
Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

1

LECTURE 25: Ensemble Learning
g Introduction
g Methods for constructing ensembles
g Combination strategies
g Stacked generalization
g Mixtures of experts
g Bagging
g Boosting

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

2

Introduction
g What is ensemble learning?

n Ensemble learning refers to a collection of methods that learn a target function
by training a number of individual learners and combining their predictions

g Why ensemble learning?
n Accuracy: a more reliable mapping can be obtained by combining the output of

multiple “experts”
n Efficiency: a complex problem can be decomposed into multiple sub-problems

that are easier to understand and solve (divide-and-conquer approach)
n There is not a single model that works for all pattern recognition problems!

g “To solve really hard problems, we’ll have to use several different representations.....
It is time to stop arguing over which type of pattern-classification technique is best.....
Instead we should work at a higher level of organization and discover how to build
managerial systems to exploit the different virtues and evade the different limitations of
each of these ways of comparing things.” [Minsky, 1991]

g When ensemble learning?
n When you can build component classifiers that are more accurate than chance

and, more importantly, that are independent from each other

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

3

Why do ensembles work? (1)
g Because uncorrelated errors of individual classifiers can be eliminated

through averaging
n Assume a binary classification problem for which you can train individual

classifiers with an error rate of 0.3
n Assume that you build an ensemble by combining the prediction of 21 such

classifiers with a majority vote
n What is the probability of error for the ensemble?

g In order for the ensemble to misclassify an example, 11 or more classifiers have to be
in error, or a probability of 0.026. The histogram below shows the distribution of the
number of classifiers that are in error in the ensemble machine

From [Dietterich, 1998]

From [Dietterich, 1997]

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

4

Why do ensembles work? (2)
g The desired target function may not be implementable with individual

classifiers, but may be approximated by ensemble averaging
n Assume that you want to build a diagonal decision boundary with decision trees
n The decision boundaries constructed by these machines are hyperplanes parallel

to the coordinate axes, or “staircases” in the example below
n By averaging a large number of such “staircases”, the diagonal decision

boundary can be approximated with arbitrarily small accuracy

From [Dietterich, 1998]

From [Dietterich, 1997]

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

5

Methods for constructing ensembles
g Subsampling the training examples

n Multiple hypotheses are generated by training individual classifiers on different
datasets obtained by resampling a common training set (Bagging, Boosting)

g Manipulating the input features
n Multiple hypotheses are generated by training individual classifiers on different

representations, or different subsets of a common feature vector
g Manipulating the output targets

n The output targets for C classes are encoded with an L-bit codeword, and an
individual classifier is built to predict each one of the bits in the codeword

n Additional “auxiliary” targets may be used to differentiate classifiers
g Modifying the learning parameters of the classifier

n A number of classifiers are built with different learning parameters, such as
number of neighbors in a k Nearest Neighbor rule, initial weights in an MLP, etc

From [Dietterich, 1998]

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

6

Structure of ensemble classifiers
g Parallel

n All the individual classifiers are invoked
independently, and their results are fused
with a combination rule (e.g., average,
weighted voting) or a meta-classifier (e.g.,
stacked generalization)

n The majority of ensemble approaches in the
literature fall under this category

g Cascading or Hierarchical
n Classifiers are invoked in a sequential or

tree-structured fashion
n For the purpose of efficiency, inaccurate but

fast methods are invoked first (maybe using
a small subset of the features), and
computationally more intensive but accurate
methods are left for the latter stages

From [Jain, 2000]

Expert 1

Expert 2

Expert K

Combiner

Expert 1

Expert 2

Expert K

Combiner

Expert 1 Expert 2 Expert 3Expert 1 Expert 2 Expert 3

Expert 1

Expert 3A

Expert 3B

Expert 3C

Expert 3D

Expert 2A

Expert 2B

Expert 1

Expert 3A

Expert 3B

Expert 3C

Expert 3D

Expert 2A

Expert 2B

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

7

Combination strategies (1)
g Static combiners

n The combiner decision rule is independent of the feature vector. Static
approaches can be broadly divided into non-trainable and trainable

n Non-trainable: The voting is performed independently of the performance of
each individual classifier

g Various combiners may be used, depending on the type of output produced by the
classifier, including

n Voting: used when each classifier produces a single class label. In this case, each classifier
“votes” for a particular class, and the class with the majority vote on the ensemble wins

n Averaging: used when each classifier produces a confidence estimate (e.g., a posterior). In
this case, the winner is the class with the highest average posterior across the ensemble

n Borda counts: used when each classifier produces a rank. The Borda count of a class is the
number of classes ranked below it [Ho et al., 1994]

n Trainable: The combiner undergoes a separate training phase to improve the
performance of the ensemble machine. Two noteworthy approaches are

g Weighted averaging: the output of each classifier is weighted by a measure of its own
performance, e.g., prediction accuracy on a separate validation set

g Stacked generalization: the output of the ensemble serves as a feature vector to a
meta-classifier

From [Jain, 2000]

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

8

Combination strategies (2)
g Adaptive combiners

n The combiner is a function that depends on the input feature vector. Thus, the
ensemble implements a function that is local to each region in feature space

n This divide-and-conquer approach leads to modular ensembles where relatively
simple classifiers specialize in different parts of the input-output space

g Note that, in contrast with static-combiner ensembles, the individual experts here do
not need to perform well for all inputs, only in their region of expertise

n Representative examples of this approach are Mixture of Experts (ME) and
Hierarchical ME [Jacobs et al., 1991; Jordan and Jacobs, 1994]

From [Gosh, 2002]

Expert 1

Expert 2

Expert K

Meta
Expert

Feature
vector

Output
signal

y1

y2

yk

Expert 1

Expert 2

Expert K

Meta
Expert

Feature
vector

Output
signal

y1

y2

yk

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

9

Stacked generalization
g In stacked generalization, the output pattern of an ensemble of trained

experts serves as an input to a second-level expert [Wolpert, 1992]
n Training of this modular ensemble can be performed as follows

g From a dataset X with N examples, leave out one test example, and train each of the
level-0 experts on the remaining N-1 examples

g Generate a prediction for the test example. The output pattern y=[y1, y2,…,yK] across
the level-0 experts, along with the target t for the test example, becomes a training
example for the level-1 expert

g Repeat this process in a leave-one-out fashion. This yields a training set Y with N
examples, which is used to train the level-1 expert separately

g To make full use of the training data, re-train all the level-0 experts one more time
using all N examples in X

From [Bishop, 1995]

Expert01

Expert02

Expert0K

Expert1Feature
vector (X)

Output
signal (T)

y1

y2

yK

Expert01

Expert02

Expert0K

Expert1Feature
vector (X)

Output
signal (T)

y1

y2

yK

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

10

Mixture of experts
g Mixture of experts (ME) is the classical adaptive ensemble method

n A gating network is used to generate a partition of feature space into different
regions, with one expert in the ensemble being responsible for generating the
correct output within that region [Jacobs et al., 1991]

n The experts in the ensemble and the gating network are trained simultaneously,
which can be efficiently performed with the EM algorithm

n ME can be extended to a multi-level hierarchical structure, where each
component is itself a ME. In this case, a linear network can be used for the
terminal classifiers without compromising the modeling capabilities of the
machine

From [Bishop, 1995]

Expert 1

Expert 2

Expert K

Σ

Gating
Network

g1

g2

gk

Feature
vector

Output
signal

y1

y2

yk

Expert 1

Expert 2

Expert K

Σ

Gating
Network

g1

g2

gk

Feature
vector

Output
signal

y1

y2

yk

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

11

Subsampling the training set (1)
g Bagging [Breiman, 1996]

n Bagging (for bootstrap aggregation) creates an ensemble by training individual
classifiers on bootstrap samples of the training set

n As a result of the sampling-with-replacement procedure, each classifier is trained
on the average of 63.2% of the training examples

g For a dataset with N examples, each example has a probability of 1-(1-1/N)N of being
selected at least once in the N samples. For N→∞, this number converges to (1-1/e) or
0.632 [Bauer and Kohavi, 1999]

n Bagging traditionally uses component classifiers of the same type (e.g., decision
trees), and a simple combiner consisting of a majority vote across the ensemble

From [Bauer and Kohavi, 1999l; Duda et al., 2001]

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

12

Subsampling the training set (2)
g Bagging (continued)

n The perturbation in the training set due to the bootstrap resampling causes
different hypotheses to be built, particularly if the classifier is unstable

g A classifier is said to be unstable if a small change in the training data (e.g., order of
presentation of examples) can lead to a radically different hypothesis. This is the case
of decision trees and, arguably, neural networks

n Bagging can be expected to improve accuracy if the induced classifiers are
uncorrelated

g In some cases, such as k Nearest Neighbors, bagging has been shown to degrade
performance as compared to individual classifiers as a result of an effectively smaller
training set

n A related approach to bagging is “cross-validated committees”, in which the
component classifiers are built on different partitions of the training set obtained
through k-fold cross-validation

From [Bauer and Kohavi, 1999; Duda et al., 2001]

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

13

Subsampling the training set (3)
g Boosting [Schapire, 1990; Freund and Schapire, 1996]

n Boosting takes a different resampling approach than bagging, which maintains a
constant probability of 1/N for selecting each individual example

n In boosting, this probability is adapted over time based on performance
g The component classifiers are built sequentially, and examples that are mislabeled by

previous components are chosen more often than those that are correctly classified
n Boosting is based on the concept of a “weak learner”, an algorithm that performs

slightly better than chance (e.g., 50% classification rate on binary tasks)
g Schapire has shown that a weak learner can be converted into a strong learner by

changing the distribution of training examples
g Boosting can also be used with classifiers that are highly accurate, but the benefits in

this case will be very small
n A number of variants of boosting are available in the literature. We focus on the

most popular form, known as AdaBoost (for Adaptive Boosting), which allows the
designer to continue adding components until an arbitrarily small error rate is
obtained on the training set

g NOTE: boosting is also known as arcing (for adaptive resampling and combining), a
term that was coined by Breiman

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

14

AdaBoost
g AdaBoost operates as follows

n At iteration n, boosting provides the weak learner with a distribution Dn over the
training set, where Dn(i) represents the probability of selecting the i-th example

g The initial distribution is uniform: D1(i)=1/N. Thus, all examples are equally likely to be
selected for the first component

n The weak learner subsamples the training set according to Dn and generates a
trained model or hypothesis Hn

n The error rate of Hn is measured with respect to the distribution Dn

n A new distribution Dn+1 is produced by decreasing the probability of those
examples that were correctly classified, and increasing the probability of the
misclassified examples

n The process is repeated T times, and a final hypothesis is obtained by weighting
the votes of individual hypotheses {h1, h1,…,hT} according to their performance

g Note
n The strength of AdaBoost derives from the adaptive re-sampling of examples,

not from the final weighted combination
g To prove this point Breiman has developed a variant of AdaBoost, known as ‘arc-x4’, in

which the ensemble voting is unweighted [Breiman, 1996]: his results show that
AdaBoost (referred to as ‘arc-fs’) and ‘arc-x4’ have similar performance [Bauer and
Kohavi, 1999]

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

15

The bias and variance decomposition
g The effectiveness of Bagging and Boosting has been explained in

terms of the bias-variance decomposition of classification error
n The expected error of a learning algorithm can be decomposed into

g A bias term that measures how closely the average classifier produced by the learning
algorithm matches the target function

g A variance term that measures how much the learning algorithm’s predictions
fluctuate for different training sets (of the same size)

g An intrinsic target noise, which is the minimum error that can be achieved: that of the
Bayes optimal classifier

n Following this line of reasoning, Breiman has suggested that both Bagging and
Boosting reduce errors by reducing the variance term

n Along the same lines, Freund and Schapire have argued that Boosting also
attempts to reduce the bias term since it focuses on misclassified samples

g Work by Bauer and Kohavi, however, seems to indicate that Bagging can also reduce
the bias term

From [Opitz and Maclin, 1999]

