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LECTURE 4: Bayesian Decision Theory

g The Likelihood Ratio Test
g The Probability of Error
g The Bayes Risk
g Bayes, MAP and ML Criteria
g Multi-class problems
g Discriminant Functions
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Likelihood Ratio Test (LRT)
g Assume we are to classify an object based on the evidence provided by a 

measurement (or feature vector) x
g Would you agree that a reasonable decision rule would be the following?

n "Choose the class that is most ‘probable’ given the observed feature vector x”
g More formally: Evaluate the posterior probability of each class P(ωi|x) and choose the class with 

largest P(ωi|x) 
g Let us examine the implications of this decision rule for a 2-class problem

n In this case the decision rule becomes

g Or, in a more compact form

n Applying Bayes Rule

n P(x) does not affect the decision rule so it can be eliminated*. Rearranging the previous 
expression

n The term Λ(x) is called the likelihood ratio, and the decision rule is known as the likelihood 
ratio test
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*P(x) can be disregarded in the decision rule since it is constant regardless of class ωI. However, P(x) will be needed if 
we want to estimate the posterior P(ωi|x) which, unlike P(x|ωi)P(x), is a true probability value and, therefore, gives us an 
estimate of the “goodness” of our decision.
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Likelihood Ratio Test: an example
g Given a classification problem with the following class conditional densities, 

derive a decision rule based on the Likelihood Ratio Test (assume equal priors)

g Solution
n Substituting the given likelihoods and priors into the LRT expression:

n Simplifying the LRT expression:

n Changing signs and taking logs:

n Which yields:

n This LRT result makes sense from an intuitive point of 
view since the likelihoods are identical and differ only 
in their mean value

g How would the LRT decision rule change if, say, the priors were such that 
P(ω1)=2P(ω2) ?
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The probability of error (1)
g The performance of any decision rule can be measured by its probability of error P[error] 

which, making use of the Theorem of total probability (Lecture 2), can be broken up into

g The class conditional probability of error P[error|ωi] can be expressed as

g So, for our 2-class problem, the probability of error becomes

n where εi is the integral of the likelihood P(x|ωi) over the region Rj where we choose ωj

g For the decision rule of the previous example, the integrals ε1 and ε2 are depicted below
n Since we assumed equal priors, then P[error] = (ε1 + ε2)/2

g Compute the probability for the example above 
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The probability of error (2)
g Now that we can measure the performance of a decision rule we can ask the following 

question: How good is the Likelihood Ratio Test decision rule?
n For this purpose it is convenient to express P[error] in terms of the posterior P[error|x]

n The optimal decision rule will minimize P[error|x] for every value of x, so that the integral above is minimized
n At each point x’, P[error|x’] is equal to P[ωi|x’] when we choose the other class ωj

g This is depicted in the following figure:

n From the figure it becomes clear that, for any value of x’, the Likelihood Ratio Test decision rule will always 
have a lower P[error|x’]

g Therefore, when we integrate over the real line, the LRT decision rule will yield a lower P[error]
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For any given problem, the minimum probability of error is achieved 
by the Likelihood Ratio Test decision rule. This probability of error is 
called the Bayes Error Rate and is the BEST any classifier can do.

For any given problem, the minimum probability of error is achieved 
by the Likelihood Ratio Test decision rule. This probability of error is 
called the Bayes Error Rate and is the BEST any classifier can do.
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The Bayes Risk (1)
g So far we have assumed that the penalty of misclassifying a class ω1 example 

as class ω2 is the same as the reciprocal. In general, this is not the case:
n For example, misclassifying a cancer sufferer as a healthy patient is a much more serious 

problem than the other way around
g This concept can be formalized in terms of a cost function Cij

n Cij represents the cost of choosing class ωi when class ωj is the true class
g We define the Bayes Risk as the expected value of the cost

g What is the decision rule that minimizes the Bayes Risk?
n First notice that 

n We can express the Bayes Risk as

n Then we note that, for either likelihood, one can write:
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n Merging the last equation into the Bayes Risk expression yields

n Now we cancel out all the integrals over R2

n The first two terms are constant as far as our minimization is concerned since they do not 
depend on R1, so we will be seeking a decision region R1 that minimizes:

The Bayes Risk (2)
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The Bayes Risk (3)
g Let’s forget about the actual expression of g(x) to develop some intuition for 

what kind of decision region R1 we are looking for
n Intuitively, we will select for R1 those regions that minimize the integral 

g In other words, those regions where g(x)<0

n So we will choose R1 such that

n And rearranging

n Therefore, minimization of the Bayes Risk also leads to a Likelihood Ratio Test
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The Bayes Risk: an example
g Consider a classification problem with two classes 

defined by the following likelihood functions

n Sketch the two densities
n What is the likelihood ratio?
n Assume P[ω1]=P[ω2]=0.5, C11=C22=0, C12=1 and C21=31/2. 

Determine a decision rule that minimizes the probability of 
error
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g The LRT decision rule that minimizes the Bayes Risk is commonly called the 
Bayes Criterion

g Many times we will simply be interested in minimizing the probability of error, 
which is a special case of the Bayes Criterion that uses the so-called 
symmetrical or zero-one cost function. This version of the LRT decision rule is 
referred to as the Maximum A Posteriori Criterion, since it seeks to maximize 
the posterior P(ωi|x)

g Finally, for the case of equal priors P[ωi]=1/2, and the zero-one cost function the 
LTR decision rule is called the Maximum Likelihood Criterion, since it will 
minimize the likelihood P(x|ωi)

Variations of the Likelihood Ratio Test (1)
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Variations of the Likelihood Ratio Test (2)
g Two more decision rules are commonly cited in the related literature

n The Neyman-Pearson Criterion, used in Detection and Estimation Theory, which also leads 
to an LRT decision rule, fixes one class error probabilities, say ε1<α, and seeks to minimize 
the other

g For instance, for the sea-bass/salmon classification problem of Lecture 1, there may be some kind of 
government regulation that we must not misclassify more than 1% of salmon as sea bass

g The Neyman-Pearson Criterion is very attractive since it does not require knowledge of priors and 
cost function

n The Minimax Criterion, used in Game Theory, is derived from the Bayes criterion, and 
seeks to minimize the maximum Bayes Risk

g The Minimax Criterion does nor require knowledge of the priors, but it needs a cost function
n For more information on these methods, the reader is referred to “Detection, Estimation and 

Modulation Theory”, by H.L. van Trees, the classical reference in this field
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Minimum P[error] rule for multi-class problems
g The decision rule that minimizes P[error] generalizes very easily to multi-class 

problems
n For clarity in the derivation, the probability of error is better expressed in terms of the 

probability of making a correct assignment

n The probability of making a correct assignment is

n The problem of minimizing P[error] is equivalent to that of maximizing P[correct]. Expressing 
P[correct] in terms of the posteriors:

n In order to maximize P[correct], we will have to 
maximize each of the integrals ℑi. In turn, each 
integral ℑi will be maximized by choosing the 
class ωi that yields the maximum P[ωi|x] 
⇒ we will define Ri to be the region where 
P[ωi|x] is maximum

g Therefore, the decision rule that minimizes P[error] is the MAP Criterion
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Minimum Bayes Risk for multi-class problems 
g To determine which decision rule yields the minimum Bayes Risk for the multi-class 

problem we will use a slightly different formulation
n We will denote by αi the decision to choose class ωi, 
n We will denote by α(x) the overall decision rule that maps features x into classes ωi: α(x)→{α1 , α2 , …, αC}

g The (conditional) risk ℜ(αi|x) of assigning a feature x to class ωi is

g And the Bayes Risk associated with the decision rule α(x) is

g In order to minimize this expression,we will have to minimize the conditional risk ℜ(α(x)|x) 
at each point x in the feature space, which in turn is equivalent to choosing ωi such that 
ℜ(αi|x) is minimum
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Discriminant functions
g All the decision rules we have presented in this lecture have the same structure

n At each point x in feature space choose class ωi which maximizes (or minimizes) some measure gi(x)
g This structure can be formalized with a set of discriminant functions gi(x), i=1..C, and the 

following decision rule

g Therefore, we can visualize the decision rule as a network or machine that computes C 
discriminant functions and selects the category corresponding to the largest discriminant. 
Such network is depicted in the following figure (presented already in Lecture 1)

g Finally, we express the three basic decision rules: Bayes, MAP and ML in terms of 
Discriminant Functions to show the generality of this formulation
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