
Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

1

LECTURE 23: Hidden Markov Models 
g Discrete Markov Processes
g Hidden Markov Models
g Illustrative examples
g Forward and Backward procedures
g The Viterbi algorithm
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Introduction
g The next two lectures in the course deal with the recognition of 

temporal or sequential patterns
n Sequential pattern recognition is a relevant problem in a number of disciplines

g Human-computer interaction: Speech recognition
g Bioengineering: ECG and EEG analysis
g Robotics: mobile robot navigation
g Bioinformatics: DNA base sequence alignment 

g A number of approaches can be used to perform time series analysis
n Tap delay lines can be used to form a feature vector that captures the behavior 

of the signal during a fixed time window
g This represents a form of “short-term” memory 
g This simple approach is, however, limited by the finite length of the delay line

n Feedback connections can be used to produce recurrent MLP models
g Global feedback allows the model to have “long-term” memory capabilities 
g Training and using recurrent networks is, however, rather involved and outside the 

scope of this class (refer to [Principe et al., 2000; Haykin, 1999])
n Instead, we will focus on Hidden Markov Models, a statistical approach that has 

become the “gold standard” for time series analysis 
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Discrete Markov Processes (1)
g Consider a system described by the following process

n At any given time, the system can be in one of N possible states S={S1,S2,…,SN}
n At regularly spaced times, the system undergoes a transition to a new state
n Transition between states can be described probabilistically

g In general, the probability that the system is in state qt=Sj will be a 
function of the complete history of the system

n To simplify the analysis, however, it is common to assume that the state of the 
system at time t depends only on the state at time t-1

n This is known as a first-order Markov Process
g Higher-order Markov Processes assume a dependence at larger lags (t-2, t-3…)

n We will also assume that the transition probability between any two states is 
independent of time

g Subject to 
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These lecture notes were produced 
following [Rabiner and Juang, 1993]
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Discrete Markov Processes (2)
g To illustrate these concepts consider a simple three-state Markov 

model of the weather
n Any given day, the weather can be described as being 

g State 1: Precipitation (rain or snow)
g State 2: Cloudy
g State 3: Sunny

n Transitions between states are described by the transition matrix

n This model can then be described 
by the following directed graph
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Discrete Markov Processes (3)
g Question

n Given that the weather on day t=1 is sunny, what is the probability that the 
weather for the next 7 days will be “sun, sun, rain, rain, sun, clouds, sun” ?

g Answer:

g Question
n What is the probability that the weather stays in the same known state Si for 

exactly T consecutive days?
g Answer:
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Discrete Markov Processes (4)
g The previous model assumes that each state can be uniquely 

associated with an observable event
n Once an observation is made, the state of the system is then trivially retrieved
n This model, however, is too restrictive to be of practical use for most realistic 

problems
g To make the model more flexible, we will assume that the outcomes or 

observations of the model are a probabilistic function of each state
n Each state can produce a number of outputs according to a unique probability 

distribution, and each distinct output can potentially be generated at any state
n These are known a Hidden Markov Models (HMM), because the state 

sequence is not directly observable, it can only be approximated from the 
sequence of observations produced by the system
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The coin-toss problem (1) 
g To illustrate the concept of an HMM consider the following scenario

n Assume that you are placed in a room with a curtain
n Behind the curtain there is a person performing a coin-toss experiment
n This person selects one of several coins, and tosses it: heads (H) or tails (T)
n The person tells you the outcome (H,T), but not which coin was used each time

g Your goal is to build a probabilistic model that best explains a
sequence of observations O={o1,o2,o3,o4,…}={H,T,T,H,,…}

n The coins represent the states; these are hidden because you do not know 
which coin was tossed each time

n The outcome of each toss represents an observation
n A “likely” sequence of coins may be inferred from the observations, but this state 

sequence will not be unique
g If the coins are hidden, how many states should the HMM have?
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The coin-toss problem (2) 
g One-coin model

n In this case, we assume that the person behind the 
curtain only has one coin

n As a result, the Markov model is observable since 
there is only one state

n In fact, we may describe the system with a 
deterministic model where the states are the actual 
observations (see figure)

n In either case, the model parameter P(H) may be 
found from the ratio of heads and tails

g Two-coin model
n A more sophisticated HMM would be to assume 

that there are two coins
g Each coin (state) has its own distribution of heads 

and tails, to model the fact that the coins may be 
biased

g Transitions between the two states model the random 
process used by the person behind the curtain to 
select one of the coins

n The model has four free parameters
From [Rabiner, 1989]
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The coin-toss problem (3) 
g Three-coin model

n In this case, the model would have three separate 
states

g This HMM can be interpreted in a similar fashion as 
the two-coin model

n The model has nine free parameters

g Which of these models is best?
n Since the states are not observable, the best we 

can do is select the model that best explains the 
data (e.g., Maximum Likelihood criterion)

n Whether the observation sequence is long and rich 
enough to warrant a more complex model is a 
different story, though

From [Rabiner, 1989]
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The urn-ball problem
g To further illustrate the concept of an HMM, consider this scenario

n You are placed in the same room with a curtain
n Behind the curtain there are N urns, each containing a large number of balls with 

M different colors
n The person behind the curtain selects an urn according to an internal random 

process, then randomly grabs a ball from the selected urn
n He shows you the ball, and places it back in the urn
n This process is repeated over and over

g Questions?
n How would you represent this experiment with an HMM?
n What are the states?
n Why are the states hidden?
n What are the observations?

Urn 1 Urn 2 Urn NUrn 1 Urn 2 Urn N
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Elements of a Hidden Markov Model
g A Hidden Markov Model is characterized by the following

n N, the number of states in the model S={S1,S2,…,SN}
n M, the number of discrete observation symbols V={v1,v2,…,vN}
n A={aij}, the state transition probability

n B={bj(k)}, the observation probability distribution

n π, the initial state distribution

g Therefore, an HMM is specified by two scalars (N and M) and three 
probability distributions (A, B and π)

n In what follows, we will represent an HMM by the compact notation

( )itj1tij SqSqPa === +

( ) ( )jtktj SqvoPkb ===

( )j1j SqPπ ==

( )πB,A,λ =



Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

12

HMM generation of observation sequences 
g Given a completely specified HMM λ={A,B,π}, how can an observation 

sequence O={o1,o2,o3,o4,…} be generated?
1. Choose an initial state S1 according to the initial state distribution π
2. Set t=1
3. Generate an observation ot according to the observation distribution bj(k)
4. Move to a new state St+1 according to the state-transition distribution at that 

state aij

5. Set t=t+1 and return to 3 until t≥T
n Example

n Generate an observation sequence with T=5 for a coin tossing experiment with 
three coins and the following probabilities
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The three basic HMM problems
g Problem 1: Probability Evaluation

n Given the observation sequence O={o1,o2,o3,o4,…} and a model λ={A,B,π}, how 
do we efficiently compute P(O|λ), the likelihood of the observation sequence 
given the model?

g The solution to this question is given by the Forward and Backward procedures

g Problem 2: Optimal State Sequence
n Given the observation sequence O={o1,o2,o3,o4,…} and a model λ, how do we 

choose a state sequence Q={q1,q2,q3,q4,…} that is optimal (i.e., best explains the 
data)?

g The solution to this question is provided by the Viterbi algorithm

g Problem 3: Parameter Estimation
n How do we adjust the parameters of the model λ={A,B,π} to maximize the 

likelihood P(O|λ)
g The solution to this question is given by the Baum-Welch re-estimation procedure
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Problem 1: Probability Evaluation (1)
g Our goal is to compute the likelihood of an observation sequence

O={o1,o2,o3,o4,…} given a particular HMM model defined by λ={A,B,π}
n Computation of this probability involves enumerating every possible state 

sequence and evaluating the corresponding probability

g For a particular state sequence Q={q1,q2,q3,q4,…}, the probability P(O|Q,λ) is

g The probability of the state sequence Q is 

g Merging these results, we obtain
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Problem 1: Probability Evaluation (2)
g Computational complexity

n With NT possible state sequences, this approach becomes unfeasible even for 
small problems

g For N=5 and T=100, the method would require the order of 1072 computations!
n Fortunately, the computation of P(O|λ) has the lattice (or trellis) structure shown 

below, which lends itself to a very efficient implementation known as the 
Forward procedure

From [Rabiner, 1989]



Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

16

Problem 1: The Forward procedure
g Consider the following variable αt(i) defined as

n which represents the probability of the observation sequence up to time t AND 
the state Si at time t, given the model λ

n Computation of this variable can be efficiently performed by induction, as 
illustrated in the figure

g Initialization

g Induction

g Termination

n As a result, computation of P(O|λ) can be 
reduced from 2T×NT down to N2×T operations 
(from 1072 to 3000 for N=5, T=100)
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Problem 1: The Backward procedure
g In analogy to the forward procedure, consider the backward variable 
βt(i) defined as

n βt(i) represents the probability of the partial observation sequence from t+1 to the 
end, given state Si at time t, and the model λ

n As before, computation of βt(i) can be done through induction
g Initialization

g Induction

n Similarly, this computation can be 
effectively performed in the order 
of N2×T operations
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Problem 2: Optimal State Sequence (1)
g Finding the optimal state sequence is a more difficult problem that the 

estimation of P(O|λ)
n The main difficulty has to do with defining an optimality measure, since several 

criteria are possible
g Finding the states qt that are individually more likely at each time t 
g Finding the single best state sequence path (i.e., maximize the posterior P(Q|O,λ)

n As we will see in a minute, the second criterion is the one most widely used
g However, we first optimize the first criterion as it allows us to define a variable that will 

be used later in the solution of Problem 3

g As in the Forward-Backward procedures, we define a variable γt(i)

n which represents the probability of being in state Si at time t, given the 
observation sequence O and the model λ

n Using the definition of conditional probability, we can write 
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Problem 2: Optimal State Sequence (2)
n Now, γt(i) is equal to the product of αt(i) and βt(i)

n The individually most likely state qt* at each time is then

n The problem with choosing the individually most likely states is that the overall 
state sequence may not be valid

g Consider a situation where the individually most likely states are qt=Si and qt+1=Sj, but 
the transition probability aij=0

n To avoid this and other problems, it is common to look for the single best state 
sequence, at the expense of having sub-optimal individual states

g This is accomplished with the Viterbi algorithm
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Problem 2: The Viterbi algorithm (1)
g To find the single best state sequence we define yet another variable 

n which represents the highest probability along a single path that accounts for the 
first t observations and ends at state Si

g By induction, δt+1(j) can be computed as

g To retrieve the state sequence, we also need to keep track of the state that maximizes 
δt(i) at each time t, which is done by constructing an array

n ψt+1(j) is the state at time t from which a transition to state Sj maximizes the probability δt+1(j) 
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Problem 2: The Viterbi algorithm (2)
g The Viterbi algorithm for finding the optimal state sequence becomes

g Initialization

g Recursion

g Termination

n And the optimal state sequence can be retrieved by backtracking

n Notice that the Viterbi algorithm is similar to the Forward procedure, except that 
it uses a maximization over previous states instead of a summation
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