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LECTURE 9: Principal Components Analysis

g The curse of dimensionality
g Dimensionality reduction
g Feature selection vs. feature extraction
g Signal representation vs. signal classification
g Principal Components Analysis
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g The curse of dimensionality
n A term coined by Bellman in 1961
n Refers to the problems associated with multivariate data analysis as the 

dimensionality increases
n We will illustrate these problems with a simple example

g Consider a 3-class pattern recognition problem
n A simple approach would be to 

g Divide the feature space into uniform bins
g Compute the ratio of examples for each class at each bin and, 
g For a new example, find its bin and choose the predominant class in that bin

n In our toy problem we decide to start with one single feature and divide the real 
line into 3 segments

n After doing this, we notice that there exists too much overlap among the classes, 
so we decide to incorporate a second feature to try and improve separability

The curse of dimensionality (1)
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g We decide to preserve the granularity of each axis, which raises the number of 
bins from 3 (in 1D) to 32=9 (in 2D)
n At this point we need to make a decision: do we maintain the density of examples per bin or 

do we keep the number of examples had for the one-dimensional case?
g Choosing to maintain the density increases the number of examples from 9 (in 1D) to 27 (in 2D)
g Choosing to maintain the number of examples results in a 2D scatter plot that is very sparse

g Moving to three features makes the problem worse:
n The number of bins grows to 33=27
n For the same density of examples the number of needed 

examples becomes 81
n For the same number of examples, well, the 3D scatter 

plot is almost empty

The curse of dimensionality (2)
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The curse of dimensionality (3)
g Obviously, our approach to divide the sample space into equally 

spaced bins was quite inefficient
n There are other approaches that are much less susceptible to the curse of 

dimensionality, but the problem still exists
g How do we beat the curse of dimensionality?

n By incorporating prior knowledge
n By providing increasing smoothness of the target function
n By reducing the dimensionality

g In practice, the curse of dimensionality means that, for a given sample 
size, there is a maximum number of features above which the 
performance of our classifier will degrade rather than improve

n In most cases, the additional information that is lost by discarding some features 
is (more than) compensated by a more accurate mapping in the lower-
dimensional space
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The curse of dimensionality (4)
g There are many implications of the curse of dimensionality

n Exponential growth in the number of examples required to maintain a given 
sampling density

g For a density of N examples/bin and D dimensions, the total number of examples is ND

n Exponential growth in the complexity of the target function (a density estimate) 
with increasing dimensionality

g “A function defined in high-dimensional space is likely to be much more complex than a 
function defined in a lower-dimensional space, and those complications are harder to 
discern” –Friedman

n This means that, in order to learn it well, a more complex target function requires 
denser sample points!

n What to do if it ain’t Gaussian?
g For one dimension a large number of density functions can be found in textbooks, but 

for high-dimensions only the multivariate Gaussian density is available. Moreover, for 
larger values of D the Gaussian density can only be handled in a simplified form!

n Humans have an extraordinary capacity to discern patterns and clusters in 1, 2 
and 3-dimensions, but these capabilities degrade drastically for 4 or higher 
dimensions
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Dimensionality reduction (1)
g Two approaches are available to perform dimensionality reduction

n Feature extraction: creating a subset of new features by combinations of the existing 
features

n Feature selection: choosing a subset of all the features (the ones more informative)

g The problem of feature extraction can be stated as
n Given a feature space xi∈RN find a mapping y=f(x):RN→RM with M<N such that the 

transformed feature vector yi∈RM preserves (most of) the information or structure in RN.
n An optimal mapping y=f(x) will be one that results in no increase in the minimum 

probability of error
g This is, a Bayes decision rule applied to the initial space RN and to the reduced space RM yield the 

same classification rate
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Dimensionality reduction (2)
g In general, the optimal mapping y=f(x) will be a non-linear function

n However, there is no systematic way to generate non-linear transforms
g The selection of a particular subset of transforms is problem dependent

n For this reason, feature extraction is commonly limited to linear transforms: y=Wx
g This is, y is a linear projection of x
g NOTE: When the mapping is a non-linear function, the reduced space is called a manifold

g We will focus on linear feature extraction for now, and revisit non-linear 
techniques when we cover multi-layer perceptrons
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Signal representation versus classification
g The selection of the feature extraction mapping y=f(x) is guided by an 

objective function that we seek to maximize (or minimize)
g Depending on the criteria used by the objective function, feature 

extraction techniques are grouped into two categories:
n Signal representation: The goal of the feature extraction mapping is to represent 

the samples accurately in a lower-dimensional space
n Classification: The goal of the feature extraction mapping is to enhance the 

class-discriminatory information in the lower-dimensional space
g Within the realm of linear feature 

extraction, two techniques are 
commonly used
n Principal Components Analysis (PCA)

g uses a signal representation criterion
n Linear Discriminant Analysis (LDA)

g uses a signal classification criterion
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Principal Components Analysis, PCA (1)
g The objective of PCA is to perform dimensionality reduction while preserving as 

much of the randomness (variance) in the high-dimensional space as possible
n Let x be an N-dimensional random vector, represented as a linear combination of 

orthonormal basis vectors [ϕ1| ϕ2| ... | ϕN] as

n Suppose we choose to represent x with only M (M<N) of the basis vectors. We can do this 
by replacing the components [yM+1, …, yN]T with some pre-selected constants bi

n The representation error is then

n We can measure this representation error by the mean-squared magnitude of ∆x
n Our goal is to find the basis vectors ϕi and constants bi that minimize this mean-square error
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Principal Components Analysis, PCA (2)
n As we have done earlier in the course, the optimal values of bi can be found by computing 

the partial derivative of the objective function and equating it to zero

g Therefore, we will replace the discarded dimensions yi’s by their expected value (an intuitive solution)
n The mean-square error can then be written as

g where Σx is the covariance matrix of x
n We seek to find the solution that minimizes this expression subject to the orthonormality 

constraint, which we incorporate into the expression using a set of Lagrange multipliers λi

n Computing the partial derivative with respect to the basis vectors

g So ϕi and λi are the eigenvectors and eigenvalues of the covariance matrix Σx
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Principal Components Analysis, PCA (3)
n We can then express the sum-square error as

n In order to minimize this measure, λi will have to be smallest eigenvalues
g Therefore, to represent x with minimum sum-square error, we will choose the eigenvectors ϕi

corresponding to the largest eigenvalues λi.
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PCA dimensionality reduction

The optimal* approximation of a random vector x∈ℜN by a linear combination of M 
(M<N) independent vectors is obtained by projecting the random vector x onto the 
eigenvectors ϕi corresponding to the largest eigenvalues λi of the covariance matrix Σx

*optimality is defined as the minimum of the sum-square magnitude of the approximation error 

PCA dimensionality reduction

The optimal* approximation of a random vector x∈ℜN by a linear combination of M 
(M<N) independent vectors is obtained by projecting the random vector x onto the 
eigenvectors ϕi corresponding to the largest eigenvalues λi of the covariance matrix Σx

*optimality is defined as the minimum of the sum-square magnitude of the approximation error 
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Principal Components Analysis, PCA (4)
g NOTES

n Since PCA uses the eigenvectors of the covariance matrix Σx, it is able to find 
the independent axes of the data under the unimodal Gaussian assumption 

g For non-Gaussian or multi-modal Gaussian data, PCA simply de-correlates the axes
n The main limitation of PCA is that it does not consider class separability since it 

does not take into account the class label of the feature vector
g PCA simply performs a coordinate rotation that aligns the transformed axes with the 

directions of maximum variance
g There is no guarantee that the directions of maximum variance will contain good 

features for discrimination

g Historical remarks
n Principal Components Analysis is the oldest technique in multivariate analysis
n PCA is also known as the Karhunen-Loève transform (communication theory)
n PCA was first introduced by Pearson in 1901, and it experienced several 

modifications until it was generalized by Loève in 1963
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PCA example (1) 
g In this example we have a three-dimensional 

Gaussian distribution with the following 
parameters

g The three pairs of principal component 
projections are shown below

n Notice that the first projection has the largest 
variance, followed by the second projection

n Also notice that the PCA projections de-correlates 
the axis (we knew this since Lecture 3, though) 
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PCA example (2)
g This example shows a projection of a three-dimensional data set into two dimensions

n Initially, except for the elongation of the cloud, there is no apparent structure in the set of points
n Choosing an appropriate rotation allows us to unveil the underlying structure. (You can think of this rotation 

as "walking around" the three-dimensional set, looking for the best viewpoint)
g PCA can help find such underlying structure. It selects a rotation such that most of the 

variability within the data set is represented in the first few dimensions of the rotated data
n In our three-dimensional case, this may seem of little use
n However, when the data is highly multidimensional (10’s of dimensions), this analysis is quite powerful
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PCA example (3)
g Compute the principal components for the 

following two-dimensional dataset
n X=(x1,x2)={(1,2),(3,3),(3,5),(5,4),(5,6),(6,5),(8,7),(9,8)}

g Let’s first plot the data to get an idea of which solution 
we should expect

g SOLUTION (by hand)
n The (biased) covariance estimate of the data is:

n The eigenvalues are the zeros of the 
characteristic equation

n The eigenvectors are the solutions of the system

g HINT: To solve each system manually, first assume that one of the variables is equal to one (i.e. 
vi1=1), then find the other one and finally normalize the vector to make it unit-length
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