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Abstract

The problem of active learning is approached
in this paper by minimizing directly an esti-
mate of the expected test error. The main
difficulty in this “optimal” strategy is that
output probabilities need to be estimated ac-
curately. We suggest here different meth-
ods for estimating those efficiently. In this
context, the Parzen window classifier is con-
sidered because it is both simple and proba-
bilistic. The analysis of experimental results
highlights that regularization is a key ingre-
dient for this strategy.

1 Introduction

In the standard supervised framework, the goal is to
estimate a function based on a given training set. Ac-

tive learning is an extension of this framework where
the learning machine does not only receive the train-
ing points passively, but can also choose the points to
be included in the training set. An active learner may
start with a small training set and at each iteration
carefully selects one or several points for which it asks
the labels to a human expert.

The main motivation for active learning is that it usu-
ally requires time and/or money for the human expert
to label an example and those resources should not be
wasted to label non-informative samples, but be spent
on interesting ones.

Optimal Experimental Design (Fedorov, 1972) is
closely related to active learning as it attempts to find
a set of points such that the variance of the estimate
is minimized. In contrast to this “batch” formulation,
the term active learning often refers to an incremental
strategy (Roy & McCallum, 2001; Sugiyama & Ogawa,
2000; Cohn et al., 1995; Sung & Niyogi, 1995; MacKay,
1992b).

We will concentrate on pool-based active learning (also
called selective sampling): the learner can only query
the labels of some points which belong to a large unla-
beled set. Note that in this standard definition of pool-
based active learning, the search is greedy: at each
iteration, the goal is to find one point which will re-
sult in the smallest expected generalization error when
added to the training set.

There has been various heuristic proposed for active
learning, such as uncertainty sampling (Lewis & Gale,
1994) or version space minimization (Freund et al.,
1997; Tong & Koller, 2001). However, ideally, the aim
is to choose the point such that the expected test er-
ror is minimized (Roy & McCallum, 2001). Such an
approach has also been suggested in (Schohn & Cohn,
2000) in the context of Support Vector Machines learn-
ing, but the authors argued that it would be compu-
tationally intractable.

However this “optimal” approach has been imple-
mented for SVMs and Parzen window classifier in
(Chapelle, 2003, chapter 8), but it performed terribly.
In this paper, we investigate why the naive implemen-
tation of this active learning strategy does not works
and suggest two remedies based on semi-supervised
learning and regularization.

The paper is organized as follows: section 2 presents
the strategy which consists in minimizing the expected
test error and section 3 shows how to apply it to the
Parzen window classifier. One of the reason for consid-
ering this simple classifier is that a more sophisticated
classifier might introduce a bias in our analysis of ac-
tive learning. In section 4, we propose a first improve-
ment that takes into account the unlabeled points for
the class conditional density estimates, and finally, sec-
tion 5 introduces approaches based on regularization.

Note that for convenience, experimental results will be
presented all along the paper in order to assess imme-
diately the performance of a new method.



2 Optimal active learning

The optimal active learning strategy we present here
has been described for instance in (Schohn & Cohn,
2000; Roy & McCallum, 2001). It consists in querying
the label of the point, that once incorporated in the
training set, will yield the lowest expected test error.

Let D = (xi, yi)1≤i≤n be the training samples. Sup-
pose that the generalization error of the function
learned on this training set can be estimated. Let us
denote by T (D) such an estimate (which, of course,
depends also on the learning algorithm). The optimal
active learning strategy would be the following,

1. Train the classifier using the current training set
of n points and get the hypothesis f̂n.

2. Fix a point x in the unlabeled set

(a) Fix a label y and add the point (x, y) in the
training set

(b) Retrain the classifier with the additional
point.

(c) Estimate the generalization error T (D ∪
(x, y)).

(d) Estimate the posterior probability P̂ (y|x, f̂n)

of the new point under the hypothesis f̂n.

(e) Compute the expected generalization error

T̄x =
∑

y P̂ (y|x, f̂n)T (D ∪ (x, y)).

3. Choose for labeling the point x which has the low-
est expected generalization error T̄x and add it to
training set.

There are several problems with this strategy. Beside
computational difficulties (at a first sight, a lot of re-
trainings are necessary), the fundamental problem is

how to compute T and P̂ (y|x, f̂n). Note that in the
rest of the paper, we will refer indifferently to P̂ (y|x)
as posterior or output probability.

For classification, the posterior probability can be used
directly (Roy & McCallum, 2001; Zhu et al., 2003) to
compute T ,

T =
1

nu

N
∑

i=n+1

(

1 − max
y∈{−1,1}

P (y|xi, f̂n)

)

, (1)

where xn+1, . . . ,xN is the set of unlabeled data and
P (y|x, f̂) is an estimate of the posterior probability

for the point x given the function f̂n learned on the
training set.

Eq. (1) can be seen as the empirical counter part of

1

2

∫∫

|y − arg max P (y|xi, f̂n)| dP (y|x, f̂n)dP (x),

which would be the the generalization error if
dP (y|x, f̂n) were the true conditional distribution of
y given x.

3 Parzen window classifier

The goal is to apply this strategy with the Parzen win-
dow classifier. In this case, we have

P̂ (x|y) =
1

|{i| yi = y}|

∑

i, yi=y

K(x,xi) (2)

and by Bayes rule

P̂ (y|x) =

∑

i, yi=y K(x,xi)
∑n

i=1 K(x,xi)
, (3)

where K is typically a Gaussian kernel of the form (up
to an irrelevant multiplicative constant),

K(x,x′) = exp(−||x − x′||2/2σ2).

It is thus possible to compute the estimated general-
ization error using (1) and perform the optimal ac-
tive learning strategy described above. The reason for
considering this simple classifier with active learning
is that equation (3) gives directly an estimate of the
posterior probability and that it does need a costly
retraining when a point is added to the training set.

Experiments

Two datasets have been used for the experimental re-
sults presented in this paper: an artificial one and a
real world one, and the details of the experimental
setup are as indicated below.
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Figure 2: Toy problem: checker board dataset

Toy problem This is a modified version of the toy
problem used in (Zhu et al., 2003). As plotted in
figure 2, it consists of a checker board, where in
each cluster, the points are drawn according to a
uniform distribution and the number of point is
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Figure 1: Test errors achieved by 3 active learning strategies on the toy problem (left) and the USPS database
(right)

also drawn randomly between 1 and 40. 2 labeled
points (one negative and one positive) are selected
randomly and 20 samples are chosen incremen-
tally to be labeled. Test errors are computed on
the non-queried points and averaged over 100 tri-
als. As in (Zhu et al., 2003), the variance of kernel
estimate was fixed at σ2 = 2.

Digit classification The real world database is the
USPS one consisting of 7291 training samples and
2007 test ones. The training samples have been
divided on 23 subsets of 317 examples each. The
task is to classify digits 0 to 4 against 5 to 9. As
for the toy problem, 2 random labeled points are
selected and 30 samples among the 315 remain-
ing are queried for their labels. The width of the
Parzen classifier was set to σ2 = 256·(0.1)2, which
gave the best performance in a standard super-
vised framework. Note that this is actually a very
small value and the resulting classifier behaves al-
most as 1-nearest neighbor classifier.

Experimental results are provided in figure 1, where
the method described in this section (entitled error

reduction) is compared to random queries and to the
standard max uncertainty strategy which selects the
point xi for which the learner is the most uncertain,
i.e. whose output probability (3) is the nearest from
1/2.

The results for the error reduction strategy are really
disappointing: it is not much better than random on
USPS and is terrible on the toy problem.

The conjecture of why it failed is because the strat-
egy presented in the previous section depends heav-
ily on reliable estimates of the posterior probabilities
(through the step (e) and equation (1)). For this rea-
son, we will try in the rest of the paper to have more

reliable estimates, but note that in most cases, the
decision function given by arg max P̂ (y|x) will remain
unchanged (except in section 4.2).

A first observation which shows that the density es-
timates are not very reliable is the following: for a
given point x, the value of P (x) can either be esti-

mated as 1/N
∑N

i=1 K(x,xi) [Parzen window on all

the points] or as
∑

y P̂ (x|y)P̂ (y) = 1/n
∑n

i=1 K(x,xi)
[Parzen window on the labeled points]; and those two
values can be quite different.

4 Class conditional density estimate

using unlabeled points

As mentioned above, the standard Parzen window es-
timator of the class conditional densities does not take
into account the unlabeled points. In other words,

P̂ (xi, yi = 1) + P̂ (xi, yi = −1) 6= P̃ (xi), (4)

where P̃ is the Parzen window estimator on the labeled
and unlabeled points.

We will discuss two ways to solve the “contradiction”
revealed by equation (4).

4.1 Constrained Parzen window

The first idea is not to estimate both class conditional
densities independently, but in such a way that equal-
ity (4) holds. In (Vapnik, 1998), it was shown that the
Parzen window estimator can be seen as a solution
of an optimization problem consisting of a smoothness
term and a term fitting the data (the L2 error between
the empirical distribution function and the estimated
one).



Based on this observation, it was suggested in
(Chapelle, 2003, Chapter 7) in the context of semi-
supervised learning to explicitly add equality (4) as a
constraint in the optimization problem and this con-
strained Parzen window estimate turns out to be

P̂CTR(xi, yi = 1) = P̂ (xi, yi = 1) +
1

2
∆P (xi), (5)

where ∆P is the difference between the left and right
hand side of (4), i.e. ∆P (x) = P̃ (x)−

∑

y P̂ (xi, yi = y)
With this new estimate of class conditional density, (4)
becomes now an equality.

However, this modification raises another problem:
when ∆P < 0, it might happen that the output prob-
ability P̂CTR(y|x) is no longer between 0 and 1. In
this case, we decided to threshold the output to 0 or
1.

A middle way solution is to add only a fraction of ∆P ,
i.e. to replace equation (5) by,

P̂CTR(xi, yi = 1) = P̂ (xi, yi = 1) +
γ

2
∆P (xi), (6)

where γ is chosen between 0 and 1.
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Figure 3: Test error as a function of γ in (6) after 30
points were added in the labeled set of USPS.

As plotted in figure 3, there can be a very significant
improvement when γ is chosen appropriately. How-
ever, it is not clear how it should be chosen. Also, the
fact of having to threshold the output probabilities be-
cause they are not always between 0 and 1 is not very
satisfactory. Future research includes the derivation
an improved constrained Parzen window estimate.

4.2 Expansion on the unlabeled points

A second idea is to use all the points in the expansion
of the class distribution (2). First, suppose that the
labels of the unlabeled points were known. Then, the
class Parzen window estimate would give

P̂ (x, y|yn+1,...,N ) =
1

N

N
∑

i=1, yi=y

K(x,xi).

Introducing the variables λi = P (yi = 1|xi) and inte-
grating over the choice of the unknown labels of the
unlabeled points, we then have

P̂ (x, y = 1) =
1

N

N
∑

i=1

λiK(x,xi). (7)

The λi for the unlabeled points are of course unknown,
but we will see how to estimate them. The λi for the
labeled points are set in this section to 0 or 1, according
to the labels yi, i.e. λi = (yi + 1)/2.

Now note that by conditioning on x equation (7) gives
the conditional probability output of a point under the
Parzen window model,

P̂ (yp = 1|xp) =

∑N

i=1 λiK(xi,xp)
∑N

i=1 K(xi,xp)
≡ λ̃p,

that we can rewrite in matrix notation as

λ̃ ≡ D−1Kλ, (8)

where D is a diagonal matrix with Dii =
∑

j Kij and
Kij = K(xi,xj).

A way to estimate λ is to enforce that λi = λ̃i for
each unlabeled point xi. By doing so, the model is
coherent. Splitting equation (8) between labeled and
unlabeled blocks, this constraint writes

λu = (D−1K)u,uλu + (D−1K)u,lλl,

where the subscripts l and u stand respectively for
the labeled and unlabeled indices. And since λl =
(Y + 1)/2, we get

λu = (I − (D−1K)u,u)−1(D−1K)u,l(Y + 1)/2

= [(D − K)u,u]−1Ku,l(Y + 1)/2,

which is exactly how the output probabilities are esti-
mated in (Zhu et al., 2003).

This way of estimating of the output probabilities
yield directly an active learning algorithm once it is
combined with the framework presented in section 2.
This algorithm was suggested in (Zhu et al., 2003)
and the experimental results therein are quite impres-
sive. An explanation for these good performances is
that there is a semi-supervised learning step in this al-
gorithm. Indeed, consider an unlabeled point xi for
which P (xi, yi = 1) ≈ P (xi, yi = −1) ≈ 0. Then,
the constrained Parzen window estimator will correct
the class conditional density estimates by adding the
same value ∆P (xi)/2 to both of them, whereas the
semi-supervised one will choose a value λi between 0
and 1 according to what is the most “likely” label of
xi.

Figure 4 confirms that significant improvements are
indeed obtained using this method (referred in the plot
as semi-supervised).
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Figure 4: Results on the toy database for the method
described in this section (semi-supervised), which was
first introduced in (Zhu et al., 2003)

4.3 Soft margin formulation

We now consider the λi for the labeled points as free
variables.

For a fixed value of the vector λl, the posterior prob-
abilities on the unlabeled points are given, as in the
previous section by

λu = (I − (D−1K)u,u)−1(D−1K)u,lλl. (9)

We suggest to find λl as the solution of an optimization
problem consisting of a likelihood term and a “coher-
ence” term.

Firstly, conditioning on the inputs and on the output
probabilities λl, the log-likelihood of the labels is

log P (y1..n|x1..n,λu) =
n

∑

i=1

1 + yi

2
log λi +

1 − yi

2
log(1 − λi) ≡ L(λl),

which should be maximized.

Secondly, note that both λ and λ̃ are estimate of the
posterior probabilities and ideally those two vectors
should be identical. By definition of the choice of λu

in (9), we have already λu = λ̃u. Even though it is
impossible to get λl = λ̃l, one can try to minimize
the difference between λl and λ̃l. Their discrepancy
is somehow a measure of how incoherent the model
is. Since both vectors are actually estimates about the
conditional distribution, P (y|x), it seems natural to
use the Kullback-Leibler divergence, which is in this
case, under an independence assumption,

KL(λl, λ̃l) =

n
∑

i=1

λi log

(

λi

λ̃i

)

+(1−λi) log

(

1 − λi

1 − λ̃i

)

.

If λl and λ̃l are close enough, a first order expansion

gives

KL(λl, λ̃l) ≈

n
∑

i=1

(λi − λ̃i)
2

λi(1 − λi)
= W (λl,λl − λ̃l),

where W (x,y) ≡
∑ y2

i

xi(1−xi)
.

Let us see how to compute λi − λ̃i. For this purpose,
we introduce S = I − D−1K, and using block matrix
identities as well as (9), we get

λi − λ̃i =

[

(I − D−1K)

(

λl

λu

)]

i

= [(Sll − SluS−1
uu Sul)λl]i

= [(S−1)−1
ll λl]i

Putting everything together, we suggest to find the
vector λl which minimizes

−γL(λl) + W (λl, (S
−1)−1

ll λl), (10)

and to get λu from λl through equation (9).

Note that the minimization of (10) is a convex opti-
mization problem as shown in appendix.

As a side remark, one might be worried by the compu-
tational complexity of this method as well as some oth-
ers presented in this paper. Indeed, at each iteration,
and for each candidate, the λi need to be re-estimated
(step (b) in section 2), which would be prohibitive if
those updates were done naively. However, using rank-
one updates and block matrix identities, one can com-
pute efficiently the new gradients and Hessian of the
objective function (10) when a labeled point is added.
From there, a Newton’s step is simulated in order to
update λl.

Experimental results using this soft margin formula-
tion are presented in table 1 and on both databases it
did not help. This might be because those datasets are
not really noisy (for the postal dataset, a hard margin
SVM performs better than a soft margin one). How-
ever, in future experiments, we will experiment this
algorithm on noisy datasets.

1 10 1000 Hard margin
Checker board 20.8 20.9 21.5 21.5
USPS 16.5 15.6 15.5 15.2

Table 1: Test error as a function of the soft margin
parameter γ after 10 queried points for the checker
board dataset and 30 for USPS

5 Uncertain posterior probabilities

Consider the example presented in figure 5, which is
quite similar to the one in (Zhu et al., 2003) and pick



one point in the cluster on right hand side. Then the
probability for this point to belong to either class is
very small because it is far from both labeled points.
However, since the point is nearer from the circle, the
posterior probability estimated by Parzen window of
its label being a circle is almost 1.

Figure 5: The unlabeled points on the right hand side
will not be queried because they are (maybe wrongly)
believed to be circles.

Intuitively, this is not very satisfactory: the active
learning algorithm will not select a point from this
cluster. This is one of the problem occurring in the
approach presented above as well as in (Roy & McCal-
lum, 2001; Zhu et al., 2003) is that it uses estimates of
the posterior probabilities but ignores their variance
or how reliable those estimates are.

5.1 Constrained Parzen window

The constrained Parzen window solves this problem as
in regions of the space where there are unlabeled data
which are far from the labeled ones, it increases the
joint density estimates and the amount by which it is
increased is the same for both classes. Thus in this
case, the posterior probability is near from 1/2.

5.2 Regularizing

If there is an uncertainty about the posterior probabil-
ity of a point, this one should be pushed towards 1/2.
There are several possibilities for achieving this goal.
First, let us introduce the log ratio of the posterior
probabilities,

αi = log
P (yi = 1|xi)

P (yi = −1|xi)
. (11)

Quadric penalty The first idea is to introduce a
quadratic regularization term on α in the objec-
tive function we want to minimize. In this way,
the αi which are not constrained by some other
terms will have small values and thus, the corre-
sponding λi nearer from 1/2.

Using the variance Suppose that there is a Gaus-
sian error on the value of α and that we know
its variance δα. Then MacKay (MacKay, 1992a)
suggests to replace αi by

αi
√

1 + π(δα)2i /8
.

By doing so, if (δα)i is small, the posterior prob-
ability is almost unchanged. However, if it is
large, then the new αi is small, which means that
P (yi = 1|xi) is closer to 1/2. This is exactly the
desired effect.

The variance can be estimated (up to a multi-
plicative constant) thanks to the Hessian H of the
objective function at the optimal value, (δα)2i ∝

H−1
ii .

Regularized Parzen window When observing n+

positive examples and n− negative ones, the stan-
dard way to estimate the ratio of the positive class
is to use a Beta prior on the class probability,

which leads to the following estimate, n++1
n++n−+2 .

Based on this observation, one can estimate the
posterior probability using the Parzen window es-
timate as,

P̂ (Y = 1|X = xp) =

∑

δyi=1K(xi,xp) + ε
∑

K(xi,xp) + 2ε
,

(12)
where ε is a small constant to be chosen.

Those three methods require a constant to be chosen,
which represents the amount of regularization. We
decided to the consider the last one because ε has a
more direct interpretation in terms of prior probability.
Also, it might be interesting to choose ε as to minimize
the KL divergence between the density estimated on
the unlabeled points,

∑N

i=1 K(xi,x) and the “regular-
ized” density on the labeled points,

∑n

i=1 K(xi,x)+2ε.

The results of the experiments presented in figure 6
show that this regularization is extremely useful, espe-
cially for the error reduction strategy which performed
poorly without regularization (see section 3). The
semi-supervised method described in section 4.2 be-
haves also much better with regularization. Note the
local maximum in the right plot of figure 6. This is
quite surprising and requires further investigation.

6 Conclusion

This paper provided an analysis of the influence of
reliable posterior probabilities estimates on the per-
formance of an active learner. In particular, it showed
that regularization seems to be a very useful ingredient
in those estimations.

Figure 7 shows that using this regularization, the per-
formances achieved are not far from the best achiev-
able ones in the case of the toy problem, and also for
the USPS database after 30 queries.

The conclusions drawn from the analysis in this paper
should be useful to adapt this active learning strat-
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Figure 6: Experiments on the checker board dataset (left) and on USPS (right). The test error is plotted as a
function of ε used to estimated the regularized posterior probability (12).
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Figure 7: Performances achieved on the toy problem (left) and USPS (right). Both error reduction and semi-

supervised use a regularization parameter ε = 10−3 (see also figure 6). The Oracle strategy is the best one can
achieve: it estimates the test error (1) using the true labels of the unlabeled set.

egy to more sophisticated classifiers such as Support
Vector Machines or Gaussian Processes.

Appendix

The functional (10) is a convex function of λl.

Indeed, computing the second derivatives of L, it is
easy to check that L is a concave function. Concerning

W , all the terms are of the form
(Tλ)2

i

λi(1−λi)
, which can

be shown to be convex thanks to the following lemma

Lemma 1 If f is a convex non-negative function on

R
n and g is a concave positive function on R

n, then

f2/g is convex.

Proof: The Hessian of f2/g is

∇2 f2

g
=

2f

g
∇2f −

f2

g2
∇2g

+
2

g3
(g∇f − f∇g)(g∇f − f∇g)⊤,

which is a sum of positive definite matrices �.

We then apply the previous lemma with the convex
function f(λ) = |

∑

j Sijλj | (it satisfies Jensen’s in-
equality) and the concave function g(λ) = λi(1 − λi).

Instead of optimizing on λ ∈ [0, 1]n, in practice we
optimize on αi = log λi/(1 − λi) (see also (11). This
leads to an unconstrained optimization problem which
is easier to solve numerically.

Note that by doing this change of variable, the objec-
tive function is not convex anymore. However, since



this is a monotonic transformation, it is easy to show
that the function is quasiconvex (Boyd & Vanden-
berghe, 2003), and can thus be minimized efficiently
(there is no local minima).
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