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Principal component analysis 
Principal component analysis (PCA) is a classical statistical method. This linear transform has been 
widely used in data analysis and compression. The following presentation is adapted from [9]. Some 
of the texts on the subject also include [30], [31]. Principal component analysis is based on the 
statistical representation of a random variable. Suppose we have a random vector population x, 
where  

  

and the mean of that population is denoted by  

  

and the covariance matrix of the same data set is  

  

The components of  , denoted by  , represent the covariances between the random variable 

components  and  . The component  is the variance of the component  . The variance of a 
component indicates the spread of the component values around its mean value. If two components 

 and  of the data are uncorrelated, their covariance is zero  . The covariance 

matrix is, by definition, always symmetric.  

From a sample of vectors  , we can calculate the sample mean and the sample 
covariance matrix as the estimates of the mean and the covariance matrix.  

From a symmetric matrix such as the covariance matrix, we can calculate an orthogonal basis by 
finding its eigenvalues and eigenvectors. The eigenvectors  and the corresponding eigenvalues  

are the solutions of the equation  

  

For simplicity we assume that the  are distinct. These values can be found, for example, by finding 

the solutions of the characteristic equation  

  

where the  is the identity matrix having the same order than  and the |.| denotes the determinant 

of the matrix. If the data vector has n components, the characteristic equation becomes of order n. 
This is easy to solve only if n is small. Solving eigenvalues and corresponding eigenvectors is a non-
trivial task, and many methods exist. One way to solve the eigenvalue problem is to use a neural 
solution to the problem [30]. The data is fed as the input, and the network converges to the wanted 
solution.  

n previo conten
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By ordering the eigenvectors in the order of descending eigenvalues (largest first), one can create an 
ordered orthogonal basis with the first eigenvector having the direction of largest variance of the 
data. In this way, we can find directions in which the data set has the most significant amounts of 
energy.  

Suppose one has a data set of which the sample mean and the covariance matrix have been 
calculated. Let  be a matrix consisting of eigenvectors of the covariance matrix as the row vectors. 

By transforming a data vector x, we get  

  

which is a point in the orthogonal coordinate system defined by the eigenvectors. Components of y 
can be seen as the coordinates in the orthogonal base. We can reconstruct the original data vector  
from  by  

  

using the property of an orthogonal matrix  . The  is the transpose of a matrix  . 
The original vector  was projected on the coordinate axes defined by the orthogonal basis. The 
original vector was then reconstructed by a linear combination of the orthogonal basis vectors.  

Instead of using all the eigenvectors of the covariance matrix, we may represent the data in terms of 
only a few basis vectors of the orthogonal basis. If we denote the matrix having the K first 
eigenvectors as rows by  , we can create a similar transformation as seen above  

  

and  

  

This means that we project the original data vector on the coordinate axes having the dimension K 
and transforming the vector back by a linear combination of the basis vectors. This minimizes the 
mean-square error between the data and this representation with given number of eigenvectors.  

If the data is concentrated in a linear subspace, this provides a way to compress data without losing 
much information and simplifying the representation. By picking the eigenvectors having the largest 
eigenvalues we lose as little information as possible in the mean-square sense. One can e.g. choose a 
fixed number of eigenvectors and their respective eigenvalues and get a consistent representation, or 
abstraction of the data. This preserves a varying amount of energy of the original data. Alternatively, 
we can choose approximately the same amount of energy and a varying amount of eigenvectors and 
their respective eigenvalues. This would in turn give approximately consistent amount of 
information in the expense of varying representations with regard to the dimension of the subspace.  

We are here faced with contradictory goals: On one hand, we should simplify the problem by 
reducing the dimension of the representation. On the other hand we want to preserve as much as 
possible of the original information content. PCA offers a convenient way to control the trade-off 
between loosing information and simplifying the problem at hand.  

As it will be noted later, it may be possible to create piecewise linear models by dividing the input 
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data to smaller regions and fitting linear models locally to the data.  

Now, consider a small example showing the characteristics of the eigenvectors. Some artificial data 
has been generated, which is illustrated in the Figure 3.1. The small dots are the points in the data 
set.  

     
Figure 3.1: Eigenvectors of the artificially created data 

Sample mean and sample covariance matrix can easily be calculated from the data. Eigenvectors and 
eigenvalues can be calculated from the covariance matrix. The directions of eigenvectors are drawn 
in the Figure as lines. The first eigenvector having the largest eigenvalue points to the direction of 
largest variance (right and upwards) whereas the second eigenvector is orthogonal to the first one 
(pointing to left and upwards). In this example the first eigenvalue corresponding to the first 
eigenvector is  while the other eigenvalue is . By comparing the values 

of eigenvalues to the total sum of eigenvalues, we can get an idea how much of the energy is 
concentrated along the particular eigenvector. In this case, the first eigenvector contains almost all 
the energy. The data could be well approximated with a one-dimensional representation.  

Sometimes it is desirable to investigate the behavior of the system under small changes. Assume that 
this system, or phenomenon is constrained to a n-dimensional manifold and can be approximated 
with a linear manifold. Suppose one has a small change along one of the coordinate axes in the 
original coordinate system. If the data from the phenomenon is concentrated in a subspace, we can 
project this small change  to the approximative subspace built with PCA by projecting  on all 

the basis vectors in the linear subspace by  

  

where the matrix  has the K first eigenvectors as rows. Subspace has then a dimension of K.  

represents the change caused by the original small change. This can be transformed back with a 
change of basis by taking a linear combination of the basis vectors by  

  

Then, we get the typical change in the real-world coordinate system caused by a small change  by 

assuming that the phenomenon constrains the system to have values in the limited subspace only.  

     n previo conten

Stránka č. 3 z 4Principal component analysis

1.11.2005file://E:\05_11_01\PCA\PCA1.htm



Next: Models Up: Principal component analysis Previous: Principal component analysis 

Jaakko Hollmen  
Fri Mar 8 13:44:32 EET 1996  

Stránka č. 4 z 4Principal component analysis

1.11.2005file://E:\05_11_01\PCA\PCA1.htm


