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LECTURE 5: Quadratic classifiers
g Bayes classifiers for Normally distributed classes

n Case 1: Σi=σ2I
n Case 2: Σi=Σ (Σ diagonal)
n Case 3: Σi=Σ (Σ non-diagonal)
n Case 4: Σi=σi

2I
n Case 5: Σi≠Σj general case

g Numerical example
g Linear and quadratic classifiers: conclusions
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Bayes classifiers for Normally distributed classes
g On Lecture 4 we showed that the decision rule 

(MAP) that minimized the probability of error could 
be formulated in terms of a family of discriminant 
functions

n As we will show, for classes that are normally distributed, 
this family of discriminant functions can be reduced to very 
simple expressions
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g General expression for Gaussian densities
n The multivariate Normal density function was defined as

n Using Bayes rule, the MAP discriminant function becomes

n Eliminating constant terms

n We take natural logs since the logarithm is a monotonically increasing function

g This expression is called a quadratic discriminant function
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Case 1: Σi=σ2I
g This situation occurs when the features are statistically independent with the same 

variance for all classes*
n In this case, the quadratic discriminant function becomes

n Expanding this expression

n Eliminating the term xTx, which is constant for all classes

g Since the discriminant is linear, the decision boundaries 
gi(x)=gj(x), will be hyper-planes

n If we assume equal priors

g This is called a minimum-distance or nearest mean classifier
g The loci of constant probability for each class are hyper-spheres
g For unit variance (σ2=1), the distance becomes the Euclidean distance
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Case 1: Σi=σ2I, example
g To illustrate the previous result, we will 

compute the decision boundaries for a 3-
class, 2-dimensional problem with the 
following class mean vectors and 
covariance matrices and equal priors
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Case 2: Σi=Σ (Σ diagonal)
g The classes still have the same covariance matrix, but the features are allowed to have 

different variances
n In this case, the quadratic discriminant function becomes

n Eliminating the term x[k]2, which is constant for all classes

n This discriminant is linear, so the decision boundaries gi(x)=gj(x), will also be hyper-planes
n The loci of constant probability are hyper-ellipses aligned with the feature axes
n Note that the only difference with the previous classifier is that the distance of each axis is normalized by the 

variance of the axis
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g To illustrate the previous result, we will 
compute the decision boundaries for a 3-class, 
2-dimensional problem with the following class 
mean vectors and covariance matrices and 
equal priors
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Case 3: Σi=Σ (Σ non-diagonal)
g In this case, all the classes have the same covariance matrix, but this is no longer diagonal
g The quadratic discriminant becomes

g Eliminating the term log|∑|, which is constant for all classes

n The quadratic term is called the Mahalanobis distance, a very important distance in Statistical PR

g The Mahalanobis distance is a vector distance that 
uses a ∑-1 norm
n ∑-1 can be thought of as a stretching factor on the space
n Note that for an identity covariance matrix (∑=I), the 

Mahalanobis distance becomes the familiar Euclidean distance
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Case 3: Σi=Σ (Σ non-diagonal)
n Expansion of the quadratic term in the discriminant yields

n Removing the term xT∑-1x, which is constant for all classes

n Reorganizing terms we obtain

n This discriminant is linear, so the decision boundaries will also be hyper-planes
n The constant probability loci are hyper-ellipses aligned with the eigenvectors of ∑
n If we can assume equal priors

n The classifier becomes a minimum (Mahalanobis) distance classifier
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g To illustrate the previous result, we will 
compute the decision boundaries for a 3-
class, 2-dimensional problem with the 
following class mean vectors and 
covariance matrices and equal priors
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Case 3: Σi=Σ (Σ non-diagonal), example
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Case 4: Σi=σi
2I

g In this case, each class has a different covariance matrix, which is proportional to the 
identity matrix

n The quadratic discriminant becomes

g This expression cannot be reduced further so
n The decision boundaries are quadratic: hyper-ellipses 
n The loci of constant probability are hyper-spheres aligned with the feature axis
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g To illustrate the previous result, we will 
compute the decision boundaries for a 3-
class, 2-dimensional problem with the 
following class mean vectors and 
covariance matrices and equal priors
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Case 5: Σi≠Σj general case
g We already derived the expression for the general case at the beginning of this discussion

n Reorganizing terms in a quadratic form yields

n The loci of constant probability for each class are hyper-ellipses, oriented with the eigenvectors of Σi for that 
class

n The decision boundaries are again quadratic: hyper-ellipses or hyper-parabolloids
n Notice that the quadratic expression in the discriminant is proportional to the Mahalanobis distance using the 

class-conditional covariance Σi
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g To illustrate the previous result, we will 
compute the decision boundaries for a 3-
class, 2-dimensional problem with the 
following class mean vectors and 
covariance matrices and equal priors
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Numerical example
g Derive a linear discriminant function for the two-class 3D classification problem defined by 

the following Gaussian Likelihoods

g Solution

g Classify the test example xu=[0.1 0.7 0.8]T
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Conclusions
g From the previous examples we can extract the following conclusions

n The Bayes classifier for normally distributed classes (general case) is a quadratic classifier
n The Bayes classifier for normally distributed classes with equal covariance matrices is a 

linear classifier
n The minimum Mahalanobis distance classifier is Bayes-optimal for

g normally distributed classes and
g equal covariance matrices and
g equal priors

n The minimum Euclidean distance classifier is Bayes-optimal for
g normally distributed classes and
g equal covariance matrices proportional to the identity matrix and
g equal priors

n Both Euclidean and Mahalanobis distance classifiers are linear classifiers
g The goal of this discussion was to show that some of the most popular 

classifiers can be derived from decision-theoretic principles and some 
simplifying assumptions

n It is important to realize that using a specific (Euclidean or Mahalanobis) minimum distance 
classifier implicitly corresponds to certain statistical assumptions

n The question whether these assumptions hold or don’t can rarely be answered in practice; in 
most cases we are limited to posing and answering the question “does this classifier solve 
our problem or not?”




