10 Nonparametric Density Estimation

Parametric modeling of PDFs assumes that the forms of the PDFs are known. Such knowledge typically comes from either a scientific analysis of the physical process or from empirical analysis of the observed data, e.g., a popular parametric PDF model for the noise in the k-space MRI data is the independent and identically distributed (i.i.d.) additive Gaussian. Then what remains, in statistical inference, is to estimate the parameters associated with the PDF. In many practical situations, however, simple parametric models do not accurately explain the physical processes. One reason for this is that virtually all the parametric PDF models are unimodal, but many practical situations exhibit multimodal PDFs. Attempts at modeling high-dimensional multimodal PDFs as products of 171 INCLUDEPICTURE "http://www.cs.utah.edu/~suyash/Dissertation_html/img44.gif" \* MERGEFORMATINET 


D parametric PDFs do not succeed well in practice either. Therefore, one needs to employ the more sophisticated nonparametric density-estimation techniques that do not make any assumptions about the forms of the PDFs--except the mild assumption that PDFs are smooth functions [,156]--and can represent arbitrary PDFs given sufficient data. One such technique is the Parzen-window density estimation.

10.1 Parzen-Window Density Estimation

Emanuel Parzen [125] invented this approach in the early 1960s, providing a rigorous mathematical analysis. Since then, it has found utility in a wide spectrum of areas and applications such as pattern recognition [48], classification [48], image registration [170], tracking, image segmentation [32], and image restoration [9].

Parzen-window density estimation is essentially a data-interpolation technique [48,171,156]. Given an instance of the random sample, [image: image1.png]


, Parzen-windowing estimates the PDF [image: image2.png]P(X)



 from which the sample was derived. It essentially superposes kernel functions placed at each observation or datum. In this way, each observation [image: image3.png]


 contributes to the PDF estimate. There is another way to look at the estimation process, and this is where it derives its name from. Suppose that we want to estimate the value of the PDF [image: image4.png]P(X)



 at point [image: image5.png]


. Then, we can place a window function at [image: image6.png]


and determine how many observations [image: image7.png]


 fall within our window or, rather, what is the contribution of each observation [image: image8.png]


to this window. The PDF value [image: image9.png]F(z)



 is then the sum total of the contributions from the observations to this window. The Parzen-window estimate is defined as
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 is the window function or kernel in the [image: image12.png]


-dimensional space such that
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and [image: image14.png]by >0



 is the window width or bandwidth parameter that corresponds to the width of the kernel. The bandwidth [image: image15.png]


is typically chosen based on the number of available observations [image: image16.png]


. Typically, the kernel function [image: image17.png]k()



 is unimodal. It is also itself a PDF, making it simple to guarantee that the estimated function [image: image18.png]P()



 satisfies the properties of a PDF. The Gaussian PDF is a popular kernel for Parzen-window density estimation, being infinitely differentiable and thereby lending the same property to the Parzen-window PDF estimate [image: image19.png]P(X)



. Using (2.53), the Parzen-window estimate with the Gaussian kernel becomes
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where [image: image21.png]


 is the standard deviation of the Gaussian PDF along each dimension. Figure 2.5 shows the Parzen-window PDF estimate, for a zero-mean unit-variance Gaussian PDF, with a Gaussian kernel of [image: image22.png]


 and increasing sample sizes. Observe that with a large sample size, the Parzen-window estimate comes quite close to the Gaussian PDF.
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	Figure 2.5: The Parzen-window PDF estimate (dotted curve), for a Gaussian PDF (solid curve) with zero mean and unit variance, with a Gaussian kernel of [image: image24.png]


and a sample size of (a) 1, (b) 10, (c) 100, and (d) 1000. The circles indicate the observations in the sample.


10.2 Parzen-Window Convergence

We see in (2.53) that the kernel-bandwidth parameter [image: image25.png]


 can strongly affect the PDF estimate [image: image26.png]P(X)



, especially when the number of observations [image: image27.png]


 is finite. Very small [image: image28.png]


 values will produce an irregular spiky [image: image29.png]P(X)



, while very large values will excessively smooth out the structure of [image: image30.png]P(X)



. For the case of finite data, i.e., finite [image: image31.png]


, the best possible strategy is to aim at a compromise between these two effects. Indeed, in this case, finding optimal values of [image: image32.png]


 entails additional constrains or strategies. For instance, the ML estimate yields an optimal [image: image33.png]


 value, and this is what we do in practice.

The case of an infinite number of observations, i.e., [image: image34.png]


, is theoretically very interesting. In this case, Parzen proved that it is possible to have the PDF estimate converge to the actual PDF [125,48]. Let us consider [image: image35.png]Fu(z)



 to be the estimator of the PDF at a point [image: image36.png]


 derived from a random sample of size [image: image37.png]


. This estimator has a mean [image: image38.png]
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 converges in mean square to the true value [image: image41.png]F(z)



, i.e., 
	[image: image42.png]L, Po(a)




	[image: image43.png]



	[image: image44.png]P(a),




	 

	[image: image45.png]lim Var(P,(z))




	[image: image46.png]



	[image: image47.png]



	(56)


when all the following conditions hold: 
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Figure 2.6 shows the process of convergence of the Parzen-window PDF, using a Gaussian kernel, to an arbitrary simulated PDF.
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	Figure 2.6: Convergence of the Parzen-window density estimate. The first row gives the true PDF. (a1)-(a4) show random samples derived from the true PDF: sample sizes progressively increasing by a factor of 100, starting with a sample size of one. (b1)-(b4) and (c1)-(c4) give the Parzen-window PDF estimate ([image: image61.png]


D Gaussian kernel) with progressively decreasing [image: image62.png]
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, respectively. Observe that both sequences of the estimated PDFs in (b1)-(b4) and (c1)-(c4) are converging towards the true PDF.


10.3 High-Dimensional Density Estimation

Some key ideas in this dissertation entail nonparametric PDF estimation where the observations lie in high-dimensional spaces. With a sufficiently large sample size, the Parzen-window estimate can converge to an arbitrarily-complex PDF. Alas, for guaranteeing convergence, the theory dictates that the sample size must increase exponentially with the dimensionality of the space. In practice, such a large number of samples are not normally available. Indeed, estimation in high-dimensional spaces is notoriously challenging because the available data populates such spaces very sparsely--regarded as the curse of dimensionality [155,150,156]. One reason behind this phenomenon is that high-dimensional PDFs can be, potentially, much more complex than low-dimensional ones, thereby demanding large amounts of data for a faithful estimation. There exists, however, inherent regularity in virtually all image data that we need to process [188,79,91,40]. This makes the high-dimensional data lie on locally low-dimensional manifolds and, having some information about this locality, the PDF estimation becomes much simpler. Figure 2.7 depicts this phenomenon. Despite theoretical arguments suggesting that density estimation beyond a few dimensions is impractical due to the unavailability of sufficient data, the empirical evidence from the literature is more optimistic [150,131,189,50,172]. The results in this dissertation confirm that observation.
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	Figure 2.7: Neighborhoods (circles) in images and their locations (circles) on manifolds (dashed line) in the high-dimensional space. Different patterns in images, expectedly, produce neighborhoods lying on different manifolds.


