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LECTURE 22: SVMs and kernel methods
g The non-separable case
g Non-linear SVMs and kernel methods
g A numerical example
g Optimization techniques 
g SVM extensions
g Discussion
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The non-separable case (1)
g The previous lecture focused on problems that were linearly separable

n In this lecture we will see how SVMs can be modified to handle datasets that are 
not linearly separable

g The solution for the non-separable case is to introduce slack variables
ξi that relax the constraints of the canonical hyperplane equation

g The slack variables measure deviation 
from the ideal condition

n For 0≤ξ≤1, the data point falls on the right 
side of the separating hyperplane but within 
the region of maximum margin

n For ξ>1, the data point falls on the wrong 
side of the separating hyperplane
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The non-separable case (2)
g How does the optimization problem change with the introduction of 

slack variables?
n Our goal is to find a hyperplane with minimum misclassification rate
n This may be accomplished by minimizing the following objective function

g subject to the constraints on ||w||2 and the perceptron equation
n Φ(ξ) represents the total number of misclassified samples

n Unfortunately, minimization of Φ(ξ) is a difficult combinatorial problem (NP-
complete) due to the non-linearity of the indicator function I(ξi)
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The non-separable case (3)
n Instead, we approximate Φ(ξ) by

n which is an upper bound on the number of misclassifications, and minimize the 
joint objective function

n subject to 

g Interpretation of C
n Parameter C represents a trade-off between misclassification and capacity

g Large values of C favor solutions with few misclassification errors
g Small values of C denote a preference towards low-complexity solutions

n Therefore, this parameter can be viewed as a regularization parameter (recall 
ridge-regression in Lecture 17), the difference being that the minimization 
problem is now subject to constraints

n A suitable value for C is typically determined through cross-validation
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The non-separable case (4)
g Using a procedure similar to the one in the previous lecture, we can 

derive the dual problem as

n subject to the constraints 

g Comments
n Notice that neither the slack variables nor their associated Lagrange multipliers 

appear in the formulation of the dual problem
n Therefore, this represents the same optimization problem as the linearly 

separable case, with the exception that the constraints αi≥0 have been replaced 
by the more restrictive constraints 0≤αi≤C 

g The optimum solution for the weight vector remains the same:

g and the bias can be found by choosing a training point for which 0<αi<C (ξi=0), and 
solving the KKT condition:
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Non-linear SVMs (1)
g The power of SVMs resides in the fact that they represent a robust and 

efficient implementation of the principle in Cover’s theorem on the 
separability of patterns

n “A complex pattern-classification problem cast in a high-dimensional space non-
linearly is more likely to be linearly separable than in a low-dimensional space”

g Based on this principle, SVMs operate in two stages
n Perform a non-linear mapping of the feature vector x onto a high-dimensional 

space that is hidden from the inputs or the outputs
n Construct an optimal separating hyperplane in the high-dimensional space

x ϕ(x) z wTz yx ϕ(x) z wTz y
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Non-linear SVMs (2)

From [Schölkopf, 2002 @; http://kernel-machines.org/]
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Non-linear SVMs (3)
g Naïve application of this concept by simply projecting to a high-

dimensional non-linear manifold has two major problems
n Statistical: operation on high-dimensional spaces is ill-conditioned due to the 

“curse of dimensionality” and the subsequent risk of overfitting
n Computational: working in high-dimensions requires higher computational 

power, which poses limits on the size of the problems that can be tackled
g SVMs bypass these two problems in a robust and efficient manner

n First, generalization capabilities in the high-dimensional manifold are ensured by 
enforcing a largest margin classifier

g Recall that generalization in SVMs is strictly a function of the margin (or the VC 
dimension), regardless of the dimensionality of the feature space

n Second, projection onto a high-dimensional manifold is only implicit
g Recall that the SVM solution depends only on the dot product 〈xi,xj〉 between training 

examples
g Therefore, operations in high dimensional space ϕ(x) do not have to be performed 

explicitly if we find a function K(xi,xj) such that K(xi,xj)=〈ϕ(xi),ϕ(xj)〉
g K(x1,x2) is called a kernel function in SVM terminology

From [Cristianini and Schölkopf, 2002]
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Implicit mappings: an example
g Consider a pattern recognition problem in R2

n Assume we choose a kernel function K(xi,xj)=(xi
Txj)2

n Our goal is to find a non-linear projection ϕ(x) such that (xi
Txj)2=ϕ(xi)Tϕ(xj)

n Performing the expansion of K(xi,xj)

g where xi,k denotes the k-th coordinate of example xi

n So in using the kernel K(xi,xj)=(xi
Txj)2, we are implicitly operating on a higher-

dimensional non-linear manifold defined by 

g Notice that the inner product ϕ(xi)Tϕ(xj) can be computed in R2 the original space by 
means of the kernel (xi

Txj)2 without ever having to project onto R3!
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Kernel methods (1)
g Let’s now see how to put together all these concepts

n Assume that our original feature vector x lives in a space RD

n We are interested in non-linearly projecting x onto a higher dimensional implicit 
space ϕ(x)∈RD1 (D1>D) where classes have a better chance of being linearly 
separable 

g Notice that we are not guaranteeing linear separability, we are only saying that we 
have a better chance because of Cover’s theorem

n The separating hyperplane in RD1 will be defined by

n To eliminate the bias term b, let’s augment the feature vector in the implicit 
space with a constant dimension ϕ0(x)=1

g Using vector notation, the resulting hyperplane becomes

n From our previous results, the optimal (maximum margin) hyperplane in the 
implicit space is given by
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Kernel methods (2)
n Merging this optimal weight vector with the hyperplane equation

n and, since ϕ(xi)Tϕ(xj)=K(xi,xj), the optimal hyperplane becomes

n Therefore, classification of an unknown example x is performed by computing 
the weighted sum of the kernel function with respect to the support vectors xi
(remember that only the support vectors have non-zero dual variables αi)
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Kernel methods (3)
g How do we compute the dual variables αi in the implicit space?

n Very simple: we use the same optimization problem as before, except for now 
we replace the dot product ϕ(xi)Tϕ(xj) by the kernel K(xi,xj)

g The Lagrangian dual problem for the non-linear SVM is simply

n subject to the constraints 

( ) ( )∑∑∑
= ==

−=
N

1i

N

1j
j

T
ijiji

N

1i
iD xxKyyαα

2
1ααL ,







=≤≤

=∑
=

1...NiCα0

0yα

i

N

1i
ii



Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

13

Kernel methods (4)
g How do we select the implicit mapping ϕ(x)?

n As we saw in the example a few slides back, we will normally select a kernel 
function first, and then determine the implicit mapping ϕ(x) that it corresponds to

g Then, how do we select the kernel function K(xi,xj)?
n We must select a kernel for which an implicit mapping exists, this is, a kernel  

that can be expressed as the dot-product of two vectors
g For which kernels K(xi,xj) does there exist an implicit mapping ϕ(x)?

n The answer is given by Mercer’s Condition

From [Burges, 1998; Kaykin, 1999]
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Mercer’s Condition
g Let K(x,x’) be a continuous symmetric kernel that is defined in the 

closed interval a≤x≤b
n The kernel can be expanded in the series

g Strictly speaking, the space where ϕ(x) resides is a Hilbert space, a “generalization” of 
an Euclidean space where the inner product can be any inner product, not just the 
scalar dot product we are familiar with [Burges, 1998]

n With positive coefficients λi>0 ∀i.  For this expansion to be valid and for it to 
converge absolutely and uniformly, it is necessary and sufficient that the 
condition

n holds for all ψ(⋅) for which

g The functions ϕi(x) are called eigenfunctions of the expansion, and the numbers λi are 
the eigenvectors.  The fact that all of the eigenvalues are positive means that the 
kernel is positive definite

n Notice that the dimensionality of the implicit space can be infinitely large
n Mercer’s Condition only tells us whether a kernel is actually an inner-product 

kernel, but it does not tell us how to construct the functions ϕi(x) for the 
expansion

From [Kaykin, 1999]
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Kernel functions
g Which kernel functions meet Mercer’s Condition?

n Polynomial kernels

g The degree of the polynomial is a user-specified parameter

n Radial basis function kernels

g The width σ is a user-specified parameter, but the number of radial basis functions and 
their centers are determined automatically by the number of support vectors and their 
values

n Two-layer perceptron

g The number of hidden neurons and their weight vectors are determined automatically 
by the number of support vectors and their values, respectively. The hidden-to-output 
weights are the Lagrange multipliers αi

g However, this kernel will only meet Mercer’s condition for certain values of β0 and β1
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Architecture of an SVM
g This figure below illustrates the operation of the SVM during recall in 

the form of a neural network architecture

From [Kaykin, 1999]
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Numerical example (1)
g To illustrate the operation of a non-linear SVM we will solve the 

classical XOR problem
n Dataset

g Class 1: x1=(1,1), x3=(-1,-1)
g Class 2: x2=(1,-1), x4=(-1,1)

n Kernel function
g Polynomial of order 2: K(x,x’)=(xTx’+1)2

g Solution
n The implicit mapping can be shown to be 5-dimensional

n To achieve linear separability, we will use C=∞
n The objective function for the dual problem becomes

n subject to the constraints 
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Numerical example (2)
n where the inner product is represented as a 4x4 K matrix

n Optimizing with respect to the Lagrange multipliers leads to the following system 
of equations

n whose solution is 
g Thus, all data points are support vectors in this case
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Numerical example (3)
n For this simple problem, it is worthwhile to write the decision surface in terms of 

the polynomial expansion

n resulting in the intuitive non-linear discriminant function 

n which has zero empirical error on the XOR training set
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Numerical example (4)
g Decision function defined by the SVM

n Notice that the decision boundaries are non-linear in the original space R2, but 
linear in the implicit space R6

From [Cherkassky and Mulier, 1998; Haykin, 1999]
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Optimization techniques for SVMs (1)
g SVMs involve the solution of a quadratic programming (QP) problem

n where                        , subject to constraints 
g Several commercial optimization libraries can be used to solve this 

dual QP problem
n The use of these libraries is, however, limited to small- to medium-size problems 

(1,000 examples) since the number of elements in the quadratic matrix H is 
equal to the square of the number of training examples

g A number of alternative optimization procedures have therefore been 
proposed by the SVM community

n Chunking
n Decomposition methods
n Sequential Minimal Optimization

From [Müller et al., 2001]
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Optimization techniques for SVMs (2)
g Chunking

n This method is based on two facts
g Many of the optimal αs will be zero (or on the upper bound C). The QP solution is 

independent of these zero parameters, so their corresponding rows and columns in the 
quadratic matrix can be eliminated

g In addition, the optimal αs must meet the KKT condition
n At every step, chunking will solve a problem containing all the non-zero αs plus 

some of the αs that violate the KKT condition
n The size of the problem varies with every iteration, but is finally equal to the 

number of support vectors
n However, chunking is still limited by the maximum number of support vectors 

that fit in memory 
n In addition, chunking requires an inner QP optimizer to solve each of the smaller 

problems

From [Müller et al., 2001]
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Optimization techniques for SVMs (3)
g Decomposition methods

n Decomposition methods are similar to chunking in concept, except for the size of 
the sub-problems is always fixed

n These methods are based on the fact that a sequence of QPs which contain at 
least one sample violating the KKT conditions will eventually converge to an 
optimal solution

n The original algorithm suggests adding and removing one example at every step, 
but this leads to very slow convergence

n Practical implementations use various heuristics to add or remove multiple 
examples at a time

n Decomposition methods still require an inner QP solver for the sub-problems

From [Müller et al., 2001]
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Optimization techniques for SVMs (4)
g Sequential Minimal Optimization (SMO)

n This algorithm represents the extreme case of a decomposition method: at every 
iteration SMO solves a QP problem of size TWO.  This has two advantages 

g A QP problem of size two can be solved analytically; no QP solver is required
g No extra matrix storage is required

n The main problem in SMO is how to choose a good pair of variables to optimize 
at every iteration.  This is accomplished with a number of heuristics

n The implementation of SMO is straightforward, and the pseudo-code is even 
available [Platt, 1999]

From [Müller et al., 2001]
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SVM regression
g SVM extensions for regression are also available

n SVM regression uses an ε-insensitive loss function: if the error between the 
prediction and the actual value is less than ε, the error is ignored

n Geometrically, this can be thought of as fitting a tube of width 2ε to the data
n The primal minimization problem is

From [Schölkopf et al., 1999]
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Kernel PCA
g SMVs can also be used to perform non-linear PCA

n In this case, the problem involves the computation of eigenvectors and 
eigenvalues of the SVM Kernel matrix K(xi,xj)=〈ϕ(xi),ϕ(xj)〉

n Because Kernel PCA is implicitly performed in a high-dimensional feature space, 
it can extract more features that those available in the original feature space (see 
example below)

g Similarly, SMV extensions to Fisher’s LDA are also available

First 8 non-linear principal components from a 2-dimensional dataset (from [Schölkopf et al., 1996])
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Discussion (1)
g Advantages of SVMs

n There are no problems with local minima, because the solution is a QP problem
n The optimal solution can be found in polynomial time
n There are few model parameters to select: the penalty term C, the kernel 

function and parameters (e.g., spread σ in the case of RBF kernels)
n The final results are stable and repeatable (e.g., no random initial weights)
n The SVM solution is sparse; it only involves the support vectors
n SVMs represent a general methodology for many PR problems: classification, 

regression, feature extraction, clustering, novelty detection, etc.
n SVMs rely on elegant and principled learning methods
n SVMs provide a method to control complexity independently of dimensionality
n SVMs have been shown (theoretically and empirically) to have excellent 

generalization capabilities

From [Bennett and Campbell, 2000]
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Discussion (2)
g Challenges

n Do SVMs always perform best? Can they beat a hand-crafted solution for a 
particular problem?

n Do SVMs eliminate the model selection problem? Can the kernel functions be 
selected in a principled manner? SVMs still require selection of a few 
parameters, typically through cross-validation

n How does one incorporate domain knowledge? Currently this is performed 
through the selection of the kernel and the introduction of “artificial” examples

n How interpretable are the results provided by an SVM?
n What is the optimal data representation for SVM? What is the effect of feature 

weighting? How does an SVM handle categorical or missing features?

From [Bennett and Campbell, 2000]


