is the Blind Source Separation (BSS)
problem. A famous explanation of BSS is the ‘cocktail party problem’. Suppose
that we find ourselves on a cocktail party with many other people hanging around.
If every person would be holding a microphone to record his voice, we would find
out that each microphone didn’t only record the voice of its owner, but also the
voices of all the other speakers at the cocktail party. So, each microphone records
a linear mixture of all the speech-signals in the room added with some noise. It is
important to notice that all the speech-signals are independent. /2/ shows that ICA
is able to determine these independent components (the individual speech-signals)
based on only the information from the microphones.

From the above-mentioned examples, it can be noticed that ICA is about extracting
features appropriate for a given application. Intuitively, we may also sense that the ICs of
a certain dataset can be appropriate features in general.

To enhance the readability of this report, important intermediate conclusions are
highlighted with a big leading exclamation mark. Right now, we can already mark the
first intermediate conclusion, which is:

The goal of this report is to provide the reader with enough information about ICA to
enable him or her to apply it in his own field of research. Information from both

Finding the independent components of certain observations may be very useful
for several applications.

 2

theoretical and practical point of view will lead to a guideline for the use of ICA in
chapter 4. The next chapter will cover the theory of ICA from the problem to a solution.
Since ICA is a very new subject, the theory in that chapter is mainly based on the only
book that covers the subject entirely by Hyvärinen, Karhunen and Oja Independent
Component Analysis /6/. Chapter 3 will cover the application of ICA. Based on two
applications, conclusions are drawn about the pitfalls and successes of ICA. As was just
mentioned, it all comes together in Chapter 4. The guideline for practical usage of ICA in
this chapter can be used as reference for the reader who is using ICA for his own project.

 3

2 THEORY OF INDEPENDENT COMPONENT ANALYSIS

2.1 Introduction

Regarding the ‘cocktail party problem’ from the previous chapter, we know that
something like ICA is possible, because the human ears and brains in essence actually
perform the same analysis. Having two ears and a typical brain structure enables us to
listen carefully to the one we are talking to, hearing everything that is said even in very
noisy environments. We can guess, based on what we know about the human brain that
we have to find a nonlinear approach to the problem. Of course this is by no means a
proof that there exists something like ICA, but it gives us motivation to search for it.
Looking around us, especially to what nature has evolved in, is always a good way to get
new ideas on scientific topics.

How ICA exactly works, based on which principles and under which assumptions and
restrictions will be treated in the following paragraphs in a step-by-step manner. The
subject will be treated from problem to solution, providing additional theory along the
way. Wherever important background knowledge is suspected to be not clear to the
reader, a textbox appears in the text summarising its ins and outs. Of course, the more
advanced reader can skip these textboxes.

The theory is based on the book Independent Component Analysis /6/, but is written in a
way that aims at giving the reader the feeling of discovering the solution to the ICA
problem by himself. The aim of this is to give, even the reader inexperienced in data
analysis, a clear view of the subject. For the same, but higher specialized treatment of the
subject, the reader can refer to /6/or e.g. /12/.

2.2 The ICA model

Before we can start analysing independent components, whatever that could be, we have
to make clear what exactly we are looking for. A good start is therefore to put our
thoughts together in a mathematical model.
We already made clear that we could measure some signals that have in fact originated
from a finite number of independent sources. These independent sources are linearly
mixed in the measured signals.
To illustrate this, consider again the cocktail party problem. In this case, the independent
sources are all the speech-signals originating from the people at the party. In the medium,
in this case the air, the speech-signals are linearly mixed by superposition. Each person
hears a different mixture, because the distance between him or her and the other persons
determine how strong each independent source contributes to it.

In a mathematical formula, this looks like:

 4

)()()()(

)()()()(

)()()()(

3332321313

3232221212

3132121111

tsatsatsatx

tsatsatsatx

tsatsatsatx

++=
++=
++=

. (1)

Here we consider the case with only three persons at the cocktail party who are all talking
simultaneously. The xi(t) and sj(t) with i,j = 1, 2, 3 represent the measured and the source
signals respectively. The ∈ija with i,j = 1, 2, 3 represent the different weights.

Formula (1) states that each xi(t) is a weighted sum of all the si(t).

Representation of signals

We can represent a signal by denoting the function that gives the value (amplitude) of the
signal at each time instant. In this way, the signal is described at each time instant and
can therefore be called a continuous-time signal. In (1), the signals are continuous-time,
denoted by x(t) and s(t). This is a good representation when it is used for pure theoretical
purposes or for analogue system design. For ICA however, the implementation will be an
algorithm suitable only for digital computing. Because of this, the representation of the
signal has to be in discrete-time. This means that we have to sample the signal, i.e.
evaluate the signal at a finite number of time instants only. In order to properly sample a
signal, one has to consider the sampling rate /13/. In the remaining of this report it is
assumed that the signals are properly sampled.

We assume now that the measured signals are sampled. For simplicity we will omit the
sample index. In matrix-vector form, we can then write (1) as follows:

Asx = , (2)

where x is a vector of mixtures x1,…,xn, s the vector of independent components s1,…,sn,
and A is the mixing n x n matrix with elements aij. This model is known as the noise-free
ICA model. It is a latent variable generative model. This means that it describes the
generation of the observed data with very little knowledge about its variables. In fact,
only the observed data, x is known and both A and s are unknown. One can imagine that
it will be a very demanding task to determine both A and s from the observed data only.
We need to retrieve much information from the observed data. Regarding the signals in
the model as random variables can do this. Random variables are clearly defined in
statistics and many techniques to handle them are available. Independence, for example is
a well-defined property of random variables. We will see that regarding the variables in
the model as random variables is the first step in the direction of solving the ICA
problem. The vector x as well as s are collections of random variables. The scalars xi(t)
and sj(t) are then samples at time instants t of these random variables. A great advantage
of this is that we can now use the model in (2) also for data different from time signals,
such as pixel values in a digital image.

 5

2.3 Describing data as random variables

When we describe data as random variables we assign to each possible value of the
variable a certain probability. For continuous valued variables, this is not directly
possible, because the possibility that a variable takes a certain value amongst an infinitive
number of possible values is of course zero. We therefore speak about probability density
functions (pdf) and cumulative distribution functions (cdf) instead. The cdf Fx(x0) of a
random variable x at a point x = x0 is defined as:

)()(00 xxPxFx ≤= . (3)

The cdf is thus defined as the probability of the outcome that x takes a value smaller than
or equal to x0. It can be easily seen from the definition and from what we know about
probabilities that Fx(x) can take values in the range 1)(0 ≤≤ xFx , with 0)(=−∞xF and

1)(=+∞xF . The pdf of a random variable can be obtained from its cdf as:

0

)(
)(0

xx

x
x dx

xdF
xp

=

= . (4)

In practice, however, we mostly have knowledge about the pdf of a random variable and
its cdf is then computed from it like:

ξξ∫
∞−

=
0

)()(0

x

xx dpxF . (5)

A random variable can thus be described by its pdf. Keep in mind that)(0xpx doesn’t

mean the probability of x at x0; it means the density of the probability of x at x0. To get
the probability, one has to take the area under the density function, or equivalently the
difference between Fx(x) and Fx(x-dx) with dx small.
There are of course an infinite number of possible pdfs and often we do not know the
exact pdf of a random variable. It could then be assumed that a parametric model
describes the pdf of a random variable. In that case, we only have to determine the
parameters that characterize the pdf. Of course, the resulting pdf is not exactly correct,
but hopefully sufficiently accurate for its application.

There are a lot of parametric models of pdfs /5/. There is one family of models that is
particularly interesting now, because it will help us in understanding the ICA problem.
This is the exponential power family of pdfs, which can be expressed for zero-mean as:

{ } 














−=

ν

ν

ν x

x
Cxpx

E
exp)(. (6)

The E(…) is called the expectation. The definition of expectation is:

{ } ∫
∞

∞−

= dxpx (x)g(x)g(x)E
,
 (7)

 6

for any function g(x) performed on a scalar, vector or matrix.
In (6), C is a scaling constant and v is a positive real-valued power, which determines the
type of the pdf. We can distinguish three important types of density functions. For v = 2
we get the Gaussian pdf, which will turn out to be of major importance to the ICA
problem. When v < 2, the pdf in (6) will give rise to supergaussian densities, and v > 2 to
subgaussian ones. To illustrate this, we will consider one example of each of these cases.
These densities will continue to appear during the remaining of this chapter.

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1. Two Gaussian densities; dashed: 0.4= ; solid: 0.8= .

Figure 1 presents the pdf of a Gaussian random variable. In formula, this pdf looks like:

.

(8)

This is a very important distribution, as we will see in the remaining of this chapter and
especially in paragraph 2.4.5. We see that the Gaussian density is characterized by only
two variables, m and 2σ ; the mean and the variance respectively (σ is called the
standard deviation). In most of the upcoming theory in this report, the densities are
considered to be zero-mean. This means that the center of the density occurs at zero and
the formula of the pdf can be simplified to:







−=

2

2

2 2
exp

2

1
)(

σπσ
x

xpx

.
 (9)

We indeed recognise that this formula results from (6) when v = 2 and the expectation is
computed. We will see more about expectations, means and variances later on in this

()





 −−=
2

2

2 2
exp

2

1
)(

σ

m

πσ

x
xpx

 7

report. Along the way, also more will be clear about this special distribution. For now, it
is most important to compare it with an example of a supergaussian and a subgaussian
pdf.

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 2. Two Laplacian densities; dashed: 0.4= ; solid: 0.8= .

In Figure 2 we see the pdf of a Laplacian random variable, which is a typical
supergaussian distribution. It results from (6) when v = 1. A supergaussian pdf is
characterized by large values of the density at values close to zero and far from zero, in
the tails of the distribution, compared to the Gaussian pdf. In between, the density is
relatively small. In the case of the Laplacian pdf we can see this very clearly.
If we look at the formula (for again zero-mean) of this pdf:

()xxpx λλ −= exp
2

)(
,
 (10)

we see that this pdf is characterized by the only parameter λ . Like the only parameterσ
in the Gaussian, it determines both the height of its top and the width of its tails.

 8

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 3. Two uniform densities; dashed: 0.8=a ; solid: 0.8=a .

The uniform pdf is shown in Figure 3. Its value is a constant in a certain interval. Its value
outside of it is zero. Like any other pdf, the total area under it has to be equal to one, so as
the parameter a increases, the interval becomes wider and the height smaller. This can
also be seen in its mathematical expression:

[]




 −∈=

elsewhere,0

,,
2

1
)(aax

axpx

.

 (11)

This is a typical example of a subgaussian distribution, since it has low values for the
density at values of x that are around zero or very large compared to the Gaussian pdf. In
between, the density is relatively large.
The uniform pdf results from (6) when ∞→ν .

When we want to speak about a density that describes the distribution of more than one
random variable, we speak about the joint density, or multivariate density. In fact we are
then speaking about the distribution of a random vector, which is nothing more than a
vector with random variables as scalar components. To illustrate this, the joint pdf of a
Gaussian random vector of N-dimensions is shown here:

()
() ()





 −−−= −

x
1

xxx

xx

mxCmx
C

x T

Np
2

1
exp

2

1
)(

2π
, (12)

 9

with []TNxxx ,...,, 21=x , T
xxx N

mmm],...,,[
21

=xm and















=

NNN

N

xxxx

xxxx

xx

CC

CC

�

���

�

1

111

C .

A matrix like xxC is called a covariance matrix as we will see in deeper detail later in this

report.

2.4 Understanding the model

In order to solve a problem, it is most important to have a throughout understanding
about it. A good way of doing this is to visualise the problem. Let us see how we can do
that with ICA.
We start with the model in (2), for convenience displayed below again:

Asx = . (13)

Remember that this model states that we have some independent components s, which are
linearly mixed through A to give us the only measurable data x. It was already decided
that we will regard x and s as random variables. We know that random variables are
characterized by their probability density function (pdf). We will consider three cases:
Gaussian, supergaussian and subgaussian to understand the problem. Later we will try to
make the generalisation to other distribution functions. To keep things visible, we restrict
ourselves now to only two dimensions. This means that both s and x only consist of two
components. The generalisation to higher dimensions will be made afterwards.

2.4.1 Considering supergaussians

We start our analysis with random variables of a supergaussian distribution. As we saw
before, the Laplacian distribution is a frequently used. Based on its pdf we can generate
two independent components. Their scatter-plot is displayed in Figure 4.

Figure 4. Two independent Laplacian distributions.

 10

Suppose these are the components in s. To get the components in x we have to multiply
the independent components with a mixing matrix A. The resulted mixture is displayed
below.

Figure 5. Linear mixture of two Laplacian distributions.

We can understand why this scatter-plot is the result of this transformation by regarding
the principle directions of this distribution. The first principle direction is [0, 1] T in figure
4. If we multiply A with this vector we get the vector pointing in the direction of one of
the principle directions in Figure 5.

We can clearly see from the distribution of x that its components are not independent.

 Independence

A joint distributed random vector is independent when one component does not give any
information about the value of all the other components. Mathematically we can then
say that its pdf can be factorised in its marginal pdfs:

∏==
N

ixNxNxxx xpxpxpxpp
i

)()()()()(21 21
�x . (14)

For example, knowing that x1 is large implies that x2 can only have a few possible values.
To solve the ICA problem, we can rewrite the ICA model in (2) and (13) in a different
way:

xAs 1−= . (15)

We see that we can only do this if A is invertible. This implies that A must be a non-
singular square matrix.

We now have put a restriction on the model. One might say that restrictions are a bad
thing that should be avoided, but in fact, the problem is not solvable when there are no

 11

restrictions on it. The model, in closed form, has many possible solutions. From a
measured random vector x there can be an infinite number or possible matrices A and
random vectors s. Indeed, when A is known, then s is fixed, but still there are infinitively
many ways of making A. Restrictions have to help us reduce the number of possibilities
and lead us in the right direction. Of course, one has to be very careful when imposing
restrictions, because putting a wrong restriction on the model may cut off the road to the
right solution. Since restrictions are that important for this problem, we will keep track of
them during this chapter.

The first restriction can already be derived from where we actually started and where we
want to go. That is that we want the components of the random vector s to be statistically
independent. So let’s mark this important restriction as we just determined to do:

Restriction 1: The independent components are assumed to be statistically
independent.

The reason we started talking about restrictions is that we actually restricted A to be
invertible. So we can also mark this important restriction:

Restriction 2: We assume that the unknown mixing matrix is invertible.

For convenience we will rewrite (15) as:

Wxs = . (16)

We can now say that we have the observations in x and from that we want to estimate the
matrix W so that it results in a random vector s which components are statistically
independent. In real life, real independence is very hard to achieve. It turns out to be
enough to say that we want the components in s to be as independent as possible. Of
course we need to put bounds on this remark, otherwise ICA will always find an s no
matter how independent the components are. We do not bother with this right now.

We thus have now the task to estimate the matrix W while obeying the restrictions. To do
this, we have to exploit much of the information that is hidden in the observations x.
Because x is a random vector, we will look at its statistical properties.

2.4.2 Some statistical properties of random variables

We can characterise a random variable by its statistics. Examples of statistics of a random
variable are the mean and variance. However, in most cases we need more statistics to
describe a random variable. There are different ways to do this and this can be done for
many orders. We will state here three important types of statistics, for the orders one to
four. In each case, we will consider the probability density function)(xpx of a scalar

random variable x.

 12

Moments
The jth moment jα of x is defined as:

∫
∞

∞−

== ξξξα dpx x
jj

j)(}{E , j = 1, 2, ... (17)

Only the first two moments are of importance, these are }{E1 x=α , which is the mean mx

and }{E 2
2 x=α , which represents the average power of x.

We can also take these moments around the mean. We then get the central moments.

Central moments
The jth central moment jµ of x is defined as:

∫
∞

∞−

−=−= ξξξαµ dpmx x
j

x
j

j)()(}){(E 1 , j = 1, 2, ... (18)

In this case, the first central moment 1µ is of no meaning, since it is always zero. The

second central moment� 2
2 xσµ = is the variance of x. The third central moment

}){(E 3
3 xmx −=µ is called the scewness, which is a measure for the asymmetry of a pdf.

For zero-mean, the moments and the central moments become equivalent.

We now have useful expressions for the first three orders of statistics. Of course, there
are more orders available from both moments and central moments, but these have in
practice some drawbacks that prevent us from being interested in them. Still, it will turn
out that we need also a fourth order statistic to solve the ICA problem. We will find this
last one in the so-called cumulants.

Cumulants
According to /4/, the generating function for cumulants generates the following first four
cumulants;

01 =κ , }{ 2
2 xE=κ , }{ 3

3 xE=κ and 224
4 }]{[3}{ xExE −=κ . (19)

We see that the first three are equivalent to the first three moments, but that the fourth
one is different. This is exactly the fourth order statistic that we were looking for. Its
name is the kurtosis. It has some nice features that make the kurtosis easy to use. These
features are:

additivity:

)(kurt)(kurt)(kurt yxyx +=+ (20)

and

)(kurt)(kurt 4 xx ββ = . (21)

 13

We can of course also speak about moments, central moments and cumulants for random
vectors.
One remark still has to be made. Although some pdfs have infinite moments and although
some pdfs have the same values for their moments, for almost every pdf this is not the
case. We will therefore assume now that if we consider a certain pdf, it is uniquely
defined by its statistics that are also finite valued.

2.4.3 Exploiting statistics

We will thus try to exploit the statistical properties of x to estimate its independent
components s and its mixing matrix W. Remember that A is just the inverse of W, so
estimating one of them implies the other.

Exploiting first order statistics
We can easily remove the effect of first order statistics by calculating the mean, storing it
and subtracting it from the data. Since we only have sampled data; thus a finite number of
data points, we have to make an estimate of the mean. The general estimation of an
expectation is:

∑
=

≈
K

jK 1
j)g(

1
)}E{g(xx . (22)

To get an estimation of the mean we can thus take:

∑
=

=
K

j
jx K 1

1
ˆ xm , (23)

which is called the sample mean.

As already mentioned, in this report we assume that the data are zero-mean. Mostly this
is not the case. We then have to make the data zero-mean by estimating the mean and
subtracting it from the data:

xmxx ′−′← ˆ , (24)

where x′ is the original data, xm′ˆ its mean and x the zero-mean data. This makes the

independent components s also zero-mean, because:

xs mWm ˆˆ = , (25)

and since xm̂ is zero, sm̂ is also zero. W remains unaffected, so making the data zero-

mean will not affect the estimation of the mixing matrix. If we store xm̂ , we can always

add it to the obtained independent components afterwards, like:

xmWss ′+=′ ˆ . (26)

We now have exploited the first order statistics of the observed data. Its effects are
removed and hopefully this brings us closer to the solution. We will now proceed with
removing the effects of second order statistics.

 14

Exploiting second order statistics
The two important second order statistics are the cross-covariance:

)})({(E
2121 21 xxxx mxmxc −−= (27)

and the cross-correlation:

}{E 2121
xxr xx = . (28)

As can be seen very easily, these two are the same for zero-mean data, which is the case
after removing the effect of the first order statistics as we did. Both cross-covariance and
cross-correlation say something about the linear dependence between the two random
variables. This can also be explained as linear predictability. We say that the distribution
in figure 5 is positively correlated, since an increase in one component generally also
means an increase in the other component. When two random variables are not
correlated, we call them uncorrelated. In the zero-mean case 0

2121
== xxxx rc . This means

that they are orthogonal. We see that making two random variables uncorrelated removes
the effect of the second order statistics. This is exactly what we are looking for. When we
look at the distribution of the independent components in figure 4, we see that the
independent components are indeed orthogonal (i.e. they make an angle of 90°). We
therefore also can sense that we are on the right way to solve the problem.

When we want a random vector to be uncorrelated, we want to have the cross-correlation
of zero for every two components in the random vector, thus:

0)})({(E =−−=
jiji xjxixx mxmxc , ji ≠∀ . (29)

When i = j we get the variance of the individual components. To completely remove the
effect of second order statistics, we want these variances to equal to one. Another way of
motivating this can be found when we look again at (16) or e.g. (13). We can see that a
multiplication by a constant at both the left and the right side of (16) results in the same
model. So even if we have a good estimate of W, we are still not sure if it is the right one,
for there are still an infinite number of scaled versions of W, that are equally likely to be
the right one. We can partly bypass this by restricting ourselves to find only independent
components of unit variance.

Restriction 3: We assume that the statistically independent components are of unit
variance, that is: 1}{E 2 =is .

We are thus not able to determine the energy of the independent components. For most
applications however, this is not a big limitation. Notice that the sign of the independent
components is still ambiguous. Also this turns out to be a minor limitation.

We cannot determine the sign of the independent components.

 15

Now we mentioned this restriction about the variance, we can see a similar ambiguity of
the ICA model. Suppose we multiply both the left and the right side of (16) with a
permutation matrix P:

PWxPs = . (30)

This permutation matrix interchanges position of the independent components. We can
see by:

WxPWxPs 1 == − , (31)

that the model remains the same after this multiplication. This means that we cannot
determine the order of the ICs. We cannot put a restriction on the model so that we can
determine the order. Fortunately, in most applications it is no big difficulty that the ICs
are determined in an unknown order. We thus have to keep in mind:

We cannot determine the order of the independent components.

With the components of the random vector to have unit variance, they are even
orthonormal instead of only orthogonal. If we put all these covariances and variances
between all the components in the random vector together, we get the correlation matrix:

IRC xx == . (32)

This matrix states that the random vector x is white, or sphered.

We can see that our random vector x is not white, because its elements are not
orthonormal, i.e. the principle axes of the distribution are not of unit variance and do not
make an angle of 90°. A standard and frequently used method to whiten or sphering data
is principle component analysis, or PCA. For a detailed description about PCA please
refer to /11/. Here, we will only use the results of PCA to whiten the data.

To whiten a random vector x we will search for a linear transformation

Vxz = , (33)

which results in a new random vector z that is white. The matrix V is then called a
whitening matrix. One result of PCA is that we can use the eigenvalue decomposition
(EVD) of the covariance matrix to get a whitening matrix.
The EVD of the covariance matrix of x is:

TT
x EDExxC == }E{ . (34)

In this formula, E is the orthogonal matrix of eigenvectors of xC and D is the diagonal
matrix of its eigenvalues, so that the top-left most eigenvalue in D corresponds to the first
eigenvector in E, the one to the right of it to the second eigenvector, and so on. A
whitening matrix can now be obtained by:

TEEDV 21−= , (35)

as can be seen quite easily when we substitute (35) and (36) into (34):

 16

IEEDEDEEEDVxxVzz === −− TTTTTT 2121}E{}E{ . (36)

When we compute the covariance matrix of the data in Figure 5, perform the EVD and
compute from this the whitening matrix, we can left multiply it with x to get the whitened
z. The result is also shown in the figure below.

Figure 6. Whitened mixture of two Laplacian distributions.

When we compare this figure with Figure 4, where the original independent sources are
displayed, we see that a rotation is all what is left in order to solve the ICA problem. In
matrix terms, a rotation is equivalent to a left-multiplication by an orthogonal matrix.

After whitening the observations, an orthogonal transformation is what’s left in
order to solve the ICA problem.

We can also see that whitening the data doesn’t solve the ICA problem. To see this,
consider an orthogonal transformation U of the whitened data z:

Uzy = . (37)

If we now compute the covariance matrix of y we see that it is also white.

IUIUUUzzEyy === TTTT }{}E{ . (38)

This means that whitening the data can result in infinitive many white distributions; all
separated by a rotational angle from each other.
If we now look at our model after this whitening, it can be seen that

zWzWVzWVWxs 1 ~==== − T . (39)

We thus have to estimate a different mixing matrix W
~

to solve the ICA problem.
Intuitively, by looking at the figures, we already concluded that whitening brought us a

step closer to the solution. We can also see this mathematically, by noticing that W
~

is
also orthogonal:

 17

IWWWzzWss === TTTT ~~~
}E{

~
}E{ . (40)

In the original case, we had to estimate n2 parameters of the n x n matrix W. For
orthogonal matrices of this size, we only need to estimate n(n-1)/2 parameters. In our
two-dimensional case, this means that we first needed to estimate all of the 4 parameters,
where we now only need to estimate 1 parameter. This is exactly the angle that separates
us from the solution.

Whitening the observations reduces the complexity of the estimation of the
independent components.

The question is now of course, how to estimate this angle, or in general the last n(n-1)/2
parameters? We now have exploited the information stored in the first two statistics, so
we have to go to higher statistics for this. We will do this later on. First let us look at the
case of subgaussians to see how all what we just found applies to that class of pdfs. This
is also a good opportunity to summarize all what we have achieved so far.

2.4.4 Subgaussian distributions

We will now generate two independent subgaussian distributions. Since the uniform
distribution is a popular example of a subgaussian distribution, we will generate the
independent random vectors from this pdf. Their scatter-plot is displayed in Figure 7.

Figure 7. Two independent uniform distributions.

Suppose again these are the components in s. To get the components in x we have to
multiply the independent components with a mixing matrix A. The resulted mixture is
displayed below.

 18

Figure 8. Linear mixture of two uniform distributions.

We see again that the components of x are not independent, since knowing this one gives
information about the possible values the other can take. We also see very clearly that
they are correlated, since an increase in one of the components generally implies also an
increase of the other component.
We will do the same as we did with the supergaussian data, i.e. exploiting the information
stored in the statistics of the observed x. The data is already zero-mean, but when this
was not the case, it could be made zero-mean by just subtracting its estimated mean. The
correlation of the distribution can be removed by whitening x. The result is Figure 9.

Figure 9. Whitened mixture of two independent distributions.

Again we see that all we need to do now is to determine the orthogonal transformation
that makes the components of the data independent. To achieve this, we need information
from higher order statistics, like we concluded in the supergaussian case.

There is one more pdf we promised to consider. This is the Gaussian distribution. When
we apply what we have achieved so far, we will see that we gain some indications how to
proceed.

 19

2.4.5 Gaussian distributions

We will thus generate samples of two independent Gaussian distributions. Their scatter-
plot is displayed in Figure 10.

Figure 10. Two Gaussian uniform distributions.

Suppose again these are the components in s. To get the components in x we have to
multiply the independent components with a mixing matrix A.

Figure 11. Linear mixture of two Gaussian distributions.

We see again that the components of x are not independent and correlated.
We will again try to exploit the information stored in the statistics of the observed x. The
data is already zero-mean, so we can proceed instantly with the second order statistics.
The correlation of the distribution can be removed by whitening x. The result is Figure
12.

 20

Figure 12. Whitened mixture of two Gaussian distributions.

We now have the astonishing result that this figure looks exactly the same as Figure 10.
We can perform any rotation, but keep the same distribution. There is thus no way to
distinguish the case of independent components from any other whitened form of the
data. We can prove mathematically that our observation is correct.
When we write down the joint pdf of two independent Gaussian variables s1 and s2:

)
2

exp(
2

1

2
exp

2

1
),(

22
2

2
1

21

s
−=




 +−=
ππ

ss
ssp , (41)

we can see by using the formula of transforming pdfs that when we multiply this with the
mixing matrix A we get the following joint pdf for the mixture of x1 and x2:

T

T

xxp A
xA

det)
2

exp(
2

1
),(

2

21 −=
π

. (42)

We know that
22

xxA =T and 1det =TA because A is orthogonal, so that

)
2

exp(
2

1
),(

2

21

x
−=

π
xxp . (43)

We don’t see the mixing matrix A anymore in this distribution and x could just as well be
s, but also infinite other orthonormal random vectors. We can thus conclude that it is
impossible for ICA to find the independent components of a Gaussian distribution. We
therefore make another restriction to the model:

Restriction 4: The independent components must have nongaussian distributions.

This may seem to be a very serious restriction. However, many observations are
nongaussian and we will also see later on that we can relax this restriction a little. What is
more important is that this result gives us a clue on how to proceed. Namely, if we can

 21

find some way to measure how close a certain distribution is to the Gaussian one, we can
maybe utilise this to determine the important last orthogonal transformation. We will see
very soon how we can actually do this.

One important remark has to be made before we proceed. It turns out that nongaussianity
is the only restriction to the observed data x. This means that the components of x can be
of any distribution, not only sub- or supergaussian. In /6/, it is said that the Gaussian
distribution is the least structured pdf. Intuitively we know that it is exactly the structure
of the data that helps us in estimating the independent components. So we can also feel
that any distribution that has more structure than the Gaussian pdf is allowed for the
observation vector.

2.5 Exploiting nongaussianity

We already noted, that nongaussianity of the independent components may be a way to
estimate them. For this, it is necessary for the observations to be more Gaussian than their
independent components. This is indeed the case according to central limit theorem, since
theorem states that in the limit, a sum of independent distributions approximates the
Gaussian distribution. As the observations are considered to be a weighted sum of their
independent components, their distribution is closer to the Gaussian distribution than
their ICs.

It has already been noted that higher order statistics are necessary to solve the ICA
problem. Especially the kurtosis turns out to be very useful. The kurtosis was defined in
(21) as:

224 }]{[3}{kurt xExE −= . (44)

The Gaussian pdf is completely described by its first and second order statistics. Higher
order statistics exist for a Gaussian random variable, but are expressed using second order
statistics. The fourth moment of a Gaussian equals 22}){(3 xE , so it can easily be seen that
the kurtosis of a Gaussian equals zero. A kurtosis of zero only appears for Gaussian
random variables and a few others that are seldom encountered in practice. The kurtosis
of a random variable can be either positive or negative. Random variables with a negative
kurtosis are called subgaussian and with a positive kurtosis supergaussian.

Since the independent components are maximal nongaussian compared to their mixtures,
estimating them consists of finding a rotation that maximizes the nongaussianity of the
mixtures. How this exactly works and how different algorithms can be constructed based
on these principles can be found in /6/. Using the kurtosis for measuring the
nongaussianity of a signal is an intuitive way, but has some drawbacks. The major
drawback is that it is very sensitive to outliers in the data. An outlier is a value that is
much larger than the rest of the data. Only one outlier can thus dominate the kurtosis
completely. Other measures of nongaussianity are available, in particular negentropy.
Negentropy measures how close a random variable is compared to a Gaussian random
variable with the same first and second order statistics in the sense of entropy. For more

 22

information about entropy, negentropy and the use of it for the ICA problem, readers can
refer to /6/ or /12/.

Higher order statistics, like the kurtosis and negentropy can be used for a
measurement of nongaussianity, which is the key in solving the ICA problem.

ICA algorithms can be derived from other points of view, like estimation theory,
information theory and tensors. Since this report is only here to give the reader a practical
sense of how ICA really works, this is out of its scope. Again, readers can refer to /6/ for
more information.

2.6 Estimating more than one Independent Component

We now have seen how it is possible to estimate one of the independent components of a
mixture of independent sources. In the two dimensional case, this solves the entire
problem, since the second IC is perpendicular to the first one. Of course, this leaves the
ambiguity of the sign, but we already concluded that this is a limitation of ICA.
When there are more ICs, thus for dimensions higher than two, we have to estimate more
ICs. Running the estimation algorithm just more times is not reliable, since there is no
assurance that the other ICs will be found, instead of the ones that are already estimated.
However, there is still the property of orthogonality that can be utilized. If we make sure
that during the estimation of a new IC, it is constantly orthogonalized with respect to the
ICs that are already estimated, we are sure that it will result in really a new one.

In order to determine all the ICs, we have to make sure that they are constantly
orthogonalized with respect to the ICs that are already found.

Only the last IC can be determined straight from the others and their orthogonality. Here
we see that this last IC can also have a Gaussian distribution, since nongaussianity is not
used for its estimation. We can thus relief the fourth restriction as following:

Restriction 4 (relieved): All the independent components, except for at most one,
must have nongaussian distributions.

2.7 Summary and concluding remarks

We saw in this chapter how the ICA problem can be solved step by step. The (noise-free)
Independent Component Analysis (ICA) model states that there are some measurements
that are a linear mixture of a certain number of independent sources as shown by:

Asx = , (45)

where x is the random vector of observations, A is the mixing matrix and s is the random
vector of independent sources. This model is a latent variable generative model, which is
not solvable in its closed form. With restrictions on the model, it is possible to estimate
the independent sources, which are called Independent Components (ICs) and the mixing

 23

matrix. ICA is performed starting by centering and whitening the observations. This
removes the effect of the first and second order statistics. After whitening, the complexity
of the problem is reduced to the estimation of an orthogonal mixing matrix, which has
much less free parameters than the original mixing matrix. Nongaussianity turned out to
be the key in solving the ICA problem. Higher order statistics are necessary for a measure
of nongaussianity. Maximizing the nongaussianity then will result in finding the ICs.
Examples of higher order statistics are the kurtosis and negentropy. Measures for
nongaussianity can also be derived from estimation, information and tensor theory. After
estimating one of the ICs, the next one can be estimated under the constraint that it is
orthogonal to the ICs already found. The last one follows directly from the other ICs.
This is why at most one of the ICs can be Gaussian.

The most important things to remember were highlighted and will return in chapter 4.
One has to keep in mind that this chapter was mainly to have an idea about how ICA is
possible, which is probably enough for the use of ICA in engineering. In the next chapter
we will see how ICA can be applied in real world engineering situations. Especially
possible pitfalls will be highlighted. In the concluding chapter 4, these highlights will
return as well. A guideline for the usage of ICA will be extracted from them.

 24

3 ICA APPLIED

3.1 Introduction

In the previous chapter we went through the process of understanding ICA from problem
to solution. This is very important, although we will probably never have to implement
the ICA algorithm ourselves. As we also know, there exist many ICA algorithms, of
which maybe the most favourite one is FastICA. We will use the Matlab implementation
of FastICA /7/. This software package can be downloaded from /9/. Although we don’t
need to know all the ins and outs of the algorithm, we still need to understand what is
going on. In the previous chapter, we treated the theory; in this chapter we will look at
two examples of applying ICA to real world problems. The main objective is not to solve
the problems, but to learn from mistakes and successes. We will keep track of these to
form a guideline for the usage of ICA in the next chapter.

3.2 Screw insertion analysis

3.2.1 Introduction

In this section we analyze the process data from screw insertion. At first, when the data
was delivered for this analysis, there was no sign that indicated the origin of the data. Of
course, the ICA algorithm does not have to know the origin of the data; it just tries to find
the independent components of it. However, the quality of what comes out of the
algorithm does not only depend on the algorithm, but also on what is used for input. It is
up to the researcher to determine how the data should be pre-processed before the ICA
algorithm is applied. For this, it is highly necessary to understand the data very well. This
constitutes in visualising the data and in knowing some of the basic properties like mean,
variance and missing values.
Therefore the first important step can already be marked:

Make sure that you have a proper understanding of the data by visualization and
calculation of the mean and variance.

This affects the way you would preprocess and analyze the data, as well as how you
would interpret the output.

For the analysis of the screw insertion process, three datasets are available. The datasets
were presented as three plain matrices each of which contains rows that represent the
behaviour of a certain variable of the process over time. There was no description about
the origin of the data, so at first this process is unknown. It is given that all the data come
from the same process, but as different realizations. From two of the datasets it is known
that the data comes from a successful process. From one it is known that it contains only

 25

failures. The purpose is to find features from the failure-dataset that indicate the failure,
and hopefully its cause.

From what we just stated, it is most useful to interview the owner of the dataset to get to
know the details about the process. In this case, important questions are:

• From what kind of process originate the datasets?
• What is the variable, which behaviour is described versus the time?
• What makes a process to fail?

It turned out that the process was about inserting screws to join two pieces of a product.
Most of the time this processing stage is successful, but sometimes there is a failure that
results in an unreliable connection of the pieces. It is desired to analyse if the insertion of
the screw was successful based on certain measurements. It turns out that information
necessary for the solution lies in the torque of the screwdriver during the insertion of the
screw in a hole. The variable in the datasets represents this torque over time during this
process. What’s the reason of the failures is not yet known, but it is hoped that it is
hidden in one or more of the independent components that generate the torque. At least, it
is hoped that some features can be found from the independent components that help us
distinguish between the success and failure case. For more information about monitoring
automated screw insertion processes, readers can consult for example /14/ and /15/.

3.2.2 Data visualisation

It is always a good way to start with just looking at the data. The Matlab function
icaplot, from the FastICA toolbox /7/, provides a good way of plotting the different
signals in the dataset. The type of the plot should be set to ’complot’, since in this
mode; all the signals will be plotted on the same axes, which is necessary for comparing
them by sight. One difficulty remains; the signals were zero padded to make them all of
the same size. Since the mean and the variance of all the signals are in the order of 3, and
10-6 respectively, the zeros totally ruined the scale. Therefore it was a good idea to
replace those zeros at the end of each signal by the mean of that signal. In this way,
icaplot scaled the signals in the right way.

Below, two plots are displayed. The first one contains seven signals of a corresponding
successful insertion and the second of corresponding failed insertions.

 26

50 100 150 200 250 300 350

7

6

5

4

3

2

1

Figure 13. Seven signals of a successful process.

50 100 150 200 250 300 350

7

6

5

4

3

2

1

Figure 14. Seven signals of a failed process.

From these two figures, it was concluded that it would be very hard to draw a clear
distinction between a succeeded process and a failed one. It was hoped that ICA would be
able to find independent components that can make this distinction.

For the purpose of visualisation, zeros at the end of the signals were replaced by the mean
value of its corresponding signal. In fact, these zeros weren’t part of the signal at all. It
would thus make no sense in analysing the signals as they were presented in the dataset.
ICA would try to find independent components that also describe the zeros at the end.

 27

Instead of zeros, we could just as well have extended the signals by sine waves. In that
case, ICA would have tried to find independent components that include these sine waves
as well. Thus, the resulted independent components make no sense at all, since they don’t
originate from just the measured signals.
All the ends were truncated at the same point. We then created datasets of pure data, with
the ends synchronised. From this we will highlight another important step:

Make sure that the data only consists of the signals without artificially introduced
values, like zero-padding.

3.2.3 FastICA

Using the FastICA algorithm in Matlab is an easy and efficient way of using ICA on data.
One can perform FastICA on the data, without further restrictions. The algorithm then
returns a number of independent components, as much as the dimension of the dataset,
i.e. the number of measurements. FastICA first whitens the data before estimating the
independent components. This is useful, because whitening transforms the mixing matrix
in an orthogonal matrix, which has much less elements to be estimated. Furthermore,
whitening gives us the eigenvalues of the data, which provide a measure of determining
the importance of certain directions of the data. Discarding the smallest eigenvalues is
therefore a way of reducing the dimension. In FastICA it is possible to give as an optional
argument the number of eigenvalues to be retained in the estimation of the independent
components. This value should not be too large, since then unimportant independent
components are estimated, but also not too small, since the signal could then not be
represented in an accurate way anymore.
To compare the ICs from the datasets, we need to estimate for all the datasets the same
number of ICs. Since there are only seven measurements in the dataset that represent the
unsuccessful processes, the maximum number of ICs is seven. We can compute the
intrinsic dimension of the successful and failed data, by looking at how well the data is
reconstructed using only a limited number of PCA components. The percentage of
remaining variance is displayed versus the number of dimensions in Figure 15.

 28

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 15. Remaining variance vs. number of PCA components to recontruct the data from
successful processes.

We see that in order to retain 80% of the variance, we need at least 10 dimensions. Since
we just determined that we could only take a maximum of 7 dimensions, this was used
instead.
FastICA was performed on the data of the successful and the failed process. Figure 16
shows the results.

20 40 60 80 100 120 140 160 180

7

6

5

4

3

2

1

Figure 16. 7 ICs of data from successful processes.

 29

20 40 60 80 100 120 140 160 180

7

6

5

4

3

2

1

Figure 17. 7 ICs of data from failed processes.

3.2.4 Analysis of the results

We have to keep in mind that we don’t know anything about the order of the ICs neither
about their relative strength. Also the sign of the ICs is unknown. When we look at the
ICs in both figures we see mostly noisy signals. Only a few signals seem to have nice
shapes. The first one in Figure 16 rises at the end. This might indicate an increase of the
torque because the screw tightens in the material. The third IC in the same figure shows
also a small increase after some time. From Figure 17, maybe only the third and fourth
signals are worth mentioning. In the third IC, an increase in the middle part can be seen,
where in the fourth IC, the beginning is quite flat following by a noisy increase at the
end.
Of course, because we cannot say anything about the sign of the ICs, an increase can also
mean a decrease and visa versa.

3.2.5 Conclusions

Considering the datasets and the way they are obtained, we might wonder if finding ICs
makes sense at all. From the ICA model, we assumed that there are some independent
sources that result after a linear transformation in the observations. In the case of this
application, there is no such generation of the observations. Each observation comes from
different process conditions, so probably is a linear combination of different independent
components. For observations that follow the ICA model, we should have had different
measurements of one process. Then, each measurement is a component of the observation
vector, which are all linear combinations of the same ICs.
Still, FastICA finds independent components to our solution. This is because ICA
assumes that the observed signals follow the ICA model, no matter if that’s really true or

 30

not. In our case, the data doesn’t follow the ICA model, so we shouldn’t also expect to
explain the ICs in a physical way. The found ICs are features of this particular dataset.
Probably, if one of the observations was missing, or another one added the ICs would be
different.
In the case of observations from a successful process, we see already from the data that
most of them end with an increase of the signal value. We see this increase indeed as a
feature in the first component. However, not every observed signal ends with an increase
of its value. This might be because of the different process conditions that result in the
observations. For a decent analysis of this problem, we would need to have the data
separated for each process condition. We can then analyse the difference in IC features
between successful and failed processes. It is the question whether to apply ICA, because
most likely the found feature can be seen right away from the observed data, like the
increase at the end.
An important thing to remember is thus:

As long as the observations are nongaussian, ICA will find independent
components that are maximized in their nongaussianity. This doesn’t mean that
these ICs make sense in a physical way.

We therefore have to ask ourselves the question if we expect that our data follow the ICA
model before we try to apply ICA. If this is the case, it is worth trying to apply ICA,
because the found ICs can be interpreted as really the independent sources of the
observations. If this is not the case, the ICs that ICA finds, if they can be found at all,
have no meaningful interpretation.

3.3 Paper Break analysis

3.3.1 Introduction

In the paper industry, long sheets of paper move rapidly through a number of process
steps. The faster, the more paper can be produced. However, moving the paper too fast
may result in a break of the paper, forcing the process to stop. After the paper is put in
place properly again, the process can continue. This interval of non-productivity in
combination with the costs of stopping and restarting all the machines along the process
line, make the occurrence of such a break an expensive event. It would be highly
desirable to be able to predict when a break is at hand, in order to take appropriate actions
to avoid the upcoming break to occur.

Ten years of research on this problem is already behind us, with as result a working
break-prediction system /1/. This system, however, does not always predict as well as one
would like. Therefore more research is still desired.

In this paragraph, ICA is applied as a method to predict a paper break. ICA tries to find
the independent components of which the sensor data is built from. The idea is that some
of these components might reveal the underlying reason for a break. Perhaps it can detect

 31

an unusual change in some components that indicate an upcoming break in advance. ICA
is a very promising method due to its intuitiveness and many good results in other
applications. As far as we know, ICA has never been applied to this problem before.

3.3.2 Description of the dataset

ICA is a data-driven method, meaning that it needs process data to extract its information
from. The data that is provided for this analysis consists of three datasets, representing
the ‘normal’- case, a case of only ‘two breaks’ and a case of ‘many breaks’. In the dataset
it is marked when a break did occur.
Each dataset is represented in an .xls spreadsheet file. The rows represent time intervals
of one minute. There is one column that denotes when a break occurs and 24 columns of
sensor data. The meaning of these columns is explained in Table 1.

Table 1. Explanation of the columns in the dataset.

Column Quantity Unit
1 Mechanical pulp feed 1/s
2 Chemical pulp feed 1/s
3 Broke feed 1/s
4 Filler to centrifugal cleaner pump 1/s
5 Filler 1 flow 1/s
6 Filler 2 flow 1/s
7 Mechanical pulp feed consistency %
8 Chemical pulp feed consistency %
9 Broke to broke screen consistency %
10 Chemical pulp percentage %
11 Broke percentage %
12 Bleached mechanical pulp percentage %
13 Machine pulp consistency %
14 Chemical pulp freeness Ml/min
15 Chemical pulp pH pH
16 Chemical pulp conductivity mS/m
17 Mechanical pulp1 tower pH pH
18 Mechanical pulp2 tower pH pH
19 Mechanical pulp conductivity mS/m
20 Broke pH pH
21 Broke conductivity mS/m
22 White water pH pH
23 White water tower temperature °C
24 Mechanical pulp proportioning chest level %

We like to convert this data to an appropriate form for MATLAB, since then we can use
the FastICA toolbox, which is a useful and fast implementation of the ICA method. The
script paperpulp_read does this job and returns the three datasets as individual
matrices. Now, the rows and columns are also interchanged, because this is the correct
form for FastICA input. The number of rows is now in all three datasets equal to 25.

Still, the data is not yet ready for the application of ICA, since it contains missing values
mainly at the end of the datasets. This is simply solved by removing the columns

 32

containing a missing value. This is justified because only a small amount of data is
removed and there is no data removed from the middle of the datasets. The function
clean_set performs these operations. Now, two of the datasets are in a clean form for
further processing. Only the ‘normal’ dataset still contains missing values. Looking at the
row that indicates when a break occurs, one can conclude that the actual ‘normal’ data is
in between some breaks. The missing values occur at a moment when such a break
occurs. We can easily select only the middle part of the dataset as the new ‘normal’
dataset, also removing the missing values at the same time.

The most important thing to highlight from this is the following:

Make sure you have the data in the right format for further processing. Take care
of the missing data and be careful with the orientation of the data set.

3.3.3 How ICA can be applied

As a default, ICA will find just as many independent components as there are rows in x.
One standard pre-processing step before the actual FastICA algorithm is performed is
whitening the data. Whitening means making the data as uncorrelated as possible.
FastICA now only needs to find an orthogonal transformation that makes the rows of the
data independent. From the whitened data, only the components that contains the most
variance (or information) can be selected by PCA, therefore reducing the dimensionality
of the data and facilitate the remaining steps. The first step is therefore to determine the
intrinsic dimensionality of the data. This value can then be fed to the FastICA algorithm
as an extra (optional) variable.

The idea of the break detection is to buffer the real-time sensor data in a fixed sized
buffer. On the start-up one has to wait until the buffer is filled before doing any analyses
on it. Once it is filled, ICA can be applied using the intrinsic dimension as limit on the
number of computed independent components. These independent components can then
be put in a classifier in order to determine the possibility of an upcoming break. Each
following minute, new sensor data is available. This data is fed to the buffer, while
discarding the oldest values from the buffer. ICA can be applied again, followed again by
outputting the possibility of an upcoming break.

Some parameters need to be determined for the system to work properly. These are the
size of the buffer and the step-size. Each of these will be treated separately in the
following paragraphs. But first we will find out if reducing the number of components
can reduce the complexity of the problem.

3.3.4 Intrinsic dimensionality of the data

As already mentioned just before, we can use the intrinsic dimension of the data to reduce
the complexity of the problem. To determine this value, we can try to use two different
methods.

 33

PCA
The first one is PCA (principle component analysis), which assumes that the relation
between the different features is linear. From the covariance matrix, the eigenvalues and
their corresponding eigenvectors are computed. The eigenvectors are the directions of the
uncorrelated components of the data. The corresponding eigenvalues indicate the amount
of variance in that direction. We can select some of the (largest) eigenvalues to reduce the
number of dimensions. We have to make sure that we still capture enough variance to
estimate the data properly. We can also calculate the mean squared error (MSE) of the
reconstruction very easily from the eigenvalues, since we know that the sum of the
remaining eigenvalues after selecting the p-highest eigenvalues for representing the data
equals the MSE.

In order to get the most robust measure of the intrinsic dimensionality, we perform PCA
on a fixed sized buffer of the ‘normal’ dataset, which we slide along the data, with steps
of half the size of the buffer. A buffer of size 24, applied to data of 800 time instants
therefore consists of   651224/800 =−× buffers. In each buffer we compute the

remaining variance of a representation of one up to ten dimensions. Of the 15x10-sized
matrix that is produced, we then compute for each column the mean and the variance and
plot this result as an error bar. This error bar is created using the PRTools toolbox for
Matlab /10/. For describing 95% of the variance of the data we have to take 5 dimensions.
If we repeat this experiment for buffer sizes of 48, 72 and 96 it turns out that also 5
dimensions are required to describe 95% of the variance of the data.

The MSE of describing the data with 5 dimensions for each of these buffer sizes has been
put into Table 2.

Table 2. Mean and variance of the MSE over all buffers corresponding to different buffer sizes.

Later on we will use this to determine the best choice for the buffer size.

Buffer-size Mean MSE Variance MSE
24 0.3767 0.0315
48 0.5924 0.0615
72 0.7646 0.1328
96 0.8974 0.2868

 34

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 18. PCA buffer size of 24; error bar of the remaining variance vs. number of dimensions.

Non-linear factor analysis
The second method we can use to determine the intrinsic dimensionality of the data is
non-linear factor analysis (or NLFA). It finds a nonlinear representation of the data. An
algorithm that finds this representation in MATLAB is provided with the NLFA-toolbox
/8/. It uses an Artificial Neural Network (ANN) with one hidden layer to compute the
components. However, there are some major drawbacks of this method, which may
decrease the applicability of the method.
For a network to be fed with the data that is available (of size 24x800), we need a (fully
connected) ANN with 24 neurons in the input-layer, much more than 24 in the hidden-
layer, and about 5 in the output layer. If we take for the hidden layer 48 neurons (2 times
the number of neurons in the input-layer), we have a total number of free parameters of
24x48 + 48x5 = 1392. A rule of thumb says that if you want to train this network, you
need to have at least 10 times as much data samples than free parameters to avoid
overtraining, which results in the need to have at least 13920 data samples in out case. If
we would use all the data we have from the ´normal´ case, we would have 24x800=19200
samples. This is enough, but still the resulting error bar shows too much uncertainty to
determine the intrinsic dimensionality. Also it is not possible to use buffers, as we did
before with PCA, because then there are way too few data samples available.

However, there is one thing we can do. This is to reduce the number of features by
consulting expert knowledge. An expert can give his view on which features he expects
to have the most significant influence on the breaks. The expert selected the following
features:

 35

Table 3. Selected features.

New column Old column Quantity Unit
1 3 Broke feed 1/s
2 15 Chemical pulp pH pH
3 17 Mechanical pulp1 tower pH pH
4 18 Mechanical pulp2 tower pH pH
5 20 Broke pH pH
6 22 White water pH pH
7 23 White water tower temperature °C

We can now try again to perform NLFA on the data with only these features. Since we
now need 7 input-neurons, we only have to use 14 neurons in the hidden-layer. Still we
have too few data samples to use the buffers. We only can have a look at the intrinsic
dimensionality of the whole ‘normal’-case data.

0 1 2 3 4 5 6 7 8
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 19. The MSE vs. the dimensionality by NLFA.

We see that a minimum is reached for three dimensions. To compare this with PCA we
also have to perform the PCA on the same data. Because of better visualisation, this plot
is zoomed in starting with 2 dimensions.

 36

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 20. The MSE vs. the dimensionality by PCA.

We can clearly see that three dimensions are enough to describe the data with only seven
features. PCA performs the best. To check how this works for different buffer sizes we
computed the same graphs for a buffer size of 24, 48, 72 and 96. The same results hold,
with the additional observation that even two dimensions might be enough to describe the
data sufficiently well. The remaining variance for all is smaller than 5%. We calculate the
MSE corresponding to a dimensionality of two and three using the different buffer sizes.
The results are in Table 4.

In the FastICA algorithm, this means that we can provide it with the optional argument
lastEig to be set on two.

3.3.5 Using all features for ICA

We now split this paragraph in two parts. First we will use all the features and after that
we do the same with only the seven selected features as discussed above.

Table 4. MSE for both two and three dimensions for different buffer sizes.

 Two dimensions Three dimensions
Buffer-size Mean MSE Variance MSE Mean MSE Variance MSE
24 0.0015 < 10-4 < 10-4 < 10-4
48 0.0059 < 10-4 < 10-4 < 10-4
72 0.0118 < 10-4 0.0001 < 10-4
96 0.0195 0.0002 0.0001 < 10-4

 37

Buffer-size
In the case of only 5 independent components, we have a 5 x 5 mixing matrix to be
estimated. Because we can reduce the number of free parameters in this matrix to 5x(5 -
1)/2=10 by first whitening the data, we need 100 data points to avoid overtraining. In this
case we take the rule of thumb to use 10 data points for each free parameter. Since we
have observation, consisting of 5 rows, we need 20 columns to get to 100 data points.
Therefore a buffer size of 20 should be enough. It can be that 20 is still too less, because
then the resolution of the ICs is only 20, which may be too small for making clear
classification. It is important not to make the buffer-size too large, because this will result
in a too long start-up in which the system is unable to make any predictions about the
possibility of an upcoming break.
Comparing the MSE at a dimensionality of three at these four different buffer-sizes, as
displayed in table 2, we can conclude that a buffer-size of 24 gives the smallest error.
Since it was already favoured before, we from now on take this as the buffer-size.

Step-size
As already mentioned before, we also need to consider the best value for the step-size. It
is important to keep the step-size as small as possible, because if you take too large steps,
you could be too late to detect a break. Our intuition tells us that it is not possible to
detect a break very long time in advance. The only reason to make the time-step higher
than the minimum is because the system might not be fast enough to perform all the
necessary computations in the given time. In this case this seems not to be a problem,
since a fast computer can do all the necessary computations in only a few seconds, while
new data arrives only each minute. We can therefore safely set the step-size to one
minute.

ICA applied
Now we know with which parameter values we will use ICA, we have to determine a
strategy to compute the possibility of an upcoming break. At first we will apply ICA in
the fixed size buffer on the ‘normal’ dataset. Alternated with intermediate conclusions,
we will continue with examining the ‘two-breaks’ and finally the ‘many-breaks’ dataset.

Normal
We don’t know yet where to look at when we get the independent components of a
certain buffer. To have some idea, we positioned the buffer at some randomly chosen
places to see what the components look like. Four of these results are shown below.

 38

2 4 6 8 10 12 14 16 18 20 22 24

5

4

3

2

1

2 4 6 8 10 12 14 16 18 20 22 24

5

4

3

2

1

2 4 6 8 10 12 14 16 18 20 22 24

5

4

3

2

1

2 4 6 8 10 12 14 16 18 20 22 24

5

4

3

2

1

Figure 21. ICs at four randomly chosen buffers of size 24.

We have to remark that at some places ICA won’t find ICs. We come back on that later
on.
After looking at the figures, we cannot distinguish clear similarities. This indicates that
during the normal process the shape of the sensor data changes all the time. Of course we
cannot say anything about breaks, since they don’t occur yet. We need the results from
this analysis for comparison with the results of analysis of the following two datasets.

Two_breaks
In this dataset two breaks occur. We will define the buffer to be one and two minutes
before each break, and analyse the ICs. It turns out that FastICA is not able to estimate
the ICs. Perhaps this is because the buffer size is too small. We therefore try the same
with a buffer-size of 48. These results are displayed in Figure 22 - 25. The first break
occurs at time instant 242; the second at 1099.

 39

5 10 15 20 25 30 35 40 45

5

4

3

2

1

Figure 22. Buffer-size = 48; Endsample = 240.

5 10 15 20 25 30 35 40 45

5

4

3

2

1

Figure 23. Buffer-size = 48; Endsample = 241.

5 10 15 20 25 30 35 40 45

5

4

3

2

1

Figure 24. Buffer-size = 48; Endsample = 1097.

5 10 15 20 25 30 35 40 45

5

4

3

2

1

Figure 25. Buffer-size = 48; Endsample =1098.

Now we can immediately see that there is one component that that has a high peak at the
end, especially near the break at 242. This might be exactly the feature we are looking
for. Let us go back to the ‘normal’ data to also check that with a buffer-size of 48.

5 10 15 20 25 30 35 40 45

5

4

3

2

1

5 10 15 20 25 30 35 40 45

5

4

3

2

1

 40

5 10 15 20 25 30 35 40 45

5

4

3

2

1

5 10 15 20 25 30 35 40 45

5

4

3

2

1

Figure 26. ICs at four randomly chosen buffers of size 48.

From this we can see that also with a buffer-size of 48, the ‘normal’ data is changing all
the time and no particularly interesting features occur in all the figures.
Now lets see what happens when we apply all this to the ‘many_breaks’ dataset.

Many_breaks
When we take a look at the frequency at which breaks occur in this dataset, we see
immediately that the breaks are so close to each other that the buffer is in many cases not
yet completely filled before a new break occurs again. To make this concrete we look at
the break-profile of this dataset and that of the dataset before. We put this all together in
Table 5.

Table 5. Break profile of ’two_breaks’ and ’’many_breaks’.

Dataset Normal/Break Durations of the cases normal/break
Normal 241 801 238 ‘two_breaks’
Break 56 23
Normal 44 156 62 165 160 20 45 54 46 22

133 144
‘many_breaks’

Break 37 26 26 20 19 23 44 21 30 50 28

The sizes of the breaks are in both datasets more or less the same. The main difference
however is the frequency of which the breaks follow each other. One can imagine that
after a break occurred, the process needs some time to recover from it, so the normal-
cases in between the breaks are even smaller. Even with a buffer-size of 24 we will miss
some of the breaks. With a buffer-size of 48, as we are tempted to use from now on, there
will be at most 7 out of the 11 breaks that we can detect, but probably even much less.

 41

5 10 15 20 25 30 35 40 45

5

4

3

2

1

Figure 27. Buffer-size = 48; Endsample = 237.

5 10 15 20 25 30 35 40 45

5

4

3

2

1

Figure 28. Buffer-size = 48; Endsample = 516.

5 10 15 20 25 30 35 40 45

5

4

3

2

1

Figure 29. Buffer-size = 48; Endsample = 696.

5 10 15 20 25 30 35 40 45

5

4

3

2

1

Figure 30. Buffer-size = 48; Endsample = 901.

5 10 15 20 25 30 35 40 45

5

4

3

2

1

Figure 31. Buffer-size = 48; Endsample = 1203.

Although the above plots of the ICs are after a quite long period of the normal-case, there
is nothing really common in all the figures. They also don’t resemble the two_breaks-
case, except for the graph of Figure 31. Only here there is a peak (in the 3rd component)
at the end. The results here can be called very bad.

 42

The possibility of an upcoming break
We can extract some kind of a probability measure from the height of a peak at the end of
one of the components. The idea is to compare the last 5 samples of each component to
the mean of the rest of the component. From this the probability measure is determined.
We will look for this at the two_breaks dataset. We slide the buffer along the data,
sample after sample, compute the ICs and applying the just mentioned peak
measurement. We get a vector consisting of all those measurements. Sometimes
FastICA cannot find the ICs. In this case, a zero is placed at the corresponding position in
this vector. This all is done by the function pulpanalyse. We plot the result:

0 200 400 600 800 1000 1200 1400
0

2

4

6

8

10

12

14

16

18

Figure 32. Time sample vs. measure of the height of the end-peak of one of the ICs.

First of all we see that some (25%) of the ICA analyses have failed. This might be a
problem.
When we put a threshold of 15 on this result and force the system to detect a break at the
first instance this threshold is passed, an upcoming break is detected with corresponding
values (which are a measure of the certainty):

239 15.6716
260 15.5543
1098 15.5126

It will thus detect the upcoming breaks well in advance. The detection at 260 occurs in
the middle of the break. In reality it wouldn’t have been detected, because the process
normally stops when a break has occurred.

 43

If we apply this method to the ‘normal’ dataset, we see that no upcoming break is
detected, which is of course very good.

As we already expected, applying this method to the ‘many_breaks’ dataset gives many
problems. There are many false alarms and almost all of the breaks are not detected. Only
one break will be detected and that is the one from Figure 31.

3.3.6 Using selected features only for ICA

We now try if we can get better results if we select only the expert-determined features
from the ‘two_breaks’ dataset. We already determined that we can reduce the
dimensionality of the data to only two and still describe most of the variance of the data.

Like we did above, we begin by performing ICA on 4 randomly chosen places in the
normal data. We use a buffer size of 48.

5 10 15 20 25 30 35 40 45

2

1

5 10 15 20 25 30 35 40 45

2

1

5 10 15 20 25 30 35 40 45

2

1

5 10 15 20 25 30 35 40 45

2

1

Figure 33. ICs of the selected data at four randomly chosen buffers of size 48.

We don’t know yet what to conclude about this so let’s first look at the ICs of the
selected features of the ‘two_breaks’ data.

 44

5 10 15 20 25 30 35 40 45

2

1

Figure 34. Selected features; Buffer-size = 48;
Endsample = 240.

5 10 15 20 25 30 35 40 45

2

1

Figure 35. Selected features; Buffer-size = 48;
Endsample = 241.

5 10 15 20 25 30 35 40 45

2

1

Figure 36. Selected features; Buffer-size = 48;
Endsample = 1097.

5 10 15 20 25 30 35 40 45

2

1

Figure 37. Selected features; Buffer-size = 48;
Endsample = 1098.

We see again a very clear peak at the end of one component near the break at 242. Near
the break at 1099 this peak is less clear. Let’s do again the same end-peak detection as we
did above and look at the results.

 45

0 200 400 600 800 1000 1200 1400
0

2

4

6

8

10

12

14

16

18

Figure 38. Time sample vs. measure of the height of the end-peak of one of the ICs using only the
selected features.

It turns out that the peaks of this graph do not occur at the locations where a break occurs.
Perhaps another method is needed to create a probability measure for an upcoming break.
This is for future research. It can also be doubted if the selected features are the correct
ones. Comparing Figure 33 with Figure 34 – 37 doesn’t give us a very clear distinctive
feature. Maybe there is one feature missing that contains the most information about an
upcoming break. Clearly the results were better when all the data was used. This might
indicate that there is indeed one very informative feature missing.

3.3.7 Conclusions

FastICA is a very powerful way of performing ICA on a dataset. It uses batches of data to
analyse. In the analyses of break in a paperpulp process, we want to have this analysis
online in real-time. Therefore we used a buffer to store the data. It might be a much better
idea to have some kind of an online version of FastICA. These algorithms exist, but were
not used in this application. Future research might consider applying such algorithms of
ICA on this data. The limited buffer size turned out to be the major problem in this
application. When all the features were used, nice results were achieved for breaks that
occurred only sparsely. This indicates that ICA is a promising method for analysing the
occurrence of a break in this process; however it needs more research before it can be
used for a real process. As we suggested, an online adaptive ICA algorithm should be
tested. Also reconsidering the selection of some features is a good idea.

 46

3.4 More practical considerations

We have now seen from applying ICA some of the things we have to be careful about
concerning many parts of ICA. Of course there are more things one has to keep in mind
in order to apply ICA successfully, or al least with the biggest chance to be successful.
We will now treat some more considerations like pre-processing, overtraining, the choice
of algorithm and the number of ICs to be estimated.

3.4.1 Pre-processing

It might not always be a good idea to just input the data we have to the ICA algorithm.
There is the risk that ICA won’t find the ICs at all, or only meaningless ones. Things like
noise reduction, independence enhancement, feature extraction and feature selection can
be taken into account and will therefore be treated in this paragraph.

Noise reduction
We have given the noise free ICA model as starting point for the problem. With noise,
determining the independent components is much more demanding. We won’t treat here
how ICs can be estimated in the presence of noise. For this, readers can refer to X.
Instead, we will mention techniques to reduce the noise before the data is given as input
for ICA. With noise reduction, the noise free ICA model is approximately correct, which
might be well enough.

Filtering
The most common way of denoising a signal is to filter it. There is much literature on
filtering data. We won’t describe here the filtering of the sensor data, for this is a
completely different field of engineering. We assume that we already have the sensor
data in a discretized form in some dataset. Filtering can in that case only be applied to the
numerical data that is available.
If we know that the data is band limited, we know that we are only interested in a limited
part of the frequency spectrum. We can then filter out the rest of the spectrum. This
reduces the noise level while affecting the signal in a minimal way.

Low pass filtering of the data is equal to smoothing the data. We can also regard this as
averaging a consecutive number of samples. In matrix form, we can formulate a low-pass
filtering matrix like:























=

�������

�

�

�

�

111000

011100

001110

000111

3
1

M . (46)

Or any other matrix that performs a weighted average of the matrix of samples to which it
is multiplied. For causal filters, we have to make sure that we don’t take samples in the

 47

future for the averaging. For now, we only need the matrix M for illustrating the principle
of linear numerical filtering, so we don’t bother about the exact properties of this filtering
matrix.
We can apply this matrix by right multiplying it with the observation matrix. We now
speak explicitly about an observation matrix, instead of an observation vector, because
we now want to have the time samples explicitly available. Each row of the observation
vector as we have seen it many times before, now consists of different
samples)(,),2(),1(Txxx iii � . The ICA model thus looks like:

ASX = . (47)

Filtering X thus can be done as:
** ASASMXMX === , (48)

where *X and *S denote the filtered versions of X and S respectively. It can thus be seen
that the mixing matrix remains unaffected by this linear filtering, while the estimated ICs
will be the filtered version of the otherwise obtained ICs with the same filtering matrix
M.

The effect is that higher frequencies are averaged out of the observed data. Only the
slower varying part of the data remains. The noise level can be reduced very much in this
way, but we have to be careful that we don’t filter out important information in the data;
information that possibly determines the success of the results of ICA. Especially low-
pass filtering makes the data more dependent, which is a bad thing for ICA.

Independence enhancement
High-pass filtering, on the other hand, enhances the independence of the data. This
increases the chances that ICA finds the independent components, but on the other hand
introduces more noise. A typical way of performing high-pass filtering to numerical data
is constructing a matrix that calculates the differences between a sample and the previous
one. Compared to the low-pass filtering matrix M in (46), we can construct a high-pass
filtering matrix M like:























−
−

−
−

=

�������

�

�

�

�

011000

001100

000110

000011

M . (49)

In practice, we have to make a compromise between low-pass and high-pass filtering,
called band-pass filtering. We need to be careful, keeping both noise-reduction and
independence in mind.

Noise reduction and feature extraction by PCA
Another way of noise reduction can be obtained by PCA. As we know, PCA computes
the principle components of the data. The principle components can be ordered by the
information about the retained variance of the data in each component. Very small

 48

principle components thus represent either small ICs, or noise. Very small ICs are mostly
not interested for the application. Discarding the small principle components is therefore
a good way of reducing the noise. The dimensionality of the data is then reduced. If we
perform ICA on this data with a smaller dimensionality, we can estimate the ICs with less
noise. How much dimensions we need to have is often determined by trial-and-error. A
good way to start is to create a graph in which the number of dimensions is displayed
versus the retained variance when we reconstruct the data using only these dimensions.
Regarding the components in the observation vector as features of the data, PCA
performs a way of extracting the most useful features for future ICA processing. Other
ways of feature extraction may also be considered as a good pre-processing step.

Feature selection
Feature selection can, as we already mentioned in the last paragraph, be a very useful pre-
processing step. Suppose we have some observation data from which we can estimate the
ICs very good. Instead of this observation data, we could just as well have the same data
with some additional features that doesn’t contribute to the data model at all. Using this
data for ICA may ruin the estimation of the ICs completely, since ICA also tries to
include these features in the estimation. Therefore it is very important to find these
useless features and exclude them from the data. One way of doing this is consulting
expert knowledge as we suggested in the last paragraph.

3.4.2 Overtraining

Overtraining can be catastrophic to the estimation of the independent components.
Overtraining occurs when there are too many parameters that have to be estimated
compared to the available data. ICA will then estimate a parameter based on only a few
samples. The found ICs aren’t then a reflection of the process, but of the particular data
instead. It can be seen if overtraining has occurred by looking at the found ICs. If a
particular IC is more or less flat everywhere, except for a single spike, this is an
indication for overtraining. An example of overtraining can be seen in the ICs from e.g.
Figure 26. The spike maximized the nongaussianity, in this way dominating completely
the variance of the IC. Obviously there are two ways we can protect ourselves from
overtraining. That is either increase the number of data points, or decrease the number of
parameters that need to be estimated. Since we just have a certain observation vector, we
cannot get more data points then there are in the observations. Reducing the number of
free parameters is thus the only option. As we already saw, enables PCA us to reduce the
number of dimensions. With less dimensions, there are also less ICs to be estimated. This
means that there are less free parameters in the problem. PCA is therefore not only useful
for noise reduction and feature extraction, but also for avoiding overtraining.

3.4.3 Choice of the algorithm

In this report we only used the FastICA algorithm in its Matlab implementation. With this
algorithm we can only analyse batches of data. We tried to make some kind of real-time
ICA in the previous paragraph by using a buffer for batching the data. A really real-time
ICA implementation is also available in adaptive algorithms. For more information about
these kinds of algorithms for ICA, readers can refer to /6/.

 49

Other variations in ICA algorithms exist in whether they estimate the ICs one at a time,
or all together in parallel.

3.4.4 Controlling the number of independent components

Using FastICA, the user can define the number of ICs that need to be estimated. This can
be useful if we need a smaller number of ICs, but don’t want to reduce the dimensionality
of the data more by PCA. Estimating only a limited number of ICs is also computational
more efficient.

3.5 Conclusions

In this chapter we have seen two examples of applying ICA in real-life problems. We
have tried to highlight the most important lessons we can learn from it. Together with the
other practical considerations we made in the last part of this chapter, we have a good
basis for future application of ICA. In the next chapter, we will both summarize the most
important parts of the theory and the lessons learnt in this chapter. There we will make a
guideline of the application of ICA for future applications.

 50

4 A GUIDELINE FOR ICA

Based on what was derived in both the theory and practical part of this report, we will
suggest a guideline for applying ICA. Engineers that consider using ICA for their
particular data could follow this guideline.

1. Understand the data very well; ask questions (amongst many possible others) like:
• What does the data describe?
• How is the data obtained?
• Is the dataset pre-processed in any way?
• Are there missing values?

2. Visualize the data. This might give more insight in the data, but is also useful for
comparison when the ICs are estimated; perhaps the ICs contain the same features
as the original data. You then know that ICA was not applied properly, or not
successful for this particular application.

3. Have a strong indication that the process and the observations follow the ICA
model, i.e. that they are a linear mixture of some underlying independent sources.
When the underlying model doesn’t hold, there is a good chance that ICA will
find ICs that make no physical sense and could therefore be useless for this
particular application.

4. Pre-process the data in the following ways:
• Make sure that any artificially introduced values, like zero-padding, are

removed.
• Remove the measurements of which it is expected that they don’t contribute to

the ICA model; i.e. they don’t originate from the same ICs as the rest of the
observations.

• Linearly filter the data with a band-pass filter. The lower bound is for
enhancing the independence of the observations and the upper bound is for
filtering the noise maximally. Be careful not to affect the signal in a way that
information about important features is lost.

• Select with PCA only the eigenvalues and eigenvectors that reconstruct the
data with the most variance. This will filter some noise too.

5. Decide on an algorithm for performing ICA. It should be taken into account if
batch processing of the observations is possible, or that real-time processing is
required.

6. Be sure that the observations are in the right format for the particular ICA
algorithm. Especially the orientation of the observation matrix should be clarified.

7. Apply the ICA algorithm.
8. Display the results. The most information can be extracted from a plot of the

signals. For good comparison, one has to make sure that all the plots of the ICs
have the same scale.

9. Keep in mind the following things when looking at the plots:
• There is no information about the relative strength of the ICs, since their

energy cannot be estimated by ICA.

 51

• The signs of the ICs are also unknown, so they can be mirrored with respect to
the horizontal axes.

• The order of the ICs is arbitrary.
10. It can be recognized from the plots of the ICs when overtraining did occur; the

signal is more or less flat over most of the range, but contains only one ore maybe
a few very high peaks. The results are not trustful when overtraining took place.

 52

5 CONCLUSIONS

In this report, the technique of independent component analysis (ICA) was investigated.
Mainly based on the theory by Hyvärinen et al. /6/, we posed statements about the
strength and limitations of ICA. By applying ICA to two real-world data analysis
problems, we were able to come up with a guideline for its usage, which was the ultimate
goal of this research.

The most important conclusion that can be drawn from our analysis is that one should be
very careful in interpreting the independent components (ICs) that have been found. ICA
is very powerful in finding ICs; even when there are no real underlying ICs in the
observations, ICA will often find some. It is trivial that these ICs cannot be seen as ‘real’
ICs, but it can be hard to tell this just from the results. One, therefore, has to be very
careful when and how to apply ICA to a certain dataset. Only when there is clear
suspicion that the observations in fact result from some underlying components, which
are suspected to be independent, one can consider ICA as data analysis tool. This
suspicion can only arise when there is sufficient knowledge about the data-generating
process and the basic characteristics of the dataset. Make sure to have a sufficient amount
of data, in order to avoid overtraining, pre-process the data according to 3.4.1 and /6/ and
be sure about the orientation of the dataset.

Once the ICs have been found, they should be examined carefully. Visualisation is a
powerful method in this sense. The ICs should be compared to the original signals to
make sure that they are different and have the desired or expected shape. Furthermore,
spikes in one or more of the ICs can indicate that overtraining has occurred. The inability
of ICA to determine the order, sign and energy of the ICs can complicate matters further.
Best is to apply ICA to problems where these inabilities are no limitation or can be easily
taken care of in after-processing

In spite of its limitations and need for careful treatment, ICA seems to be very powerful
for many applications. With the guideline of Chapter 4 and the above-mentioned
conclusions in mind, ICA is worth considering in data analysis problems.

 53

REFERENCES

/1/ Ahola, T., Kumpula, H. and Juuso, E.: Case based prediction of paper web break
sensitivity, Wissenschaftsverlag, Mainz, Germany, 2003, 161 – 167

/2/ Bell, A.J. and Sejnowski, T.J.: An Information-maximization Approach to Blind
Separation and Blind Deconvolution, Neural Computation, 7(1995), 1129 – 1159

/3/ Bell, A.J. and Sejnowski, T.J.: The “Independent Components” of Natural Scenes
are Edge Filters, Vision Research, 37(1997), 3327 – 3338

/4/ Cramér, H.: Mathematical Methods of Statistics, Princeton, NJ, Princeton
University Press, 1946

/5/ Evans, M., Hastings, N. and Peacock, B., Statistical Distributions, New York, USA,
John Wiley & Sons, 2000

/6/ Hyvärinen, A., Karhunen, J. and Oja, E.: Independent Component Analysis,
Toronto, Canada, John Wiley & Sons, 2001

/7/ Hyvärinen, A. and Oja, E.: A Fast Fixed-point Algorithm for Independent
Component Analysis, Neurocomputing, 9(1997), 1483 – 1492

/8/ http://www.cis.hut.fi/projects/bayes/software/ (03.11.2003)

/9/ http://www.cis.hut.fi/projects/ica/fastica/ (26.09.2003)

/10/ http://www.ph.tn.tudelft.nl/~bob/PRTOOLS.html (15.11.2003)

/11/ Jolliffe, I.T., Principle Component Analysis, New York, USA, Springer, 2002

/12/ Lee, T.: Independent Component Analysis: Theory and Practice, Boston, USA,
Kluwer Academic Publishers, 1998

/13/ Nyquist, H.: Certain Topics in Telegraph Transmission Theory, AIEE Trans, 1928,
617 – 644

/14/ Ruusunen, M. and Paavola, M.: Monitoring of Automated Screw Insertion
Processes – a Soft Computing Approach, Proceedings of the 7th IFAC Workshop
on Intelligent Manufacturing Systems, Budapest, 2003

/15/ Ruusunen, M. and Paavola, M.: Quality Monitoring and Fault Detection in an
Automated Manufacturing System – a Soft Computing Approach, Report A No 19,
University of Oulu, Control Engineering Laboratory, 2002

APPENDIX A M-FILES USED FOR SCREW INSERTION
ANALYSIS

%%
% Description:
% Old is a m x n matrix with m measurements of each
% samples. When more than 3 zero elements are in a
% sequence, these are replaced by the mean of the other
% samples. The result is the new m x n matrix new.
%
% The purpose is to simplify the visualization scale.
%
%%%

function new = centerzero(old)

new = old;
for i=1:size(old,1)
 clear ev I j newI temp compI;
 I=find(old(i,:)==0);
 j=1;
 compI=[1:size(old,2)];
 newI=1;
 for ev=1:(length(I)-2)
 if (~old(i,I(ev)) & ~old(i,I(ev+1)) & ~old(i,I(ev+2)))
 newI(j)=I(ev);
 compI(newI(j))=1000;
 j=j+1;
 end
 end
 compI(end-1:end)=1000;
 [temp,compI]=find(compI~=1000);
 newI(end+1)=newI(end)+1; newI(end+1)=newI(end)+1;
 new(i,newI)=mean(old(i,compI));
end

%%%
%
% Description:
% Selects from a matrix, containing signals, the last
% ’length’-elements counting from the last non-zero element
% of the signal (row)
%
%%%

function new = selectend(old,length)

new = zeros(size(old,1),length);
for i = 1:size(old,1)
 lastel = size(old,2);
 while 1
 if(old(i,lastel)==0)
 lastel = lastel-1;
 else break
 end
 end
 new(i,:) = old(i,lastel-length+1:lastel);
end

%%%
%
% Description:
% Sequence of commands resulting in the generation of
% the ICs of the screw insertion data. Variations of these
% commands have been used for obtaining the results in this
% report.
%
%%%

clear all
close all

% Parameters
length = 140;
lasteig = 5;
sprintf(’Length = %d’,length)
sprintf(’LastEig = %d’,lasteig)

% Loading the datasets
load checkdata3, load traindata3, load faultydata3;

% Cutting the sets
se_checkdata3=selectend(checkdata3,length);
se_traindata3=selectend(traindata3,length);
se_faultydata3=selectend(faultydata3,length);

% Measure the non-gaussianity by applying the mean-square-error to the
% kurtosis of all the signals in a dataset
sprintf(’Kurtosis of cut-checkdata3 =
%d’,sqrt(mean(kurtosis(se_checkdata3’,0).^2)))
sprintf(’Kurtosis of cut-traindata3 =
%d’,sqrt(mean(kurtosis(se_traindata3’,0).^2)))
sprintf(’Kurtosis of cut-faultydata3 =
%d’,sqrt(mean(kurtosis(se_faultydata3’,0).^2)))

% Doing FastICA..
ica_checkdata3=fastica(se_checkdata3,’lastEig’,lasteig,’verbose’,’on’,’d
isplayMode’,’off’);
ica_traindata3=fastica(se_traindata3,’lastEig’,lasteig,’verbose’,’on’,’d
isplayMode’,’off’);
ica_faultydata3=fastica(se_faultydata3,’lastEig’,lasteig,’verbose’,’on’,
’displayMode’,’off’);

% Displaying Results..
figure(1); icaplot(’complot’,ica_checkdata3,0,0,0,’ica checkdata3’);
figure(2); icaplot(’complot’,ica_traindata3,0,0,0,’ica traindata3’);
figure(3); icaplot(’complot’,ica_faultydata3,0,0,0,’ica faultydata3’);

APPENDIX B M-FILES USED FOR PAPER BREAK
ANALYSIS

%%%
%
% Description:
% Reads the paperpulp data and puts it in a format suitable
% for further IC analysis.
%
%%%

[temp, descr] = xlsfinfo(’paperpulp_data’);
for i=1:length(descr)
 [A,B] = xlsread(’paperpulp_data’,descr{i});
 eval([descr{i} ’=transpose(A(:,[3:end]));’])
end

%%%
%
% Description:
% Removes the trailing NaNs and zeros and normalises the
% result to create a more useful dataset.
%
%%%

function out = clean_set(in)

[i,j,s] = find(isnan(in));
loc = min(j);
out = in(:,[1:loc-1]);

[i,j,s] = find(out([2:end],:)==0);
if(~isempty(j))
 if(j(end)==size(out,2))
 out=out(:,[1:min(j)-1]);
 end
end

for i=2:size(out,1)
 out(i,:) = out(i,:)/(max(out(i,:)));
end

%%%
%
% Description:
% Generates a plot of the intrinsic dimension vs. the
% retained variance using PCA.
%
%%%

% Be carefull!!! BASICPCA takes the features as rowvectors. (in this
% case: data2 24x800)
w_size = 48 % 24 48 72 or 96
clear mse remvar
n_tests = (floor(size(data2,2)/w_size)*2)-1;
for j=1:n_tests
 data = data2(:,((w_size*(j-1)/2)+1:(w_size*(j-1)/2)+w_size));
 [s, V, D] = BASICPCA(data, 7);
 for p=1:10
 remvar(j,p)=sum(D(p:end))/sum(D);
 mse(j,p)=sum(D(p:end));
 end
end
mean(mse(:,[2 3]))
var(mse(:,[2 3]))
mean(remvar(:,[2 3]))
var(remvar(:,[2 3]))

figure(1); errorbar(mean(mse(:,2:end)), sqrt(var(mse(:,2:end))))
figure(2); errorbar(mean(remvar(:,2:end)),
sqrt(var(remvar(:,2:end))))

%%%
%
% Description:
% Generates a plot of the intrinsic dimension vs. the
% retained variance using NLFA.
%
%%%

w_size = 48
n_tests = (floor(size(data2,1)/w_size)*2)-1;
for j=1:n_tests
 n_tests-j+1
 data = data2(((w_size*(j-1)/2)+1:(w_size*(j-1)/2)+w_size),:)’;
 for p=1:10
 searchsources = p;
 nlfa_init;
 nlfa_iter;
 mse = mean((data-founddata.e)’.^2);
 m_err(j,p)=mean(mse);
 v_err(j,p)=var(mse);
 save temp w_size n_tests data2 data p hidneurons m_err v_err j
 clear all, load temp
 end
end

%%%
%
% Description:
% Returns estimates of upcoming failures.
%
%%%

function out = pulpanalyse(in)

% w_size = 3*(size(in,1)-1);
w_size = 48;
lasteig = 2;

timeline = ’.’;
for i=1:round((size(in,2)-w_size)/20)
 timeline = strcat(timeline,’.’);
end

refline = ’_’;
for i=1:round((size(in,2)-w_size)/20)
 refline = strcat(refline,’_’);
end

fprintf(refline);
fprintf(’\n’);
fprintf(timeline);
for i=1:(size(in,2)-w_size)
 tempicasig =
fastica(in([2:end],[i:w_size+i]),’lastEig’,lasteig,’displayMode’,’off’,’
verbose’,’off’);
 if(size(tempicasig,1)==lasteig)
 for j=1:lasteig
 res(j) = sum(abs(tempicasig(j,[end-8:end])-
mean(tempicasig(j,[1:end-7]))));
 end
 out(i) = max(res);
 else
 out(i) = 0;
 end
 if(round(i/20)*20==i)
 fprintf(’\b’);
 end
end
fprintf(’\b’);

%%%
%
% Description:
% Filters the result of the pulpanalysis function to better
% estimates of upcoming faults.
%
%%%

function [locs2,vals2] = detectfaults(rezz,w_size)

[I,J] = sort(rezz);
vals = I(end-50:end);
locs = J(end-50:end)+w_size;

[I,J] = sort(locs);

II = I(1);
JJ = J(1);
j=2;
for i=2:length(I)
 if (I(i)~=(I(i-1)+1))
 II(j)=I(i);
 JJ(j)=J(i);
 j=j+1;
 end
end
locs2 = II;
vals2 = vals(JJ);

ISBN 951-42-7315-X
ISSN 1238-9390
University of Oulu
Control Engineering Laboratory – Series A
Editor: Leena Yliniemi

1. Yliniemi L, Alaimo L & Koskinen J, Development and tuning of a fuzzy controller

for a rotary dryer. December 1995. ISBN 951-42-4324-2.
2. Leiviskä K, Simulation in pulp and paper industry. February 1996. ISBN 951-42-

4374-9.
3. Yliniemi L, Lindfors J & Leiviskä K, Transfer of hypermedia material through
 computer networks. May 1996.ISBN 951-42-4394-3.
4. Yliniemi L & Juuso E (editors), Proceedings of TOOLMET’96 – Tool environments
 and development methods for intelligent systems. May 1996. ISBN 951-42-4397-8.
5. Lemmetti A, Leiviskä K & Sutinen R, Kappa number prediction based on cooking

liquor measurements. May 1998. ISBN 951-42-4964-X.
6. Jaako J, Aspects of process modelling. September 1998. ISBN 951-42-5035-4.
7. Lemmetti A, Murtovaara S, Leiviskä K & Sutinen R, Cooking variables affecting

the craft pulp properties. June 1999. ISBN 951-42-5309-4.
8. Donnini P A, Linguistic equations and their hardware realisation in image analysis.

June 1999. ISBN 951-42-5314-0.
9. Murtovaara S, Juuso E, Sutinen R & Leiviskä K, Modelling of pulp characteristics
 in kraft cooking. December 1999. ISBN 951-42-5480-5.
10. Cammarata L & Yliniemi L, Development of a self-tuning fuzzy logic controller
 (STFLC) for a rotary dryer. December 1999. ISBN 951-42-5493-7.
11. Isokangas A & Juuso E, Fuzzy modelling with linguistic equation methods.
 February 2000.33 p. ISBN 951-42-5546-1.
12. Juuso E, Jokinen T, Ylikunnari J & Leiviskä K, Quality forecasting tool for
 electronics manufacturing. March 2000. ISBN 951-42-5599-2.
13. Gebus S, Process Control Tool for a Production Line at Nokia. December 2000. 27
 p. ISBN 951-42-5870-3.
14. Juuso E & Kangas P, Compacting Large Fuzzy Set Systems into a Set of Linguistic
 Equations. December 2000. 23 p. ISBN 951-42-5871-1.
15. Juuso E & Alajärvi K, Time Series Forecasting with Intelligent Methods. December
 2000. 25 p. Not available.
16. Koskinen J, Kortelainen J & Sutinen R, Measurement of TMP properties based on
 NIR spectral analysis. February 2001. ISBN 951-42-5892-4.
17. Pirrello L, Yliniemi L & Leiviskä K, Development of a Fuzzy Logic Controller for

a Rotary Dryer with Self-Tuning of Scaling Factor. 32 p. June 2001. ISBN 951-42-
6424-X.

18. Fratantonio D, Yliniemi L & Leiviskä K, Fuzzy Modeling for a Rotary Dryer. 26
p. June 2001. ISBN 951-42-6433-9.

19. Ruusunen M & Paavola M, Quality Monitoring and Fault Detection in an
Automated Manufacturing System - a Soft Computing Approach. 33 p. May 2002.
ISBN 951-42-6726-5.

20. Gebus S, Lorillard S & Juuso E, Defect Localization on a PCB with Functional
Testing. 44 p. May 2002. ISBN 951-42-6731-1.

21. Saarela U, Leiviskä K & Juuso E, Modelling of a Fed-Batch Fermentation
Process.23 p. June 2003. ISBN 951-42-7083-5.

22. Warnier E, Yliniemi L & Joensuu P, Web based monitoring and control of
industrial processes. 15 p. September 2003. ISBN 951-42-7173-4.

23. Van Ast J M & Ruusunen M, A Guide to Independent Component Analysis –
Theory and Practice. 53 p. March 2004. ISBN 951-42-7315-X.

