LECTURE 9: Principal Components Analysis

= The curse of dimensionality

= Dimensionality reduction

= Feature selection vs. feature extraction

= Signal representation vs. signal classification
= Principal Components Analysis
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The curse of dimensionality (1)

s The curse of dimensionality
e A term coined by Bellman in 1961
o Refers to the problems associated with multivariate data analysis as the
dimensionality increases
o We will illustrate these problems with a simple example

m Consider a 3-class pattern recognition problem

e A simple approach would be to
m Divide the feature space into uniform bins
m Compute the ratio of examples for each class at each bin and,
m For a new example, find its bin and choose the predominant class in that bin

e In our toy problem we decide to start with one single feature and divide the real

line into 3 segments

X4

o After doing this, we notice that there exists too much overlap among the classes,
so we decide to incorporate a second feature to try and improve separability
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The curse of dimensionality (2)

s We decide to preserve the granularity of each axis, which raises the number of
bins from 3 (in 1D) to 32=9 (in 2D)
o At this point we need to make a decision: do we maintain the density of examples per bin or
do we keep the number of examples had for the one-dimensional case?
»  Choosing to maintain the density increases the number of examples from 9 (in 1D) to 27 (in 2D)
»  Choosing to maintain the number of examples results in a 2D scatter plot that is very sparse
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= Moving to three features makes the problem worse:
e The number of bins grows to 33=27 ® © /{
o For the same density of examples the number of needed %,
examples becomes 81 .
o For the same number of examples, well, the 3D scatter
plot is almost empty . A
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The curse of dimensionality (3)

= Obviously, our approach to divide the sample space into equally
spaced bins was quite inefficient

o There are other approaches that are much less susceptible to the curse of
dimensionality, but the problem still exists

= How do we beat the curse of dimensionality?
o By incorporating prior knowledge
o By providing increasing smoothness of the target function
o By reducing the dimensionality
= In practice, the curse of dimensionality means that, for a given sample

size, there is a maximum number of features above which the
performance of our classifier will degrade rather than improve
e In most cases, the additional information that is lost by discarding some features

is (more than) compensated by a more accurate mapping in the lower-
dimensional space

[
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The curse of dimensionality (4)

= There are many implications of the curse of dimensionality

o Exponential growth in the number of examples required to maintain a given
sampling density
m For a density of N examples/bin and D dimensions, the total number of examples is NP
o Exponential growth in the complexity of the target function (a density estimate)
with increasing dimensionality

m “A function defined in high-dimensional space is likely to be much more complex than a
function defined in a lower-dimensional space, and those complications are harder to
discern” —Friedman

e This means that, in order to learn it well, a more complex target function requires
denser sample points!

e What to do if it ain’'t Gaussian?

m For one dimension a large number of density functions can be found in textbooks, but
for high-dimensions only the multivariate Gaussian density is available. Moreover, for
larger values of D the Gaussian density can only be handled in a simplified form!

o« Humans have an extraordinary capacity to discern patterns and clusters in 1, 2
and 3-dimensions, but these capabilities degrade drastically for 4 or higher
dimensions
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Dimensionality reduction (1)

= Two approaches are available to perform dimensionality reduction
o Feature extraction: creating a subset of new features by combinations of the existing

features
o Feature selection: choosing a subset of all the features (the ones more informative)

X, - A X, - X,
i Y
Xz Xz X2
feature selection | iz : feature extraction y2 —f :
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= The problem of feature extraction can be stated as

« Given a feature space x,eRN find a mapping y=f(x):RN—>RM with M<N such that the
transformed feature vector y,eRM preserves (most of) the information or structure in RN.

e An optimal mapping y=f(x) will be one that results in no increase in the minimum

probability of error
This is, a Bayes decision rule applied to the initial space RNand to the reduced space RM yield the

same classification rate
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Dimensionality reduction (2)

= In general, the optimal mapping y=f(x) will be a non-linear function
e However, there is no systematic way to generate non-linear transforms
m  The selection of a particular subset of transforms is problem dependent
e For this reason, feature extraction is commonly limited to linear transforms: y=Wx
m Thisis, yis a linear projection of x
»  NOTE: When the mapping is a non-linear function, the reduced space is called a manifold

X, - L : X, |
Y; Wi Wy oo Win
X, X3
: linear feature extraction Y2 _ Woi  Wop o Woan :
Yv] LWwr Wm2 Wi
| Xy | | Xy

= We will focus on linear feature extraction for now, and revisit non-linear
techniques when we cover multi-layer perceptrons
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Signal representation versus classification

m The selection of the feature extraction mapping y=f(x) is guided by an
objective function that we seek to maximize (or minimize)

m Depending on the criteria used by the objective function, feature
extraction techniques are grouped into two categories:

o Signal representation: The goal of the feature extraction mapping is to represent
the samples accurately in a lower-dimensional space

o Classification: The goal of the feature extraction mapping is to enhance the
class-discriminatory information in the lower-dimensional space

m Within the realm of linear feature N

extraction, two techniques are E 2,
commonly used % 2,22
& 141, 22

e Principal Components Analysis (PCA)
m Uuses a signal representation criterion
e Linear Discriminant Analysis (LDA)
m uses a signal classification criterion

v

Feature 1
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Principal Components Analysis, PCA (1)

= The objective of PCA is to perform dimensionality reduction while preserving as
much of the randomness (variance) in the high-dimensional space as possible

o Let x be an N-dimensional random vector, represented as a linear combination of
orthonormal basis vectors [¢,| @,| ... | ¢\] as

N 0 i#]
X:ZYi(Pi where (Pilcpj:{,l i— |
i=1 =

e Suppose we choose to represent x with only M (M<N) of the basis vectors. We can do this
by replacing the components [y, ., ..., ¥\]T With some pre-selected constants b,

X(M) = Zycp.+ Zbcp.

i=M+1
e The representation error is then

Ax(M) = x = x(M) = ZYi(Pi - [Z Y@ — Zbi(pij = Z(Yi - bi)(pi

i=M+1 i=M+1

o We can measure this representation error by the mean-squared magnitude of Ax
» Our goal is to find the basis vectors ¢, and constants b, that minimize this mean-square error

N

EZ(M)thAx(M)\Z]zE{ZN: > (y,~b, Ny, = b, Jor cp,} ZNlE[(yi —bi)z]

i=M+1  j=M+1 i=M+1
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Principal Components Analysis, PCA (2)

» As we have done earlier in the course, the optimal values of b, can be found by computing
the partial derivative of the objective function and equating it to zero

4 ( '_bi)z]:_z(E[yi]_bi):O = b :E[Yi]

—E
ob, Yi

m Therefore, we will replace the discarded dimensions y;'s by their expected value (an intuitive solution)
o The mean-square error can then be written as

£2(M) = ZE[ ~Ely1F]= 2l ~Elxo ] (o, ~Elxo,)

= > oTE[x-EX)x-EBx) o = Y0750

= where X, is the covariance matrix of x

o We seek to find the solution that minimizes this expression subject to the orthonormality
constraint, which we incorporate into the expression using a set of Lagrange multipliers A,

N N
= Z(Pisz(Pi + Z)\i(1_(PiT(Pi )

i=M-+1 i=M-+1

o Computing the partial derivative with respect to the basis vectors

a _2 T s T :|
M) = 5.0+ SA1-070) | =250, ~Ap )=0 = 0, =A®,
2ot M=o L%p. @+ 2A(1-919) | =22, ~A@ =0 = £,0, =Ao
if Ais
NOTE: 4 (xTAx)=(A+AT)x = 2Ax

dx

= S0 @, and A; are the eigenvectors and eigenvalues of the covariance matrix X,
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Principal Components Analysis, PCA (3)

e \We can then express the sum-square error as

N N N
M) =D 02,0 = D o/Ap, = D\

i=M-+1 i=M+1 i=M-+1

 In order to minimize this measure, A, will have to be smallest eigenvalues

m  Therefore, to represent x with minimum sum-square error, we will choose the eigenvectors o,
corresponding to the largest eigenvalues A;.

PCA dimensionality reduction

The optimal* approximation of a random vector xeRN by a linear combination of M
(M<N) independent vectors is obtained by projecting the random vector x onto the
eigenvectors ¢, corresponding to the largest eigenvalues A; of the covariance matrix X,

*optimality is defined as the minimum of the sum-square magnitude of the approximation error
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Principal Components Analysis, PCA (4)

m NOTES
o Since PCA uses the eigenvectors of the covariance matrix Z,, it is able to find
the independent axes of the data under the unimodal Gaussian assumption
m For non-Gaussian or multi-modal Gaussian data, PCA simply de-correlates the axes
o The main limitation of PCA is that it does not consider class separability since it
does not take into account the class label of the feature vector
m PCA simply performs a coordinate rotation that aligns the transformed axes with the
directions of maximum variance
m There is no guarantee that the directions of maximum variance will contain good
features for discrimination
m Historical remarks
e Principal Components Analysis is the oldest technique in multivariate analysis
e PCA is also known as the Karhunen-Loéve transform (communication theory)

o PCA was first introduced by Pearson in 1901, and it experienced several
modifications until it was generalized by Loéve in 1963
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PCA example (1)

= In this example we have a three-dimensional
Gaussian distribution with the following

parameters
25 -1 7
u=[052]"and z=| -1 4 -4
7 -4 10

m The three pairs of principal component
projections are shown below

e Notice that the first projection has the largest
variance, followed by the second projection

e Also notice that the PCA projections de-correlates
the axis (we knew this since Lecture 3, though)

y2
o

y3
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PCA example (2)

m This example shows a projection of a three-dimensional data set into two dimensions
 Initially, except for the elongation of the cloud, there is no apparent structure in the set of points
o Choosing an appropriate rotation allows us to unveil the underlying structure. (You can think of this rotation

as "walking around" the three-dimensional set, looking for the best viewpoint)
s PCA can help find such underlying structure. It selects a rotation such that most of the
variability within the data set is represented in the first few dimensions of the rotated data

e In our three-dimensional case, this may seem of little use
o However, when the data is highly multidimensional (10’s of dimensions), this analysis is quite powerful
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PCA example (3)

10
s Compute the principal components for the
following two-dimensional dataset g o
o X=(x4,%,)={(1,2),(3,3),(3,5),(5,4),(5,6),(6,5),(8,7),(9,8)} o
m Let’s first plot the data to get an idea of which solution v, '\ L |
we should expect ® i v,
= SOLUTION (by hand) X2 ? ?
e The (biased) covariance estimate of the data is: 4 T
[6.25 4.25 ?
*"|425 35 2
e The eigenvalues are the zeros of the
characteristic equation %% 2 4 6 8
6.25-A 4.25 X,

SV=AN=[ -N=0= —0=>A,=9.34; A, =0.41;

425 3.5-A
e The eigenvectors are the solutions of the system

(6.25 4.25|v,, | [Av,, | Ve | 0.81
1425 35 v, | [AVy v, | [0.59

_6.25 4.25__V21_ _A2V21 V21 -0.59
j— =
425 35 |V, | |Avy| Ve | 0.81

»  HINT: To solve each system manually, first assume that one of the variables is equal to one (i.e.
v;;=1), then find the other one and finally normalize the vector to make it unit-length

1
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