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LECTURE 19: Radial Basis Functions
g Introduction to RBFs
g Input-output mapping
g Hybrid training procedures
g Gram-Schmidt orthogonalization
g Orthogonal Least Squares
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Introduction
g The previous two lectures have focused on projective neural networks 

n In perceptron-type networks, the activation of hidden units is based on the dot 
product between the input vector and a weight vector

n In this lecture we will look at RBFs, networks where the activation of hidden units 
is based on the distance between the input vector and a prototype vector

g Radial Basis Functions have a number of interesting properties
n There exists strong connections to a number of scientific disciplines

g These include function approximation, regularization theory, density estimation and  
interpolation in the presence of noise [Bishop, 1995]

n RBFs allow for a straightforward interpretation of the internal representation 
produced by the hidden layer

n RBFs have training algorithms that are significantly faster than those for MLPs 
g And, as we will see today, most of these algorithms have already been presented in 

previous lectures!

From [Bishop, 1995]
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Exact function interpolation
g RBFs have their origins in techniques for performing exact function 

interpolation [Bishop, 1995]
n These techniques place a basis function at each of the training examples 

g and compute the coefficients wk so that the “mixture model” has zero error at those 
examples

n Can you draw any connections to other techniques we have already discussed?
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Radial Basis Functions
g Radial Basis Functions are feed-forward networks consisting of

n A hidden layer of radial kernels and
n An output layer of linear neurons

g The two layers in an RBF carry entirely different roles [Haykin, 1999]
n The hidden layer performs a non-linear transformation of input space

g The resulting hidden space is typically of higher dimensionality than the input space
n The output layer performs linear regression to predict the desired targets

g Why use a non-linear transformation followed by a linear one?
n Cover’s theorem on the separability of patterns

g “A complex pattern-classification problem cast in a high-dimensional space non-linearly 
is more likely to be linearly separable than in a low-dimensional space”

n As we will see in a few lectures, this very same argument is at the core of 
Support Vector Machines.  RBFs are indeed one of the kernel functions most 
commonly used in SVMs!
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Input-to-hidden mapping
g Each hidden neuron in an RBF is tuned to respond to a rather local 

region of feature space by means of a radially symmetric function
n Activation of a hidden unit is determined by the DISTANCE between the input 

vector x and a prototype vector µ

g Choice of radial basis
n Although several forms of radial basis may be used, Gaussian kernels are most 

commonly used 
g The Gaussian kernel may have a full-covariance structure, which requires D(D+3)/2 

parameters to be learned

g or a diagonal structure, with only (D+1) independent parameters

g In practice, a trade-off exists between using a small number of basis with many 
parameters or a larger number of less flexible functions [Bishop, 1995]
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Hidden-to-output mapping
g Output units form linear combinations of the hidden-unit activations to 

predict the output variable(s) 
n The activation of an output unit is determined by the DOT-PRODUCT between 

the hidden activation vector φ and the weight vector w

g For convenience, an additional basis function φ0 with a constant activation of 1 can be 
used to absorb the bias term w0k
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Hybrid training
g RBFs are commonly trained following a hybrid procedure that operates 

in two stages or time scales [Haykin, 1999]
n Unsupervised selection of RBF centers

g RBF centers are selected so as to match the distribution of training examples in the 
input feature space

g This is the critical step in training, normally performed in a slow iterative manner
g Fortunately, a number of strategies presented in previous lectures can be used to solve 

this problem
n Supervised computation of output vectors

g Hidden-to-output weight vectors are determined so as to minimize the sum-squared 
error between the RBF outputs and the desired targets

g Since the outputs are linear, the optimal weights can be computed using fast, linear 
matrix inversion 
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Unsupervised selection of RBF centers
g Random selection of centers

n The simplest approach is to randomly select a number of training examples as 
RBF centers

g This method has the advantage of being very fast, but the network will likely require an 
excessive number of centers 

n Once the center positions have been selected, the spread parameters σj can be 
estimated, for instance, from the average distance between neighboring centers 

g Clustering
n Alternatively, RBF centers may be obtained with a clustering procedure such as 

the k-means algorithm (Lecture 15)
n The spread parameters can be computed as before, or from the sample 

covariance of the examples of each cluster
g Density estimation

n The position of the RB centers may also be obtained by modeling the feature 
space density with a Gaussian Mixture Model using the Expectation-
Maximization algorithm (Lecture 14)

n The spread parameters for each center are automatically obtained from the 
covariance matrices of the corresponding Gaussian components
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Supervised training of output weights
g Once the RBF centers have been selected, hidden-to-output weights 

are computed so as to minimize the MSE error at the output

n Now, since the hidden activation patterns Φ are fixed, the optimum weight vector 
W can be obtained directly from the conventional pseudo-inverse solution 
(Lecture 17)
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Drawbacks of unsupervised center selection
g Hybrid RBF training procedures have one major disadvantage

n The selection of RBF centers is not guided by the MSE objective function
n RBF centers that are representative of the feature space density are not 

guaranteed to capture the structure that carries discriminatory information
g To some extent, this is a similar argument to that of signal-representation (PCA) 

versus signal-classification (LDA) in dimensionality reduction

g To avoid this problem, fully-supervised algorithms can also be used 
for RBF training

n Orthogonal Least Squares (OLS) is the most widely used method, and will be 
covered next

n Other approaches have also been proposed [Haykin, 1999]
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Introduction to Orthogonal Least Squares
g OLS is a forward stepwise regression procedure

n Starting from a large pool of candidate centers (e.g., training examples), OLS 
sequentially selects the center that results in the largest reduction of sum-
square-error at the output

g A simple implementation of this idea is to perform sequential forward selection directly 
on the radial-basis internal representation

n This implementation is, however, very inefficient since the pseudo-inverse 
W=(ΦtΦ)-1ΦtT needs to be computed N-M times at step M in the selection 
process

g Instead, OLS constructs a set of orthogonal vectors Q for the space spanned by the 
candidate centers

g In this orthogonal subspace, computation of the pseudo-inverse is effectively avoided 
since QtQ becomes diagonal

1) Start with N candidate centers and M=0 centers
2) For each of the k=N-M remaining candidates 

a) Add the k-th center to the existing M centers
b) Compute the pseudo-inverse solution
c) Compute the resulting SSE at the output

3) Choose the k-th candidate that yields lowest SSE
4) Set M=M+1
5) Go to 2

1) Start with N candidate centers and M=0 centers
2) For each of the k=N-M remaining candidates 

a) Add the k-th center to the existing M centers
b) Compute the pseudo-inverse solution
c) Compute the resulting SSE at the output

3) Choose the k-th candidate that yields lowest SSE
4) Set M=M+1
5) Go to 2
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Gram-Schmidt orthogonalization (1)
g Assume that we have three (independent) vectors a, b and c, from

which we wish to construct three orthogonal vectors A, B and C
g The Gram-Schmidt orthogonalization procedure operates as follows

n Start with A=a
g This gives the first direction

n The second direction must be perpendicular to A
g Start with B=b and subtract its projection along A
g This leaves the perpendicular part, which is the orthogonal vector B

n The third direction must be perpendicular to A and B 
g Start with C=c and subtract its projections along A and B

n The resulting vectors {A,B,C} are orthogonal and span the
same space as {a,b,c}

From [Strang, 1998]
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Gram-Schmidt orthogonalization (2)
g For M basis vectors Φ={ϕ1,ϕ2,…,ϕM}, Gram-Schmidt generalizes to

n where it can be shown [Strang, 1998; Chen et al., 1991] that the orthogonal set 
Q={q1,q2,..,qM} is linearly related to the original set Φ by the following relationship

g To prove this relationship notice that, at every step, ϕk is a combination of the previous 
orthogonal vectors q1,q2,…qk.  Later q’s are not involved
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Geometric interpretation of the pseudo-inverse (1)
g Assume a dataset of examples X={(x(1,t(1),(x(2,t(2),…,(x(N,t(N)}

n For convenience we will assume an RBF with a single output
g Notice that the pseudo-inverse solution estimates each output independently anyways

n The hidden-to-output regression can be expressed as

g where E is the vector of prediction errors, whose sum square we seek to minimize

n Notice that the activation of a particular radial basis for all the training examples 
Φk = [ϕk

(1,ϕk
(2,…ϕk

(N]T can be treated as a vector

n Notice that the desired target T = [t(1,t(2,…t(N]T can also be treated as a vector
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Geometric interpretation of the pseudo-inverse (2)
g The pseudo-inverse solution has a very nice geometric interpretation

n The linear system is attempting to express the target vector T as a linear 
combination of the M hidden vectors Φk

n In the case of an over-determined system, an exact solution cannot be found 
since the vector T lies outside of the space spanned by the vectors Φk 

n It can be shown [Bishop, 1995] that the least-squares (or pseudo-inverse) 
solution is the orthogonal projection of T onto that space
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Orthogonal Least Squares (1)
g Keeping in mind this geometric interpretation of the least-squares 

solution and the Gram-Schmidt orthogonalization procedure, we are 
now ready to present the final implementation of OLS

n As mentioned earlier, OLS constructs a set of orthogonal vectors Q for the space 
spanned by the basis vectors Φk such that Φ=QA (A upper triangular)

n Using this orthogonal representation, the RBF solution is expressed as

g and the least-squares solution for the weight vector G in the orthogonal space is

g Now, since Q is orthogonal, QtQ is then diagonal, and each component of G can be 
extracted independently without ever having to compute a pseudo-inverse matrix

g This is precisely what makes OLS a very efficient implementation of stepwise forward 
regression
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Orthogonal Least Squares (2)
g How are basis functions selected?

n The sum of squares or energy of the target vector T is

n Assuming that the mean of the desired target T has been removed, then the 
variance of T is given by

g The first term, N-1Σi(gi
2qi

tqi), is the part of the desired variance which can be explained 
by the regressors, whereas N-1EtE is the unexplained variance

g Therefore, N-1gi
2qi

tqi is the increment in the explained output variance achieved by 
adding the regressor qi, which contributes to a reduction of the error (relative to the
total TtT) by

g This ratio provides a simple measure that allows OLS to select a subset of 
regressors in a stepwise forward manner

g The complete algorithm is included in the next page
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Equation (eq3)
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Orthogonal Least Squares (3)
g At the first step, for 1≤i≤M, compute

n and select the regressor that yields the highest reduction in error
g At the k-th step, for 1≤i≤M, and i not already selected

n and select the regressor with highest reduction in error

g Stop at iteration M if the residual error falls below some specified tolerance ρ

n The regressors {φi1,φi2,…,φiM} define the final subset of RBF centers that become selected

From [Chen et al., 1991]
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