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Independent component analysis (ICA) has been widely used for blind source separation in many fields such

as brain imaging analysis, signal processing, telecommunication. Many statistical techniques based on M-estimates

have been proposed in estimating the mixing matrix. Recently a few methods based on nonparametric tools are

also available. However, in-depth analysis on asymptotic efficiency has not been available. In this paper we analyze

ICA under the framework of semiparametric theories [see Bickel, Klaassen, Ritov and Wellner (1993)] and propose

a straightforword estimate based on the efficient score function by using B-spline approximations. This estimate

exhibits better performance than stardard ICA methods in a variety of simulations. It is proved that this estimate is

asymptotically efficient under moderate conditions.

1. Introduction. Independent component analysis (ICA) aims to separate blind sources from their

observed linear mixtures without any prior knowledge, where blind sources are assumed to be mutually

independent. This technique has been widely used in the past decade to extract useful features from ob-

served data in many fields such as brain imaging analysis, signal processing, telecommunication. Hyvarinen,

Karhunen and Oja (2001) described many effective applications of ICA in different fields. For example

the ICA method was shown able to separate artifacts from magnetoencephalography (MEG) data, without

modelling the process that generated the artifacts, by Vigario, Jousmaki, Hamalainen, Hari and Oja (1998).

The standard ICA models an m×1 random vector X (e.g., instantaneous magnetoencephalogical image)

by linear mixtures of m mutually independent random variables (S1, · · · , Sm) (e.g., artifacts, other brain

activities), but each Si’s distribution is totally unknown. That is, for S = (S1, · · · , Sm)T and some m ×m
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matrix θ,

X = θS. (1)

Here θ is called the mixing matrix, assumed nonsingular. Given n independent observations (X1, · · · , Xn)

from the distribution of X, it is desirable to estimate θ and thus to separate each Si = (θ−1X)i. Let W = θ−1

(called the unmixing matrix). Then the aim is equivalent to finding a W such as S = WX has mutually

independent components. This can be seen as a projection pursuit problem in seeking for m directions such

that the corresponding projections are most mutually independent.

It was shown by Comon (1994) that W is identifiable up to scaling and permutation of its rows if at

most one of S’s components is normal. The model (1) can be viewed as a semiparametric model with

parameters (W, r1, · · · , rm), where ri parametrizes Si’s density/mass function. In this paper, W is the

parameter of interest and (r1, · · · , rm) which themselves can only be identified up to permutation and scale

are the nuisance parameters.

Since ICA was motivated by neurophysiological problems in the early 1980s [e.g., Hyvarinen, Karhunen

and Oja (2001)], there have been many methods proposed to estimate W . They fall into two classes. One

class involves specifying a particular parametric model for each ri and then optimizing contrast function

suggested by the model of the data and (W, r1, · · · , rm) as a function of the latter. The primary examples

of this approach are maximum likelihood (ML) [e.g., Pham and Garrat (1997) and Lee, Girolami and

Sejnowski (1999)] or equivalently minimizing mutual information [e.g., Comon (1994)], minimizing high-

order correlation between WX’s components [e.g., Cardoso (1999)], and maximizing the non-gaussianity

of WX’s components [e.g., Hyvarinen (1999)]. The second approach is to view ICA as a semiparametric

model and assume nothing about the distribution of the components of S. Thus two distinct goals can

be formulated. (i). To find estimates Ŵ of W which are consistent or even better
√
n consistent, that is,

Ŵ = W + Op(n
−1/2). (ii). To find procedures which achieve the information bound, that is, estimates

of W which are asymptotically normal and have smallest variance-covariance matrix among all estimates

which are in a suitable sense uniformly asymptotically normal - see for instance Bickel, Klasseen, Ritov and

Wellner (1993) (BKRW). Amari (2002) formally demonstrated that to achieve the information bound in

this situation, estimates had to be based on methods which estimated the densities of the sources. In fact

it can even be shown [Cardoso (1998)] that for any fixed estimating equation corresponding to maximizing

an objective function, there is a possible distribution of sources for which the global maximizer which is a
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solution of the estimating equation is inconsistent, despite the consistency of a local solution near the truth.

Recently, some nonparametric methods to estimate W have appeared. For example, Bach and Jordan

(2002) proposed: 1) To reduce the dimension of the data using a kernel representation; 2) To choose W

so as to minimize the empirical generalized variance between the components of WX. Hastie and Tibshi-

rani (2002) proposed maximizing the penalized likelihood as a function of (W, r1, · · · , rm) and Vlassis and

Motomura (2001) proposed maximizing the likelihood by using Gaussian kernel density estimation. The

Vlassis-Motomura and Hastie-Tibshirani methods are of the same type as ours but in both cases, neither

was a method of tuning suggested nor was anything proved about the property of the procedures. Various

performance analyses have been made using simulations. However, none of these procedures have been ana-

lyzed theoretically. Samarov and Tsybakov (2002) proposed and analyzed an estimate
√
n consistent under

mild conditions. We [Chen and Bickel (2004)] analyzed in detail a characteristic-function based method

[Eriksson and Koivunen (2003)] and showed it to be consistent under the minimal identifiability conditions

and
√
n consistent under mild conditions. Our concern in this paper is the construction of efficient estimates.

We develop an efficient estimator by using a sieve profile likelihood technique starting the algorithm at a

consistent point. The characteristic-function based ICA algorithm PCFICA [Chen and Bickel (2004)] is used

both theoretically and in our simulations for this critical starting point.

In the following, we analyze the ICA model (1) in the framework of semiparametric models [see, e.g.,

BKRW] and propose a new method of estimating W using the efficient score function, as developed in Section

2. The main theorem is given in Section 3. Numerical studies are given in Section 4. Section 5, Section 6

and an appendix contain the technical details.

Notations: In this paper, W denotes an m×m matrix, Wi and Wij denote the ith row and the (i, j)th

element of W separately. The superscript T denotes the transpose of a matrix or vector. For any matrix A,

||A||F =
√

tr(ATA).

2. Semiparametric inference.

2.0. Efficient estimates for semiparametric models. In this subsection we review briefly the salient

features of estimation in semiparametric models.

Given a semiparametric model, X1, · · · , Xn i.i.d {P(θ,η) : θ ∈ Ω ⊂ Rd, η ∈ E}, where E is a subset of a

function space, estimates θ̂n of θ are called regular if
√
n(θ̂n−θ) converges in law uniformly in P(θn,ηn) where

(θn, ηn) converges to (θ0, η0) in a smooth way. Then : a) If there is a uniformly best estimate among such
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θ̂n, call it θ∗n, it must have the form under P(θ,η),

θ∗n = θ +
1

n

n
∑

i=1

l̃(Xi; θ, η) + op(n
−1/2),

where l̃ may be computed more or less explicitly by suitable projections in L2(P(θ,η)). Closely related is the

efficient score function, l
∗ ≡ I(θ, η)̃l, where I(θ, η) = {E(θ,η)(̃l̃l

T )}−1; b) If (θ̃n, η̃n) are consistent estimates

of (θ, η) and some additional regularity conditions hold, then the solution of

1

n

n
∑

i=1

l
∗(Xi; θ, η̃n) = 0 (2)

obtained by starting at (θ̃n, η̃n) is efficient. For a suitable construction of η̂n(θ) such that η̂n(θ) is efficient

for each η for the model P1 = {P(θ,η) : η ∈ E}, it is possible to replace l
∗ by ∂l

∂θ , where l is the logarithmic

likelihood function, if we take η̃n not fixed but equal to η̂n(θ). We employ this approach. This and related

methods may be found in BKRW Chapter 7 and Murphy and van de Vaart (2000) who call this method

profile likelihood.

We note again that this technique is different from that which we have called type (i), known as Quasi

ML in the ICA literature which corresponds to a subset of class 1 of the estimates we have considered. The

technique is to guess some shape η0 for η and then do ordinary ML. Of course if η0 is true, then the resulting

estimate is asymptotically Gaussian and has smaller variance than the θ̂ we discuss. But if η0 is false then the

estimate can be inconsistent. The ICA algorithms which we compare ours to in Section 4 such as FastICA

[Hyvarinen and Oja (1997)] and Extended Infomax [Lee, Girolami and Senjowski (1998)] are of this type.

Pham and Garrat (1997) do consider parametric models such as the logsplines we introduce in Section 2.3.

However they do not suggest increasing the dimension of their model with n and hence are subject to the

difficulties with consistency that we already discussed.

In the next four subsections, we show how to implement the idea given in (2) for the ICA model. The

technical analysis is carried out in Section 3 under the framework of generalized M-estimates [see e.g., BKRW].

2.1. Some notation and further assumptions. Let WP be one of the nonsingular unmixing matrices such

that S = WPX has m mutually independent components. Without loss of generality, we may assume that

det(WP ) > 0. For any row vector w ∈ Rm, we use fw as the probability density function (pdf) of wX and

use φw as the density score function associated with fw defined by φw(t) = − ∂
∂t log fw(t)I(fw(t) > 0).
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As we mentioned earlier, in the model (1) the order and scaling of either W ’s rows or S’s components

need to be defined for the identifiability of W . Here we assume that each Si has absolute median 1 to control

the scaling ambiguity, i.e., P (|Si| ≤ 1) = 1
2 , or equivalently

2

∫ 1

−1

ri(s)ds = 1. (3)

Even after this choice, the correct unmixing matrix requires 2mm! choices due to sign changes and row

permutations. This ambiguity can be resolved in many different ways, but we need not strictly specify this

since we assume in this paper that we have at hand a raw consistent starting value for WP , say PCFICA

of Chen & Bickel (2004). Define k(s) = 2I(|s| ≤ 1) − 1, where I(.) is an indicator function. Then (3) is

equivalent to

∫

k(Si)dP = 0.

We proceed to calculate l
∗. The terms used in and operations needed for the following calculation may be

found in BKRW chapter 3 (page 51, 70).

2.2. Efficient score function of W . By parametrizing the model (1) with (W, r1, · · · , rm), the likelihood

function of X can be expressed as

pX(x;W, r1, · · · , rm) = | det(W )|
m
∏

i=1

ri(Wix).

The parameter of interest is W and (r1, · · · , rm) are the nuisance parameters. In the following we heuristically

calculate the efficient score function of W as in Section 2.0, but refer to BKRW Chapter 3 for geometric

intuition and relevant calculus. For simplicity, we assume E[Si] = 0. For the convenience of notation, let E

be the expectation operator under P .

Let φi(si) = − ∂
∂si

log ri(si)I(ri(si) > 0) be the density score function associated with ri and define

Φ by Φ(s) = (φ1(s1), · · · , φm(sm))T , where s = (s1, · · · , sm)T . Then the score function of W , l̇W (x) ≡
∂

∂W log(pX(x;W, r1, · · · , rm)), is equal to

l̇W (x) = (Im×m − Φ(s)sT )W−T , where s = Wx.
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From this, the minimal regularity conditions for talking about effecient estimation are that each ri should

be absolutely continuous, W nonsingular, and

E[φi(Si)
2] < ∞ and E[S2

i ] <∞. (4)

To calculate the tangent vectors for each nuisance parameter ri, we take the representation ri(·; t) =

ri(·)ethi(·) for t ∈ R close to 0, then the tangent vector w.r.t hi is

limitt→0
∂

∂t
log pX(x;W, r1, ri(·; t), rm) = hi(Wix).

Since ri(·; t) needs to be a probability density function and to satisfy the mean and absolute median assump-

tions, hi needs to satisfy E[hi(Si)] = 0, E[hi(Si)Si] = 0, E[hi(Si)k(Si)] = 0 and is otherwise arbitrary. Thus

the tangent space of the nuisance score of ri can be expressed as

TSi = {hi(Wix) ∈ L2(P(W,r))|E[hi(Si)] = 0, E[hi(Si)Si] = 0, E[hi(Si)k(Si)] = 0}.

Notice that the tangent spaces {TSi : 1 ≤ i ≤ m} are perpendicular to each other since Sis are mutually

independent. Thus any projection onto the tangent space of (r1, · · · , rm) is equal to the summation of the

partial projection onto each TSi. The efficient score of W can then be expressed as

l
∗(.;W,Φ) = l̇W −

m
∑

i=1

π(l̇W |TSi),

where π(.|L) denotes the projection operator in the Hilbert space L2(P(W,r1,···,rm)) onto L. After some

calculation we find that the efficient score l
∗(.;W,Φ) is equal to

l
∗(x;W,Φ) = MW−T , (5)

where M is a m×m function matrix and its elements are given by

Mij = −φi(Wix)Wjx, for 1 ≤ i 6= j ≤ m, (6)

Mii = αiWix + βik(Wix), for i = 1, · · · ,m, (7)
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and α = (α1, · · · , αm)T , β = (β1, · · · , βm)T , σ2 = (σ2
1 , · · · , σ2

m)T are defined by

αi = − (1 − ui)vi

σ2
i − v2

i

, βi =
(1 − ui)σ

2
i

σ2
i − v2

i

, σ2
i = E[S2

i ], (8)

vi = E[2SiI(|Si| ≤ 1)], ui = E[2SiφiI(|Si| ≤ 1)]. (9)

(Note: Most of these formulas have been obtained by Amari and Cardoso (1997).) By the convolution

theorem on semiparametric models [ BKRW ], the information bound for regular estimators of W is

(E[l∗l∗T (X;W,Φ)])−1, where l
∗(.;W,Φ) is considered as a column vector function, reshaped row by row. It

is obvious that the efficient score function only depends on (r1, · · · , rm) through their density score

functions (φ1, · · · , φm). In the next subsection, we focus on the estimation of a density score function.

2.3. Estimating the density score function by B-spline approximations. Let φ = − r′

r be the density

score associated with a univariate pdf r and G be a linear space with differentiable basis functions B =

(B1, · · · , BN )T . An estimator of φ in G can then be obtained by minimizing the mean square error c(γ) for

γ ∈ RN , which is defined as

c(γ) =

∫

R

(φ(s) − γT
B(s))2r(s)ds.

By partial integration,

c(γ) = γTEr[B
T
B]γ − 2γTEr[B

′] + Er[φ
2],

where Er is the expectation operator under the probability measure r(s)ds. Thus the optimal γ is γφ =

(Er[B
T
B])−1Er[B

′], where B
′ is the derivative of B, and the best approximation of φ in G in the sense

of mean square error is φG = γT
φ B. This method was proposed by Jin (1992), as a variant of Cox (1985)’s

penalized estimator of φ. Given n random samples from the density function r, γφ can be estimated by

combinations of empirical moments. So a natural estimator of φ is given by

φ̂G = γT
n B, where γn = (Êr[B

T
B])−1Êr[B

′], (10)

and Êr denotes the empirical mean operator corresponding to Er. This method has also been used to
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estimate density score functions in the ICA literature, for example by Pham & Garrat (1997).

B-spline basis functions are popular choices for G. In general, the support of r is unknown and we need

to choose a working interval [bn, bn] ⊆ supp(r), where some knots are distributed for the construction of the

basis functions. To choose bn and bn empirically, we may use for example 1% and 99% empirical quantiles.

The basic rule for adaptation is that [bn, bn] → supp(r) very slowly as n→ ∞. The number of basis functions,

say N , is an empirical smoothing parameter, which can be dealt with as usual by cross validation. Let

PEn(γ) = γT Êr[B
T
B]γ − 2γT Êr[B

′]

be the empirical prediction error. In this paper, we use two-fold cross validation, that is, by splitting the

samples into two half the optimal number of knots is to minimize the average empirical prediction error after

alternatively using one half samples to estimate γ and the other half to calculate the empirical prediction

error. Jin (1992) used B-spline basis functions for G and showed that the adaptive choice of N by cross

validation under weak conditions on r’s smoothness is

N = O(nδ),

where 0 < δ < 1
6 and δ depends on the tail property of r.

2.4. Estimation of W . Assume that an available starting estimate Ŵ (0) is consistent for WP . We show

how to construct an estimate Φ̂W of ΦW and then solve

∫

l
∗(X;W, Φ̂W )dPn(X) = 0.

Here Φ̂W is a data dependent function of W . Thus l
∗(X;W, Φ̂W ) is in fact an approximate efficient score

function. Our construction is such that Φ̂W is approximately efficient in the sense that smooth functionals

of Φ̂W such as
∫ x0

−∞

∫ x

−∞
Φ̂W (y)dydx are efficient estimates of the corresponding population function.

For each k ∈ {1, · · · ,m}, we choose a sieve for φ̂Wk
as follows. Let [bnk, bnk] ⊂ R be a subset of supp(rk)

containing most of the mass of rk. For an integer nk, set nk + 4 points {bnk + (i− 1)δnk : 1 ≤ i ≤ nk + 4}

as the knots , where δnk depends on nk through

δnk = (bnk − bnk)/(nk + 3),
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and then construct nk cubic B-spline basis functions as in the appendix. Denote the basis functions as

B
(k)
n ≡ (B

(k)
n1 , · · · , B

(k)
nnk

)T , where the superscript (k) denotes the association with Sk and the first subscript

n denotes the dependence with the sample size. Given the random samples {WkX
i : 1 ≤ i ≤ n} from

the density function fWk
, we use (10) to approximate its density score function φWk

by using these basis

functions. Here nk is chosen by cross-validation as described in the previous subsection. To avoid further

complications, we assume that both [bnk, bnk] and nk are fixed using Ŵ (0) once for all. That is, the nk + 4

knots are fixed. In the algorithm they are random and depend on the initial estimate Ŵ (0). Then for any

updated Wk we have an available sieve estimator φ̂Wk
for φWk

by (10), that is,

φ̂Wk
= [γn(Wk)]T B

(k)
n ,

where γn(w) = A−1
n (w)Dn(w) with An(w) =

∫

B
(k)
n B

(k)T
n (wX)dPn and Dn(w) =

∫

[B
(k)
n ]′(wX)dPn. Here

[B
(k)
n ]′(x) ≡ ( d

dxB
(k)
n1 (x), · · · , d

dxBnnk
(x))T denots its derivative and will be used thereafter.

Now we replace the efficient score function l
∗(X;W,Φ) defined in (5) by its profile form l

∗(X;W, Φ̂W ),

where αi, βi, σ
2
i defined in (8) and (9) are estimated by moments with plugged-in parameters (W, Φ̂W ).

Denote their estimates by α̂i, β̂i, σ̂
2
i separately, i.e. :

α̂i = − (1 − ûi)v̂i

σ̂2
i − v̂2

i

, β̂i =
(1 − ûi)σ̂

2
i

σ̂2
i − v̂2

i

, σ̂2
i =

∫

(WiX)2dPn, (11)

where ûi =
∫

Y =WiX
2Y φ̂Wi

(Y )I(|Y | ≤ 1)dPn, v̂i =
∫

Y =WiX
2Y I(|Y | ≤ 1)dPn.

Let ΦW = [φW1
, · · · , φWm

]. Define

en(W ) =

∫

l
∗(X;W, Φ̂W )dPn and e(W ) =

∫

l
∗(X;W,ΦW )dP. (12)

Let Ŵn be the solution of

en(W ) = 0. (13)

Let l̂
∗(x;W ) ≡ l

∗(x;W, Φ̂W ) and ėn(W ) ≡ ∂
∂W en(W ). Notice that −ėn(Ŵ ) and

∫

l̂
∗
l̂
∗T (X; Ŵ )dPn have

the same limit

−∂e(W )

∂W
|WP

= E[l∗l∗T (X;WP ,ΦP )]
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with probability converging to 1, if Ŵ →WP , as developed later in Section 5, we employ the following

approximate Newton-Rapson scheme :

Ŵ (j+1) = Ŵ (j) + [

∫

l̂
∗
l̂
∗T (X; Ŵ (j))dPn]−1

en(Ŵ (j)), j = 0, 1, · · · (14)

Note that this method does not require calculating the Hessian matrix ėn(W ) but achieves the same

efficiency as using the exact Newton-Rapson algorithm. The convergence and asymptotic properties of (14)

is developed in Section 3. Call Ŵ ≡ Ŵ (∞) defined by (14) the EFFICA, which will be used for the

simulation in Section 4.

3. Asymptotic properties. We are given Ŵ (0) such that there exists εn with εn → 0 ,
√
nεn → ∞

such that as n→ ∞ ,

P (||Ŵ (0) −WP ||F ≤ εn) → 1. (15)

Recall that PCFICA does this. Let

Ωn = {W ∈ Rm×m : ||W −WP ||F < εn}. (16)

We need the following conditions. Let φWk,n(x) ≡ φWk
(x)I(x ∈ [bnk, bnk]).

C1: WP is nonsingular.

C2: E[Sk] = 0, E[S2
k] <∞, med(|Sk|) = 1 and E(φk(Sk))2 <∞.

C3: |rk|∞ <∞, |r′k|∞ <∞, supt∈R|tr′k(t)| <∞.

C4: The Uniform Law of Large Numbers (ULLN) holds for {φWk
(WkX)Xi : W ∈ Ωn}, {φ2

Wk
(WkX)X2

i :

W ∈ Ωn} and for {φ′
Wk

(WkX)WiXXj : W ∈ Ωn}.

C5: For some positive constants c1, c2, rk(t) ≥ c1δnk if t ∈ [bnk, bnk], otherwise rk(t) ≤ c2δnk.

C6: supW∈Ωn
|φWk,n|∞δnk = O(1) and supW∈Ωn

|φ′′′Wk,n|∞δnk = o(1).

C7: εnδ
− 11

2

nk (bnk − bnk) = o(1), where εn, δnk and [bnk, bnk] are as in (15) and C5.

(Note: ULLN holds for Gn iff supg∈Gn
|
∫

g(X)d(Pn − P )| = op(1), see for example van de Geer (2000).)

Condition C1-C3 can be considered as the simplified regularity conditions. Condition C1 and the finite

second moments on Sks and its density score functions in Condition C2 are among the minimal regularity
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conditions for talking about efficiency, as we mentioned in Section 2.2. The absolute median in Condition C2

is a simple and minimal condition to make the scales of the unmixing matrix identifiable [Comon (1994)]. It

should be clear that the zero mean assumption in Condition C2 is in no way crucial to the general argument

as the mean can be estimated adaptively, but serves to keep algebraic complication to a minimum. Condition

C3 assumes some smoothness on the density score function φk for each hidden component, which is needed

so that it can be well approximated by B-splines.

Condition C4-C7 are technical conditions which we believe are far from necessary but are reasonably easy

to check and whose use enables construction of a more compact proof. As an easy example, if |φk|∞ < ∞

and | r
′′
k

rk
|∞ <∞ for k = 1, · · · ,m, then by (32) supW∈Ωn

|φWk
|∞ <∞ and by (33) supΩn

|φ′Wk
|∞ <∞, thus

C4 holds. Condition C5 and C6 require that the tail of rk be not too wiggly. Condition C6 also implies

δnk → 0. Condition C7 requires that the initial value be reasonably close to the truth and that the domain

and the number of knots of the B splines (i.e., nk = (bnk − bnk)δ−1
nk − 3) do not grow so quickly that we lose

control of the approximation to ΦW .

Here is our main theorem.

Theorem 1. In the ICA model (1), if (15) and C1-C7 hold for i, j, k = 1, · · · ,m, i 6= k and j 6= k. Then

with probability converging to 1 the algorithm (14) has a limit Ŵ (∞) and

√
n(Ŵ (∞) −WP ) = I−1

eff

√
n

∫

l
∗(X;WP ,ΦP )dPn + oP (1), (17)

where Ieff =
∫

l
∗
l
∗T (X;WP ,ΦP )dP . That is, Ŵ (∞) is Fisher efficient. (Note: (17) is considered in a vector

form.)

The proof of Theorem 1 is provided in later Sections and the Appendix.

4. Numerical studies and some computational issues. We do two groups of experiments to test

the empirical performance of the EFFICA. We generate data from known source distributions listed in Table

1 and then obtain linear mixtures of them by a known mixing matrix θ = W−1
P . In the EFFICA, to choose

the boundaries for B-spline approximation of the density score functions, we use the maximal value between

the 1% empirical quantile minus ∆n and 0% quantile as bnk, and use the minimal value between the 99%

empirical quantile plus ∆n and 100% empirical quantile as bnk , where ∆n = O(
√

log log n) is used in our

simulation. The choice of the number of knots is a key issue for EFFICA. In practice, we use two-fold cross
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[0]. N(0,1) [8]. exp(1)+ U(0,1)
[1]. exp(1) [9]. mixture exp.
[2]. t(3) [10]. mixture of exp. and normal
[3]. lognormal(1,1) [11]. mixture Gaussians: multimodal
[4]. t(5) [12]. mixture Gaussians: unimodal
[5]. logistic(0,1) [13]. exp(1) vs normal(0,1)
[6]. Weibull(3,1) [14]. lognormal(1,1) vs normal(0,1)
[7]. exp(10)+normal(0,1) [15]. Weibull(3,1) vs exp(1)

Table 1: Source distributions used in the simulations

validation (CV) as we mentioned in Section 2.3 to calculate the best empirical prediction error associated

with the number of knots nk, which starts from nk = 1, 2, · · ·, and then we choose the first nk such that the

best empirical prediction error strictly decreases w.r.t the number of knots till nk. This method was used

and shown by Jin (1992) able to find an appropriate nk, where Jin used smoothing cross-validation instead

of two-fold CV.

In the first group of experiments, we use 2 hidden components, and WP = [2, 1; 2, 3]. The two compo-

nents in the first 12 experiments are i.i.d from one of the distributions [1]-[12], and the two components in

experiments 13-15 are independent but are from different distributions given in one of cases [13]-[15] in Table

1 separately. Each of these experiments has been replicated 400 times.

In the second group of experiments, we increase the number m of hidden components to 4, 8 and 12

separately (the detailed setup of the sample sizes and replication times is given in Table 3). The m hidden

components are chosen in order from the first m source distributions of [0], [1], · · ·, [11] in Table 1, and

without loss of generality we use the identity matrix for WP .

Comparisons are made with five existing ICA algorithms: the FastICA algorithm with the options of

“symmetric” and “tanh” [Hyvarinen & Oja (1997)], which is equivalent to Quasi ML by specifying the density

score function of each hidden source by the optimal one between −2tanh(·) and tanh(·) − ·, the Jade-

ICA algorithm [Cardoso (1999)], the extended Infomax algorithm [Lee, Girolami & Sejnowski (1998)], the

KernelICA-Kgv algorithm [Bach & Jordan (2002)], and the PCFICA algorithm [Chen & Bickel 2004)] which

has been analyzed thoroughly. We used the estimate obtained by PCFICA as the initial value for EFFICA

and KernelICA-Kgv. For computational simplicity, we use FastICA’s estimate to initiate PCFICA. Note

that restarting is necessary for PCFICA since the algorithm is not convex. The performance of each algo-

rithm is measured by both the Frobenius error, i.e., dF (Ŵ ,WP ) = ||ŴW−1
P − I||F after suitable rescaling

and permutation on rows of both Ŵ and WP , and the so-called Amari error dA(Ŵ ,WP ) [Amari, Cichocki

12



& Yang (1996)]:

dA(V,W ) =
1

2m

m
∑

i=1

(

∑m
j=1 |aij |

maxj |aij |
− 1) +

1

2m

m
∑

j=1

(

∑m
i=1 |aij |

maxi|aij |
− 1),

where V,W are rescaled into V̄ , W̄ separately such that each row of V̄ and W̄ has norm 1, and aij =

(V̄ W̄−1)ij . It is noticed that d(V,W ) is invariant to permutation and scaling of the rows of V and W ,

is always between 0 and (m − 1), and is equal to zero if and only if V and W represent the same row

components. For each experiment in the first group of simulation with 400 replications, we report in Table

2, the average Amari error, and the square root of mean square error
√
MSE which is defined by

√
MSE =

√

√

√

√

1

#(repl)

#(repl)
∑

i=1

(d
(i)
F )2/m.

(Note: d
(i)
F denotes the Frobenius error for the i-th replication and #(repl) is the number of replications).

For the second group of simulation, we report the boxplots of the Amari errors (see Figure 1) and
√
MSE

in Table 3.

From the simulation results we can see that in most experiments the parametric methods (FastICA,

JADE, ExtImax) behave worse than the nonparametric methods (PCFICA, Kgv, EFFICA), and that the

EFFICA has both the smallest Amari errors and smallest Frobenius errors in most experiments, while the

KernelICA-Kgv, which we conjecture can be efficient with appropriate regularization, is the best in cases

of mixture Gaussians. As a tradeoff of their good statistical performance, the three nonparametric ICA

algorithms require heavier computation than the three parametric ICA algorithms.

5. Proof of Theorem 1. The solution of the efficient score equation given by (12) can be viewed as a

generalized M-estimator (GM-estimator). The existence/uniqueness, convergence and asymptotic linearity

of GM-estimators have been studied in BKRW (the Iteration Theorem in Appendix A.10.2, page 517).

Suppose that Mn(θ, Pn) is a functional of θ ∈ Ω (a subset of a finite Euclidean space) and Pn, but is

not necessarily linear with Pn. The subscript n in Mn allows the existence of a possible smoothing or

sieve parameter dependent on n. The zero of Mn(θ, Pn) w.r.t θ is called a generalized M-estimator. Let

M(θ, P ) = M∞(θ, P ). We review the conditions of the Iteration Theorem.

[GM1]. M(θP , P ) = 0 and θP ∈ Ω is the unique solution of M(θ, P ) = 0 in Ω.

13



pdfs Fast Jade ExtImax Pcf Kgv EFFICA

1 37 39 34 18 14 7

(63) (47) (40) (22) (17) ( 8 )

2 36 36 24 35 33 29

(163) (48) (43) (43) (39) ( 37 )

3 33 31 19 16 14 5

(172) (49) (23) (19) (17) ( 6 )

4 39 50 41 60 61 60

(70) ( 61 ) (79) (71) (72) (78)

5 71 85 87 109 99 128

(137) ( 108 ) (164) (136) (120) (179)

6 42 43 32 18 15 7

(133) (59) (40) (21) (17) ( 8 )

7 43 41 35 18 15 9

(145) (51) (68) (22) (18) ( 11 )

8 36 44 35 21 19 17

(70) (68) (45) (25) (22) ( 20 )

9 35 37 24 16 14 4

(150) (59) (29) (20) (17) ( 5 )

10 46 59 39 44 30 47

(148) (73) (47) (52) ( 35 ) (74)

11 28 33 27 29 25 25

(33) (38) (32) (34) ( 29 ) (30)

12 50 49 44 44 39 78

(130) (58) (55) (52) ( 47 ) (187)

13 65 52 185 24 19 16

(116) (63) (251) (30) (25) ( 22 )

14 35 45 91 20 14 11

(77) (63) (133) (25) (17) ( 14 )

15 69 72 57 32 27 11

(136) (130) (96) (49) (41) ( 18 )

Table 2: Reporting the mean of the Amari errors without brackt and
√

MSE inside bracket (multiplied by 1000)

by using m = 2 sources and sample size n = 1000, where the distributions of two sources for the kth experiment

(k = 1, · · · , 15 marked in the first column) are indexed by [k] in Table 0. For k = 1, · · · , 12, two sources have the same

distribution. The boxed numbers represent the best performance according to each experiment

case Fast Jade ExtImax PCF Kgv EFFICA
I 7 7 14 3 3 2
II 25 30 42 19 15 14
III 26 32 42 23 23 25

Table 3: Reporting
√

MSE (multiplied by 100) for ICA algorithms with the same simulations as in Figure 1

14
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Figure 1: Reporting the boxplots of Amari errors for ICA algorithms: case I (left) uses pdfs [0]-[3] to generate m=4

hidden sources, case II (middle) uses pdfs [0]-[7] to generate m=8 hidden sources, case III (right) uses [0]-[11] to

generate m=12 hidden sources; The X-labels represent ICA algorithms: F-FastICA, J-JadeICA, X-Extended Infomax,

P-PCFICA, K-Kgv, E-EFFICA; The sample sizes are 4000 for all the experiments and the replication times are 100,

100, 50 for I, II, III separately

[GM2]. Mn(θP , Pn) =
∫

ψθP
(X)dPn + op(n

−1/2) for some ψθP
∈ L2(P );

[GM3]. M(θ, P ) is differentiable w.r.t θ in a neighbourhood of θP and ∂M(θ,P )
∂θ |θP

is nonsingular.

For our efficient score equation Mn(θ, Pn) = en(W ) defined by (12), BKRW’s condition [U] becomes :

[U]. supW∈Ωn
|ėn(W ) − ė(WP )| = oP (1).

Theorem 2 [Bkrw]. Suppose (GM1),(GM2),(GM3) with Mn(θ, Pn) = en(W ) and (U) hold. If the starting

point satisfies P (|Ŵ (0) −WP | < εn) → 1, then with probability converging to 1, en(W ) in (12) has a unique

root Ŵ (∞), which is also the limit of the sequence defined by (14) except
∫

l̂
∗
l̂
∗T (X; Ŵ (j))dPn replaced by

−ėn(Ŵ (j)), and Ŵ (∞) is asymptotically linear with the influence function −[ė(WP )]−1
l
∗(.;WP ,ΦP ).

Theorem 2 is called the Iteration Theorem in BKRW. To prove the result of Theorem 1 w.r.t Ŵ (∞) defined

by (14), we need the following claim:

[V]. supW∈Ωn
|
∫

l̂
∗
l̂
∗T (X;W )dPn −

∫

l
∗
l
∗T (X;WP ,ΦWP

)dP | = oP (1).

Proof of Theorem 1. It is obvious that (GM1) holds under the conditions of Theorem 1 as it is the

efficient score function. (GM2), (GM3) and (U) are verified by Proposition 1, 2 and 3 below, separately.
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P, Pn population, empirical law of X
W,Wk,Wij m×mmatrix, its kth row, (i, j)th element
WP ,WPk,WPij unmixing matrix, its kth row, (i, j)th element
rk density function of Sk

φk = −r′k/rk density score function for Sk

ΦP = (φ1, · · · , φm)T function vectors
fWk

density function of WkX (fWP k
≡ rk)

φWk
= −f ′Wk

/fWk
score function of WkX (φWP k

≡ φk)
ΦW = (φW1

, · · · , φWm
)T function vector

B
(k)
n = (B

(k)
n0 , · · · , B

(k)
nnk

)T B-spline functions defined on [bnk, bnk]

An(Wk) =
∫

Y =WkX
B

(k)
n (Y )B

(k)T
n (Y )dPn served in coefficients of φ̂Wk

in Section 2.4

Dn(Wk) =
∫

(B
(k)
n )′(WkX)dPn served in coefficients of φ̂Wk

γn(Wk) = An(Wk)−1Dn(Wk) served as coefficients of φ̂Wk

A(Wk) =
∫

Y =WkX
B

(k)
n (Y )B

(k)T
n (Y )dP served in coefficients of φ̂Wk

D(Wk) =
∫

(B
(k)
n )′(WkX)dP served in coefficients of φ̂Wk

γ(Wk) = A(Wk)−1D(Wk) served as coefficients of φ̂Wk
in (34)

G(k)
n = {aT

B
(k)
n : a ∈ Rnk} closed linear span of B spline functions

φ̂Wk
= γn(Wk)T

B
(k)
n estimator of φWk

in G(k)
n in Section 2.4

φ̂Wk
= γ(Wk)T

B
(k)
n estimator of φWk

in G(k)
n , defined in (34)

φk,n, φWk,n truncation of φk, φWk
on [bnk, bnk]

l
∗(X;W,Φ) efficient score function of W , defined in (5)
e(W ) =

∫

l
∗(X;W,ΦW )dP expectation

en(W ) =
∫

l
∗(X;W, Φ̂W )dPn empirical expectation

Table 4: List of all notations used in the proof

Thus the conclusion of the above Iteration Theorem applies here. By Prosition 4, Condition (V) holds.

Further by Proposition 2,

ė(WP ) = −E[l∗l∗T (X;WP ,ΦP )],

thus we have

sup
W∈Ωn

|ėn(W ) +

∫

l̂
∗
l̂
∗T (x;W )dPn| = oP (1).

Then by following the contraction arguments of BKRW (page 317-319), the iteration sequence given in (14)

has the same limit as that replacing
∫

l̂
∗
l̂
∗T (X; Ŵ (j))dPn by −ėn(Ŵ (j)) with probability converging to 1. �

6. Proposition 1-4. For convenience we list all the notations used in the following proofs in Table 4,

for k ∈ {1, · · · ,m}, W ∈ Ωn. It is noted that all the lemmas used in this section are provided and proved in

the Appendix. For simplicity of notation, we often write δnk as δn below.

Proposition 1. Under the conditions of Theorem 1, we have

en(WP ) =

∫

l
∗(X;WP ,ΦP )dPn + oP (n−1/2).
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Proof. Recall the definition of en(W ) given by (12) and l
∗(x;W,Φ) given by (5)-(9). It is sufficient to show

that for 1 ≤ i 6= j ≤ m, α̂i − αi = oP (1), β̂i − βi = oP (1), where (αi, βi) and (α̂i, β̂i) are defined in (8) and

(11) separately, and

∫

φ̂WP i
(Si)SjdPn =

∫

φWPi
(Si)SjdPn + oP (n−1/2), (18)

where Si = WPiX, Sj = WPjX.

The first two are not hard to be verified by the Law of Large Numbers and Lemma 10. Here we just show

the last argument (18). Observe that

|
∫

φ̂WP i
(Si)SjdPn −

∫

φWP i
(Si)SjdPn| = |

∫

[φ̂WP i
(Si) − φ̂WP i

(Si)]SjdPn|

+|
∫

[φ̂WP i
(Si) − φi,n(Si)]SjdPn|

+|
∫

(φi(Si) − φi,n(Si))SjdPn|

= [1] + [2] + [3].

In the following, we show that all of [1], [2] and [3] are oP (n−1/2).

First by Lemma 4 and Lemma 6,

[1] = |
∫

(γn(WPi) − γ(WPi))
T
B

(i)
n (Si)SjdPn|

≤ ||γn(WPi) − γ(WPi)||2||
∫

B
(i)
n (Si)SjdPn||2

= oP (1)OP (n−1/2).

Further, E([2])2 = 1
nE(φ̂WP i

(Si) − φWP i,n(Si))
2E(S2

j ). By Lemma 9, |φ̂WP i
− φWP i,n|∞ ≤ cδ2n|φ′′′WP i,n

|∞,

thus by Condition C6

[2] = n−1/2δ2n|φ′′′WP i,n|∞OP (1) = oP (n−1/2).

For [3], since P (Si /∈ [bni, bni]) → 0, we have

E([3])2 =
1

n
E(φi(Si)

2I(Si /∈ [bni, bni]))E(S2
j ) = o(

1

n
).
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So [3] = oP (n−1/2). �

Proposition 2. Under Condition C1, C2, C4 in Theorem 1,e(W ) is differential w.r.t W in a

neighbourhood of WP and ė(WP ) = −E[l∗l∗T (X;WP ,ΦP )], nonsingular.

Proof. Let Tw(·) = ∂
∂wφw(·), for any nonzero w ∈ Rm. By (32) after exchanging the order of derivative

and integration we have E[Tw(wX)] = 0. Then by (6) we have

E[
∂

∂W
l
∗(X;W,ΦW )]|WP

= E[
∂

∂W
l
∗(X;W,ΦP )]|WP

.

Since the left hand side (LHS) of the above is ė(WP ), hence by Lemma 11 the right hand side (RHS) is

equal to

ė(WP ) = −E[l∗l∗T (X;WP ,ΦP )]. (19)

Notice that the elements of l
∗(.;WP ,ΦP ) are linearly independent, ė(WP ) must be nonsingular. �

Proposition 3. Under the conditions of Theorem 1, for k = 1, · · · ,m, we have

supΩn
|
∫

φ̂Wi
(WiX)XkdPn(X) −

∫

φPi(WPiX)XkdP | = oP (1), (20)

and

supΩn
|
∫

∂

∂Wi
[φ̂Wi

(WiX)]WjXdPn(X) −
∫

∂

∂Wi
[φPi(WiX)]WPi

WPjXdP | = oP (1). (21)

Then, Condition [U] holds.

Proof. Notice that ( dropping superscript (i) in B
(i)
n henceforth)

||
∫

B
(i)
n (WiX)XkdPn||22 =

ni
∑

l=1

(

∫

Bnl(WiX)XkdPn)2

≤
∫ ni

∑

l=1

B2
nl(WiX)dPn

∫

|Xk|2dPn

≤
∫

|Xk|2dPn, (by Property III, page 23).
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Then

supΩn
||

∫

Bn(WiX)XkdPn||2 = OP (1). (22)

And by Lemma 4, supΩn
||γn(Wk) − γ(Wk)||2 = oP (1), so

supΩn
|
∫

φ̂Wi
(WiX)XkdPn(X) −

∫

φ̂Wi
(WiX)XkdPn|

= supΩn
|(γn(Wk) − γ(Wk))T

∫

Bn(WiX)XkdPn|

≤ supΩn
||γn(Wk) − γ(Wk)||2supΩn

||
∫

Bn(WiX)XkdPn||2

= oP (1)OP (1). (23)

Further, by Lemma 9, supΩn
|φ̂Wi

(WiX) − φWi,n|∞ ≤ supΩn
c|φ′′′Wi,n

|∞δ2n, then

supΩn
|
∫

φ̂Wi
(WiX)XkdPn(X) −

∫

φWi,n(WiX)XkdPn|

≤ supΩn
|φ′′′Wi,n|∞δ

2
n

∫

|Xk|Pn

= oP (1), (by Condition C6). (24)

And by Condition C4, ULLN holds for {φWi
(WiX)Xk : W ∈ Ωn}, and by Lemma 1

supΩn
P (WiX /∈ [bni, bni]) = o(1), then

supΩn
|
∫

(φWi
− φWi,n)(WiX)XkdPn| = supΩn

|
∫

φWi
(WiX)XkI(WiX /∈ [bni, bni])dPn|

= oP (1). (25)

From (23)-(25), we get

supΩn
|
∫

φ̂Wi
(WiX)XkdPn(X) −

∫

φWi
(WiX)XkdPn(X)| = oP (1). (26)

Now by Condition C4,

supΩn
|
∫

φWi
(WiX)Xkd(Pn − P )| = oP (1); (27)
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And by continuity,

supΩn
|
∫

φWi
(WiX)XkdP −

∫

φWP i
(WPiX)XkdP | = o(1). (28)

Then (20) follows from (26)-(28).

In the following, we prove (21).

Notice that

∂

∂Wi
φ̂Wi

(WiX) =
∂

∂Wi
[γT

n (Wi)]B
(i)
n (WiX) + φ̂′Wi

(WiX)X. (29)

It is enough to show that the following [4]&[5] hold:

[4]. supΩn
|
∫

φ̂′Wi
(WiX)XkWjXdPn(X) −

∫

φ′Pi(WPiX)XkWPjXdP | = oP (1);

[5]. supΩn
|
∫

∂
∂Wi

[γT
n (Wi)]B

(i)
n (WiX)WjXdPn(X)| = oP (1).

Similar to (20), the uniform convergence of [4] can be verified by using Condition C4, C6, C7 and Lemma 1,

4, 9. Thus we only prove [5] in the following.

Notice that in [5],

(LHS)k ≤ supΩn
||( ∂

∂Wi
γn(Wi))k||2supΩn

||
∫

B
(i)
n (WiX)WjXdPn||2. (30)

By Lemma 7, supΩn
||

∫

B
(i)
n (WiX)WjXdPn||2 = Op(εnδ

−1
n n

1/2
i ). Thus it is enough to show that

supΩn
||( ∂

∂Wi
γn(Wi))k||2εnδ

−1
n n

1/2
i = oP (1). (31)

By taking partial derivatives,

∂

∂Wik
γn(Wi) =

∂

∂Wik
A−1

n (Wi)Dn(Wi) +A−1
n (Wi)

∂

∂Wik
Dn(Wi),

and

∂

∂Wik
A−1

n (Wi) = −A−1
n

∂

∂Wik
An(Wi)A

−1
n .

20



Then

∂

∂Wik
γn(Wi) = −A−1

n

∂

∂Wik
An(Wi)γn(Wi) +A−1

n (Wi)
∂

∂Wik
Dn(Wi).

Now by Lemma 2-5, we get

supΩn
|| ∂

∂Wik
γn(Wi)||2 ≤ supΩn

||A−1
n ||2(||

∂

∂Wik
An(Wi)||2||γn(Wi)||2 + || ∂

∂Wik
Dn(Wi)||2)

= Op(δ
−2
n ){Op(δ

− 1
2

n )Op(δ
−1
n

√
ni) + δ−2

n Op(1)}

= δ
− 7

2
n

√
niOP (1).

Provided that εnδ
− 9

2
n ni = o(1) implied by Condition C7, (31) holds. Thus we have in [5] (LHS)k = oP (1)

for k = 1, · · · ,m. �

Proposition 4. Under the conditions of Theorem 1, Condition [V] holds, i.e.,

supW∈Ωn
|
∫

l̂
∗
l̂
∗T (X;W )dPn −

∫

l
∗
l
∗T (X;WP ,ΦWP

)dP | = oP (1).

Proof. By checking the elements of l̂
∗
l̂
∗T (x;W ), it is enough to show that for 1 ≤ i, j, k, l ≤ m,

supΩn
|
∫

φ̂Wi
(WiX)φ̂Wj

(WjX)XkXldPn(X) −
∫

φPi(WPiX)φPj(WPjX)XkXldP | = oP (1),

supΩn
|
∫

φ̂Wi
(WiX)XkXldPn(X) −

∫

φPi(WPiX)XkXldP | = oP (1),

and

supΩn
|
∫

φ̂Wi
(WiX)Xkk(WjX)dPn(X) −

∫

φPi(WPiX)Xkk(WPjX)dP | = oP (1).

Each of these can be verified by using Lemma 1, 4, 9 and Condition C4, C7 with the similar arguments in

proving (20). �

7. Conclusion. In this paper, we put the classical ICA model under the framework of semiparametric

models and obtained an asymptotically efficient estimator for the unmixing matrix, by solving an approxi-

mate efficient score equation. The main difference between this method and popular parametric ICA methods

is that we estimate the density score functions of hidden sources adaptively. A variety of simulations have

illustrated statistical efficiency of this estimator in comparison with state-of-the-art ICA algorithms.
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APPENDIX

Some useful formulae. Let v = wW−1
P . Then wX = vS. If vk 6= 0 for some k ∈ {1, · · · ,m}, then

fw(t) =

∫

Rm−1

1

vk
rk(

t−
∑

j 6=k vjsj

vk
)
∏

j 6=k

rj(sj)dsj

= E[
1

vk
rk(

t− ∑

j 6=k vjSj

vk
)].

Since fw(t) is a marginal density function of (vS, Sj : 1 ≤ j 6= k ≤ m), by a standard formula [see, e.g.,

Bickel and Doksum (2001)]

φw(t) = − 1

vk
E[
r′k
rk

(
t− ∑

j 6=k vjSj

vk
)|vS = t]

=
1

vk
E[φk(Sk)|vS = t], (32)

and further calculation gives

∂

∂t
φw(t) = φ2

w(t) − 1

v2
k

E[
r′′k
rk

(
t−

∑

j 6=k vjSj

vk
)|vS = t]. (33)

Some properties of cubic B-splines. Let ξ1 < ξ2 < · · · < ξN be fixed points. The first order B-spline

basis functions based on these knots can be expressed as B1
i (x) = I(x ∈ [ξi, ξi+1)), i = 1, · · · , N − 1 and the

kth order B-spline basis functions can be obtained recursively (k ≥ 2) by

Bk
i (x) =

x− ξi
ξi+k−1 − ξi

Bk−1
i (x) +

ξi+k − x

ξi+k − ξi+1
Bk−1

i+1 (x),

for i = 1, · · · , N − k. It is well known that Bk
i (x) is differentiable w.r.t. x up to order k − 2. The first order
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derivative can be expressed as

d

dx
Bk

i (x) =
k − 1

ξi+k−1 − ξi
Bk−1

i (x) − k − 1

ξi+k − ξi+1
Bk−1

i+1 (x).

We use the 4th order, so-called cubic B-splines {B4
i : 1 ≤ i ≤ N − 4} with equally spaced knots, i.e.,

ξi+1 − ξi = δ (i = 1, · · · , N − 1) for some algorithm-determined δ. For simplicity, the superscript in B4
i is

omitted below. The following properties of cubic B-splines will be frequently used in proving the lemmas

below (see de Boor (1978) for the details).

I). 0 ≤ Bi(x) < 1, Bi(x)Bj(x) = 0 if |i− j| > 3.

II). | d
dxBi(x)| < δ−1, | d2

dx2Bi(x)| < 2δ−2.

III).
∑N

i=1[Bi(x)]
2 < 1,

∑N
i=1[

d2

dx2Bi(x)]
2 < 6δ−4.

Supporting lemmas for Proposition 1-4. In this subsection, we prove all the lemmas used in the

proof of Propositon 1-4. Recall that for each φk (k = 1, · · · ,m), we have an interval [bnk, bnk] and nk cubic

B-spline basis functions defined on it using equally spaced knots on it, say B
(k)
n = (B

(k)
n1 , · · · , B

(k)
nnk)T as in

Section 2.4. Thus we have constructed a sequence of sieves G(k)
n using B

(k)
n as basis functions. For any

W ∈ Ωn, we have a class of estimates φ̂Wk
∈ G(k)

n for φWk
as defined in Section 2.4.

Let Ω
(k)
n = {Wk : W ∈ Ωn} for k = 1, · · · ,m. We also need an intermediate approximation function

φ̂Wk
∈ G(k)

n as follows. As a little confusion, for w ∈ Ω
(k)
n ,

φ̂w = γ(w)T
B

(k)
n , (34)

where γ(w) = A(w)−1D(w) with A(w) =
∫

B
(k)
n (wX)[B

(k)
n (wX)]T dP and D(w) =

∫

[B
(k)
n ]′(wX)dP . Note

that the subscript w of φ̂w should always associate with some Ω
(k)
n for k ∈ {1, · · · ,m}, similarly for φ̂w.

In the following c denotes a constant (only dependent on the population law P ), but its exact value may

vary in different places even in a line without clarification. For a column vector x ∈ Rm, ||x||2 =
√

xT x. For

an m×m real matrix A, ||A||1 = max1≤i≤m||Ai||2, ||A||2 = maxx∈Rm,|x|=1|Ax|, ||A||F =
√

tr(ATA). Then

||A||2 ≤ ||A||1.

The following Lemma 1-10 hold under the conditions of Theorem 1. Jin (1992) had similar results as

Lemma 2-4 and Lemma 8-10 about the B-spline approximation but under generally different settings.

Lemma 1. sup
w∈Ω

(k)
n

|fw|∞ < ∞, sup
w∈Ω

(k)
n

|f ′w|∞ < ∞, sup
w∈Ω

(k)
n
mint∈[bnk,bnk]fw(t) ≥ cδn, and
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sup
w∈Ω

(k)
n
P (wX /∈ [bni, bni]) = o(1).

Proof. Remember that mint∈[bnk,bnk]rk(t) ≥ cδn. For any w ∈ Ω
(k)
n , ||w−WPk||2 ≤ εn . Let v = wW−1

P ,

then |vj | → 0 for 1 ≤ j 6= k ≤ m and |vk − 1| → 0 as n→ ∞. Fix a t ∈ [bnk, bnk].

Since fw(t) = E[ 1
vk
rk(

t−
∑

j 6=k vjSj

vk
)], consider the right hand side as a function (say h) of v. By the first

order Taylor expansion,

|fw(t) − rk(t)| ≤ εn||W−1
P ||2{

m
∑

j=1

max
w∈Ω

(k)
n

| ∂
∂vj

h(v)|} ≤ cεn = o(δn),

where by direct calculation and using C3-C4, | ∂
∂vj

h(v)| is uniformly bounded with w ∈ Ω
(k)
n . Thus

sup
w∈Ω

(k)
n
mint∈[bnk,bnk]fw(t) ≥ cδn and sup

w∈Ω
(k)
n

|fw|∞ <∞.

Further, sup
w∈Ω

(k)
n

|f ′w|∞ <∞ follows from |r′k|∞ <∞.

Finally,

P (wX ∈ [bni, bni]) =

∫

[bnk,bnk]

fw(t)dt

≥
∫

[bnk,bnk]

(rk(t) − cεn)dt

= P (Sk ∈ [bnk, bnk]) − cεn(bnk − bnk).

Since εn(bnk − bnk) = o(1) and P (Sk ∈ [bnk, bnk]) ↑ 1, thus

inf
w∈Ω

(k)
n
P (wX ∈ [bni, bni]) ≥ P (Sk ∈ [bnk, bnk]) − cεn(bnk − bnk) → 1.

�

Recall the definition of φ̂Wk
, γn(Wk), An(Wk) and Dn(Wk) in Section 2.4 and γ(w) = [A(w)]−1D(w) in

(34).

Lemma 2. sup
w∈Ω

(k)
n

||D(w)||2 ≤ c
√
nkδn; cδ2n ≤ eig(A(w)) ≤ cδn for w ∈ Ω

(k)
n .

Proof. By taking the derivative of the cubic B-splines, (B
(k)
ni )′(t) = δ−1

n (B3
ni(t)−B3

n,i+1(t)), where B3
ni

is the third-order B-splines defined on the same knots, (i = 1, · · · , nk), then

|Di(w)| = δ−1
n |

∫

(B3
n,i(t) −B3

n,i+1(t))fw(t)dt|
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= δ−1
n |

∫

B3
n,i(t)(fw(t) − fw(t+ δn))dt|

≤
∫

B3
n,i(t)dt|f ′w|∞ < 3|f ′w|∞δn.

So the first result holds by using Lemma 1. By Lemma 5.1 in Jin (1992), cδnmint∈[bnk,bnk]fw(t) ≤ eig(A(w)) ≤

cδnmaxt∈[bnk,bnk]fw(t), thus cδ2n ≤ eig(A(w)) ≤ cδn. �

Lemma 3. sup
w∈Ω

(k)
n

||Dn(w)−D(w)||2 =
√

nk log nk

nδn
OP (1); sup

w∈Ω
(k)
n

||An(w)−A(w)||2 =
√

δn log nk

n OP (1).

Proof.

P (sup
w∈Ω

(k)
n

||Dn(w) −D(w)||2 ≥ t) = Pr(sup
W∈Ω

(k)
n

||
∫

B
′
n(wX)d(Pn − P )||2 ≥ t)

≤
nk
∑

i=1

Pr(sup
w∈Ω

(k)
n

|
∫

B′
n,i(wX)d(Pn − P )| ≥ t√

nk
).

For a fixed pair (i, k), let Fn = {gw(x) = B′
n,i(wx) : w ∈ Ω

(k)
n }. Then supgw∈Fn

|| ∂
∂wgw(x)||2 ≤ 2δ−2

n ||x||2.

By definition and the Euclidean ball theory (see for example Definition 2.2 and Lemma 2.5 of van de Geer

(2000)), the bracketing entropy of Fn is bounded by for 0 < u < cεnδ
−2
n ,

HB(u,Fn, P ) ≤ m log(cεnδ
−2
n /u).

Further by the property I of cubic B-splines, supgw∈Fn
|gw|∞ ≤ δ−1

nk , and by Lemma 1,

supgw∈Fn

∫

|gw(X)|2dP ≤ 4δ−1
n sup

w∈Ω
(k)
n

|fw|∞. Then by Theorem 5.11 of van de Geer (2000, page 75), we

have for cmax(δ
−1/2
n , εnδ

−2
n ) ≤ a ≤ c

√
n,

P (supw∈Ω

√
n|

∫

B′
n,i(wX)d(Pn − P )| ≥ a) ≤ exp(−ca2δn).

Notice that εn � δ
3/2
nk by Condition C7, so

P (sup
w∈Ω

(k)
n

||Dn(w) −D(w)||2 ≥ t) ≤ nk exp(−ct2nδn/nk).

Thus

sup
Ω

(k)
n

||Dn −D||2 = Op(

√

nk log nk

nδn
).
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Similarly by using the properties I-II of cubic B-splines and the bracketing entropy tool we get

sup
Ω

(k)
n

||An −A||2 ≤ sup
Ω

(k)
n

||An −A||1 = Op(
√

δn log nk/n).

�

Lemma 4. sup
w∈Ω

(k)
n

||Dn(w)||2 = Op(δn
√
nk), sup

w∈Ω
(k)
n

||γn(w)||2 = Op(
√
nk/δn), and sup

Ω
(k)
n

||γn(w) −

γ(w)||2 = oP (1).

Proof. The first result directly follows from Lemma 2 and 3. The following proves the second and third

results.

Since A−1
n = (A+An −A)−1 = A−1(I − (An −A)A−1)−1, and by Lemma 2 and 3

sup
w∈Ω

(k)
n

||An −A||2||A−1||2 = op(1),

then

sup
w∈Ω

(k)
n

||A−1
n ||2 ≤ sup

w∈Ω
(k)
n

||A−1||2(1 − ||An −A||2||A−1||2)−1 = δ−2
n OP (1).

(Here we use the inequality of matrix norm ||(I +A)||2 ≤ (1 − ||A||2)−1for any square matrix A with

||A||2 < 1, where I is the identity matrix.) Thus sup
w∈Ω

(k)
n

|A−1
n (w)Dn(w)| = Op(

√
nk/δn).

For the last one, by Lemma 2 and 3, we have

sup
w∈Ω

(k)
n

||γn(w) − γ(w)||2

= sup
w∈Ω

(k)
n

||A−1(Dn −D) −A−1
n (An −A)A−1Dn||2

≤ sup
Ω

(k)
n

{||A−1||2||Dn −D||2} + sup
Ω

(k)
n

{||An −A||2||Dn||2||A−1||22}(1 + op(1))

= Op(δ
−2
n )Op(

√

nk log nk

nδn
) +Op(

√

δn log nk

n
)Op(δn

√
nk)Op(δ

−4
n )

= Op(δ
− 5

2
n

√

nk log nk

n
) = oP (1). (by Condition C7)

�

Lemma 5. sup
Ω

(i)
n
|| ∂

∂wk
An(w)||2 = OP (δ

− 1
2

n ), sup
Ω

(i)
n
|| ∂

∂wk
Dn(w)||2 = OP (δ−2

n ) for i, k = 1, · · · ,m.
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Proof. First notice that (dropping (i) in B
(i)
n )

∂

∂wk
An(w) =

∫

(BnB
′T
n + B

′
nB

T
n )(wX)XkdPn.

By the Cauchy-Schwartz inequality,

|
∫

[BnB
′T
n + B

′
nB

T
n ]jl(wX)XkdPn| ≤

√

∫

(BnjB′
nk +B′

njBnk)2(wX)dPn

√

∫

X2
kdPn.

Following the proof in Lemma 3 by using the bracketing entropy, we have

sup0≤j,l≤ni,|j−l|≤3supw∈Ω
(i)
n

∫

(BnjB
′
nl +B′

njBnl)
2(wX)d(Pn − P ) = op(1).

Further from Lemma 1 sup
w∈Ω

(k)
n

|fw| is bounded, after algebraic expanion we have

sup
w∈Ω

(i)
n

∫

(BnjB
′
nl +B′

njBnl)
2(wX)dP ≤ cδ−1

n .

Thus |[ ∂
∂wk

An(w)]jl| ≤ c/
√
δnk. By the property I of cubic B-splines, [BnB

′T
n ]jl ≡ 0 for |j− l| > 3, thus each

row of ∂
∂wk

An(w) has at most 7 nonzero elements. So

sup
Ω

(i)
n
|| ∂

∂wk
An(w)||2 ≤ sup

Ω
(i)
n
|| ∂

∂wk
An(w)||1 = Op(δ

− 1
2

n ).

For the second result, since ∂
∂wk

Dn(w) =
∫

B
′′
n(wX)XkdPn, we have

|| ∂

∂wk
Dn(w)||2 ≤

√

∫

|Xk|2dPn

√

√

√

√

∫ nk
∑

l=1

(B′′
nl)

2(wX)dPn

≤
√

∫

|Xk|2dPn

√

∫

6δ−4
n dPn

= OP (δ−2
n ).

�

Lemma 6. ||
∫

B
(i)
n (Si)SjdPn||2 = OP (n−1/2), where Si = WPiX, 1 ≤ i 6= j ≤ m.
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Proof. (dropping (i) in B
(i)
n , B

(i)
nk)

E(||
∫

Bn(Si)SjdPn||22) = E(

ni
∑

k=1

(

∫

Bnk(Si)SjdPn)2)

=
1

n
E(

ni
∑

k=1

Bnk(Si)
2S2

j )

≤ 4

n
E(S2

j ).

�

Lemma 7. supΩn
||

∫

B
(i)
n (WiX)WjXdPn||2 = Op(εnδ

−1
n

√
ni), for 1 ≤ i 6= j ≤ m.

Proof. First

P (sup
Ωn

||
∫

B
(i)
n (WiX)WjXd(Pn − P )||2 > t) ≤

ni
∑

k=1

P (sup
Ωn

|
∫

B
(i)
nk(WiX)WjXd(Pn − P )| > t√

ni
).

By using the similar arguments of bracketing entropy as that of Lemma 3, we have for cmax(δn, εnδ
−1
n ) <

a < c
√
nδ2n,

P (sup
Ωn

√
n|

∫

B
(i)
nk(WiX)WjXd(Pn − P )| > a) ≤ exp(−ca2δ−2

n ).

Thus

P (sup
Ωn

||
∫

B
(i)
n (WiX)WjXd(Pn − P )||2 > t) ≤ ni exp(−ct2nδ−2

n n−1
i ).

Then supΩn
||

∫

B
(i)
n (WiX)WjXd(Pn − P )||2 = OP (

√

δ2
nni log ni

n ).

Second, notice that |B(i)
nk(x) −B

(i)
nk(y)| ≤ δ−1

n |x− y|, then

supΩn
||

∫

B
(i)
n (WiX)WjXdP ||2 = sup

Ωn

(

ni
∑

k=1

|
∫

(B
(i)
nk(WiX)WjX −B

(i)
nk(WPiX)WPjX)dP |2)1/2

≤ sup
Ωn

(

ni
∑

k=1

(δ−1
n E||X||22||Wi −WPi||2||Wi||2 + E||X||2||Wi −WPi||2)2)1/2

= O(εnδ
−1
n

√
ni).

Thus supΩn
||

∫

B
(i)
n (WiX)WjXdPn||2 = OP (

√

δ2
nni log ni

n + εnδ
−1
n

√
ni).
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�

Lemma 8. E(φ̂Wi
(WiX)−φWi,n(WiX))2 ≤ δ6n|φ′′′Wi,n

|2∞.

Proof. Since for any h ∈ G(i)
n ,

E(φ̂Wi
(WiX) − φWi,n(WiX))2 ≤ E(h(WiX) − φWi,n(WiX))2,

then

E(φ̂Wi
(WiX) − φWi,n(WiX))2 ≤ d(φWi,n,Gn)2,

where d(φWi,n,Gn) = infh∈Gn
|φWi,n − h|∞. Now the result follows by the Jackson type theorem [de Boor

(1978)],

d(φWi,n,Gn) ≤ cδ3n|φ′′′Wi,n|∞.

�

Lemma 9. |φ̂Wi
− φWi,n|∞ ≤ cδ2n|φ′′′Wi,n

|∞; |φ̂
′

Wi
− φ′Wi,n

|∞ ≤ c|φ′′′Wi,n
|∞δn.

Proof. By Theorem XII.4 of de Boor (1978), there exists a quasi-interpolant with some a ∈ Rni ,

˜̂
φWi

(t) = aT
B

(i)
n (t),

such that
˜̂
φWi

simultaneously approximates φWi,n and its first derivative to optimal order, that is

|˜̂φWi
− φWi,n|∞ = c|φ′′′Wi,n|∞δ

3
n

and

|˜̂φ
′

Wi
− φ′Wi,n

|∞ = c|φ′′′Wi,n
|∞δ2n.

So

E(
˜̂
φWi

(WiX) − φWi,n(WiX))2 ≤ c|φ′′′Wi,n|
2
∞δ

6
n.
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Together with Lemma 8, we have

E(φ̂Wi
− ˜̂
φWi

)2 ≤ E(
˜̂
φWi

− φWi,n)2 + E(φ̂Wi
− φWi,n)2 ≤ c|φ′′′Wi,n|

2
∞δ

6
n.

Let coef(
˜̂
φWi

), coef(φ̂Wi
) be coefficients of B

(i)
n in

˜̂
φWi

and φ̂Wi
separately, then

E(φ̂Wi
− ˜̂
φWi

)2 = E((coef(
˜̂
φWi

) − coef(φ̂Wi
))T

B
(i)
n )2 ≥ λn||coef(

˜̂
φWi

) − coef(φ̂Wi
)||22,

where λn is the minimum eigenvalue of A(Wi) = E[B
(i)
n (WiX)B

(i)
n (WiX)T ]. By Lemma 2, λn ≥ cδ2n. Thus

||coef(
˜̂
φWi

) − coef(φ̂Wi
)||2 ≤ c|φ′′′Wi,n|∞δ

2
n.

and

|φ̂Wi
− ˜̂
φWi

|∞ ≤ ||coef(
˜̂
φWi

) − coef(φ̂Wi
)||2 ≤ c|φ′′′Wi,n|∞δ

2
n.

Hence

supΩn
|φ̂Wi

− φWi,n| ≤ supΩn
c|φ′′′Wi,n|∞δ

2
n.

Further by observing |(B(i)
nk)′|∞ ≤ δ−1

n , we have

|φ̂
′

Wi
− ˜̂
φ
′

Wi
|∞ ≤ ||coef(

˜̂
φWi

) − coef(φ̂Wi
)||2δ−1

n ≤ c|φ′′′Wi,n|∞δn.

Thus

|φ̂
′

Wi
− φ′Wi,n|∞ ≤ |˜̂φ

′

Wi
− φ′Wi,n|∞ + |φ̂

′

Wi
− ˜̂
φ
′

Wi
|∞ ≤ c|φ′′′Wi,n|∞δn.

�

Lemma 10.
∫

(φ̂WPk
(Sk) − φk(Sk))2dPn = op(1).

30



Proof. Observe that

∫

(φ̂WPk
(Sk) − φk(Sk))2dPn ≤ 3{

∫

(φ̂WPk
(Sk) − φ̂WP k

(Sk))2dPn +

∫

(φ̂WP k
(Sk) − φk,n(Sk))2dPn

+

∫

φk(Sk)2I(Sk /∈ [bnk, bnk])dPn}.

First, (dropping WPk in An(WPk), Dn(WPk), A(WPk) and D(WPk)), by Lemma 4, ||A−1
n Dn − A−1D||2 =

op(1), and by Lemma 2 and Lemma 3, ||An||2 ≤ ||An −A||2 + ||A||2 = op(1), then

∫

(φ̂WPk
(Sk) − φ̂WP k

(Sk))2dPn =

∫

[(γn − γ)T
B

(k)
n (Sk)]2dPn

≤ ||γn − γ||22||An||2

= op(1).

By Lemma 9, |φ̂WP k
− φk,n|∞ = o(1), then

∫

(φ̂WP k
(Sk) − φk,n(Sk))2dPn = op(1). Further since P (Sk /∈

[bnk, bnk]) ↓ 0,
∫

φk(Sk)2I(Sk /∈ [bnk, bnk])dPn = op(1). Hence the result follows. �

Lemma 11. Let {p(·; θ, η) : θ ∈ Ω ⊂ Rd, η ∈ E} be a parameteric or semiparametric model, where θ

is the parameter of interest. Suppose that moderate regularity conditions are satisfied and l
∗(·; θ, η) is the

efficient score function of θ as defined in BKRW. Then

∫

∂

∂θ
l
∗(X; θ, η)dP(θ,η) = −

∫

[l∗l∗T ](X; θ, η)dP(θ,η).

Proof. We only prove it for the parametric case E ⊂ Rm. Let I(θ, η) be the information matrix

of (θ, η). Then by classic likelihood theory (for example, Proposition 2.4.1 of BKRW), l
∗(·; θ, η) = l̇1 −

(I12I
−1
22 )(θ, η)l̇2, where l̇1 and l̇2 are the partial derivatives of l(·; θ, η) ≡ log p(·; θ, η) w.r.t θ and η separately.

Thus ∂
∂θ l

∗(X; θ, η) = l̈11 − (I12I
−1
22 )(θ, η)l̈21 − ∂

∂θ{(I12I
−1
22 )(θ, η)}l̇2. Since

∫

l̇2(X; θ, η)dP(θ,η) = 0, we have

∫

∂

∂θ
l
∗(X; θ, η)dP(θ,η) =

∫

l̈11dP(θ,η) − (I12I
−1
22 )(θ, η)

∫

l̈21dP(θ,η).

For the information matrix we have Iij = −
∫

l̈ij(X; θ, η)dP(θ,η) (i, j = 1, 2), hence the result follows by
∫

l
∗
l
∗T dP = I11 − I12I

−1
22 I21 (see Proposition 2.4.1 of BKRW, page 32). For the semiparametric case, the

reader is referred to BKRW for a generalization of this proof. �
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