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I- Introduction

One of the fundamental problems of our technology driven society is the huge amounts of data

that are being generated by every segment of the society from factories, services, medicine and

individuals alike (Fig 1). Unfortunately we humans seek information not data, and therefore a

growing bottleneck is exactly how to extract information from data. 

Information has many meanings in our colloquial language, however here, information means a

precise mathematical quantity fully characterized in Information Theory (IT). We utilize this

approach because it is very appropriate to deal with manipulation of information [35]. Shannon in

a 1948 classical paper laid down the foundations of IT [36]. IT has had a tremendous impact in the

design of efficient and reliable communication systems [8],[12] because it is able to answer two
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key questions: what is the best possible (minimal) code for our data, and what is the maximal

amount of information which can be transferred through a particular channel. In spite of its practi-

cal origins, IT is a deep mathematical theory concerned with the very essence of the communica-

tion process [12]. IT has also impacted statistics [22] and statistical mechanics by providing a

clearer understanding of the nature of entropy as illustrated by Jaynes [19]. These advances are

predicated however on the specification of the data distributions, which is not realistic for the

design of learning machines. In the design of adaptive self-organizing systems, the primary objec-

tive is to develop algorithms that will learn an input-output relationship of interest on the basis of

input patterns alone. We submit that a thrust to innovate IT is to develop methods to directly esti-

mate entropy from a set of data. With entropic measures, we will be able to utilize the full proba-

bility density function for optimization and to lift the present restrictions of linearity and

Gaussianity for the application of IT to real-world problems. 

This document addresses the important issue of extracting information directly from data, which

is at the core of the issue of learning from examples in both biological and artificial systems. The

learning from examples scenario starts with a data set which globally conveys information about a

real-world event, and the goal is to capture this information in the parameters of a learning

machine. The information exists in a “distributed” mode in the data set, and appears “condensed”

in the parameters of the learning machine after successful training. Learning in artificial neural

networks and adaptive filters has used almost exclusively correlation (the L2 norm or mean-

square error) as a criterion to compare the information carried by the signals and the response of

the learning machine, but there is mounting evidence that correlation (a second order moment) is

a poor measure to ascertain the equivalence of information between the desired response and the

output of the mapper. The fundamental issue is to find the appropriate methodology to study this

“change in state” and elucidate the issues of designing systems that are capable of producing the

transfer of information as efficiently as possible. 

Here we will develop information-theoretic criteria which can train directly from the samples lin-

ear or nonlinear mappers either for entropy or mutual information maximization or minimization.

We will start by a brief review of Renyi’s entropy and a description of information-theoretic learn-

ing (ITL). The Parzen window method of PDF estimation is fundamental in all our efforts to cre-
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ate algorithms to manipulate entropy. The following section covers a more principled approach of

designing practical information-theoretic criteria using Renyi’s definition of entropy of order two

(quadratic entropy). We show that quadratic entropy can be easily integrated with the Parzen win-

dow estimator. The pairwise data interactions for the computation of entropy are interpreted as an

information potential field and are a powerful analogy between information theoretical learning

and physics. We finally propose the integration of the Cauchy-Schwartz distance and an Euclid-

ean difference with the Parzen window to provide estimators for mutual information. The mutual

information criterion is very general and can be used either in a supervised or unsupervised learn-

ing framework. 

Information Optimization Principles

The most common entropy optimization principles are Jayne’s MaxEnt and Kullback’s MinXEnt

[20]. MaxEnt finds the distribution that maximizes Shannon’s entropy subject to some explicit

constraints. Hence, MaxEnt guarantees that we make no assumptions about possible missing

information. MinXEnt finds a distribution, from all possible distributions satisfying the con-

straints, that minimizes the distance in probability space to the given distribution. The most

widely used measure for MinXEnt is the Kullback-Leibler (K-L) cross-entropy. Effectively, K-L

is a measure of directed divergence between the given and the unknown distribution (a directed

divergence is a relaxed concept of distance since it does not need to be symmetric nor obey the tri-

angular inequality). It turns out that MinXEnt (using the K-L divergence) with respect to the uni-

form target distribution is equivalent to the MaxEnt principle under the same constraints.

However, they are intrinsically different since one maximizes uncertainty while the other mini-

mizes directed divergence between PDFs. Moreover, MinXEnt is invariant to coordinate transfor-

mations which is an advantage for learning, while MaxEnt does not hold this characteristic in the

continuous case. These principles have been applied using mostly Gaussian assumptions for the

data distribution, which is not very realistic when adapting nonlinear systems. 

Information-Theoretic Learning (ITL)

Consider the parametric mapping , of a random vector  (normally M<K),g:ℜK ℜM→ X ℜK∈
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which is described by the following equation 

(1)

where Y is also a random vector , and W is a set of parameters. For each observation xi of

the random vector X, the parametric mapper responds with yi = g(xi,W). Our goal is to choose the

parameters W of the mapping g(.) such that a figure of merit based on information theory is opti-

mized at the output space of the mapper (Fig. 2). This is what we call information-theoretic learn-

ing (ITL). Notice that we are only requiring the availability of observations xi and yi or random

vectors without assuming any a priori model for their probability density functions (PDF). Notice

also that the mapper can either be linear or non-linear, and that the criterion may or may not

exploit an added external input normally called the desired response, i.e. information theoretic

learning includes as special cases both the unsupervised and supervised frameworks. We also

want the learning criterion to be external and independent of the mapper. Let us briefly review

work done in this area. 

By analogy to optimization in Euclidean space, we can adapt the parameters W of the mapper by

manipulating the output distribution p(Y): maximizing output entropy (MaxEnt) or minimizing

the cross-entropy among the outputs or among the output and other signals (MinXEnt). The work

of Bell & Sejnowski on blind source separation (BSS) [5] is an example of the application of the

MaxEnt principle. In the neural network literature, the work of Barlow [3] and Atick [2] also uti-

Y g X W,( )=

Y ℜM∈

g w •[ ],( )
xi

yi

εi
BP algorithm

Mapping Network

Information
Theoretic

Criterion

Figure 1: Training a mapper (linear or nonlinear) with ITL
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lized entropy concepts for learning. 

Optimization based on the MinXEnt principle is the one that is potentially more useful to solve

engineering and in particular learning problems [9]. Comon [7], Deco and Obradovic [9], Cardoso

[6] and Amari [37] among others utilized the MinXEnt principle to formulate and solve the blind

source separation (BSS) problem. One solution to BSS is obtained by minimizing the mutual

information (redundancy) among the outputs of a mapper Y, which can be formulated as the K-L

divergence between the joint PDF of Y and its factorized marginals as

. The problem arises in estimating the joint output density H(Y).

These researchers utilize the well known [30] result of using a linear network to directly compute

the output entropy from the input entropy as  where .

Note that a full rank k-to-k linear mapping W is required in this approach which is a severe con-

straint for learning applications (for instance in sub-space mappings as required in classification).

The next step is the estimation of the marginal entropy of each output H(yi) (a scalar problem).

Comon [7] proposed the use of the Edgeworth expansion of the PDF and Amari [37] the Gram-

Charlier expansion which are both well known and equivalent methods (in the limit) of estimating

PDFs by the moment expansion method. In practice, the expansions must be truncated (a source

of error) and higher order moments of the PDF estimated from the data, which becomes computa-

tionally expensive and requires large amounts of data for robust results. However, after the mar-

ginal PDFs are estimated, then a gradient based algorithm can be formulated to solve the BSS

problem [37]. Although this method is very appealing from the point of view of a learning crite-

rion, notice that it is not general because the criterion is not totally independent of the topology of

the mapper. Recently, Amari and Cardoso proposed a semi-parametric model for BSS [1]. 

In the neural network literature there is still another information optimization principle, Linsker’s

principle of maximum information preservation (InfoMax), which is a special case of the infor-

mation loss minimization principle of Plumbey [29]. Optimization with mutual information has

not been extensively addressed in the optimization literature. Linsker was interested in finding a

principle that self-organizes biological systems [24]. These systems are adaptable, so the issue is

to find a criterion to adapt the parameters of the mapper g(X,W). The goal is to determine the

I y1 …yn,( ) H yi( ) H Y( )–
i 1=

n

∑=

H Y( ) H X( ) det W( )log+= Y WX=
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parameters W such that the output variable Y conveys as much information as possible about X:

that is, a principle for self-organization should maximize the average mutual information between

X and Y in the presence of noise. For a linear network and under Gaussianity assumptions, the

mutual information is maximized by maximizing the output variance [24]. Recall that maximiza-

tion of output variance is basically principal component analysis (PCA) for which there are

known on-line and local algorithms [10], [27]. Hence, forseeably, a biological network could self-

organize with such a principle. We can see that this method leads to interesting solutions but it

depends on very restrictive assumptions about the PDFs and linearity of the mapping. In fact

Plumbey states [29] that the big challenge is to extend Linsker’s work to arbitrary distributions

and nonlinear networks. This is exactly what we propose to accomplish in our work. 

From a theoretical perspective, InfoMax is a different principle from MaxEnt and MinXEnt since

it maximizes a divergence measure (mutual information). Linsker applied InfoMax between the

input and the output of deterministic mappers, so the principle reduces to applying MaxEnt at the

output of the mapper [24], [5]. But InfoMax can be applied to any pairs of random variables, such

as the outputs of the mapper and any other external random variable. This new application is

called here information filtering, since it designs a mapper to preserve information maximally

about a source while attenuating other information available in the input data. Information filter-

ing will be exploited later in the chapter for supervised learning applications.

One of the difficulties of these information-theoretic criteria is that analytic solutions are known

only for very restricted cases, e.g. Gaussianity and linear volume preserving mappings (see also

Deco [9]). Otherwise mathematical approximations and computationally complex algorithms

result. A useful neurocomputing algorithm should be applied to any topology, utilizes the data

directly (on a sample-by-sample basis or in batch) and a simple learning rule distilled from the

mathematics, so we submit that none of the above algorithms to train a nonlinear mapper with

MinXEnt criterion is “neural”. In this respect Bell and Sejnowski’s algorithm for maximization of

output entropy is paradigmatic. It utilizes a nonlinear mapper (although restricted to be a percep-

tron), it adapts the weights with a simple batch rule that is not specific to the input data model (as

the solution in [37]) and globally leads to a solution which maximizes an entropic measure.

Recently, Linsker showed that there is a local rule for MaxEnt, which only requires extending the
6



perceptron with lateral connections [25]. This is the spirit of a neural computation [17] which we

have been seeking all along.

In our opinion, the two fundamental issues in the application of information-theoretic criteria to

neurocomputing or adaptive filtering are: the choice of the criterion for the quantitative measure

of information, and the estimation of the probability density function (PDF) from data samples. 

ITL as an Unifying Criterion for Learning

Figure 3 shows a block diagram of a unifying scheme for learning based on divergence and

entropy. The only difference is the source of information which is shown as a switch with 3 posi-

tions. 

When the switch is in position 1 or 2 learning belongs to the unsupervised type (no formal desired

response) and corresponds to manipulating the divergence or mutual information at the output of

the learning system or between its input and output. A practical example with switch in position 1

is the on-going work on independent component analysis (ICA) where the goal is to minimize the

mutual information among the multiple mapper outputs to yield independent components [15].

An example of the block diagram with switch in position 2 is Linsker’s Infomax criterion [20]

where the goal is to transfer as much information between the input and output of a mapper by

maximizing the joint input-output mutual information. However, if the goal is to maximize the

mutual information between the output of a mapper and an external desired response, then learn-

ing becomes supervised. This is achieved by setting the switch to position 3. Note that in this case

3
2

1

Learning 
Machine
y=g(x,w)input x output y

desired d

Information

Criterion

Figure 2: Unifying learning models with the mutual information 
criterion.
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the desired response appears as one of the marginal pdfs in the mutual information criterion. The

two outstanding cases belong both to function approximation: first, if the desired response is a set

of indicator functions, the task is classification. However, the desired data is always quantified by

means of its pdf, not by deriving a sample by sample error. Therefore we can think of this case as

supervised learning without numeric targets, just class labels [37]. Second, if the desired response

data is a continuous function then we named the application information filtering [26]. This name

came from the realization that the learning machine is seeking a projection of the input space that

best approximates (in an information sense) the desired response. In engineering this is the model

used for Wiener filtering [16] but where the adaptive system is restricted to be a linear filter and

the criterion is minimization of the error variance. Table I shows a more complete picture of ITL

and can be used as a table of contents for browsing this website and companion documents. 

Table 1: ITL as a Unifying Principle for Learning

Switch One Two Three

mE blind deconvolution information filtering
classification

ME nonlinear PCA

mMI ICA
blind source separa-

tion

novelty filtering

MMI clustering Linsker infomax
matched filters

feature extraction
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II- Generalized Definitions of Entropy

Renyi’s Entropy

Information theory is a mathematical formalization of our intuitive notion of information con-

tained in messages. If a message is perfectly known a priori, its information content is zero. How-

ever, the less predictable a message is, the larger is its information content. Shannon, using an

axiomatic approach [36] defined entropy of a probability distribution P= (p1, p2,...pN) as 

(2)

that is, the average amount of information contained in a single observation of a random variable

X which takes values x1, x2,....xN with probabilities pk=P(x=xk), k=1, 2,..., N. Entropy measures

the average amount of information conveyed by the event x, or alternatively, the amount of miss-

ing information on X when only its a priori distribution is given. Information theory has been

widely applied to the design of communication systems [8], [12], [35]. But the definition of

entropy can be derived even in a more abstract form. In the general theory of means [33], the

mean of the real numbers  with positive weighting (not necessarily probabilities)

 has the form:

(3)

where  is a Kolmogorov-Nagumo function, which is an arbitrary continuous and strictly

monotonic function defined on the real numbers. In general, an entropy measure H obeys the rela-

tion:

(4)

where  is Hartley’s information measure [18]. In order to be an information

HS P( ) pk
1
pk

-----
⎝ ⎠
⎛ ⎞log

k 1=

N

∑= pk
k 1=

N

∑ 1= pk 0≥

x1 … xN, ,

p1 … pN, ,

x ϕ= 1– pkϕ xk( )
k 1=

N

∑
⎝ ⎠
⎜ ⎟
⎛ ⎞

ϕ x( )

H ϕ= 1– pkϕ I pk( )( )
k 1=

N

∑
⎝ ⎠
⎜ ⎟
⎛ ⎞

I pk( ) pk( )log–=
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measure,  can not be arbitrary since information is “additive”. To meet the additivity condi-

tion,  can be either  or . If  is selected, (3) will become

Shannon’s entropy. For  Renyi’s entropy of order  is obtained [32], which we

will denote by HRα

(5)

There is a well known relation between Shannon’s and Renyi’s entropy:

It is important to further relate Renyi’s and Shannon’s entropies. Let us consider the probability

distribution P= (p1,p2,...,pN) as a point in a N-dimensional space. Due to the conditions on the

probability measure ( ) P always lies in the first quadrant of an hyperplane in

N dimensions intersecting each axis at the coordinate 1 (Fig. 1). The distance of P to the origin is

the α root of

and the α root of Vα is called the α-norm of the probability distribution [16]. Renyi’s entropy (4)

can be written as a function of Vα

(6)

When different values of α are selected in Renyi’s family, the end result is to select different α-

ϕ .( )

ϕ .( ) ϕ x( ) x= ϕ x( ) 2 1 α–( )x= ϕ x( ) x=

ϕ x( ) 2 1 α–( )x= α

HRα
1

1 α–
------------ pk

α

k 1=

N

∑
⎝ ⎠
⎜ ⎟
⎛ ⎞

log= α 0 α 1≠,>

HRα HS HRβ≥ ≥    if  1 α 0  and   β 1>> >,

lim
α 1→

HRα HS=

pk 0,≥ pk
k 1=

N

∑ 1=

Vα pk
α

k 1=

N

∑ P α= =

HRα
1

1 α–
------------ Vαlog=
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norms. Shannon entropy can be considered as the limiting case  of the probability distribu-

tion norm. Notice that the limit provides an indeterminacy (zero over zero in (5)) but the result

exists and is given by Shannon’s entropy. With this view, Renyi’s entropy is a monotonic function

of the α-norm of the PDF and is essentially a monotonic function of the distance of the probability

distribution to the origin. We have considerable freedom in choosing the α-norm [43]. When

,  is called quadratic entropy due to the quadratic form on the probabil-

ity, and it corresponds to the 2-norm of the probability distribution.

For the continuous random variable  with PDF , we can obtain the differential version of

Renyi’s entropy following a similar route to the Shannon differential entropy [32]:

(7)

Note that Renyi’s quadratic entropy involves the use of the square of the PDF. An important

observation is that this alternate definition of entropy is equivalent to Shannon’s entropy for the

goal of entropy maximization [21]. 

Renyi’s entropy is just one example of a large class of alternate entropy definitions which have

been called generalized entropy measures [20]. One may wonder why the interest in measures

α 1→

α 2= HR2 pk
2

k 1=

N

∑log–=

P=(p1,p2,p3)

1

1

1

p1

p2

p3

Figure 3: Geometric interpretation of entropy for N=3. The distance of P to the
origin is related to the α-norm. 

Y fY y( )

HRα Y( ) 1
1 α–
------------ fY z( )α zd

∞–

+∞

∫
⎝ ⎠
⎜ ⎟
⎛ ⎞

log=

HR2 Y( ) fY z( )2 zd
∞–

+∞

∫
⎝ ⎠
⎜ ⎟
⎛ ⎞

log–=

⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧
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more complex than Shannon’s entropy or Kullback-Leibler direct divergence (also called cross-

entropy). Here we will only provide a brief overview of this important question. The reader is

referred to the entropy optimization literature for further study [20], [21], [32]. The reason to use

generalized measures of entropy stems from practical aspects when modeling real world phenom-

ena through entropy optimization algorithms. It has been found that when we apply the two basic

optimization principles based on Shannon’s entropy definition (which are Jayne’s maximum

entropy principle (MaxEnt) and Kullback’s minimum cross-entropy principle (MinXEnt)) either

just one solution from a spectrum of solutions is found, or not even “natural” solutions are found.

To improve on this situation, researchers have proposed alternative definitions of entropy. An

example of a generalized entropy measure in the digital signal processing arena is Burg’s entropy

estimator [4], which has been successfully applied in spectral analysis [26]. 

In our study of learning from examples, the interest in generalized entropy measures comes from

a practical difficulty. We wish to directly estimate entropy from the data samples, without impos-

ing assumptions about the PDF. Shannon’s definition of entropy (the sum of terms which are

weighted logarithms of probability) is not amenable to simple estimation algorithms, while

Renyi’s logarithm of the sum of the power of probability is much easier to estimate, and has been

utilized in physics [15]. We will show in section 7.3 how a very effective algorithm can be

derived. Renyi’s entropy has been utilized successfully in nonlinear dynamics to estimate the cor-

relation dimension of attractors. One important question stemming from the use of generalized

entropy measures is the justification for the selected measure. We have not yet addressed this

question in our research. At this point we can only state that the experimental results obtained

with the use of Renyi’s entropy estimator and its extension to mutual information have produced

practical solutions to difficult problems in signal processing and pattern recognition. Since learn-

ing from examples is an inverse problem, we believe that the choice of an appropriate generalized

entropy measure will play an important role in the quality of the final solution.
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III- Information Theoretic Learning: Unsupervised learning with 
Renyi’s Quadratic Entropy 

ITL algorithms are based on a combination of a nonparametric PDF estimator and a procedure to

compute entropy. In this section we will overcome the difficulty in approximating Shannon’s

entropy by utilizing Renyi’s generalized entropy. Before we start the derivation of the algorithm

let us state a property of Gaussian functions which will be very useful in the method. 

Let  be the Gaussian kernel in M-dimensional space,

where  is the covariance matrix, . Let  and  be two data samples in the

space,  and  be two covariance matrices for two Gaussian kernels in the space. Then it can

be shown that the following relation holds:

(8)

Similarly, the integration of the product of three Gaussian kernels can also be obtained and so on.

(20) can also be interpreted as a convolution between two Gaussian kernels centered at yi and yj

and it is easy to see that the result should be a Gaussian function with a covariance equal to the

sum of the individual covariances and centered at dij= (yi - yj). 

Quadratic Entropy Cost function for Discrete Samples

Let , be a set of samples from a random variable  in M-dimensional

space. An interesting question is what will be the entropy associated with this set of data samples,

without pre-specifying the form of the PDF. Part of the answer lies in the methodology presented

G z Σ,( ) 1

2π( )M 2⁄ Σ 1 2⁄
--------------------------------- 1

2
---zTΣ 1– z–

⎝ ⎠
⎛ ⎞exp=

Σ z RM∈ yi RM∈ yj RM∈

Σ1 Σ2

G z yi– Σ1,( )G z yj– Σ2,( ) zd

∞–

+∞

∫ G yi y j–( ) Σ1 Σ2+( ),( )=

yi RM∈ i, 1 … N, ,= Y RM∈
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in section 7.3 of estimating the data PDF by the Parzen window method using a Gaussian kernel:

(9)

where  is the Gaussian kernel as above and  is the covariance matrix. When Shan-

non’s entropy (1) is used along with this PDF estimation, an algorithm to estimate entropy

becomes unrealistically complex as Viola [39] also realized. So, we conclude that Shannon’s def-

inition of information does not yield a practical measure for ITL. Fortunately, Renyi’s quadratic

entropy leads to a much simpler form. Using (21) in (6) we obtain an entropy estimator for a set of

discrete data points  as

(10)

We will simplify the notation by representing y={y} whenever possible. The combination of

Renyi’s quadratic entropy with the Parzen window leads to an estimation of entropy by comput-

ing interactions among pairs of samples which is a practical cost function for ITL. There is no

approximation in this evaluation (apart from the PDF estimation). 

Quadratic Entropy and Information Potential

We wrote (22) in this way because there is a very interesting physical interpretation for this esti-

mator of entropy. Let us assume that we place physical particles in the locations prescribed by the

data samples yi and yj. For this reason we will call them information particles (IPCs). Since

 is always positive and is inversely proportional to the distance between the IPCs,

we can consider that a potential field was created in the space of interactions with a local field

strength dictated by the Gaussian kernel (an exponential decay with the distance square)

. Physical particles interact with an inverse of distance

f̂Y z y{ },( ) 1
N
---- G z y i– σ2I,( )

i 1=

N

∑=

G . .,( ) σ2I

y{ }

H y{ }( ) HR2 Y y{ }( ) fY z( )2 zd
∞–

+∞

∫
⎝ ⎠
⎜ ⎟
⎛ ⎞

log– V y{ }( )log–= = =

V y{ }( ) 1

N2
------ G z y i– σ2I,( )G z yj– σ2I,( ) zd

∞–

+∞

∫
j 1=

N

∑
i 1=

N

∑
1

N2
------ G yi yj– 2σ2I,( )

j 1=

N

∑
i 1=

N

∑= =
⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

G yi yj– 2σ2I,( )

Vij G yi yj– 2σ2I,( ) G di j 2σ2I,( )= =
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rule, but Renyi’s quadratic entropy with the Gaussian kernel imposes a different interaction law.

Control of the interaction law is possible by choosing different windows in the Parzen estimator.

The sum of interactions on the ith IPC is . Now

, which is the sum of all pairs of interactions, can be regarded as an overall

potential energy of the data set. We will call this potential energy an information potential (IP). So

maximizing entropy becomes equivalent to minimizing the IP. Our estimator for quadratic

entropy is the negative logarithm of the IP. It was a pleasant surprise to verify that our quest for

ITL algorithms ended up with a procedure that resembles the world of interacting physical parti-

cles which originated the concept of entropy. 

We can also expect from (6) that this methodology can be applied to Renyi’s entropy of higher

order (α>2). In fact, Renyi’s entropy of order α will compute interactions among α-tuples of sam-

ples, providing even more information about the complex structure of the data set. These interac-

tions can be estimated with an extension of (20) when the Parzen window method implemented

with the Gaussian kernel is utilized in the estimation. However, the complexity of the algorithm

becomes increasingly prohibitive (O(Nα)). 

Information Forces 

Just like in mechanics, the derivative of the potential energy is a force, in this case an information

driven force that moves the data samples in the space of the interactions. Therefore,

 (11)

can be regarded as the force Fij that IPC  impinges upon , and will be called an information

force (IF). Figure 6 depicts the information forces created by a IPC. If all the data samples are free

to move in a certain region of the space, then the information forces between each pair of IPCs

will drive all the samples to a state with minimum IP. If we add all the contributions of the IF from

the ensemble of samples on  we have the net effect of the information potential on sample ,

Vi Vij

j

∑ G di j 2σ2I,( )
j

∑= =

V y( ) 1

N2
------ Vij

j

∑
i

∑=

yi∂
∂ G yi yj 2σ2I,–( ) G– yi yj– 2σ2I,( ) yi yj–( ) 2σ2( )⁄=

yj yi

yi yi
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i.e.

(12)

“Force” Back-Propagation

The concept of IP creates a criterion for ITL, which is external to the mapper of Fig. 2. The only

missing step is to integrate the criterion with the adaptation of a parametric mapper as the MLP.

Suppose the IPCs y are the outputs of our parametric mapper of (7). If we want to adapt the MLP

such that the mapping maximizes the entropy at the output , the problem is to find the MLP

parameters  so that the IP  is minimized. In this case, the IPCs are not free but are a

function of the MLP parameters. So, the information forces applied to each IPC by the informa-

tion potential can be back-propagated to the parameters using the chain rule [34], i.e. 

(13)

where  is the M-dimensional MLP output. Notice that from (25) the sensitiv-

Figure 4: Two dimensional attractor functions. The -component is
shown at the top while the -component is shown at the bottom. The
function represents the local influence of each data point in the output
space.

x1
x2

Fi yi∂
∂ V y( )=

1

N2σ2
------------– G
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ity of the output with respect to a MLP parameter  is the “transmission mechanism”

through which information forces are back-propagated to the parameter (Fig. 13). From the anal-

ogy of (25) with the backpropagation formalism (see (11)) we conclude that , that is,

information forces take the place of the injected error in the backpropagation algorithm. So, we

obtain a general, nonparametric, and sample-based methodology to adapt arbitrary nonlinear

(smooth and differentiable) mappings for entropy maximization (Fig. 13). Notice that we are

adapting a MLP without a desired response, hence this is an unsupervised criterion. We have

established an ITL criterion that adapts the MLP with a global property of its output sample dis-

tribution. It is very useful to analyze this expression in detail and compare it with the well known

MSE. Note that MSE is computed with a single data sample/desired response combination. How-

ever, the entropy is estimated with pairs of data samples, that is, more information about the data

set is being extracted here than with the MSE criterion (in a N sample data set there are  dif-

ferent pairs).

As a consequence, we can also expect that the algorithm will be computationally more expensive

(O(N2)).

This criterion can be utilized to directly implement Jayne’s MaxEnt optimization principle, but

instead of requiring analytic manipulations it solves the problem using the iterative approach so

common in adaptive filtering and neurocomputing. The constraints in MaxEnt are here specified

by the topology of the mapper. The weights of any MLP PE will be adapted with the backpropa-
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Figure 5: Training a MLP with the information potential
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gation algorithm [16] as 

where η is the stepsize, xi is the input to the PE, and δj is the local error at the PE (see [16]). If the

goal is to maximize output entropy (as required by MaxEnt), the + sign is used, and if the purpose

is to minimize output entropy, the - sign is required. Notice that this will change the interactions

among IPCs in the output space from repulsion to attraction. 

Ee conclude this section by stating that the methodology presented here lays down the framework

to construct an “entropy machine”, that is a learning machine that is capable of estimating entropy

directly from samples in its output space, and can modify its weights through backpropagation to

manipulate output entropy. An electronic implementation using the laws of physics to speed up

the calculations is an intriguing possibility. The algorithm has complexity O(N2) since the crite-

rion needs to examine the interactions among all pairs of output samples. Note that we are extend-

ing Bell and Sejnowski approach to ICA. Bell’s approach is conceptually very elegant, but it

cannot be easily extended to MLPs with arbitrary topologies nor to data distributions which are

multimodal in nature. On the other hand, Renyi’s quadratic entropy becomes essentially a gen-

eral-purpose criterion for entropy manipulation. 

wij∆ ηδjxi±=
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IV Information-Theoretic Criteria: Unsupervised Learning with 
Quadratic Mutual Information

In the previous section we implemented a nonparametric method to solve MaxEnt. Here we will

develop an ITL criterion to estimate the mutual information among random variables which

enables the implementation of MinXEnt and InfoMax. Mutual Information is capable of quantify-

ing the entropy between pairs of random variables so it is a more general measure than entropy

and can be applied more flexibly to engineering problems. Mutual information at the output of a

mapper can be computed as a difference of Shannon entropies . But we

have to remember that Shannon entropy is not easily estimated from exemplars. Therefore this

expression for I(x,y) can only be utilized in an approximate sense to estimate mutual information.

An alternative to estimate mutual information is the Kullback-Leibler (KL) divergence [22]. The

KL divergence between two PDFs  and  is:

(14)

where implicitly Shannon’s entropy is utilized. Likewise, based on Renyi’s entropy, Renyi’s

divergence measure [32] with order  for two PDFs  and  is:

(15)

The relation between the two divergence measures is:

that is, they are equivalent in the limit α=1. The K-L between two random variables  and 

essentially estimates the divergence between the joint PDF and the factorized marginal PDFs, i.e. 

(16)

where  is the joint PDF,  and  are marginal PDFs. From these formulas,
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we can also observe that unfortunately none of them is quadratic in the PDF so they cannot be

easily integrated with the information potential described in section III. Therefore, we propose

below new distance measures between two PDFs which contain only quadratic terms to utilize the

tools of IP and IF developed in section III. There are basically four different ways to write a dis-

tance measure using L2 norms, but here we will concentrate on two:

1- Based on the Euclidean difference of vectors inequality we can write

(17)

2- Based on the Cauchy-Schwartz inequality (inner produce distance) we can write

(18)

Notice that both expressions utilize the same quadratic quantities, namely the length of each vec-

tor and their dot product. We will utilize these distance measures to approximate the K-L directed

divergence between PDFs, with the added advantage that each term can be estimated with the IP

formalism developed in the previous section.

For instance, based on the Cauchy-Schwartz inequality (30), we propose to measure the diver-

gence of two PDFs  and  as

(19)

It is easy to show that  (non-negativity) and the equality holds true if and only if

 (identity) if f(x) and g(x) are PDFs. So (31) is also a divergence and estimates the

distance between the joint quadratic entropy and the product of the quadratic entropy marginals.

But it does not preserve all the properties of the K-L divergence. Likewise we can propose to esti-

mate the divergence between two PDFs  and  based on the Euclidean distance as

(20)
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Estimators for Quadratic Mutual Information 

For two random variables  and  (with marginal PDFs ,  and joint PDF

), the “quadratic mutual information” based on the distance measure (31) becomes:

(21)

It is obvious that  is an appropriate measure for the independence of two variables

(minimization of mutual information). We also have experimental evidence that  is an

appropriate measure for dependence of two variables (maximization of mutual information).

Although we are unable to provide yet a strict justification that  is appropriate to mea-

sure dependence, we will call (33) “Chauchy-Schwartz Quadratic Mutual Information” or CS-

QMI for convenience. Now, suppose that we observe a set of data samples

 for the variable ,  for the variable . Let

. Then  are data samples for the joint variable .

Based on the Parzen window method (8), the joint PDF and marginal PDF can be estimated as:

(22)

Combining (33), (34) and using (22), we obtain the following expressions to estimate the Qua-
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dratic Mutual Information  based on a set of data samples:

(23)

In order to interpret these expressions in terms of information potentials we have to introduce

some further definitions: We will use the term marginal when the IP is calculated in the subspace

of each of the variables y1 or y2, and partial when only some of the IPCs are used. With this in

mind,  is the joint information potential (JIP) in the joint space,  is the par-

tial marginal information potential (PMIP) because it is the potential of the sample  in its corre-

sponding marginal information potential field (indexed by ).  is the l-th marginal

information potential (MIP) because it averages all the partial marginal information potentials for

one index , and  is the un-normalized cross-information potential (UCIP) because it

measures the interactions between the partial marginal information potentials [40]. We will uti-

lize the simplified notation herein. All these potentials can be computed from sums of pairs of

interactions among the IPCs in each of the marginal fields, namely Vl
ij. PMIP (Vl

i), and MIP (Vl)

have the same definitions as for Renyi’s entropy but now qualified by the superscript l to describe

which field we are referring to. 

Actually, the argument of the logarithm in the first equation of (35) can be regarded as a normal-
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ization for the UCIP, that is  normalized by the joint information potential and the mar-

ginal information potentials. The cross-information potential (CIP) can then be defined as:

(24)

So quadratic mutual information is measured by the CIP. With the CIP concept and the compari-

son between (22) and (36), we obtain consistent definitions from entropy to cross-entropy as

shown by 

(25)

which relates the quadratic entropy with the IP and the quadratic mutual information with the CIP

[40]. Therefore, maximizing the quadratic entropy is equivalent to minimizing IP, while maximiz-

ing the quadratic mutual information is equivalent to minimizing the CIP. Likewise, minimizing

the quadratic mutual information is equivalent to maximizing the CIP. If we write the CIP as a

function of the individual fields we obtain 

and conclude that Vc(y) is a generalized measure of crosscorrelation between the MIPs at differ-

ent levels (at the individual IPC interactions, at the partial marginal information potential and

marginal information potential levels).

The quadratic mutual information described above can easily be extended to the case with multi-

ple variables . as

Vnc y( )

Vc y( )
Vnc y( )
V y( )

---------------
Vnc y( )

V1 y( )V2 y( )
---------------------------=

H Y y( ) V y( )log–=

ICS Y1 Y2,( ) y( ) Vc y( )log–=⎩
⎨
⎧

Vc y( )

1

N2
------ Vij

1 Vij
2

j 1=

N

∑
i 1=

N

∑
⎝ ⎠
⎜ ⎟
⎛ ⎞

V1V2( )

1
N
---- Vi

1Vi
2

i 1=

N

∑
⎝ ⎠
⎜ ⎟
⎛ ⎞

2
------------------------------------------------------------=

Y1 …Yk,
23



“Forces” in the Cross-Information Potential 

The cross-information potential is more complex than the information potential [40]. Three differ-

ent information potentials contribute to the cross-information potential of (35), namely the JIP

(Vl
ij), the PMIP (Vl

i), and the MIP (Vl). So, the force applied to each IPC  which is the deriva-

tive of the IP comes from three independent sources, which we call the marginal information

forces (MIF). The overall marginal force from k=1,2 that the IPC  receives is, according to

(35),

(26)

Notice that the forces from each source are normalized by their corresponding information poten-

tials to balance them out. This is a consequence of the logarithm in the definition of .

Each marginal force k that operates on the data sample  can be calculated according to the fol-
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lowing formulas obtained by differentiating the corresponding fields [40]

(27)

Once the forces that each IPC receives are calculated by (39), they represent the injected error

which can again be back-propagated to all the parameters of the mapper with backpropagation so

that the adaptation with quadratic mutual information takes place. The marginal force for the two

variable case is finally given by

(28)

Quadratic Mutual Information with the Euclidean Difference measure

We can also utilize (32) to express quadratic mutual information using the Euclidean difference

(ED-QMI) of vectors inequality 

(29)

Obviously,  and equality holds if and only if Y1 and Y2 are statistically indepen-

dent, so it is also a divergence. Basically (41) measures the Euclidean distance between the joint

pdf and the factorized marginals. With the previous definitions it is not difficult to obtain
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Although (35) and (42) differ in form, we can see that  is still an overall measure of cross-corre-

lation between two marginal IPs. We have found experimentally that  is better behaved

than for maximization of the quadratic mutual information, while they both provide

similar results for the minimization of quadratic mutual information. 

It is also not difficult to obtain the formula for the calculation of the information force produced

by the CIP field in the case of the Euclidean difference measure of (41)

(31)

where  are cross matrices which serve as force modifiers. 

Interpretation of the CIP

Another way to look at the CIP comes from the expression of the factorized marginal PDFs. From

(34), we have:

(32)

This suggests that in the joint space, there are  “virtual IPCs” 

whose coordinates are given by each of the coordinates of the IPCs, that is, for every real IPC

location (yi1,yj2), N virtual IPCs are placed at points given by the coordinate yi1 of the real IPC

and yj2, j=1,...N, of all the other real IPCs. The PDF of (44) is exactly the factorized marginal

PDFs of the IPCs. The relation between all types of IPCs is illustrated in Figure 17 for two
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extreme cases.

In the left panel, the IPCs are distributed along a diagonal line. In this case the virtual IPCs are

maximally scattered in the joint field, and the difference between the distribution of the real IPCs

and virtual IPCs is maximized. In the right panel of Fig. 17 the IPCs are in a more compact distri-

bution in the joint field. In this case the virtual IPCs occupy the same locations as the real IPCs. In

this case the two fields are the same and the CIP is zero, which corresponds to the case of statisti-

cal independence of the two marginal variables  and . All the other distributions of IPCs will

provide intermediate conditions between these two extremes.

From the above description, we can re-interpret the CIP as the square of the Euclidean distance

between the IP (formed by real IPCs) and the virtual IP fields (formed by virtual IPCs). CIP is a

general measure for the statistical relation between two variables (based merely on the given

data). It may also be noted that both  and  can be multidimensional variables, and their

dimensions can be even different.
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IV Conclusions

This chapter describes our efforts to develop an information-theoretic criterion which can be uti-

lized in adaptive filtering and neurocomputing. The optimization criteria should be external to the

mapper, and should work directly with the information contained in the samples, without any fur-

ther assumptions. We found the answer in a combination of a nonparametric density estimator

(Parzen windows) and easily computable definitions of entropy and mutual information.

Although Shannon’s entropy definition is the only one that obeys all the properties of information,

alternate definitions have been shown of practical value. We have explored the parametric defini-

tion of entropy proposed by Renyi, and settled on the member of the family with order α = 2, or

quadratic entropy. Renyi’s quadratic entropy can be readily integrated with the Parzen window

estimator, yielding without any approximation (besides the PDF estimation step) an optimization

criterion that is appropriate for our concept of “neural processing”. 

We explained how the idea of PDF estimation with Parzen windows leads to the integrated square

error (ISE) method which was the first reported practical non-parametric method for ITL. ISE is a

criterion external to the mapper so it can be used with any mapper, linear or nonlinear. An analysis

of the computations showed that the PDF estimation can be bypassed and the criterion computed

with local interactions among samples with an influence function. The algorithm has a computa-

tional complexity of O(N2), where N is the number of training patterns. We showed that the

method is practical and works well, extending the work of Bell and Sejnowski for blind source

separation. But the criterion seems to have other very interesting properties (such as neighbor-

hood preservation) which have not been explored. 

With Renyi’s quadratic entropy we have a more principled approach to directly manipulate

entropy. We provided an interpretation of the local interactions among pairs of samples as an

information potential field. The injected error for the mapper can also be interpreted as an infor-

mation force. This physical analogy raises hope of building an “entropy machine” based on this

approach. We also showed the relationship between the information potential and the influence

function obtained in ISE. 
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An important conclusion of this work is the form of the Renyi’s entropy estimator. Although

entropy is a function of the PDF, we do not need to estimate the PDF to estimate Renyi’s entropy.

This is due to the fact that Renyi’s entropy is a function of the norm of the PDF which can be esti-

mated directly by interactions among α-plets of data samples. A similar simplification happens in

the design of classifiers, where the a posteriori probability is estimated without the need to

directly estimate the PDF. This is a saving grace that will make ITL practical. 

Mutual information was estimated using the Cauchy-Schwartz (CS-QMI) and the Euclidean Dis-

tance (ED-QMI) inequalities as measures of divergence between the joint density and the factor-

ized marginals. This is a proxy (approximation) for the Kullback-Leibler divergence, but has the

advantage of being easily integrated with the Parzen window method to implement sample esti-

mators. We showed that the minimization of this cost function efficiently separates instanta-

neously mixed speech sources. The idea is to minimize the mutual information among the outputs

of the de-mixing filter, as described in previous chapters. But with the information potential

method we are using solely the information from samples, so we can potentially separate nonlin-

early mixed sources. 

But quadratic mutual information transcends the independent component analysis application. It

can also be used for supervised learning by interpreting the variables as the desired response and

the output of the mapper. We showed that the maximization of the quadratic mutual information

works as an information filtering criterion to estimate pose from vehicle images in synthetic aper-

ture radar. We also showed how to adapt an MLP layer-by-layer without error backpropagation.

Each layer of the MLP is interpreted as an information filter with the explicit goal of maximizing

mutual information between the desired response and the output of the layer. No backpropagation

of errors is necessary to discover complex mappings. 

Many challenging steps lie ahead in this area of research, but we hope to have shown that infor-

mation-theoretic learning criteria are flexible, usable and provide more information about the data

than the mean-square error (MSE) criterion which is still the workhorse of neurocomputing. 
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