LECTURE 5: Quadratic classifiers

= Bayes classifiers for Normally distributed classes
o Case 1: ¥=062l
o Case 2: =% (X diagonal)
o Case 3: =X (X non-diagonal)
o Case 4: X.=c/I
« Case 5: X#%, general case
= Numerical example

m Linear and quadratic classifiers: conclusions
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Bayes classifiers for Normally distributed classes

m On Lecture 4 we showed that the decision rule

(MAP) that minimized the probability of error could Class assignment
be formulated in terms of a family of discriminant T
functions Select max

choose w; if g,(x)>g;(x) Vj=i
where g;(x)=P(w; | x) Discriminant
functions

o As we will show, for classes that are normally distributed,
this family of discriminant functions can be reduced to very
simple expressions Features

m General expression for Gaussian densities
o The multivariate Normal density function was defined as
1 1
(x) = —exp{——(x—u)T Z“(X—u)}
(2 TT)n/2|Z|1/2 2
e Using Bayes rule, the MAP discriminant function becomes

_ ~ P(x|w,)P(w;) 1 _1 TSy L
a=Plu 9= exp) 3 )" ) Pl

e Eliminating constant terms
1
gi(x) = |Z|| exp[— E(X — M )T Zﬁ (X -}, ):|P(wi)

o We take natural logs since the logarithm is a monotonically increasing function

-1/2

60) =~ (<) X, "(x —) -~ 1ogl(% )+ og(P(w,)

»  This expression is called a quadratic discriminant function
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Case 1: Z.=c’l

m This situation occurs when the features are statistically independent with the same
variance for all classes*
e In this case, the quadratic discriminant function becomes

dropping the
second term

1 (x—ui)T<x—ui)-%Nlog(oz)ﬂog(P(wi)) -

207

9(x) =~ (x—1)"(071)'(x ~1)- S Tog(o!) + loglP(w2))= -

__ 2;2 (x—p) (x 1) +log(P(w,)

o Expanding this expression

gi(X) == 262 (X - i )T (X - Ui)"‘ Iog(P(wi )) == 2(1_2 (XTX - 2UiTX + UiTUi )"‘ Iog(P(wi ))

» Eliminating the term x"x, which is constant for all classes

T T T
gi(x)=- 257 (— 2u X+ Y, )+ Iog(P(oui )) =W, X+W,
w, = “—'2 « o u1_§ Distance >
where o S
Wi === T, + log(P(w)) Hy—] s
0 2027 ' » Distance 8
. o - - . i =3 class
= Since the discriminant is linear, the decision boundaries e 5
g(x)=g;(x), will be hyper-planes o :g
. =
If we assume equal priors
* 9 P HC_E Distance >
T
gi(X): _20_2 (X_“i) (X_I"Ii)
s This is called a minimum-distance or nearest mean classifier
= The loci of constant probability for each class are hyper-spheres
= For unit variance (2=1), the distance becomes the Euclidean distance From [Schalkoff, 1992]
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Case 1: £=c°l, example

m To illustrate the previous result, we will
compute the decision boundaries for a 3-
class, 2-dimensional problem with the
following class mean vectors and
covariance matrices and equal priors

w=0B 2 p=[7 4] p,=[2 5]

2 2 2
s o129 5|29 5|20
0 2 0 2 0 2
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Case 2: ¥.=% (X diagonal)

m The classes still have the same covariance matrix, but the features are allowed to have
different variances
e In this case, the quadratic discriminant function becomes

gi(x):—%(x—uifz (x— u)-%log(JZI) +log(P(w,)) =

1 o;? 1 o’
= x-m)' (x=p)-log| +log(P(w;))=
0 o2
Z(X[k]oﬂ %Iogﬁoﬁﬂog(P(wi)):
1, x[K]? —2x[k]p[k]+p[k] 1

N
= I 2 +log(P(w,
22 o? 500 [0t +logP(w))

» Eliminating the term x[k]?, which is constant for all classes

g(x)= -+ > 2RI 10062 4 og(P(w,))

1
21 Ci 2 TG

o This discriminant is linear, so the decision boundaries g;(x)=g;(x), will also be hyper-planes
e The loci of constant probability are hyper-ellipses aligned with the feature axes

» Note that the only difference with the previous classifier is that the distance of each axis is normalized by the
variance of the axis
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Case 2: 2= X (X diagonal), example

m To illustrate the previous result, we will
compute the decision boundaries for a 3-class,
2-dimensional problem with the following class
mean vectors and covariance matrices and
equal priors

0.2~

w=[B 2[ p=[5 4] p,=[2 5

1 1 1
s 0O s PO s |10
0 2 0 2 0 2
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Case 3: X=X (X non-diagonal)

= In this case, all the classes have the same covariance matrix, but this is no longer diagonal

m The quadratic discriminant becomes

1 1
9/()= -5 (x~1)" %" (x~) - log(Z) + log(P(w;) =
1 1
=~ (x—1)" 7 (x~ 1)~ 7 log((%])+ log(P(cw,))
= Eliminating the term log|X|, which is constant for all classes

9(0) =~ (<) % '(x—) +Iog(P(w)

The quadratic term is called the Mahalanobis distance, a very important distance in Statistical PR
A

Mahalanobis Distance
[x-yls: =(x=y)" Z(x-y)

s The Mahalanobis distance is a vector distance that
uses a 2. norm
> can be thought of as a stretching factor on the space

Note that for an identity covariance matrix (2=I), the
Mahalanobis distance becomes the familiar Euclidean distance
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Case 3: X=X (X non-diagonal)

o Expansion of the quadratic term in the discriminant yields

0 =~ 5 (¢~ )" £ (x -y +loglP(w) =~ 2 (x" T x -2 XM x+ T £ )+ loglP(w,)

e Removing the term x™X"'x, which is constant for all classes

g,(x) = —%(— 207 S x+p" T J+log(P(w,)

. . > P13 Distance >
e Reorganizing terms we obtain X > 5
k3]
T Ho—> . L
gi(x)=w, x+ Wi, » Distance 3
i c — class
-1
H W, =27, - 2
where (I ° £
Wi =—=HM z M+ |OgP((Ui) s
2 He— .
> Distance >

o This discriminant is linear, so the decision boundaries will also be hyper-planes
o The constant probability loci are hyper-ellipses aligned with the eigenvectors of >
o If we can assume equal priors

60 =~ (x—1) £ (x4

e The classifier becomes a minimum (Mahalanobis) distance classifier
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Case 3: Z.=X (X non-diagonal), example

m To illustrate the previous result, we will
compute the decision boundaries for a 3-
class, 2-dimensional problem with the
following class mean vectors and
covariance matrices and equal priors

w=@3 2 u=[5 4 p=[2 5]

1 07 1 07 1 07
5, = 071 5 _ 071 5 _ 0
07 2 07 2 07 2
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Case 4: X.=c’l

= In this case, each class has a different covariance matrix, which is proportional to the
identity matrix
e The quadratic discriminant becomes

gi<x>=—%<x—uif zﬂ(x—ui)-%logQZJ)Hog(P(wi )=

=~ (x=u)"02(x~1)-~ Niog(o? }+ log(P(w)

m This expression cannot be reduced further so
e The decision boundaries are quadratic: hyper-ellipses
e The loci of constant probability are hyper-spheres aligned with the feature axis
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Case 4: ~.=c2l, example

m To illustrate the previous result, we will
compute the decision boundaries for a 3-
class, 2-dimensional problem with the
following class mean vectors and
covariance matrices and equal priors

My = [3 2]T My = [5 4]T M3 = [2 5]T

: 1 2
5 - 05 0 5, - 0 5. - 0
0 05 0 1 0 2
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Case 5: zi;ezj general case

= We already derived the expression for the general case at the beginning of this discussion

1 _ 1
6/(x) =~ (¢ —1)" X" (x —p)- g% ) +log(P(w)
o Reorganizing terms in a quadratic form yields

gi(X)=x"Wx+w/ x+w,

_ s
W, = 2 2
where {w, =¥y,
1 1
Wio = _EpiT Zf1 Mi _Elongi|)+ Iog(P(wl ))

o The loci of constant probability for each class are hyper-ellipses, oriented with the eigenvectors of X, for that
class

e The decision boundaries are again quadratic: hyper-ellipses or hyper-parabolloids

¢ Notice that the quadratic expression in the discriminant is proportional to the Mahalanobis distance using the
class-conditional covariance %,
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Case 5: zi;tzj general case, example

m To illustrate the previous result, we will
compute the decision boundaries for a 3-
class, 2-dimensional problem with the
following class mean vectors and
covariance matrices and equal priors

w=[B 2] =[5 4  p=[2 5]

1 -1 1 -1 5 0.
5 _ 5 s |05 05
1 2 17 05 3

Zoom A
out
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Numerical example

= Derive a linear discriminant function for the two-class 3D classification problem defined by
the following Gaussian Likelihoods

174 0 O
w=[0 0 of; wy=[1 1 1];2,=2,=| 0 14 0 | p(w,)=2p(w,)
0O 0 14
= Solution
] ] x—pXT 4 0 O x-p,
0i(x) =~ 7 (x-k) (x-k)+logP(w) = =1 y-p, | |0 4 0| y-py |+logP(w)
z-y,| |0 0 4||z--p,
1x-oT400x-o 1x-1T400x-1
g1(x):—§ y-0| |0 4 0||y-0|+log—; QZ(X)__E y-1 10 4 0]||y-1|+log—
z-0| [0 O 4]|z-0 z-11 |0 0 4||z-1
>1 2 2 2 1>1 2 2 2 2
g,(x) gz(x):>-2(x +yi+z )+Iog§ -2((x—1) +(y-1 +(z-1) )+Iog§
< <
x+y+z>6_|092=1.32
<

= Classify the test example x,=[0.1 0.7 0.8]"

0.140.7+40.8=1.6 1.32=x, cw,
<

Wy
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Conclusions

= From the previous examples we can extract the following conclusions
e The Bayes classifier for normally distributed classes (general case) is a quadratic classifier

e The Bayes classifier for normally distributed classes with equal covariance matrices is a
linear classifier
e The minimum Mahalanobis distance classifier is Bayes-optimal for
= normally distributed classes and
= equal covariance matrices and
= equal priors
e The minimum Euclidean distance classifier is Bayes-optimal for
= normally distributed classes and
m equal covariance matrices proportional to the identity matrix and
= equal priors
o Both Euclidean and Mahalanobis distance classifiers are linear classifiers
m The goal of this discussion was to show that some of the most popular
classifiers can be derived from decision-theoretic principles and some
simplifying assumptions
e Itis important to realize that using a specific (Euclidean or Mahalanobis) minimum distance
classifier implicitly corresponds to certain statistical assumptions

e The question whether these assumptions hold or don’t can rarely be answered in practice; in
most cases we are limited to posing and answering the question “does this classifier solve
our problem or not?”
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