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LECTURE 15: Statistical clustering
g Similarity measures
g Criterion functions
g Cluster validity
g Flat clustering algorithms

n k-means
n ISODATA

g Hierarchical clustering algorithms
n Divisive
n Agglomerative
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Non-parametric unsupervised learning
g In lecture 14 we introduced the concept of unsupervised learning

n A collection of pattern recognition methods that “learn without a teacher”
n Two types of clustering methods were mentioned: parametric and non-

parametric
g Parametric unsupervised learning

n Equivalent to density estimation with a mixture of (Gaussian) components
n Through the use of EM, the identity of the component that originated each data 

point was treated as a missing feature
g Non-parametric unsupervised learning

n No density functions are considered in these methods
n Instead, we are concerned with finding natural groupings (clusters) in a dataset

g Non-parametric clustering involves three steps
n Defining a measure of (dis)similarity between examples
n Defining a criterion function for clustering
n Defining an algorithm to minimize (or maximize) the criterion function
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Proximity measures (1) 
g Definition of metric

n A measuring rule d(x,y) for the distance between two vectors x and y is 
considered a metric if it satisfies the following properties

n If the metric has the property

g then it is called a norm and denoted d(x,y)=||x-y||

g The most general form of distance metric is the power norm

n Parameter p controls the weight placed on any dimension dissimilarity, whereas 
parameter r controls the distance growth of patterns that are further apart

n Notice that the definition of norm must be relaxed, allowing a power factor for |a|
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Proximity measures (2) 
g Most of the commonly used metrics are derived from the power norm

n Minkowski metric (Lk norm)

g The choice of an appropriate value of k depends on the amount of emphasis that you 
would like to give to the larger differences between dimensions

n Manhattan or city-block distance (L1 norm)

g When used with binary vectors, the L1 norm
is known as the Hamming distance

n Euclidean norm (L2 norm)

n Chebyshev distance (L∞ norm)
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Proximity measures (3) 
g Other metrics are also popular 

n Quadratic distance

g The Mahalanobis distance is a particular case of this distance
n Canberra metric (for non-negative features)

n Non-linear distance

g where T is a threshold and H is a distance.  An appropriate choice for H and T for 
feature selection is that they should satisfy

g and that T satisfies the unbiasedness and consistency conditions of the Parzen 
estimator: TPN→∞, T→0 as N→∞
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Proximity measures (4) 
g Notice that the above distance metrics are measures of DISSIMILARITY
g Some measures OF SIMILARITY also exist

n Inner product

g The inner product is used when the vectors x and y are normalized, so that they have 
the same length 

n Correlation coefficient

n Tanimoto measure (for binary-valued vectors)
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Criterion function for clustering
g Once a (dis)similarity measure has been determined, we need to define 

a criterion function to be optimized
n The most widely used criterion function for clustering is the sum-of-square-error 

g This criterion measures how well the data set X={x(1, x(2, …, x(N} is represented by the 
cluster centers µ={µ(1, µ(2, …, µ(C} (C<N)

g Clustering methods that use this criterion are called minimum variance methods
n Other criterion functions exist, based on the scatter matrices used in Linear 

Discriminant Analysis
g For details, refer to [Duda, Hart and Stork, 2001]
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Cluster validity
g The choice of (dis)similarity measure and criterion function will have a major 

impact on the final clustering produced by the algorithms
n Notice that the validity of the final cluster solution is highly subjective

g This is in contrast with supervised training, where a clear objective function is known: Bayes risk.
n Example

g Which are the meaningful clusters in these cases?
g How many clusters should be considered?

g A number of quantitative methods for cluster validity are proposed in 
[Theodoridis and Koutrombas, 1999]
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Iterative optimization
g Once a criterion function has been defined, we must find a partition of 

the data set that minimizes the criterion
n Exhaustive enumeration of all partitions, which guarantees the optimal solution, 

is unfeasible
g For example, a problem with 5 clusters and 100 examples yields 1067 partitionings

g The common approach is to proceed in an iterative fashion
1. Find some reasonable initial partition and then 
2. Move samples from one cluster to another in order to reduce the criterion  

function
g These iterative methods produce sub-optimal solutions but are 

computationally tractable
g We will consider two groups of iterative methods

n Flat clustering algorithms
g These algorithms produce a set of disjoint clusters
g Two algorithms are widely used: k-means and ISODATA

n Hierarchical clustering algorithms: 
g The result is a hierarchy of nested clusters
g These algorithms can be broadly divided into agglomerative and divisive approaches
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The k-means algorithm
g The k-means algorithm is a simple clustering procedure that attempts 

to minimize the criterion function JMSE in an iterative fashion

g It can be shown (Lecture 14) that k-means is a particular case of the 
EM algorithm for mixture models

1. Define the number of clusters
2. Initialize clusters by

• an arbitrary assignment of examples to clusters or 
• an arbitrary set of cluster centers (some examples used as centers)

3. Compute the sample mean of each cluster
4. Reassign each example to the cluster with the nearest mean
5. If the classification of all samples has not changed, stop, else go to step 3

1. Define the number of clusters
2. Initialize clusters by

• an arbitrary assignment of examples to clusters or 
• an arbitrary set of cluster centers (some examples used as centers)

3. Compute the sample mean of each cluster
4. Reassign each example to the cluster with the nearest mean
5. If the classification of all samples has not changed, stop, else go to step 3
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The k-means algorithm
g The k-means algorithm is widely used in the fields of signal processing and 

communication for Vector Quantization
n Unidimensional signal values are usually quantized into a number of levels (typically a power 

of 2 so the signal can be transmitted or stored in binary format)
n The same idea can be extended for multiple channels

g However, rather than quantizing each separate channel, we can obtain a more efficient signal coding 
if we quantize the overall multidimensional vector by finding a number of multidimensional prototypes 
(cluster centers)

n The set of cluster centers is called a “codebook”, and the problem of finding this codebook is 
normally solved using the k-means algorithm

0 1 2 3 4 5 6

0

1

2

3

4

5

6

7

8

Si
gn

al

Time (s)

Continuous
signal

Quantized
signal

Quantization
noise

0 1 2 3 4 5 6

0

1

2

3

4

5

6

7

8

Si
gn

al

Time (s)

Continuous
signal

Quantized
signal

Quantization
noise

Voronoi
region

Codewords Vectors

Voronoi
region

Codewords Vectors



Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

12

ISODATA (1)
g ISODATA, which stands for Iterative Self-Organizing Data Analysis Technique 

(Algorithm) is an extension to the k-means algorithm with some heuristics to 
automatically select the number of clusters

g ISODATA requires the user to select a number of parameters
n NMIN_EX minimum number of examples per cluster
n ND desired (approximate) number of clusters
n σS

2 maximum spread parameter for splitting
n DMERGE maximum distance separation for merging
n NMERGE maximum number of clusters that can be merged

g The algorithm works in an iterative fashion
(1) Perform k-means clustering
(2) Split any clusters whose samples are sufficiently dissimilar
(3) Merge any two clusters sufficiently close
(4) Go to (1)

g A more detailed description of the algorithm follows
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ISODATA (2)

1. Select an initial number of clusters NC and use the first NC examples as cluster centers µk, k=1..NC
2. Assign each example to the closest cluster

a. Exit the algorithm if the classification of examples has not changed
3. Eliminate clusters that contain less than NMIN_EX examples and 

a. Assign their examples to the remaining clusters based on minimum distance 
b. Decrease NC accordingly

4. For each cluster k, 
a. Compute the center µk as the sample mean of all the examples assigned to that cluster

b. Compute the average distance between examples and cluster centers

c. Compute the variance of each axis and find the axis n* with maximum variance σk
2(n*)

6. For each cluster k with σk
2(n*)>σS

2, if {dk>dAVG and Nk>2NMIN_EX+1} or {NC<ND/2}
a. Split that cluster into two clusters where the two centers µk1 and µk2 differ only in the coordinate n*

i. µk1(n*) = µk(n*) + εσk(n*) (all other coordinates remain the same, 0<ε<1)
ii. µk2(n*) = µk(n*) - εσk(n*) (all other coordinates remain the same, 0<ε<1)

b. Increment NC accordingly
c. Reassign the cluster’s examples to one of the two new clusters based on minimum distance to cluster centers

7. If NC>2ND then
a. Compute all distances Dij=d(µi, µj)
b. Sort Dij in decreasing order
b. For each pair of clusters sorted by Dij, if (1) neither cluster has been already merged, (2) the distance Dij
satisfies Dij<DMERGE and (3) not more than NMERGE pairs of clusters have been merged in this loop, then

i. Merge ith and jth clusters
ii. Compute the cluster center 
iii. Decrement NC accordingly

8. Go to step 1

1. Select an initial number of clusters NC and use the first NC examples as cluster centers µk, k=1..NC
2. Assign each example to the closest cluster

a. Exit the algorithm if the classification of examples has not changed
3. Eliminate clusters that contain less than NMIN_EX examples and 

a. Assign their examples to the remaining clusters based on minimum distance 
b. Decrease NC accordingly

4. For each cluster k, 
a. Compute the center µk as the sample mean of all the examples assigned to that cluster

b. Compute the average distance between examples and cluster centers

c. Compute the variance of each axis and find the axis n* with maximum variance σk
2(n*)

6. For each cluster k with σk
2(n*)>σS

2, if {dk>dAVG and Nk>2NMIN_EX+1} or {NC<ND/2}
a. Split that cluster into two clusters where the two centers µk1 and µk2 differ only in the coordinate n*

i. µk1(n*) = µk(n*) + εσk(n*) (all other coordinates remain the same, 0<ε<1)
ii. µk2(n*) = µk(n*) - εσk(n*) (all other coordinates remain the same, 0<ε<1)

b. Increment NC accordingly
c. Reassign the cluster’s examples to one of the two new clusters based on minimum distance to cluster centers

7. If NC>2ND then
a. Compute all distances Dij=d(µi, µj)
b. Sort Dij in decreasing order
b. For each pair of clusters sorted by Dij, if (1) neither cluster has been already merged, (2) the distance Dij
satisfies Dij<DMERGE and (3) not more than NMERGE pairs of clusters have been merged in this loop, then

i. Merge ith and jth clusters
ii. Compute the cluster center 
iii. Decrement NC accordingly

8. Go to step 1
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ISODATA (3)
g ISODATA has been shown to be an extremely powerful heuristic
g Some of its advantages are 

n Self-organizing capabilities
n Flexibility in eliminating clusters that have very few examples
n Ability to divide clusters that are too dissimilar
n Ability to merge clusters that are sufficiently similar

g However, it suffers from the following limitations
n Data must be linearly separable (long narrow or curved clusters are not handled properly)
n It is difficult to know a priori the “optimal” parameters 
n Performance is highly dependent on these parameters
n For large datasets and large number of clusters, ISODATA is less efficient than other linear 

methods
n Convergence is unknown, although it appears to work well for non-overlapping clusters

g In practice, ISODATA is run multiple times with different values of the 
parameters and the clustering with minimum sum-squared error is selected
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Hierarchical clustering
g k-means and ISODATA create disjoint clusters, resulting in a “flat” 

data representation
n However, sometimes it is desirable to obtain a hierarchical representation of data, 

with clusters and sub-clusters arranged in a tree-structured fashion
g Hierarchical representations are commonly used in the sciences (i.e., biological 

taxonomy)
g Hierarchical clustering methods can be grouped in two general classes

n Agglomerative
g Also known as bottom-up or merging
g Starting with N singleton clusters, successively merge clusters until one cluster is left

n Divisive
g Also known as top-down or splitting
g Starting with a unique cluster, successively split the clusters until N singleton examples 

are left
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Dendrograms
g The preferred representation for hierarchical clusters is the 

dendrogram
n The dendrogram is a binary tree that shows the structure of the clusters

g In addition to the binary tree, the dendrogram provides the similarity measure between 
clusters (the vertical axis)

n An alternative representation is based on sets
g {{x1, {x2, x3}}, {{{x4, x5}, {x6, x7}}, x8}} 
g However, unlike the dendrogram, sets cannot express quantitative information
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Divisive clustering
g Outline

n Define
g NC: Number of clusters
g NEX: Number of examples

g How to choose the “worst” cluster
n Largest number of examples
n Largest variance
n Largest sum-squared-error
n ...

g How to split clusters
n Mean-median in one feature direction
n Perpendicular to the direction of largest variance
n …

g The computations required by divisive clustering are more intensive than for 
agglomerative clustering methods 

n For this reason, agglomerative approaches are more popular

1. Start with one large cluster
2. Find “worst” cluster
3. Split it
4. If NC<NEX go to 1

1. Start with one large cluster
2. Find “worst” cluster
3. Split it
4. If NC<NEX go to 1
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Agglomerative clustering (1)
g Outline

n Define
g NC: Number of clusters
g NEX: Number of examples

g How to find the “nearest” pair of clusters

n Minimum distance

n Maximum distance

n Average distance

n Mean distance

1. Start with NEX singleton clusters
2. Find nearest clusters
3. Merge them
4. If NC>1 go to 1

1. Start with NEX singleton clusters
2. Find nearest clusters
3. Merge them
4. If NC>1 go to 1
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Agglomerative clustering (2)
g Minimum distance

n When dmin is used to measure distance between clusters, the algorithm is called the nearest-
neighbor or single-linkage clustering algorithm

n If the algorithm is allowed to run until only one cluster remains, the result is a minimum 
spanning tree (MST)

n This algorithm favors elongated classes
g Maximum distance

n When dmax is used to measure distance between clusters, the algorithm is called the farthest-
neighbor or complete-linkage clustering algorithm

n From a graph-theoretic point of view, each cluster constitutes a complete sub-graph
n This algorithm favors compact classes

g Average and mean distance
n The minimum and maximum distance are extremely sensitive to outliers since their 

measurement of between-cluster distance involves minima or maxima
n The average and mean distance approaches are more robust to outliers
n Of the two, the mean distance is computationally more attractive

g Notice that the average distance approach involves the computation of NiNj distances for each pair of 
clusters
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Agglomerative clustering example
g Perform agglomerative clustering on the following dataset using the 

single-linkage metric 
n X = {1, 3, 4, 9, 10, 13, 21, 23, 28, 29}
n In case of ties, always merge the pair of clusters with the largest mean
n Indicate the order in which the merging operations occur
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Agglomerative clustering, minimum Vs. maximum distance
g Consider the problem of clustering nine major cities in the United States

BOS NY DC MIA CHI SEA SF LA DEN
BOS 0 206 429 1504 963 2976 3095 2979 1949
NY 206 0 233 1308 802 2815 2934 2786 1771
DC 429 233 0 1075 671 2684 2799 2631 1616
MIA 1504 1308 1075 0 1329 3273 3053 2687 2037
CHI 963 802 671 1329 0 2013 2142 2054 996
SEA 2976 2815 2684 3273 2013 0 808 1131 1307
SF 3095 2934 2799 3053 2142 808 0 379 1235
LA 2979 2786 2631 2687 2054 1131 379 0 1059
DEN 1949 1771 1616 2037 996 1307 1235 1059 0
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