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LECTURE 21: Support Vector Machines
g Empirical Risk Minimization
g The VC dimension
g Structural Risk Minimization
g Maximum margin hyperplane
g The Lagrangian dual problem
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Introduction (1)
g Consider the familiar problem of learning a binary classification 

problem from data
n Assume a given a dataset (X,Y)={(x1,y1),(x2,y2),…(xN,yN)}, where the goal is to 

learn a function y=f(x) that will correctly classify unseen examples
g How do we find such function?

n By optimizing some measure of performance of the learned model 
g What is a good measure of performance?

n As we saw in Lecture 4, a good measure is the expected risk

g where C(f,y) is a suitable cost function, such as the squared error C(f,y)=(f(x)-y)2

n Unfortunately, the risk cannot be measured directly since the underlying pdf is 
unknown.  Instead, we typically use the risk over the training set, also known as 
the empirical risk
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Introduction (2)
g Empirical Risk Minimization

n A formal term for a simple concept: find the function f(x) that minimizes the 
average risk on the training set

n Minimizing the empirical risk is not a bad thing to do, provided that sufficient 
training data is available, since the law of large numbers ensures that the 
empirical risk will asymptotically converge to the expected risk for n→∞

n However, for small samples, one cannot guarantee that ERM will also minimize 
the expected risk.  This is the all too familiar issue of generalization

g How do we avoid overfitting? 
n By controlling model complexity.  Intuitively, we should prefer the simplest model 

that explains the data (Occam’s razor)

From [Müller et al., 2001]
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The VC dimension (1)
g The Vapnik-Chervonenkis dimension is a measure of the complexity 

(or capacity) of a class of functions f(α)
n The VC dimension measures the largest number of examples that can be 

explained by the family f(α)
g The basic argument is that high capacity and generalization properties 

are at odds
n If the family f(α) has enough capacity to explain every possible dataset, we 

should not expect these functions to generalize very well
n On the other hand, if functions f(α) have small capacity but they are able to 

explain our particular dataset, we have stronger reasons to believe that they will 
also work well on unseen data

From [Cristianini and Schölkopf, 2002]
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The VC dimension (2)
g Shattering a set of examples

n Assume a binary classification problem with N examples in RD and consider the 
set of 2|N| possible dichotomies

g For instance, with N=3 examples, the set of all possible dichotomies is {(000), (001), 
(010), (011), (100), (101), (110), (111)}

n A class of functions f(α) is said to shatter the dataset if, for every possible 
dichotomy, there is a function in f(α) that models it

g The VC dimension
n The VC dimension VC(f) is the size of the largest dataset that can be 

shattered by the set of functions f(α)
n If the VC dimension of f(α) is h, then there exists at least one set of h points that 

can be shattered by f(α), but in general it will not be true that every set of h 
points can be shattered

g One may even find a set of N<h points that cannot be shattered by this set of functions

From [Mitchel, 1997]
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The VC dimension (3)
g Consider a binary classification problem in R2, and let f(α) be the 

family of oriented hyperplanes (e.g., perceptrons)
n For N=3, one can perform a linear separation of all points for every possible 

class assignment (see examples below)
n For N=4, a hyperplane cannot separate all possible class assignments (e.g., 

consider the XOR problem)
n Therefore, the VC dimension of the set of oriented lines in R2 is three
n It can be shown that the VC dimension of the family of oriented separating 

hyperplanes in RD is at least D+1

From [Burges, 1998]
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The VC dimension (4)
g The VC dimension and the number of free model parameters

n One may intuitively expect that models with a large number of free parameters 
would have high VC dimension, whereas models with few parameters would 
have low VC dimensions

n Counter example
g Consider the one-parameter function f(x,α)=sign(sin(αx)), ∀x,α∈R
g You choose an arbitrary number h (as large as you want)
g I choose the set of examples xi=10-i, i=1…h
g You choose any labels you like y1, y2,…yh; xi∈{-1,+1}
g I choose α to be 

n Despite having only one parameter, the function f(x,α) shatters an arbitrarily large number of 
points chosen according to the outlined procedure

n And, at the same time, one can find four points that cannot be shattered by this function!

g So what do we make of this?
n The VC dimension is a more “sophisticated” measure of model complexity than 

dimensionality or number of free parameters [Pardo,2000]

From [Burges, 1998]
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Structural Risk Minimization (1)
g Why is the VC dimension relevant?

n Because the VC dimension provides bounds on the expected risk as a function 
of the empirical risk and the number of available examples 

n It can be shown that, with probability 1-η, the following bound holds

g where h is the VC dimension of f(α), N is the number of training examples, and N>h
n As the ratio N/h gets larger, the VC confidence becomes smaller and the actual 

risk becomes closer to the empirical risk
g Therefore, this expression is consistent with the intuition that ERM is only suitable 

when sufficient data is available

n This and other results are part of the field known as Statistical Learning 
Theory or Vapnik-Chervonenkis Theory, from which Support Vector Machines 
originated
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From [Burges, 1998]

Eq. (1) 
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Structural Risk Minimization (2)
g Structural Risk Minimization

n Another formal term for an intuitive concept: the optimal model is found by 
striking a balance between the empirical risk and the VC dimension

g The SRM principle proceeds as follows
n Construct a nested structure for family of function classes F1⊂F2⊂…⊂Fk with 

non-decreasing VC dimensions (h1≤h2≤…≤hk)
n For each class Fi, compute the solution fi that minimizes the empirical risk 
n Choose the function class Fi, and the corresponding solution fi, that minimizes 

the risk bound on the RHS of equation (1)
g In other words

n Train a set of machines, one for each subset
n For a given subset, train to minimize the empirical risk
n Choose the machine whose sum of empirical risk and VC confidence is minimum

From [Burges, 1998]
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Structural Risk Minimization (3)

From [Cherkassky and Mulier, 1998]
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The VC dimension in practice
g Unfortunately, computing an upper bound on the expected risk is not 

practical in various situations
n The VC dimension cannot be accurately estimated for non-linear models such as 

neural networks
n Implementation of Structural Risk Minimization may lead to a non-linear 

optimization problem
n The VC dimension may be infinite (e.g., k=1 nearest neighbor), requiring infinite 

amount of data or
n The upper bound may sometimes be trivial (e.g., larger than one)

g Fortunately, Statistical Learning Theory can be rigorously applied in 
the realm of linear models

From [Cherkassky and Mulier, 1998; Müller et al., 2001]



Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

12

Optimal separating hyperplanes (1)
g Consider the problem of finding a separating hyperplane for a linearly 

separable dataset {(x1,y1),(x2,y2),…,(xN,yN)}, x∈RD, y∈{-1,+1}
n Which of the infinite hyperplanes should we choose? 

g Intuitively, a hyperplane that passes too close to the training examples will be sensitive 
to noise and, therefore, less likely to generalize well for data outside the training set

g Instead, it seems reasonable to expect that a hyperplane that is farthest from all 
training examples will have better generalization capabilities

n Therefore, the optimal separating hyperplane will be the one with the largest 
margin, which is defined as the minimum distance of an example to the decision 
surface

From [Cherkassky and Mulier, 1998]
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Optimal separating hyperplanes (2)
g How does this intuitive result relate to the VC dimension?

n It can be shown [Vapnik, 1998] that the VC dimension of a separating 
hyperplane with a margin m is bounded as follows

g where D is the dimensionality of the input space, and R is the radius of the smallest 
sphere containing all the input vectors

n Therefore, by maximizing the margin we are in fact minimizing the VC dimension
n And, since the separating hyperplane has zero empirical error (it correctly 

separates all the training examples), maximizing the margin will also minimize 
the upper bound on the expected risk

g Conclusion
n The separating hyperplane with maximum margin will also minimize the 

structural risk
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Optimal separating hyperplanes (3)
g To further understand the relationship between margin and capacity, 

consider the two separating hyperplanes depicted below
n A “skinny” one (small margin), which will be able to adopt many orientations
n A “fat” one (large margin), which will have limited flexibility

g A larger margin necessarily results in lower capacity
n We normally think of complexity as being a function of the number of parameters

g Instead, Statistical Learning Theory tells us that if the margin is sufficiently large, the 
complexity of the function will be low even if the dimensionality is very high! 

From [Bennett and Campbell, 2000]
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Optimal separating hyperplanes (4)
g Since we want to maximize the margin, let’s express it as a function of 

the weight vector and bias of the separating hyperplane
n From basic trigonometry, the distance between a point x and a plane (w,b) is

n Noticing that the optimal hyperplane has infinite solutions by simply scaling the 
weight vector and bias, we choose the solution for which the discriminant 
function becomes one for the training examples closest to the boundary

g This is known as the canonical hyperplane
n Therefore, the distance from the closest 

example to the boundary is

n And the margin becomes
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(Distance between a plane and a point)
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Optimal separating hyperplanes (5)
g Therefore, the problem of maximizing the margin is equivalent to

n Notice that J(w) is a quadratic function, which means that there exists a single 
global minimum and no local minima

g To solve this problem, we will use classical Lagrangian optimization 
techniques

n We first present the Kuhn-Tucker Theorem, which provides an essential result 
for the interpretation of Support Vector Machines
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(Kuhn-Tucker Theorem)
g Given an optimization problem with convex domain Ω⊆RN

n with f∈C1 convex and gi, hi affine, necessary and sufficient conditions for a 
normal point z* to be an optimum are the existence of α*, β* such that

g L(z,α,β) is known as a generalized Lagrangian function
g The third condition is know as the Karush-Kuhn-Tucker (KKT) complementary 

condition. It implies that for active constraints αi≥0; and for inactive constraints αi=0
n As we will see in a minute, the KKT condition allows us to identify the training examples that 

define the largest margin hyperplane.  These examples will be known as Support Vectors.
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From [Cristianini and Shawe-Taylor, 2000]
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The Lagrangian dual problem (1)
g Constrained minimization of J(w)=1/2||w||2 is solved by introducing the 

Lagrangian

n which yields an unconstrained optimization problem that is solved by:
g minimizing LP with respect to the primal variables w and b, and
g maximizing LP with respect to the dual variables αi≥0 (the Lagrange multipliers)

n Thus, the optimum is defined by a saddle point (see below for illustration)
g This is known as the Lagrangian primal problem
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The Lagrangian dual problem (2)
g To simplify the primal problem, we eliminate the primal variables (w,b) 

using the first Kuhn-Tucker condition ∂J/∂z=0
n Differentiating LP(w,b,α) with respect to w and b, and setting to zero yields

n Expansion of LP yields

n Using the optimality condition ∂J/∂w=0, the first term in LP can be expressed as

n The second term in LP can be expressed in the same way
n The third term in LP is zero by virtue of the optimality condition ∂J/∂b=0
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The Lagrangian dual problem (3)
n Merging these expressions together we obtain

g Subject to the (simpler) constraints αi≥0 and 

g This is known as the Lagrangian dual problem

g Comments
n We have transformed the problem of finding a saddle point for LP(w,b) into the 

easier one of maximizing LD(α)
g Notice that LD(α) depends on the Lagrange multipliers α, not on (w,b)

n The primal problem scales with dimensionality (w has one coefficient for each 
dimension), whereas the dual problem scales with the amount of training data 
(there is one Lagrange multiplier per example)

n Moreover, in LD(α) the training data appears only as dot products xi
Txj

g As we will see in the next lecture, this property can be cleverly exploited to perform the 
classification in a higher (e.g., infinite) dimensional space
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Support Vectors
g The KTT complementary condition states that, for every point in the 

training set, the following equality must hold

n Therefore, for each example, either αi=0 or yi(wTxi+b-1)=0 must hold
n Those points for which αi>0 must then lie on one of the two hyperplanes that 

define the largest margin (only at these hyperplanes the term yi(wTxi+b-1) 
becomes zero)

g These points are known as the Support Vectors
n All the other points must have αi=0 
n Note that only the support vectors contribute 

to defining the optimal hyperplane

g NOTE: the bias term b is found from the KKT
complementary condition on the support vectors

n Therefore, the complete dataset could be 
replaced by only the support vectors, and 
the separating hyperplane would be the same
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