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Chapter 8

Non-metric Methods

8.1 Introduction

W e have considered pattern recognition based on feature vectors of real-valued
and discrete-valued numbers, and in all cases there has been a natural measure

of distance between such vectors. For instance in the nearest-neighbor classifier the
notion figures conspicuously — indeed it is the core of the technique — while for
neural networks the notion of similarity appears when two input vectors sufficiently
“close” lead to similar outputs. Most practical pattern recognition methods address
problems of this sort, where feature vectors are real-valued and there exists some
notion of metric.

But suppose a classification problem involves nominal data — for instance descrip- nominal
datations that are discrete and without any natural notion of similarity or even ordering.

Consider the use of information about teeth in the classification of fish and sea mam-
mals. Some teeth are small and fine (as in baleen whales) for straining tiny prey from
the sea. Others (as in sharks) coming in multiple rows. Some sea creatures, such as
walruses, have tusks. Yet others, such as squid, lack teeth altogether. There is no
clear notion of similarity (or metric) for this information about teeth: it is meaning-
less to consider the teeth of a baleen whale any more similar to or different from the
tusks of a walrus, than it is the distinctive rows of teeth in a shark from their absence
in a squid, for example.

Thus in this chapter our attention turns away from describing patterns by vec-
tors of real numbers and towardusing lists of attributes. A common approach is
to specify the values of a fixed number of properties by a property d-tuple For ex- property

d-tupleample, consider describing a piece of fruit by the four properties of color, texture,
taste and smell. Then a particular piece of fruit might be described by the 4-tuple
{red, shiny, sweet, small}, which is a shorthand for color = red, texture = shiny,
taste = sweet and size = small. Another common approach is to describe the pat-
tern by a variable length string of nominal attributes, such as a sequence of base pairs string
in a segment of DNA, e.g., “AGCTTCAGATTCCA.”∗ Such lists or strings might be them-
selves the output of other component classifiers of the type we have seen elsewhere.
For instance, we might train a neural network to recognize different component brush

∗ We often put strings between quotation marks, particularly if this will help to avoid ambiguities.
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4 CHAPTER 8. NON-METRIC METHODS

strokes used in Chinese and Japanese characters (roughly a dozen basic forms); a
classifier would then accept as inputs a list of these nominal attributes and make the
final, full character classification.

How can we best use such nominal data for classification? Most importantly, how
can we efficiently learn categories using such non-metric data? If there is structure in
strings, how can it be represented? In considering such problems, we move beyond the
notion of continuous probability distributions and metrics toward discrete problems
that are addressed by rule-based or syntactic pattern recognition methods.

8.2 Decision trees

It is natural and intuitive to classify a pattern through a sequence of questions,
in which the next question asked depends on the answer to the current question.
This “20-questions” approach is particularly useful for non-metric data, since all
of the questions can be asked in a “yes/no” or “true/false”or “value(property) ∈
set of values” style that does not require any notion of metric.

Such a sequence of questions is displayed in a directed decision tree or simply tree,
where by convention the first or root node is displayed at the top, connected by succes-root node
sive (directional) links or branches to other nodes. These are similarly connected until

link

branch

we reach terminal or leaf nodes, which have no further links (Fig. 8.1). Sections 8.3 &

leaf

8.4 describe some generic methods for creating such trees, but let us first understand
how they are used for classification. The classification of a particular pattern begins
at the root node, which asks for the value of a particular property of the pattern. The
different links from the root node corresopnd to the different possible values. Based
on the answer we follow the appropriate link to a subsequent or descendent node. Indescendent
the trees we shall discuss, the links must be mutually distinct and exhaustive, i.e.,
one and only one link will be followed. The next step is to make the decision at the
appropriate subsequent node, which can be considered the root of a sub-tree. Wesub-tree
continue this way until we reach a leaf node, which has no further question. Each leaf
node bears a category label and the test pattern is assigned the category of the leaf
node reached.

The simple decision tree in Fig. 8.1 illustrates one benefit of trees over many other
classifiers such as neural networks: interpretability. It is a straightforward matter
to render the information in such a tree as logical expressions. Such interpretability
has two manifestations. First, we can easily interpret the decision for any particular
test pattern as the conjunction of decisions along the path to its corresponding leaf
node. Thus if the properties are {taste, color, shape, size}, the pattern x = {sweet,
yellow, thin, medium} is classified as Banana because it is (color = yellow) AND
(shape = thin).∗ Second, we can occasionally get clear interpretations of the cate-
gories themselves, by creating logical descriptions using conjunctions and disjunctions
(Problem 8). For instance the tree shows Apple = (green AND medium) OR (red
AND medium).

Rules derived from trees — especially large trees — are often quite complicated
and must be reduced to aid interpretation. For our example, one simple rule describes
Apple = (medium AND NOT yellow). Another benefit of trees is that they lead to

∗ We retain our convention of representing patterns in boldface even though they need not be true
vectors, i.e., they might contain nominal data that cannot be added or multiplied the way vector
components can. For this reason we use the terms “attribute” to represent both nominal data and
real-valued data, and reserve “feature” for real-valued data.
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Figure 8.1: Classification in a basic decision tree proceeds from top to bottom. The
questions asked at each node concern a particular property of the pattern, and the
downward links correspond to the possible values. Successive nodes are visited until a
terminal or leaf node is reached, where the category label is read. Note that the same
question, Size?, appears in different places in the tree, and that different questions
can have different numbers of branches. Moreover, different leaf nodes, shown in pink,
can be labeled by the same category (e.g., Apple).

rapid classification, employing a sequence of typically simple queries. Finally, we note
that trees provide a natural way to incorporate prior knowledge from human experts.
In practice, though, such expert knowledge if of greatest use when the classification
problem is fairly simple and the training set is small.

8.3 CART

Now we turn to the matter of using training data to create or “grow” a decision tree.
We assume that we have a set D of labeled training data and we have decided on a
set of properties that can be used to discriminate patterns, but do not know how to
organize the tests into a tree. Clearly, any decision tree will progressively split the
set of training examples into smaller and smaller subsets. It would be ideal if all the
samples in each subset had the same category label. In that case, we would say that
each subset was pure, and could terminate that portion of the tree. Usually, however,
there is a mixture of labels in each subset, and thus for each branch we will have
to decide either to stop splitting and accept an imperfect decision, or instead select
another property and grow the tree further.

This suggests an obvious recursive tree-growing process: given the data repre-
sented at a node, either declare that node to be a leaf (and state what category to
assign to it), or find another property to use to split the data into subsets. How-
ever, this is only one example of a more generic tree-growing methodology know as
CART (Classification and Regression Trees). CART provides a general framework
that can be instatiated in various ways to produce different decision trees. In the
CART approach, six general kinds of questions arise:

1. Should the properties be restricted to binary-valued or allowed to be multi-
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valued? That is, how many decision outcomes or splits will there be at a node?split

2. Which property should be tested at a node?

3. When should a node be declared a leaf?

4. If the tree becomes “too large,” how can it be made smaller and simpler, i.e.,
pruned?

5. If a leaf node is impure, how should the category label be assigned?

6. How should missing data be handled?

We consider each of these questions in turn.

8.3.1 Number of splits

Each decision outcome at a node is called a split, since it corresponds to splitting a
subset of the training data. The root node splits the full training set; each successive
decision splits a proper subset of the data. The number of splits at a node is closely
related to question 2, specifying which particular split will be made at a node. In
general, the number of splits is set by the designer, and could vary throughout the tree,
as we saw in Fig. 8.1. The number of links descending from a node is sometimes called
the node’s branching factor or branching ratio, denoted B. However, every decisionbranching

factor (and hence every tree) can be represented using just binary decisions (Problem 2).
Thus the root node querying fruit color (B = 3) in our example could be replaced by
two nodes: the first would ask fruit = green?, and at the end of its “no” branch,
another node would ask fruit = yellow?. Because of the universal expressive power
of binary trees and the comparative simplicity in training, we shall concentrate on
such trees (Fig. 8.2).

8.3.2 Test selection and node impurity

Much of the work in designing trees focuses on deciding which property test or query
should be performed at each node.∗ With non-numeric data, there is no geometrical
interpretation of how the test at a node splits the data. However, for numerical
data, there is a simple way to visualize the decision boundaries that are produced
by decision trees. For example, suppose that the test at each node has the form “is
xi ≤ xis?” This leads to hyperplane decision boundaries that are perpendicular to the
coordinate axes, and to decision regions of the form illustrated in Fig. 8.3.

The fundamental principle underlying tree creation is that of simplicity: we prefer
decisions that lead to a simple, compact tree with few nodes. This is a version of
Occam’s razor, that the simplest model that explains data is the one to be preferred
(Chap. ??). To this end, we seek a property test T at each node N that makes the
data reaching the immediate descendent nodes as “pure” as possible. In formalizingpurity
this notion, it turns out to be more conveninet to define the impurity, rather than
∗ The problem is further complicated by the fact that there is no reason why the test at a node

has to involve only one property. One might well consider logical combinations of properties, such
as using (size = medium) AND (NOT (color = yellow))? as a test. Trees in which each test is
based on a single property are called monothetic; if the query at any of the nodes involves two or
more properties, the tree is called polythetic. For simplicity, we generally restrict our treatment to
monothetic trees. In all cases, the key requirement is that the decision at a node be well-defined
and unambiguous so that the response leads down one and only one branch.
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Figure 8.2: A tree with arbitrary branching factor at different nodes can always be
represented by a functionally equivalent binary tree, i.e., one having branching factor
B = 2 throughout. By convention the “yes” branch is on the left, the “no” branch on
the right. This binary tree contains the same information and implements the same
classification as that in Fig. 8.1.

the purity of a node. Several different mathematical measures of impurity have been
proposed, all of which have basically the same behavior. Let i(N) denote the impurity
of a node N . In all cases, we want i(N) to be 0 if all of the patterns that reach the node
bear the same category label, and to be large if the categories are equally represented.

The most popular measure is the entropy impurity (or occasionally information
impurity): entropy

impurity
i(N) = −

∑
j

P (ωj) log2 P (ωj), (1)

where P (ωj) is the fraction of patterns at node N that are in category ωj .∗ By
the well-known properties of entropy, if all the patterns are of the same category,
the impurity is 0; otherwise it is positive, with the greatest value occuring when the
different classes are equally likely.

Another definition of impurity is particularly useful in the two-category case.
Given the desire to have zero impurity when the node represents only patterns of
a single category, the simplest polynomial form is:

i(N) = P (ω1)P (ω2). (2)

This can be interpreted as a variance impurity since under reasonable assumptions it variance
impurity∗ Here we are a bit sloppy with notation, since we normally reserve P for probability and P̂ for

frequency ratios. We could be even more precise by writing P̂ (x ∈ ωj |N) — i.e., the fraction
of training patterns x at node N that are in category ωj , given that they have survived all the
previous decisions that led to the node N — but for the sake of simplicity we sill avoid such
notational overhead.
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Figure 8.3: Monothetic decision trees create decision boundaries with portions per-
pendicular to the feature axes. The decision regions are marked R1 and R2 in these
two-dimensional and three-dimensional two-category examples. With a sufficiently
large tree, any decision boundary can be approximated arbitrarily well.

is related to the variance of a distribution associated with the two categories (Prob-
lem 10). A generalization of the variance impurity, applicable to two or more cate-
gories, is the Gini impurity:Gini

impurity
i(N) =

∑
i 6=j

P (ωi)P (ωj) = 1−
∑
j

P 2(ωj). (3)

This is just the expected error rate at node N if the category label is selected randomly
from the class distribution present at N . This criterion is more strongly peaked at
equal probabilities than is the entropy impurity (Fig. 8.4).

The misclassification impurity can be written asmisclassifi-
cation
impurity i(N) = 1−max

j
P (ωj), (4)

and measures the minimum probability that a training pattern would be misclassified
at N . Of the impurity measures typically considered, this measure is the most strongly
peaked at equal probabilities. It has a discontinuous derivative, though, and this can
present problems when searching for an optimal decision over a continuous parameter
space. Figure 8.4 shows these impurity functions for a two-category case, as a function
of the probability of one of the categories.

We now come to the key question — given a partial tree down to node N , what
value s should we choose for the property test T? An obvious heuristic is to choose
the test that decreases the impurity as much as possible. The drop in impurity is
defined by

∆i(N) = i(N)− PLi(NL)− (1− PL)i(NR), (5)

where NL and NR are the left and right descendent nodes, i(NL) and i(NR) their
impurities, and PL is the fraction of patterns at node N that will go to NL when
property test T is used. Then the “best” test value s is the choice for T that maximizes
∆i(T ). If the entropy impurity is used, then the impurity reduction corresponds to an
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Figure 8.4: For the two-category case, the impurity functions peak at equal class fre-
quencies and the variance and the Gini impurity functions are identical. To facilitate
comparisons, the entropy, variance, Gini and misclassification impurities (given by
Eqs. 1 – 4, respectively) have been adjusted in scale and offset to facilitate compari-
son; such scale and offset does not directly affect learning or classification.

information gain provided by the query. Since each query in a binary tree is a single
“yes/no” one, the reduction in entropy impurity due to a split at a node cannot be
greater than one bit (Problem 5).

The way to find an optimal decision for a node depends upon the general form of
decision. Since the decision criteria are based on the extrema of the impurity func-
tions, we are free to change such a function by an additive constant or overall scale
factor and this will not affect which split is found. Designers typically choose functions
that are easy to compute, such as those based on a single feature or attribute, giving
a monothetic tree. If the form of the decisions is based on the nominal attributes,
we may have to perform extensive or exhaustive search over all possible subsets of
the training set to find the rule maximizing ∆i. If the attributes are real-valued,
one could use gradient descent algorithms to find a splitting hyperplane (Sect. 8.3.8),
giving a polythetic tree. An important reason for favoring binary trees is that the
decision at any node can generally be cast as a one-dimensional optimization problem.
If the branching factor B were instead greater than 2, a two- or higher-dimensional
optimization would be required; this is generally much more difficult (Computer ex-
ercise ??).

Sometimes there will be several decisions s that lead to the same reduction in
impurity and the question arises how to choose among them. For example, if the
features are real-valued and a split lying anywhere in a range xl < xs < xu for
the x variable leads to the same (maximum) impurity reduction, it is traditional to
choose either the midpoint or the weighted average — xs = (xl + xu)/2 or xs =
(1 − P )xl + xuP , respectively — where P is the probability a pattern goes to the
“left” under the decision. Computational simplicity may be the determining factor as
there are rarely deep theoretical reasons to favor one over another.

Note too that the optimization of Eq. 5 is local — done at a single node. As with
the vast majority of such greedy methods, there is no guarantee that successive locally greedy

methodoptimal decisions lead to the global optimum. In particular, there is no guarantee
that after training we have the smallest tree (Computer exercise ??). Nevertheless,
for every reasonable impurity measure and learning method, we can always continue
to split further to get the lowest possible impurity at the leafs (Problem ??). There
is no assurance that the impurity at a leaf node will be the zero, however: if two
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patterns have the same attribute description yet come from different categories, the
impurity will be greater than zero.

Occasionally during tree creation the misclassification impurity (Eq. 4) will not
decrease whereas the Gini impurity would (Problem ??); thus although classification
is our final goal, we may prefer the Gini impurity because it “anticipates” later splits
that will be useful. Consider a case where at node N there are 90 patterns in ω1 and
10 in ω2. Thus the misclassification impurity is 0.1. Suppose there are no splits that
guarantee a ω2 majority in either of the two descendent nodes. Then the misclassifi-
cation remains at 0.1 for all splits. Now consider a split which sends 70 ω1 patterns
to the right along with 0 ω2 patterns, and sends 20 ω1 and 10 ω2 to the left. This is
an attractive split but the misclassification impurity is still 0.1. On the other hand,
the Gini impurity for this split is less than the Gini for the parent node. In short,
the Gini impurity shows that this as a good split while the misclassification rate does
not.

In multiclass binary tree creation, the twoing criterion may be useful.∗ The overalltwoing
criterion goal is to find the split that best splits groups of the c categories, i.e., a candidate

“supercategory” C1 consisting of all patterns in some subset of the categories, and
candidate “supercategory” C2 as all remaining patterns. Let the class of categories
be C = {ω1, ω2, . . . , ωc}. At each node, the decision splits the categories into C1 =
{ωi1 , ωi2 , . . . , ωik} and C2 = C −C1. For every candidate split s, we compute a change
in impurity ∆i(s, C1) as though it corresponded to a standard two-class problem. That
is, we find the split s∗(C1) that maximizes the change in impurity. Finally, we find
the supercategory C∗1 which maximizes ∆i(s∗(C1), C1). The benefit of this impurity is
that it is strategic — it may learn the largest scale structure of the overall problem
(Problem 4).

It may be surprising, but the particular choice of an impurity function rarely seems
to affect the final classifier and its accuracy. An entropy impurity is frequently used
because of its computational simplicity and basis in information theory, though the
Gini impurity has received significant attention as well. In practice, the stopping
criterion and the pruning method — when to stop splitting nodes, and how to merge
leaf nodes — are more important than the impurity function itself in determining
final classifier accuracy, as we shall see.

Multi-way splits

Although we shall concentrate on binary trees, we briefly mention the matter of
allowing the branching ratio at each node to be set during training, a technique will
return to in a discussion of the ID3 algorithm (Sect. 8.4.1). In such a case, it is
tempting to use a multi-branch generalization of Eq. 5 of the form

∆i(s) = i(N)−
B∑
k=1

Pki(Nk), (6)

where Pk is the fraction of training patterns sent down the link to node Nk, and
B∑
k=1

Pk = 1. However, the drawback with Eq. 6 is that decisions with large B are

inherently favored over those with small B whether or not the large B splits in fact
represent meaningful structure in the data. For instance, even in random data, a

∗ The twoing criterion is not a true impurity measure.
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high-B split will reduce the impurity more than will a low-B split. To avoid this
drawback, the candidate change in impurity of Eq. 6 must be scaled, according to

∆iB(s) =
∆i(s)

−
B∑
k=1

Pklog2Pk

. (7)

a method based on the gain ratio impurity (Problem 17). Just as before, the optimal gain ratio
impuritysplit is the one maximizing ∆iB(s).

8.3.3 When to stop splitting

Consider now the problem of deciding when to stop splitting during the training of
a binary tree. If we continue to grow the tree fully until each leaf node corresponds
to the lowest impurity, then the data has typically been overfit (Chap. ??). In the
extreme but rare case, each leaf corresponds to a single training point and the full tree
is merely a convenient implementation of a lookup table; it thus cannot be expected
to generalize well in (noisy) problems having high Bayes error. Conversely, if splitting
is stopped too early, then the error on the training data is not sufficiently low and
hence performance may suffer.

How shall we decide when to stop splitting? One traditional approach is to use
techniques of Chap. ??, in particular cross-validation. That is, the tree is trained
using a subset of the data (for instance 90%), with the remaining (10%) kept as a
validation set. We continue splitting nodes in successive layers until the error on the
validation data is minimized.

Another method is to set a (small) threshold value in the reduction in impurity;
splitting is stopped if the best candidate split at a node reduces the impurity by
less than that pre-set amount, i.e., if maxs ∆i(s) ≤ β. This method has two main
benefits. First, unlike cross-validation, the tree is trained directly using all the training
data. Second, leaf nodes can lie in different levels of the tree, which is desirable
whenever the complexity of the data varies throughout the range of input. (Such an
unbalanced tree requires a different number of decisions for different test patterns.) balanced

treeA fundamental drawback of the method, however, is that it is often difficult to know
how to set the threshold because there is rarely a simple relationship between β and
the ultimate performance (Computer exercise 2). A very simple method is to stop
when a node represents fewer than some threshold number of points, say 10, or some
fixed percentage of the total training set, say 5%. This has a benefit analogous to
that in k-nearest-neighbor classifiers (Chap. ??); that is, the size of the partitions is
small in regions where data is dense, but large where the data is sparse.

Yet another method is to trade complexity for test accuracy by splitting until a
minimum in a new, global criterion function,

α · size+
∑

leaf nodes

i(N), (8)

is reached. Here size could represent the number of nodes or links and α is some
positive constant. (This is analogous to regularization methods in neural networks
that penalize connection weights or nodes.) If an impurity based on entropy is used
for i(N), then Eq. 8 finds support from minimum description length (MDL), which minimum

description
length

we shall consider again in Chap. ??. The sum of the impurities at the leaf nodes is a
measure of the uncertainty (in bits) in the training data given the model represented
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by the tree; the size of the tree is a measure of the complexity of the classifier itself
(which also could be measured in bits). A difficulty, however, is setting α, as it is not
always easy to find a simple relationship between α and the final classifier performance
(Computer exercise 3).

An alternative approach is to use a stopping criterion based on the statistical
significance of the reduction of impurity. During tree construction, we estimate the
distribution of all the ∆i for the current collection of nodes; we assume this is the
full distribution of ∆i. For any candidate node split, we then determine whether it
is statistically different from zero, for instance by a chi-squared test (cf. Sect. ??).
If a candidate split does not reduce the impurity significantly, splitting is stopped
(Problem 15).

A variation in this technique of hypothesis testing can be applied even withouthypothesis
testing strong assumptions on the distribution of ∆i. We seek to determine whether a can-

didate split is “meaningful,” that is, whether it differs significantly from a random
split. Suppose n patterns survive at node N (with n1 in ω1 and n2 in ω2); we wish to
decide whether a candidate split s differs significantly from a random one. Suppose
a particular candidate split s sends Pn patterns to the left branch, and (1− P )n to
the right branch. A random split having this probability (i.e., the null hypothesis)
would place Pn1 of the ω1 patterns and Pn2 of the ω2 patterns to the left, and the
remaining to the right. We quantify the deviation of the results due to candidate split
s from the (weighted) random split by means of the chi-squared statistic, which inchi-squared

statistic this two-category case is

χ2 =
2∑
i=1

(niL − nie)2

nie
, (9)

where niL is the number of patterns in category ωi sent to the left under decision s,
and nie = Pni is the number expected by the random rule. The chi-squared statistic
vanishes if the candidate split s gives the same distribution as the random one, and
is larger the more s differs from the random one. When χ2 is greater than a critical
value, as given in a table (cf. Table ??), then we can reject the null hypothesis since
s differs “significantly” at some probability or confidence level, such as .01 or .05.confidence

level The critical values of the confidence depend upon the number of degrees of freedom,
which in the case just described is 1, since for a given probability P the single value
n1L specifies all other values (n1R, n2L and n2R). If the “most significant” split at a
node does not yield a χ2 exceeding the chosen confidence level threshold, splitting is
stopped.

8.3.4 Pruning

Occassionally, stopped splitting suffers from the lack of sufficient look ahead, a phe-
nomenon called the horizon effect. The determination of the optimal split at a nodehorizon

effect N is not influenced by decisions at N ’s descendent nodes, i.e., those at subsequent
levels. In stopped splitting, node N might be declared a leaf, cutting off the possi-
bility of beneficial splits in subsequent nodes; as such, a stopping condition may be
met “too early” for overall optimal recognition accuracy. Informally speaking, the
stopped splitting biases the learning algorithm toward trees in which the greatest
impurity reduction is near the root node.

The principal alternative approach to stopped splitting is pruning. In pruning, a
tree is grown fully, that is, until leaf nodes have minimum impurity — beyond any
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putative “horizon.” Then, all pairs of neighboring leaf nodes (i.e., ones linked to a
common antecedent node, one level above) are considered for elimination. Any pair
whose elimination yields a satisfactory (small) increase in impurity is eliminated, and
the common antecedent node declared a leaf. (This antecedent, in turn, could itself
be pruned.) Clearly, such merging or joining of the two leaf nodes is the inverse of merging
splitting. It is not unusual that after such pruning, the leaf nodes lie in a wide range
of levels and the tree is unbalanced.

Although it is most common to prune starting at the leaf nodes, this is not nec-
essary: cost-complexity pruning can replace a complex subtree with a leaf directly.
Further, C4.5 (Sect. 8.4.2) can eliminate an arbitrary test node, thereby replacing a
subtree by one of its branches.

The benefits of pruning are that it avoids the horizon effect; further, since there
is no training data held out for cross-validation, it directly uses all information in the
training set. Naturally, this comes at a greater computational expense than stopped
splitting, and for problems with large training sets, the expense can be prohibitive
(Computer exercise ??). For small problems, though, these computational costs are
low and pruning is generally to be preferred over stopped splitting. Incidentally, what
we have been calling stopped training and pruning are sometimes called pre-pruning
and post-pruning, respectively.

A conceptually different pruning method is based on rules. Each leaf has an
associated rule — the conjunction of the individual decisions from the root node,
through the tree, to the particular leaf. Thus the full tree can be described by a large
list of rules, one for each leaf. Occasionally, some of these rules can be simplified
if a series of decisions is redundant. Eliminating the irrelevant precondition rules
simplifies the description, but has no influence on the classifier function, including
its generalization ability. The predominant reason to prune, however, is to improve
generalization. In this case we therefore eliminate rules so as to improve accuracy on a
validation set (Computer exercise 6). This technique may even allow the elimination
of a rule corresponding to a node near the root.

One of the benefits of rule pruning is that it allows us to distinguish between the
contexts in which any particular node N is used. For instance, for some test pattern
x1 the decision rule at node N is necessary; for another test pattern x2 that rule is
irrelevant and thus N could be pruned. In traditional node pruning, we must either
keep N or prune it away. In rule pruning, however, we can eliminate it where it is
not necessary (i.e., for patterns such as x1) and retain it for others (such as x2).

A final benefit is that the reduced rule set may give improved interpretability.
Although rule pruning was not part of the original CART approach, such pruning
can be easily applied to CART trees. We shall consider an example of rule pruning
in Sect. 8.4.2.

8.3.5 Assignment of leaf node labels

Assigning category labels to the leaf nodes is the simplest step in tree construction. If
successive nodes are split as far as possible, and each leaf node corresponds to patterns
in a single category (zero impurity), then of course this category label is assigned to
the leaf. In the more typical case, where either stopped splitting or pruning is used
and the leaf nodes have positive impurity, each leaf should be labeled by the category
that has most points represented. An extremely small impurity is not necessarily
desirable, since it may be an indication that the tree is overfitting the training data.

Example 1 illustrates some of these steps.
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Example 1: A simple tree classifier

Consider the following n = 16 points in two dimensions for training a binary
CART tree (B = 2) using the entropy impurity (Eq. 1).

ω1 (black) ω2 (red)
x1 x2 x1 x2

.15 .83 .10 .29

.09 .55 .08 .15

.29 .35 .23 .16

.38 .70 .70 .19

.52 .48 .62 .47

.57 .73 .91 .27

.73 .75 .65 .90

.47 .06 .75 .36* (.32†)

x1 < 0.6

x2 < 0.32

x1 < 0.35

x2 < 0.61

x1 < 0.69

x2 < 0.33

x2 < 0.09 x1 < 0.6

x1 < 0.69

x1

x2

*

†

ω1

ω2

ω2

ω2ω1 ω1

ω1 ω1

ω1ω2

ω2

1.0

.88 .65

.81 1.0

1.0

.76.59

.92

0

.2

.4

.6

.8

1

.2 .4 .6 .8 1

x1

x2

0

.2

.4

.6

.8

1

.2 .4 .6 .8 1

R1

R2

R2

R2

R2R1 R1

R1

R1

R1

Training data and associated (unpruned) tree are shown at the top. The entropy
impurity at non-terminal nodes is shown in red and the impurity at each leaf is 0. If
the single training point marked * were instead slightly lower (marked †), the resulting
tree and decision regions would differ significantly, as shown at the bottom.
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The impurity of the root node is

i(Nroot) = −
2∑
i=1

P (ωi)log2 P (ωi) = −[.5log2.5 + .5log2.5] = 1.0.

For simplicity we consider candidate splits parallel to the feature axes, i.e., of the form
“is xi < xis?”. By exhaustive search of the n−1 positions for the x1 feature and n−1
positions for the x2 feature we find by Eq. 5 that the greatest reduction in the impurity
occurs near x1s = 0.6, and hence this becomes the decision criterion at the root node.
We continue for each sub-tree until each final node represents a single category (and
thus has the lowest impurity, 0), as shown in the figure. If pruning were invoked,
the pair of leaf nodes at the left would be the first to be deleted (gray shading) since
there the impurity is increased the least. In this example, stopped splitting with the
proper threshold would also give the same final network. In general, however, with
large trees and many pruning steps, pruning and stopped splitting need not lead to
the same final tree.

This particular training set shows how trees can be sensitive to details of the train-
ing points. If the ω2 point marked * in the top figure is moved slightly (marked †), the
tree and decision regions differ significantly, as shown at the bottom. Such instability
is due in large part to the discrete nature of decisions early in the tree learning.

Example 1 illustrates the informal notion of instability or sensitivity to training stability
points. Of course, if we train any common classifier with a slightly different training
set the final classification decisions will differ somewhat. If we train a CART classifier,
however, the alteration of even a single training point can lead to radically different
decisions overall. This is a consequence of the discrete and inherently greedy nature
of such tree creation. Instability often indicates that incremental and off-line versions
of the method will yield significantly different classifiers, even when trained on the
same data.

8.3.6 Computational complexity

Suppose we have n training patterns in d dimensions in a two-category problem, and
wish to construct a binary tree based on splits parallel to the feature axes using an
entropy impurity. What are the time and the space complexities?

At the root node (level 0) we must first sort the training data, O(nlogn) for each of
the d features or dimensions. The entropy calculation is O(n) + (n− 1)O(d) since we
examine n − 1 possible splitting points. Thus for the root node the time complexity
is O(dnlogn). Consider an average case, where roughly half the training points are
sent to each of the two branches. The above analysis implies that splitting each
node in level 1 has complexity O(d n/2 log(n/2)); since there are two such nodes
at that level, the total complexity is O(dnlog(n/2)). Similarly, for the level 2 we
have O(dnlog(n/4)), and so on. The total number of levels is O(log n). We sum the
terms for the levels and find that the total average time complexity is O(dn (log n)2).
The time complexity for recall is just the depth of the tree, i.e., the total number
of levels, is O(log n). The space complexity is simply the number of nodes, which,
given some simplifying assumptions (such as a single training point per leaf node), is
1 + 2 + 4 + ...+ n/2 ≈ n, that is, O(n) (Problem 9).
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We stress that these assumptions (for instance equal splits at each node) rarely
hold exactly; moreover, heuristics can be used to speed the search for splits dur-
ing training. Nevertheless, the result that for fixed dimension d the training is
O(dn2 log n) and classification O(log n) is a good rule of thumb; it illustrates how
training is far more computationally expensive than is classification, and that on
average this discrepancy grows as the problem gets larger.

There are several techniques for reducing the complexity during the training of
trees based on real-valued data. One of the simplest heuristics is to begin the search
for splits xis at the “middle” of the range of the training set, moving alternately
to progressively higher and lower values. Optimal splits always occur for decision
thresholds between adjacent points from different categories and thus one should test
only such ranges. These and related techniques generally provide only moderate
reductions in computation (Computer exercise ??). When the patterns consist of
nominal data, candidate splits could be over every subset of attributes, or just a
single entry, and the computational burden is best lowered using insight into features
(Problem 3).

8.3.7 Feature choice

As with most pattern recognition techniques, CART and other tree-based methods
work best if the “proper” features are used (Fig. 8.5). For real-valued vector data,
most standard preprocessing techniques can be used before creating a tree. Pre-
processing by principal components (Chap. ??) can be effective, since it finds the
“important” axes, and this generally leads to simple decisions at the nodes. If how-
ever the principal axes in one region differ significantly from those in another region,
then no single choice of axes overall will suffice. In that case we may need to employ
the techniques of Sect. 8.3.8, for instance allowing splits to be at arbitrary orientation,
often giving smaller and more compact trees.

8.3.8 Multivariate decision trees

If the “natural” splits of real-valued data do not fall parallel to the feature axes or the
full training data set differs significantly from simple or accommodating distributions,
then the above methods may be rather inefficient and lead to poor generalization
(Fig. 8.6); even pruning may be insufficient to give a good classifier. The simplest
solution is to allow splits that are not parallel to the feature axes, such as a general
linear classifier trained via gradient descent on a classification or sum-squared-error
criterion (Chap. ??). While such training may be slow for the nodes near the root if
the training set is large, training will be faster at nodes closer to the leafs since less
training data is used. Recall can remain quite fast since the linear functions at each
node can be computed rapidly.

8.3.9 Priors and costs

Up to now we have tacitly assumed that a category ωi is represented with the same
frequency in both the training and the test data. If this is not the case, we need
a method for controlling tree creation so as to have lower error on the actual final
classification task when the frequencies are different. The most direct method is to
“weight” samples to correct for the prior frequencies (Problem 16). Furthermore,
we may seek to minimize a general cost, rather than a strict misclassification or 0-1
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Figure 8.5: If the class of node decisions does not match the form of the training data,
a very complicated decision tree will result, as shown at the top. Here decisions are
parallel to the axes while in fact the data is better split by boundaries along another
direction. If however “proper” decision forms are used (here, linear combinations of
the features), the tree can be quite simple, as shown at the bottom.

cost. As in Chap. ??, we represent such information in a cost matrix λij — the
cost of classifying a pattern as ωi when it is actually ωj . Cost information is easily
incorporated into a Gini impurity, giving the following weighted Gini impurity, weighted

Gini
impurity

i(N) =
∑
ij

λijP (ωi)P (ωj), (10)

which should be used during training. Costs can be incorporated into other impurity
measures as well (Problem 11).
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x2 < 0.54

x1

ω1ω2
R2

R1

0

ω2

ω1

ω1

ω1

ω1

ω2

ω2

ω2

R1

R2

R2

R1

x2

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x10

x2

Figure 8.6: One form of multivariate tree employs general linear decisions at each
node, giving splits along arbitrary directions in the feature space. In virtually all
interesting cases the training data is not linearly separable, and thus the LMS algo-
rithm is more useful than methods that require the data to be linearly separable, even
though the LMS need not yield a minimum in classification error (Chap. ??). The
tree at the bottom can be simplified by methods outlined in Sect. 8.4.2.

8.3.10 Missing attributes

Classification problems might have missing attributes during training, during classi-
fication, or both. Consider first training a tree classifier despite the fact that some
training patterns are missing attributes. A naive approach would be to delete from
consideration any such deficient patterns; however, this is quite wasteful and should bedeficient

pattern employed only if there are many complete patterns. A better technique is to proceed
as otherwise described above (Sec. 8.3.2), but instead calculate impurities at a node
N using only the attribute information present. Suppose there are n training points
at N and that each has three attributes, except one pattern that is missing attribute
x3. To find the best split at N , we calculate possible splits using all n points using
attribute x1, then all n points for attribute x2, then the n− 1 non-deficient points for
attribute x3. Each such split has an associated reduction in impurity, calculated as
before, though here with different numbers of patterns. As always, the desired split
is the one which gives the greatest decrease in impurity. The generalization of this
procedure to more features, to multiple patterns with missing attributes, and even to
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patterns with several missing attributes is straightforward, as is its use in classifying
non-deficient patterns (Problem 14).

Now consider how to create and use trees that can classify a deficient pattern. The
trees described above cannot directly handle test patterns lacking attributes (but see
Sect. 8.4.2), and thus if we suspect that such deficient test patterns will occur, we
must modify the training procedure discussed in Sect. 8.3.2. The basic approach
during classification is to use the traditional (“primary”) decision at a node whenever
possible (i.e., when the queries involves a feature that is present in the deficient test
pattern) but to use alternate queries whenever the test pattern is missing that feature.

During training then, in addition to the primary split, each non-terminal node
N is given an ordered set of surrogate splits, consisting of an attribute label and a surrogate

splitrule. The first such surrogate split maximizes the “predictive association” with the

predictive
association

primary split. A simple measure of the predictive association of two splits s1 and
s2 is merely the numerical count of patterns that are sent to the “left” by both s1

and s2 plus the count of the patterns sent to the “right” by both the splits. The
second surrogate split is defined similarly, being the one which uses another feature
and best approximates the primary split in this way. Of course, during classification
of a deficient test pattern, we use the first surrogate split that does not involve the test
pattern’s missing attributes. This missing value strategy corresponds to a linear model
replacing the pattern’s missing value by the value of the non-missing attribute most
strongly correlated with it (Problem ??). This strategy uses to maximum advantage
the (local) associations among the attributes to decide the split when attribute values
are missing. A method closely related to surrogate splits is that of virtual values, in virtual

valuewhich the missing attribute is assigned its most likely value.

Example 2: Surrogate splits and missing attributes

Consider the creation of a monothetic tree using an entropy impurity and the
following ten training points. Since the tree will be used to classify test patterns with
missing features, we will give each node surrogate splits.

ω1 :

x1 0
7
8

 ,

x2 1
8
9

 ,

x3 2
9
0

 ,

x4 4
1
1

 ,

x5 5
2
2



ω2 :

y1 3
3
3

 ,

y2 6
0
4

 ,

y3 7
4
5

 ,

y4 8
5
6

 ,

y5 9
6
7

.
Through exhaustive search along all three features, we find the primary split at the
root node should be “x1 < 5.5?”, which sends {x1,x2,x3,x4,x5,y1} to the left and
{y2,y3,y4,y5} to the right, as shown in the figure.

We now seek the first surrogate split at the root node; such a split must be based
on either the x2 or the x3 feature. Through exhaustive search we find that the split
“x3 < 3.5?” has the highest predictive association with the primary split — a value
of 8, since 8 patterns are sent to matching directions by each rule, as shown in the
figure. The second surrogate split must be along the only remaining feature, x2. We
find that for this feature the rule “x2 < 3.5?” has the highest predictive association
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with the primary split, a value of 6. (This, incidentally, is not the optimal x2 split for
impurity reduction — we use it because it best approximates the preferred, primary
split.) While the above describes the training of the root node, training of other nodes
is conceptually the same, though computationally less complex because fewer points
need be considered.

x1<5.5?

x1, x2, x3, x4, x5, y1 y2, y3, y4, y5

x3<3.5? x2<3.5?

primary split first surrogate split second surrogate split

predictive association 
with primary split = 8

predictive association 
with primary split = 6

x3, x4, x5, y1 y2, y3, y4, y5,
x1, x2

x4, x5, y1,
 y2 

y3, y4, y5,
x1, x2, x3

Of all possible splits based on a single feature, the primary split, “x1 < 5.5?”, mini-
mizes the entropy impurity of the full training set. The first surrogate split at the root
node must use a feature other than x1; its threshold is set in order to best approxi-
mate the action of the primary split. In this case “x3 < 3.5?” is the first surrogate
split. Likewise, here the second surrogate split must use the x2 feature; its threshold
is chosen to best approximate the action of the primary split. In this case “x2 < 3.5?”
is the second surrogate split. The pink shaded band marks those patterns sent to the
matching direction as the primary split. The number of patterns in the shading is
thus the predictive association with the primary split.

During classification, any test pattern containing feature x1 would be queried using
the primary split, “x1 ≤ 5.5?” Consider though the deficient test pattern (∗, 2, 4)t,
where * is the missing x1 feature. Since the primary split cannot be used, we turn
instead to the first surrogate split, “x3 ≤ 3.5?”, which sends this point to the right.
Likewise, the test pattern (∗, 2, ∗)t would be queried by the second surrogate split,
“x2 ≤ 3.5?”, and sent to the left.

Sometimes the fact that an attribute is missing can be informative. For instance,
in medical diagnosis, the fact that an attribute (such as blood sugar level) is missing
might imply that the physician had some reason not to measure it. As such, a missing
attribute could be represented as a new feature, and used in classification.

8.4 Other tree methods

Virtually all tree-based classification techniques can incorporate the fundamental tech-
niques described above. In fact that discussion expanded beyond the core ideas in
the earliest presentations of CART. While most tree-growing algorithms use an en-
tropy impurity, there are many choices for stopping rules, for pruning methods and
for the treatment of missing attributes. Here we discuss just two other popular tree
algorithms.

8.4.1 ID3

ID3 received its name because it was the third in a series of identification or “ID”
procedures. It is intended for use with nominal (unordered) inputs only. If the problem
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involves real-valued variables, they are first binned into intervals, each interval being
treated as an unordered nominal attribute. Every split has a branching factor Bj ,
where Bj is the number of discrete attribute bins of the variable j chosen for splitting.
In practice these are seldom binary and thus a gain ratio impurity should be used
(Sect. 8.3.2). Such trees have their number of levels equal to the number of input
variables. The algorithm continues until all nodes are pure or there are no more
variables to split on. While there is thus no pruning in standard presentations of the
ID3 algorithm, it is straightforward to incorporate pruning along the ideas presented
above (Computer exercise 4).

8.4.2 C4.5

The C4.5 algorithm, the successor and refinement of ID3, is the most popular in a
series of “classification” tree methods. In it, real-valued variables are treated the same
as in CART. Multi-way (B > 2) splits are used with nominal data, as in ID3 with a
gain ratio impurity based on Eq. 7. The algorithm uses heuristics for pruning derived
based on the statistical significance of splits.

A clear difference between C4.5 and CART involves classifying patterns with miss-
ing features. During training there are no special accommodations for subsequent
classification of deficient patterns in C4.5; in particular, there are no surrogate splits
precomputed. Instead, if node N with branching factor B queries the missing feature
in a deficient test pattern, C4.5 follows all B possible answers to the descendent nodes
and ultimately B leaf nodes. The final classification is based on the labels of the B
leaf nodes, weighted by the decision probabilities at N . (These probabilities are sim-
ply those of decisions at N on the training data.) Each of N ’s immediate descendent
nodes can be considered the root of a sub-tree implementing part of the full classifica-
tion model. This missing-attribute scheme corresponds to weighting these sub-models
by the probability any training pattern at N would go to the corresponding outcome
of the decision. This method does not exploit statistical correlations between different
features of the training points, whereas the method of surrogate splits in CART does.
Since C4.5 does not compute surrogate splits and hence does not need to store them,
this algorithm may be preferred over CART if space complexity (storage) is a major
concern.

The C4.5 algorithm has the provision for pruning based on the rules derived from
the learned tree. Each leaf node has an associated rule — the conjunction of the
decisions leading from the root node, through the tree, to that leaf. A technique
called C4.5Rules deletes redundant antecedents in such rules. To understand this, C4.5Rules
consider the left-most leaf in the tree at the bottom of Fig. 8.6, which corresponds to
the rule

IF
[

(0.40x1 + 0.16x2 < 0.11)
AND (0.27x1 − 0.44x2 < −0.02)
AND (0.96x1 − 1.77x2 < −0.45)
AND (5.43x1 − 13.33x2 < −6.03)

]
THEN x ∈ ω1.

This rule can be simplified to give

IF
[

( 0.40x1 + 0.16x2 < 0.11)
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AND (5.43x1 − 13.33x2 < −6.03)
]

THEN x ∈ ω1,

as should be evident in that figure. Note especially that information corresponding to
nodes near the root can be pruned by C4.5Rules. This is more general than impurity
based pruning methods, which instead merge leaf nodes.

8.4.3 Which tree classifier is best?

In Chap. ?? we shall consider the problem of comparing different classifiers, including
trees. Here, rather than directly comparing typical implementations of CART, ID3,
C4.5 and other numerous tree methods, it is more instructive to consider variations
within the different component steps. After all, with care one can generate a tree using
any reasonable feature processing, impurity measure, stopping criterion or pruning
method. Many of the basic principles applicable throughout pattern classification
guide us here. Of course, if the designer has insight into feature preprocessing, this
should be exploited. The binning of real-valued features used in early versions of ID3
does not take full advantage of order information, and thus ID3 should be applied
to such data only if computational costs are otherwise too high. It has been found
that an entropy impurity works acceptably in most cases, and is a natural default. In
general, pruning is to be preferred over stopped training and cross-validation, since it
takes advantage of more of the information in the training set; however, pruning large
training sets can be computationally expensive. The pruning of rules is less useful
for problems that have high noise and are at base statistical in nature, but such
pruning can often simplify classifiers for problems where the data were generated
by rules themselves. Likewise, decision trees are poor at inferring simple concepts,
for instance whether more than half of the binary (discrete) attributes have value
+1. As with most classification methods, one gains expertise and insight through
experimentation on a wide range of problems. No single tree algorithm dominates or
is dominated by others.

It has been found that trees yield classifiers with accuracy comparable to other
methods we have discussed, such as neural networks and nearest-neighbor classifiers,
especially when specific prior information about the appropriate form of classifier is
lacking. Tree-based classifiers are particularly useful with non-metric data and as
such they are an important tool in pattern recognition research.

8.5 *Recognition with strings

Suppose the patterns are represented as ordered sequences or strings of discrete items,
as in a sequence of letters in an English word or in DNA bases in a gene sequence,
such as “AGCTTCGAATC.” (The letters A, G, C and T stand for the nucleic acids adenine,
guanine, cytosine and thymine.) Pattern classification based on such strings of discrete
symbols differs in a number of ways from the more commonly used techniques we
have addressed up to here. Because the string elements — called characters, letterscharacter
or symbols — are nominal, there is no obvious notion of distance between strings.
There is a further difficulty arising from the fact that strings need not be of the
same length. While such strings are surely not vectors, we nevertheless broaden our
familiar boldface notation to now apply to strings as well, e.g., x = “AGCTTC,” though
we will often refer to them as patterns, strings, templates or general words. (Of course,word
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there is no requirement that these be meaningful words in a natural language such as
English or French.) A particularly long string is denoted text. Any contiguous string text
that is part of x is called a substring, segment, or more frequently a factor of x. For

factorexample, “GCT” is a factor of “AGCTTC.”
There is a large number of problems in computations on strings. The ones that

are of greatest importance in pattern recognition are:

String matching: Given x and text, test whether x is a factor of text, and if so,
where it appears.

Edit distance: Given two strings x and y, compute the minimum number of ba-
sic operations — character insertions, deletions and exchanges — needed to
transform x into y.

String matching with errors: Given x and text, find the locations in text where
the “cost” or “distance” of x to any factor of text is minimal.

String matching with the “don’t care” symbol: This is the same as basic string
matching, but with a special symbol, ©/ , the don’t care symbol, which can match don’t care

symbolany other symbol.

We should begin by understanding the several ways in which these string opera-
tions are used in pattern classification. Basic string matching can be viewed as an
extreme case of template matching, as in finding a particular English word within a
large electronic corpus such as a novel or digital repository. Alternatively, suppose
we have a large text such as Herman Melville’s Moby Dick, and we want to classify
it as either most relevant to the topic of fish or to the topic of hunting. Test strings
or keywords for the fish topic might include “salmon,” “whale,” “fishing,” “ocean,” keyword
while those for hunting might include “gun,” “bullet,” “shoot,” and so on. String
matching would determine the number of occurrences of such keywords in the text.
A simple count of the keyword occurrences could then be used to classify the text
according to topic. (Other, more sophisticated methods for this latter stage would
generally be preferable.)

The problem of string matching with the don’t care symbol is closely related
to standard string matching, even though the best algorithms for the two types of
problems differ, as we shall see. Suppose, for instance, that in DNA sequence analysis
we have a segment of DNA, such as x = “AGCCG©/©/©/©/©/GACTG,” where the first and last
sections (called motifs) are important for coding a protein while the middle section,
which consists of five characters, is nevertheless known to be inert and to have no
function. If we are given an extremely long DNA sequence (the text), string matching
with the don’t care symbol using the pattern x containing ©/ symbols would determine
if text is in the class of sequences that could yield the particular protein.

The string operation that finds greatest use in pattern classification is based on
edit distance, and is best understood in terms of the nearest-neighbor algorithm
(Chap. ??). Recall that in that algorithm each training pattern or prototype is stored
along with its category label; an unknown test pattern is then classified by its near-
est prototype. Suppose now that the prototypes are strings and we seek to classify
a novel test string by its “nearest” stored string. For instance an acoustic speech
recognizer might label every 10-ms interval with the most likely phoneme present in
an utterance, giving a string of discrete phoneme labels such as “tttoooonn.” Edit
distance would then be used to find the “nearest” stored training pattern, so that its
category label can be read.
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The difficulty in this approach is that there is no obvious notion of metric or
distance between strings. In order to proceed, then, we must introduce some measure
of distance between the strings. The resulting edit distance is the minimum number
of fundamental operations needed to transform the test string into a prototype string,
as we shall see.

The string-matching-with-errors problem contains aspects of both the basic string
matching and the edit distance problems. The goal is to find all locations in text
where x is “close” to the substring or factor of text. This measure of closeness is
chosen to be an edit distance. Thus the string-matching-with-errors problem finds
use in the same types of problems as basic string matching, the only difference being
that there is a certain “tolerance” for a match. It finds use, for example, in searching
digital texts for possibly misspelled versions of a given target word.

Naturally, deciding which strings to consider is highly problem-dependent. Nev-
ertheless, given target strings and the relevance of tolerances, and so on, the string
matching problems just outlined are conceptually very simple; the challenge arises
when the problems are large, such as searching for a segment within the roughly
3× 109 base pairs in the human genome, the 3× 107 characters in an electronic ver-
sion of War and Peace or the more than 1013 characters in a very large digital
repository. For such cases, the effort is in finding tricks and heuristics that make the
problem computationally tractable.

We now consider these four string operations in greater detail.

8.5.1 String matching

The most fundamental and useful operation in string matching is testing whether a
candidate string x is a factor of text. Naturally we assume the number of characters
in text, denoted length[text] or |text|, is greater than that in x, and for most com-
putationally interesting cases |text| À |x|. Each discrete character is taken from an
alphabet A, for example binary or decimal numerals, the English letters, or four DNAalphabet
bases, i.e., A = {0, 1} or {0,1,2,...,9} or {a,b,c,...,z} or {A,G,C,T}, respec-
tively. A shift, s, is an offset needed to align the first character of x with charactershift
number s + 1 in text. The basic string matching problem is to find whether there
exists a valid shift, i.e., one where there is a perfect match between each character invalid shift
x and the corresponding one in text. The general string-matching problem is to list
all valid shifts (Fig. 8.7).

a b a c d b d a c b b a c d a c

b d a c

text

x
s = 5

Figure 8.7: The general string-matching problem is to find all shifts s for which the
pattern x appears in text. Any such shift is called valid. In this case x = “bdac” is
indeed a factor of text, and s = 5 is the only valid shift.

The most straightforward approach in string matching is to test each possible shift
s in turn, as given in the naive string-matching algorithm.
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Algorithm 1 (Naive string matching)

1 begin initialize A,x, text, n← length[text],m← length[x]
2 s← 0
3 while s ≤ n−m
4 if x[1...m] = text[s+ 1...s+m]
5 then print “pattern occurs at shift” s
6 s← s+ 1
7 return
8 end

Algorithm 1 is hardly optimal — it takes time Θ((n−m+1)m) in the worst case; if x
and text are random, however, the algorithm is efficient (Problem 18). The weakness
in the naive string-matching algorithm is that information from one candidate shift
s is not exploited when seeking a subsequent candidate shift. A more sophisticated
method, the Boyer-Moore algorithm, uses such information in a clever way.

Algorithm 2 (Boyer-Moore string matching)

1 begin initialize A,x, text, n← length[text],m← length[x]
2 F(x)← last-occurrence function
3 G(x)← good-suffix function
4 s← 0
5 while s ≤ n−m
6 do j ← m
7 while j > 0 and x[j] = text[s+ j]
8 do j ← j − 1
9 if j = 0

10 then print “pattern occurs at shift” s
11 s← s+ G(0)
12 else s← s+ max

[
G(j), j −F(text[s+ j])

]
13 return
14 end

Postponing for the moment considerations of the functions F and G, we can see that
the Boyer-Moore algorithm resembles the naive string-matching algorithm, but with
two exceptions. First, at each candidate shift s, the character comparisons are done
in reverse order, i.e., from right to left (line 8). Second, according to lines 11 & 12,
the increment to a new shift apparently need not be 1.

The power of Algorithm 2 lies in two heuristics that allow it to skip the examination
of a large number shifts and hence character comparisons: the good-suffix heuristic and
the bad-character heuristic operate independently and in parallel. After a mismatch
is detected, each heuristic proposes an amount by which s can be safely increased
without missing a valid shift; the larger of these proposed shifts is selected and s is
increased accordingly.

The bad-character heuristic utilizes the rightmost character in text that does not bad-
character
heuristic

match the aligned character in x. Because character comparisons proceed right-to-
left, this “bad character” is found as efficiently as possible. Since the current shift s is
invalid, no more character comparisons are needed and a shift increment can be made.
The bad-character heuristic proposes incrementing the shift by an amount to align
the rightmost occurrence of the bad character in x with the bad character identified
in text. This guarantees that no valid shifts have been skipped (Fig. 8.8).
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r o b a b i l i t i e s _ f o r _ e s t i m a tp

bad character good suffix

e s

e s t i m a t e s

s + 3

r o b a b i l i t i e s _ f o r _ e s t i m a tp e s

e s t i m a t e s

s + 7

r o b a b i l i t i e s _ f o r _ e s t i m a tp e s

e s t i m a t e s

proposed by 
bad-character heuristic
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good-suffix heuristic

Figure 8.8: String matching by the Boyer-Moore algorithm takes advantage of infor-
mation obtained at one shift s to propose the next shift; the algorithm is generally
much less computationally expensive than naive string matching, which always incre-
ments shifts by a single character. The top figure shows the alignment of text and
pattern x for an invalid shift s. Character comparisons proceed right to left, and
the first two such comparisons are a match — the good suffix is “es.” The first
(right-most) mismatched character in text, here “i,” is called the bad character. The
bad-character heuristic proposes incrementing the shift to align the right-most “i”
in x with the bad character “i” in text — a shift increment of 3, as shown in the
middle figure. The bottom figure shows the effect of the good-suffix heuristic, which
proposes incrementing the shift the least amount that will align the good suffix, “es”
in x, with that in text — here an increment of 7. Lines 11 & 12 of the Boyer-Moore
algorithm select the larger of the two proposed shift increments, i.e., 7 in this case.
Although not shown in this figure, after the mismatch is detected at shift s+ 7, both
the bad-character and the good-suffix heuristics propose an increment of yet another
7 characters, thereby finding a valid shift.

Now consider the good-suffix heuristic, which operates in parallel with the bad- good-
suffix
heuristic

character heuristic, and also proposes a safe shift increment. A general suffix of x issuffix
a factor or substring of x that contains the final character in x. (Likewise, a prefix

prefix contains the initial character in x.) At shift s the rightmost contiguous characters in
text that match those in x are called the good suffix, or “matching suffix.” As before,good

suffix because character comparisons are made right-to-left, the good suffix is found with
the minimum number of comparisons. Once a character mismatch has been found, the
good-suffix heuristic proposes to increment the shift so as to align the next occurrence
of the good suffix in x with that identified in text. This insures that no valid shift has
been skipped. Given the two shift increments proposed by the two heuristics, line 12
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of the Boyer-Moore algorithm chooses the larger.
These heuristics rely on the functions F and G. The last-occurrence function, last-

occurrence
function

F(x), is merely a table containing every letter in the alphabet and the position of its
rightmost occurrence in x. For the pattern in Fig. 8.8, the table would contain: a, 6;
e, 8; i, 4; m, 5; s, 9; and t, 8. All 20 other letters in the English alphabet are assigned
a value 0, signifying that they do not appear in x. The construction of this table is
simple (Problem 22) and need be done just once; it does not significanly affect the
computational cost of the Boyer-Moore algorithm.

The good-suffix function, G(x), creates a table which for each suffix gives the good-
suffix
function

location of its other occurrences in x. In the example in Fig. 8.8, the suffix s (the
last character in “estimates”) also occurs at position 2 in x. Further, the suffix “es”
occurs at position 1 in x. The suffix “tes” does not appear elsewhere in x and hence
it, and all other suffixes, are assigned the value 0. In sum, then, the table of G(x)
would have just two non-zero entries: s, 2 and es, 1.

In practice, these heuristics make the Boyer-Moore one of the most attractive
string-matching algorithms on serial computers. Other powerful methods quickly be-
come conceptually more involved and are generally based on precomputing functions
of x that enable efficient shift increments, or dividing the problem for efficient parallel
computation.

Many applications require a text to be searched for several strings, as in the case
of keyword search through a digital text. Occasionally, some of these search strings
are themselves factors of other search strings. Presumably we would not want to
acknowledge a match of a short string if it were also part of a match for a longer string.
Thus if our keywords included “beat,” “eat,” and “be,” we would want our search to
return only the string match of “beat” from text = “when chris beats the drum,”
not the shorter strings “eat” and “be,” which are nevertheless “there” in text. This is
an example of the subset-superset problem. Although there may be much bookkeeping subset-

superset
problem

associated with imposing such a strict bias for longer sequences over shorter ones, the
approach is conceptually straightforward (Computer exercise 9).

8.5.2 Edit distance

The fundamental idea underlying pattern recognition using edit distance is based on
the nearest-neighbor algorithm (Chap. ??). We store a full training set of strings
and their associated category labels. During classification, a test string is compared
to each stored string and a “distance” or score is computed; the test string is then
assigned the category label of the “nearest” string in the training set.

Unlike the case using real-valued vectors discussed in Chap. ??, there is no single
obvious measure of the similarity or difference between two strings. For instance, it
is not clear whether “abbccc” is closer to “aabbcc” or to “abbcccb.” To proceed,
then, we introduce a measure of the difference between two strings. Such an edit
distance between x and y describes how many fundamental operations are required
to transform x into y. These fundamental operations are:

substitutions: A character in x is replaced by the corresponding character in y.

insertions: A character in y is inserted into x, thereby increasing the length of x by
one character.

deletions: A character in x is deleted, thereby decreasing the length of x by one
character.
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Occasionally we also consider a fourth operation, interchange, or “twiddle,” or transpo-interchange
sition, which interchanges two neighboring characters in x. Thus, one could transform
x = “asp” into y = “sap” with a single interchange. Because such an interchange
can always be expressed as two substitutions, for simplicity we shall not consider
interchanges.

Let C be an m×n matrix of integers associated with a cost or “distance” and let
δ(·, ·) denote a generalization of the Kronecker delta function, having value 1 if the
two arguments (characters) match and 0 otherwise. The basic edit-distance algorithm
is then:

Algorithm 3 (Edit distance)

1 begin initialize A,x,y,m← length[x], n← length[y]
2 C[0, 0]← 0
3 i← 0
4 do i← i+ 1
5 C[i, 0]← i
6 until i = m
7 j ← 0
8 do j ← j + 1
9 C[0, j]← j

10 until j = n
11 i← 0; j ← 0
12 do i← i+ 1
13 do j ← j + 1
14 C[i, j] = min

[
C[i− 1, j] + 1︸ ︷︷ ︸

insertion

,C[i, j − 1] + 1︸ ︷︷ ︸
deletion

,C[i− 1, j − 1] + 1− δ(x[i],y[j])︸ ︷︷ ︸
no change/exchange

]
15 until j = n
16 until i = m
17 return C[m,n]
18 end

Lines 4 – 10 initialize the left column and top row of C with the integer number
of “steps” away from i = 0, j = 0. The core of this algorithm, line 14, finds the
minimum cost in each entry of C, column by column (Fig. 8.9). Algorithm 3 is
thus greedy in that each column of the distance or cost matrix is filled using merely
the costs in the previous column. Linear programming techniques can also be used
to find a global minimum, though this nearly always requires greater computational
effort (Problem 27).

If insertions and deletions are equally costly, then the symmetry property of a
metric holds. However, we can broaden the applicability of the algorithm by allowing
in line 14 different costs for the fundamental operations; for example insertions might
cost twice as much as substitutions. In such a broader case, properties of symmetry
and the triangle inequality no longer hold and edit distance is not a true metric
(Problem 28).

As shown in Fig. 8.9, x = “excused” can be transformed to y = “exhausted”
through one substitution and two insertions. The table shows the steps of this trans-
formation, along with the computed entries of the cost matrix C. For the case shown,
where each fundamental operation has a cost of 1, the edit distance is given by the
value of the cost matrix at the sink, i.e., C[7,9] = 3.
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deletion:
remove letter of  x

insertion:
insert letter of  y into x 

exchange:
replace letter of  x by letter of  y

no change

e x h a u s t e d

e

x

c

u

s

e

d

x

y

source

sink

j

i

0

0 n

m

0 1 2 3 4 5 6 7 8 9

1 0 1 2 3 4 5 6 7 8

2 1 0 1 2 3 4 5 6 7

3 2 1 1 2 3 4 5 6 7

4 3 2 2 2 2 3 4 5 6

5 4 3 3 3 3 2 3 4 5

6 5 4 4 4 4 3 3 3 4

7 6 5 5 5 5 4 4 4 3

Figure 8.9: The edit distance calculation for strings x and y can be illustrated in
a table. Algorithm 3 begins at source, i = 0, j = 0, and fills in the cost matrix C,
column by column (shown in red), until the full edit distance is placed at the sink,
C[i = m, j = n]. The edit distance between “excused” and “exhausted” is thus 3.

x excused source string C[0,0] = 0
exhused substitute h for c C[3,3] = 1
exhaused insert a C[3,4] = 2
exhausted insert t C[5,7] = 3

y exhausted target string C[7,9] = 3

8.5.3 Computational complexity

Algorithm 3 is O(mn) in time, of course; it is O(m) in space (memory) since only the
entries in the previous column need be stored when computing C[i, j] for i = 0 to m.
Because of the importance of string matching and edit distance throughout computer
science, a number of algorithms have been proposed. We need not delve into the
details here (but see the Bibliography) except to say that there are sophisticated
string-matching algorithms with time complexity O(m+ n).

8.5.4 String matching with errors

There are several versions of the string-matching-with-errors problem; the one that
concerns us is this: given a pattern x and text, find the shift for which the edit
distance between x and a factor of text is minimum. The algorithm for the string-
matching-with-errors problem is very similar to that for edit distance. Let E be a
matrix of costs, analogous to C in Algorithm 3. We seek a shift for which the edit
distance to a factor of text is minimum, or formally min[C(x,y)] where y is any factor
of text. To this end, the algorithm must compute its new cost E whose entries are
E[i, j] = min[C(x[1...i],y[1...j])].

The principal difference between the algorithms for the two problems (i.e., with
or without errors) is that we initialize E[0,j] to 0 in the string matching with errors
problem, instead of to j in lines 4 – 10 of the basic string matching algorithm. This
initialization of E expresses the fact that the “empty” prefix of x matches an empty
factor of text, and contributes no cost.
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Figure 8.10: The string matching with errors problem is to find the shift s for which the
edit distance between x and an aligned factor of text is minimum. In this illustration,
the minimum edit distance is 1, corresponding to the character exchange u → i and
the shift s = 11 is the location.

Two minor heuristics for reducing computational effort are relevant to the string-
matching-with-errors problem. The first is that except in highly unusual cases, the
length of the candidate factors of text that need be considered are roughly equal
to length[x]. Second, for each candidate shift, the edit-distance calculation can be
terminated if it already exceeds the current minimum. In practice, this latter heuris-
tic can reduce the computational burden significantly. Otherwise, the algorithm for
string matching with errors is virtually the same as that for edit distance (Computer
exercise 10).

8.5.5 String matching with the “don’t-care” symbol

String matching with the “don’t-care” symbol, ©/ , is formally the same as basic string
matching, but the ©/ in either x or text is said to match any character (Fig. 8.11).

s

c h _ p a t e r s i n _ l o n g s t rr n g

p a t t r s

/

/

/

/

_

pattern match

text

x

/ /

Figure 8.11: String matching with don’t care symbol is the same as basic string
matching except the ©/ symbol — in either text or x — matches any character. The
figure shows the only valid shift.

An obvious approach to string matching with the don’t care symbol is to modify
the naive string-matching algorithm to include a condition for matching the don’t
care symbol. Such an approach, however, retains the computational inefficiencies of
naive string matching (Problem 29). Further, extending the Boyer-Moore algorithm
to include ©/ is somewhat difficult and inefficient. The most effective methods are
based on fundamental methods in computer arithmetic and, while fascinating, would
take us away from our central concerns of pattern recognition (cf. Bibliography). The
use of this technique in pattern recognition is the same as string matching, with a
particular type of “tolerance.”

While learning is a general and fundamental technique throughout pattern recog-
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nition, it has found limited use in recognition with basic string matching. This is
because the designer typically knows precisely which strings are being sought — they
do not need to be learned. Learning can, of course, be based on the outputs of a
string-matching algorithm, as part of a larger pattern recognition system.

8.6 Grammatical methods

Up to here, we have not been concerned with any detailed models that might underly
the generation of the sequence of characters in a string. We now turn to the case
where rules of a particular sort were used to generate the strings and thus where their
structure is fundamental. Often this structure is hierarchical, where at the highest
or most abstract level a sequence is very simple, but at subsequent levels there is
greater and greater complexity. For instance, at its most abstract level, the string
“The history book clearly describes several wars” is merely a sentence. At
a somewhat more detailed level it can be described as a noun phrase followed by a
verb phrase. The noun phrase can be expanded at yet a subsequent level, as can the
verb phrase. The expansion ends when we reach the words “The,” “history,” and
so forth — items that are considered the “characters,” atomic and without further
structure. Consider too strings representing valid telephone numbers — local, national
and international. Such numbers conform to a strict structure: either a country code
is present or it is not; if not, then the domestic national code may or may not be
present; if a country code is present, then there is a set of permissible city codes and
for each city there is a set of permissible area codes and individual local numbers, and
so on.

As we shall see, such structure is easily specified in a grammar, and when such
structure is present the use of a grammar for recognition can improve accuracy. For in-
stance, grammatical methods can be used to provide constraints for a full system that
uses a statistical recognizer as a component. Consider an optical character recogni-
tion system that recognizes and interprets mathematical equations based on a scanned
pixel image. The mathematical symbols often have specific “slots” that can be filled
with certain other symbols; this can be specified by a grammar. Thus an integral sign
has two slots, for upper and lower limits, and these can be filled by only a limited set
of symbols. (Indeed, a grammar is used in many mathematical typesetting programs
in order to prevent authors from creating meaningless “equations.”) A full system
that recognizes the integral sign could use a grammar to limit the number of candi-
date categories for a particular slot, and this increases the accuracy of the full system.
Similarly, consider the problem of recognizing phone numbers within acoustic speech
in an automatic dialing application. A statistical or Hidden-Markov-Model acoustic
recognizer might perform word spotting and pick out number words such as “eight”
and “hundred.” A subsequent stage based on a formal grammar would then exploit
the fact that telephone numbers are highly constrained, as mentioned.

We shall study the case when crisp rules specify how the representation at one
level leads to a more expanded and complicated representation at the next level. We
sometimes call a string generated by a set of rules a sentence; the rules are specified sentence
by a grammar, denoted G. (Naturally, there is no requirement that these be related
in any way to sentences in natural language such as English.) In pattern recognition,
we are given a sentence and a grammar, and seek to determine whether the sentence
was generated by G.
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8.6.1 Grammars

The notion of a grammar is very general and powerful. Formally, a grammar G
consists of four components:

symbols: Every sentence consists of a string of characters (which are also called
primitive symbols, terminal symbols or letters), taken from an alphabet A. For
bookkeeping, it is also convenient to include the null or empty string denoted ε,null

string which has length zero; if ε is appended to any string x, the result is again x.

variables: These are also called non-terminal symbols, intermediate symbols or oc-
casionally internal symbols, and are taken from a set I.

root symbol: The root symbol or starting symbol is a special internal symbol, theroot
symbol source from which all sequences are derived. The root symbol is taken from a

set S.

productions: The set of production rules, rewrite rules, or simply rules, denoted P,production
rule specify how to transform a set of variables and symbols into other variables and

symbols. These rules determine the core structures that can be produced by the
grammar. For instance if A is an internal symbol and c a terminal symbol, the
rewrite rule cA→ cc means that any time the segment cA appears in a string,
it can be replaced by cc.

Thus we denote a general grammar by its alphabet, its variables, its particular root
symbol, and the rewrite rules: G = (A, I,S,P). The language generated by gram-language
mar, denoted L(G), is the set of all strings (possibly infinite in number) that can be
generated by G.

Consider two examples; the first is quite simple and abstract. Let A = {a, b, c},

S = S, I = {A,B,C}, and P =

 p1: S → aSBA OR aBA p2: AB → BA
p3: bB → bb p4: bA → bc
p5: cA → cc p6: aB → ab

.

(In order to make the list of rewrite rules more compact, we shall condense rules
having the same left hand side by means of the OR on the right hand side. Thus rule
p1 is a condensation of the two rules S → aSBA and S → aBA.) If we start with S
and apply the rewrite rules in the following orders, we have the following two cases:

root S root S
p1 aBA p1 aSBA
p6 abA p1 aaBABA
p4 abc p6 aabABA

p2 aabBAA
p3 aabbAA
p4 aabbcA
p5 aabbcc

After the rewrite rules have been applied in these sequences, no more symbols match
the left-hand side of any rewrite rule, and the process is complete. Such a trans-
formation from the root symbol to a final string is called a production. These twoproduction
productions show that abc and aabbcc are in the language generated by G. In fact,
it can be shown (Problem 38) that this grammar generates the language L(G) =
{anbncn|n ≥ 1}.
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A much more complicated grammar underlies the English language, of course. The
alphabet consists of all English words, A = {the, history, book, sold, over, 1000,
copies, . . . }, and the intermediate symbols are the parts of speech: I = {〈noun〉,
〈verb〉, 〈noun phrase〉, 〈verb phrase〉, 〈adjective〉, 〈adverb〉, 〈adverbial phrase〉}.
The root symbol here is S = 〈sentence〉. A restricted set of the production rules in
English includes:

P =



〈sentence〉 → 〈noun phrase〉〈verb phrase〉
〈noun phrase〉 → 〈adjective〉〈noun phrase〉
〈verb phrase〉 → 〈verb phrase〉〈adverbial phrase〉

〈noun〉 → book OR theorem OR . . .
〈verb〉 → describes OR buys OR holds OR . . .

〈adverb〉 → over OR . . .


This subset of the rules of English grammar does not prevent the generation of mean-
ingless sentences, of course. For instance, the nonsense sentence “Squishy green
dreams hop heuristically” can be derived in this subset of English grammar. Fig-
ure 8.12 shows the steps of a production in a derivation tree, where the root symbol derivation

treeis displayed at the top and the terminal symbols at the bottom.
<sentence>

<noun phrase> <verb phrase>

<adjective> <noun phrase>

<adjective>
The

<noun phrase>

history

<verb> <adverbial phrase>

sold
<preposition> <noun phrase>

over

<adjective> <noun phrase>

<noun>

copies

1000

<noun>

book

Figure 8.12: This derivation tree illustrates how a portion of English grammar can
transform the root symbol, here 〈sentence〉, into a particular sentence or string of
elements, here English words, which are read from left to right.

8.6.2 Types of string grammars

There are four main types of grammar, arising from different types of structure in the
productions. As we have seen, a rewrite rule is of the form α→ β, where α and β are
strings made up of intermediate and terminal symbols.

Type 0: Free or unrestricted Free grammars have no restrictions on the rewrite
rules and thus they provide no constraints or structure on the strings they can
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produce. While in principle they can express an arbitrary set of rules, this
generality comes at the tremendous expense of possibly unbounded learning
time. Knowing that a string is derived from a type 0 grammar provides no
information and as such, type 0 grammars in general have but little use in
pattern recognition.

Type 1: Context-sensitive A grammar is called context-sensitive if every rewrite
rule is of the form

αIβ → αxβ

where α and β are any strings made up of intermediate and terminal symbols,
I is an intermediate symbol and x is an intermediate or terminal symbol (other
than ε). We say that “I can be rewritten as x in the context of α on the left
and β on the right.”

Type 2: Context-free A grammar is called context free if every production is of
the form

I → x

where I is an intermediate symbol and x an intermediate or terminal symbol
(other than ε). Clearly, unlike a type 1 grammar, here there is no need for a
“context” for the rewriting of I by x.

Type 3: Finite State or Regular A grammar is called regular if every rewrite rule
is of the form

α→ zβ OR α→ z

where α and β are made up of intermediate symbols and z is a terminal symbol
(other than ε). Such grammars are also called finite state because they can be
generated by a finite state machine, which we shall see in Fig. 8.16.

A language generated by a grammar of type i is called a type i language. It can be
shown that the class of grammars of type i includes all grammars of type i+ 1; thus
there is a strict hierarchy in grammars.

Any context-free grammar can be converted into one in Chomsky normal form
(CNF). Such a grammar has all rules of the formChomsky

normal
form A→ BC and A→ z

where A, B and C are intermediate symbols (that is, they are in I) and z is a terminal
symbol. For every context-free grammar G, there is another G′ in Chomsky normal
form such that L(G) = L(G′) (Problem 36).

Example 3: A grammar for pronouncing numbers

In order to understand these issues better, consider a grammar that yields pro-
nunciation of any number between 1 and 999,999. The alphabet has 29 basic terminal
symbols, i.e., the spoken words
A = {one, two, . . . , ten, eleven, . . . , twenty, thirty, . . . , ninety, hundred, thousand}.
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There are six non-terminal symbols, corresponding to general six-digit, three-digit,
and two-digit numbers, the numbers between ten and nineteen, and so forth, as will
be clear below:
I = {digits6, digits3, digits2, digit1, teens, tys}.
The root node corresponds to a general number up to six digits in length:
S = digits6.

The set of rewrite rules is based on a knowledge of English:

P =



digits6→ digits3 thousand digits3
digits6→ digits3 thousand OR digits3
digits3→ digit1 hundred digits2
digits3→ digit1 hundred OR digits2
digits2→ teens OR tys OR tys digit1 OR digit1
digit1→ one OR two OR . . . nine
teens→ ten OR eleven OR . . . nineteen
tys→ twenty OR thirty OR . . . OR ninety


The grammar takes digit6 and applies the productions until the elements in the

final alphabet are produced, as shown in the figure. Because it contains rewrite rules
such as digits6 → digits3 thousand, this grammar cannot be type 3. It is easy to
confirm that it is type 2.

digits3 thousand digits3 

digit1 hundred digits2

tys digit1

thirty nine

six

digits2

teens

fourteen

digit6

digits3 thousand digits3 

digit1

two

639,014 2,953

digit1 hundred digits2

tys digit1

fifty three

nine

digit6

These two derivation trees show how the grammar G yields the pronunciation of
639,014 and 2,953. The final string of terminal symbols is read from left to right.

8.6.3 Recognition using grammars

Recognition using grammars is formally very similar to the general approaches used
throughout pattern recognition. Suppose we suspect that a test sentence was gen-
erated by one of c different grammars, G1, G2, . . . , Gc, which can be considered as
different models or classes. A test sentence x is classified according to which gram-
mar could have produced it, or equivalently, the language L(Gi) of which x is a
member.

Up to now we have worked forward — forming a derivation from a root node to
a final sentence. For recognition, though, we must employ the inverse process: that
is, given a particular x, find a derivation in G that leads to x. This process, called
parsing, is virtually always much more difficult than forming a derivation. We now parsing
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discuss one general approach to parsing, and briefly mention two others.

Bottom-up parsing

Bottom-up parsing starts with the test sentence x, and seeks to simplify it, so as to
represent it as the root symbol. The basic approach is to use candidate productions
from P “backwards,” i.e., find rewrite rules whose right hand side matches part of
the current string, and replace that part with a segment that could have produced it.
This is the general method in the Cocke-Younger-Kasami algorithm, which fills a parse
table from the “bottom up.” The grammar must be expressed in Chomsky normalparse

table form and thus the productions P must all be of the form A → BC, a broad but
not all inclusive category of grammars. Entries in the table are candidate strings in a
portion of a valid derivation. If the table contains the source symbol S, then indeed
we can work forward from S and derive the test sentence, and hence x ∈ L(G). In
the following, xi (for i = 1, . . . n) represents the individual terminal characters in the
string to be parsed.

Algorithm 4 (Bottom-up parsing)

1 begin initialize G = (A, I, S,P),x = x1x2 . . . xn
2 i← 0
3 do i← i+ 1
4 Vi1 ← {A | A→ xi}
5 until i = n
6 j ← 1
7 do j ← j + 1
8 i← 0
9 do i← i+ 1

10 Vij ← ∅
11 k ← 0
12 do k ← k + 1
13 Vij ← Vij ∪ {A | A→ BC ∈ P, B ∈ Vik and C ∈ Vi+k,j−k}
14 until k = j − 1
15 until i = n− j + 1
16 until j = n
17 if S ∈ V1n then print “parse of” x “successful in G”
18 return
19 end

Consider the operation of Algorithm 4 in the following simple abstract example.
Let the grammar G have two terminal and three intermediate symbols: A = {a, b},
and I = {A,B,C}. The root symbol is S, and there are just four production rules:

P =


p1 : S → AB OR BC
p2 : A → BA OR a
p3 : B → CC OR b
p4 : C → AB OR a

.

Figure 8.13 shows the parse table generated by Algorithm 4 for the input string x
= “baaba.” Along the bottom are the characters xi of this string. Lines 2 through
5 of the algorithm fill in the first (j = 1) row with any internal symbols that derive
the corresponding character in x. The i = 1 and i = 4 entries of that bottom row are
filled with B, since rewrite rule p3: B → b. Likewise the remaining entries are filled
with both A and C, as a result of rewrite rules p2 and p4.
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The core computation in the algorithm is performed in line 13, which fills entries
throughout the table with symbols that could produce segments in lower rows, and
hence might be part of a valid derivation (if indeed one is found). For instance,
the i = 1, j = 2 entries contain any symbols that could produce segments in the
row beneath it. Thus this entry contains S because by rule p1 : S → BC, and also
contains A because by rule p2 : A → BA. According to the innermost loop over k
(lines 12 – 14), we seek the left hand side for rules that span a range. For instance,
the i = 3, j = 3 entry contains B because for k = 2 and rule p3: B → CC (as shown
in Fig. 8.14).

B

i 

j 

5

4

3

2

1

1 2 3 4 5

A,C A,C B A,C

S,A B S,C S,A

B B

S,A,C

S,A,C

0

0

b a a b a

strings of length 1

strings of length 2

strings of length 3

strings of length 4

strings of length 5

target string x

Figure 8.13: The bottom-up parsing algorithm fills the parse table with symbols that
might be part of a valid derivation. The pink lines are not provided by the algorithm,
but when read downward from the root symbol confirm that a valid derivation exists.

Figure 8.14 shows the cells that are searched when filling a particular cell in the
parse table. The sequence sweeps vertically up to the cell in question, while diagonally
down from the cell in question; this guarantees that the all paths from the top cell
in a valid derivation can be found. If the top cell contains the root symbol S (and
possibly other symbols), then indeed the string is successfully parsed. That is, there
exists a valid production leading from S to the target string x.

To understand how this table is filled, consider first the j = 1 row. The j = 4, i = 1
cell contains B, because according to rewrite rule p3, B is the only intermediate
symbol that could yield b in the query sentence, directly below. The same logic holds
for the i = 1, j = 1 cell. The remaining three cells for j = 1 contain A and C,
since these are the only intermediate variables that can derive a. Incidentally, the
derivation in Fig. 8.15 confirms that the parse is valid.

The computational complexity of bottom-up parsing performed by Algorithm 4 is
high. The innermost loop of line 13 is executed n or fewer times, while lines 7 & 9
are O(n2), which is also the space complexity. The time complexity is O(n3).

Top-down and other methods of parsing

As its name suggests, top-down parsing starts with the root node and successively
applies productions from P, with the goal of finding a derivation of the test sentence
x. Since it is rare that the sentence is derived in a single production, it is necessary to
specify some criteria to guide the choice of which rewrite rule to apply. Such criteria
could include beginning the parse at the first (left) character in the sentence (that
is, finding a small set of rewrite rules that yield the first character), then iteratively
expanding the production to derive subsequent characters.
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Figure 8.14: The innermost loop of Algorithm 4 seeks to fill a cell Vij (outlined in
red) by the left-hand side of any rewrite rule whose right-hand side corresponds to
symbols in the two shaded cells. As k is incremented, the cells queried move vertically
upward to the cell in question, and diagonally down from that cell. The shaded cells
show the possible right-hand sides in a derivation, as illustrated by the pink lines in
Fig. 8.13.

b

S

A B

AB

a

CC

a

a

BA

b

Figure 8.15: This valid derivation of “babaa” in G can be read from the pink lines in
the parse table of Fig. 8.13 generated by the bottom-up parse algorithm.

The bottom-up and top-down parsers just described are quite general and there
are a number of parsing algorithms which differ in space and time complexities. Many
parsing methods depend upon the model underlying the grammar. One popular such
model is finite state machines. Such a machine consists of nodes and transition links;finite

state
machine

each node can emit a symbol, as shown in Fig. 8.16.

8.7 Grammatical inference

In many applications, the grammar is designed by hand. Nevertheless, learning plays
an extremely important role in pattern recognition research and it is natural that
we attempt to learn a grammar from example sentences it generates. When seeking
to follow that general approach we are immediately struck by differences between
the areas addressed by grammatical methods and those that can be described as
statistical. First, for most languages there are many — often an infinite number
of — grammars that can produce it. If two grammars G1 and G2 generate the
same language (and no other sentences), then this ambiguity is of no consequence;
recognition will be the same. However, since training is always based on a finite set
of samples, the problem is underspecified. There are an infinite number of grammars
consistent with the training data, and thus we cannot recover the source grammar
uniquely.
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S A
the

mouse

cow

B
was

C

found

seen

D

by

under

E
the

F

barn

farmer

G

Figure 8.16: One type of finite state machine consists of nodes that can emit terminal
symbols (“the,” “mouse,” etc.) and transition to another node. Such operation can be
described by a grammar. For instance, the rewrite rules for this finite state machine
include S → theA, A→ mouseB OR cowB, and so on. Clearly these rules imply this
finite state machine implements a type 3 grammar. The final internal node (shaded)
would lead to the null symbol ε.

There are two main techniques used to make the problem of inferring a grammar
from instances tractable. The first is to use both positive and negative instances. That
is, we use a set D+ of sentences known to be derivable in the grammar; we also use
a set D− that are known to be not derivable in the grammar. In a multicategory
case, it is common to take the positive instances in Gi and use them for negative
examples in Gj for j 6= i. Even with both positive and negative instances, a finite
training set rarely specifies the grammar uniquely. Thus our second technique is to
impose conditions and constraints. A trivial illustration is that we demand that the
alphabet of the candidate grammar contain only those symbols that appear in the
training sentences. Moreover, we demand that every production rule in the grammar
be used. We seek the “simplest” grammar that explains the training instances where
“simple” generally refers to the total number of rewrite rules, or the sum of their
lengths, or other natural criterion. These are versions of Occam’s razor, that the
simplest explanation of the data is to be preferred (Chap ??).

In broad overview, learning proceeds as follows. An initial grammar G0 is guessed.
Often it is useful to specify the type of grammar (1, 2 or 3), and thus place constraints
on the forms of the candidate rewrite rules. In the absence of other prior information,
it is traditional to make G0 as simple as possible and gradually expand the set of
productions as needed. Positive training sentences x+

i are selected from D+ one by
one. If x+

i cannot be parsed by the grammar, then new rewrite rules are proposed
for P. A new rule is accepted if and only if it is used for a successful parse of x+

i and
does not allow any negative samples to be parsed.

In greater detail, then, an algorithm for inferring the grammar is:

Algorithm 5 (Grammatical inference (overview))

1 begin initialize D+,D−, G0

2 n+ ← |D+ | (number of instances in D+)
3 S ← S
4 A ← set of characters in D+

5 i← 0
6 do i← i+ 1
7 read x+

i from D+

8 if x+
i cannot be parsed by G

9 then do propose additional productions to P and variables to I
10 accept updates if G parses x+

i but no string in D−
11 until i = n+

12 eliminate redundant productions
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13 return G← {A, I,S,P}
14 end

Informally, Algorithm 5 continually adds new rewrite rules as required by the
successive sentences selected from D+ so long as the candidate rewrite rule does not
allow a sentence in D− to be parsed. Line 9 does not state how to choose the specific
candidate rewrite rule, but in practice the rule may be chosen from a predefined set
(with simpler rules selected first), or based on specific knowledge of the underlying
models generating the sentences.

Example 4: Grammar inference

Consider inferring a grammar G from the following positive and negative examples:
D+ = {a, aaa, aaab, aab}, and D− = {ab, abc, abb, aabb}. Clearly the alphabet of G
is A = {a, b}. We posit a single internal symbol for G0, and the simplest rewrite rule
P = {S → A}.

i x+
i P P produces D− ?

1 a
S → A
A → a

No

2 aaa
S → A
A → a
A → aA

No

3 aaab

S → A
A → a
A → aA
A → ab

Yes: ab ∈ D−

3 aaab

S → A
A → a
A → aA
A → aab

No

4 aab

S → A
A → a
A → aA
A → aab

No

The table shows the progress of the algorithm. The first positive instance, a,
demands a rewrite rule A → a. This rule does not allow any sentences in D− to be
derived, and thus is accepted for P. When i = 3, the proposed rule A → ab indeed
allows x+

3 to be derived, but the rule is rejected because it also derives a sentence
in D−. Instead, the next proposed rule, A → aab is accepted. The final grammar
inferred has the four rewrite rules shown at the bottom of the table.

The method of grammatical inference just described is quite general. It is made
more specialized by placing restrictions on the types of candidate rewrite rules, cor-
responding to the designer’s assumptions about the type of grammar (1, 2 or 3). For
a type 3 grammar, we can consider learning in terms of the finite state machine. In
that case, learning consists of adding nodes and links (cf. Bibliography).
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8.8 *Rule-based methods

In problems where classes can be characterized by general relationships among entities,
rather than by instances per se, it becomes attractive to build classifiers based on rules.
Rule-based methods are integral to expert systems in artificial intelligence, but since
they have found only modest use in pattern recognition, we shall give merely a short
overview. We shall focus on a broad class of if-then rules for representing and learning if-then

rulesuch relationships.
A very simple if-then rule is

IF Swims(x) AND HasScales(x) THEN Fish(x),

which means, of course, that if an object x has the property that it swims, and the
property that it has scales, then it is a fish. Rules have the great benefits that they
are easily interpreted and can be used in database applications where information is
encoded in relations. A drawback is that there is no natural notion of probability and
it is somewhat difficult, therefore, to use rules when there is high noise and a large
Bayes error.

A predicate, such as Man(·), HasTeeth(·) and AreMarried(·,·), is a test that predicate
returns a value of logical True or False.∗ Such predicates can apply to problems where
the data are numerical non-numerical, linguistic, strings, or any of a broad class of
types. The choice of predicates and their evaluation depend strongly on the problem,
of course, and in practice these are generally more difficult tasks than learning the
rules. For instance, Fig. 8.17 below illustrates the use of rules in categorizing a
structure as an arch. Such a rule might involve predicates such as Touch(·, ·) or
Supports(·, ·, ·) which address whether two blocks touch, or whether two blocks
support a third. It is a very difficult problem in computer vision to evaluate such
predicates based on a pixel image taken of the scene.

There are two main types of if-then rules: propositional (variable-free) and first- propositional
logicorder. A propositional rule describes a particular instance, as in

first-order
logicIF Male(Bill) AND IsMarried(Bill) THEN IsHusband(Bill),

where Bill is a particular atomic item. Because its properties are fixed, Bill is an
example of a (logical) constant. The deficiency of propositional logic is that it provides constant
no general way to represent general relations among a large number of instances. For
example, even if we knew Male(Edward) and IsMarried(Edward) are both True, the
above rule would not allow us to infer that Edward is is a husband, since that rule
applies only to the particular constant Bill.

This deficiency is overcome in first-order logic, which permit rules with variables, variable
such as

IF Eats(x, y) AND HasFlesh(x) THEN Carnivore(y),

where here x and y are the variables. This rule states that for any items x and y, if
y eats x and x has flesh, then y is a carnivore. Clearly this is a very powerful sum-
mary of an enormous wealth of examples — first-order rules are far more expressive
∗ We shall ignore cases where a predicate is Undefined.
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than classical propositional logic. The power of first-order logic is illustrated in the
following rules:

IF Male(x) AND IsMarried(y, z) THEN IsHusband(x),
IF Parent(x, y) AND Parent(y, z) THEN GrandParent(x, z)

and
IF Spouse(x, y) THEN Spouse(y, x).

A rule from first-order logic can also apply to constants, for instance:

IF Eats(Mouse, Cat) AND Mammal(Mouse) THEN Carnivore(Cat),

where Cat and Mouse are two particular constants.
If-then rules can also incorporate functions, which return numerical values, asfunction

illustrated in the following:

IF Male(x) AND (Age(x) < 16) THEN Boy(x),

where (Age(x) is a function that returns a numerical age in years while the expression
or term (Age(x) < 16) returns either logical True or False. In sum, the above ruleterm
states that a male younger than 16 years old is a boy. If we were to use decision trees
or statistical techniques, we would not be able to learn this rule perfectly, even given
a tremendously large number of examples.

It is clear given a set of first-order rules how to use them in pattern classification:
we merely present the unknown item and evaluate the propositions and rules. Thus
consider the long rule

IF IsBlock(x) AND IsBlock(y) AND IsBlock(z)
AND Touch(x, y) AND Touch(x, z) AND NotTouch(y, z) (11)

AND Supports(x, y, z) THEN Arch(x, y, z),

where Supports(x,y,z) means that x is supported by both y and z. We stress that
designing algorithms to implement IsBlock(·), Supports(·,·,·) and so on can be
extremely difficult; there is little we can say about them here other than that nearly
always building these component algorithms represents the greatest effort in designing
the overall classifier. Nevertheless, given reliable such algorithms, the rule could be
used to classify simple structures as an arch or non-arch (Fig. 8.17).

8.8.1 Learning rules

Now we turn briefly to the learning of such if-then rules. We have already seen several
ways to learn rules. For instance, we can train a decision tree via CART, ID3, C4.5
or other algorithm, and then simplify the tree to extract rules (Sect. 8.4). For cases
where the underlying data arises from a grammar, we can infer the particular rules via
the methods in Sect. 8.7. A key distinction in the approach we now discuss is that they
can learn sets of first-order rules containing variables. As in grammatical inference,
our approach to learning rules from a set of positive and negative examples, D+ and
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y z

x

y

x

y z

x

z

Figure 8.17: The rule in Eq. 11 identifies the figure on the left as an example of Arch,
but not the other two figures. In practice, it is very difficult to develop subsystems that
evaluate the propositions themselves, for instance Touch(x,y) and Supports(x,y,z).

D−, is to learn a single rule, delete the examples that it explains, and iterate. Such
sequential covering learning algorithms lead to a disjunctive set of rules that “cover”sequential

covering the training data. After such training it is traditional to simplify the resulting logical
rule by means of standard logical methods.

The designer must specify the predicates and functions, based on a prior knowledge
of the problem domain. The algorithm begins by considering the most general rules
using these predicates and functions, and finds the “best” simple rule. Here, “best”
means that the rule describes the largest number of training examples. Then, the
algorithm searches among all refinements of the best rule, choosing the refinement
that too is “best.” This process is iterated until no more refinements can be added,
or when the number of items described is maximum. In this way a single, though
possibly complex, if-then rule has been learned (Fig. 8.18). The sequential covering
algorithm iterates this process and returns a set of rules. Because of its greedy nature,
the algorithm need not learn the smallest set of rules.

IF Swims(x)
THEN  Fish(x)=T

IF (Width(x)>2m)
THEN  Fish(x)=F

IF HasHair(x)
THEN  Fish(x)=F

IF Runs(x)
THEN  Fish(x)=F

IF HasEyes(x)
THEN  Fish(x)=T

IF Swims(x)
  HasHair(x)
THEN  Fish(x)=F

IF Swims(x)
  Runs(x)
THEN  Fish(x)=F

IF Swims(x)
  LaysEggs(x)
THEN  Fish(x)=T

IF Swims(x)
  HasScales(x)
THEN  Fish(x)=T

IF Swims(x)
  (Weight(x)>9kg)
THEN  Fish(x)=F

IF Swims(x)
  HasScales(x)
  HasEyes(x)
THEN  Fish(x)=T

IF Swims(x)
  HasScales(x)
  HasGills(x)
THEN  Fish(x)=T

IF Swims(x)
  HasScales(x)
  (Length(x)>5m)
THEN  Fish(x)=F

IF  
THEN  Fish(x)=T

Figure 8.18: In sequential covering, candidate rules are searched through successive
refinements. First, the “best” rule having a single conditional predicate is found, i.e.,
the one explaining most training data. Next, other candidate predicates are added,
the best compound rule selected, and so forth.

A general approach is to search first through all rules having a single attribute.
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Next, consider the rule having a single conjunction of two predicates, then these
conjunctions, and so on. Note that this greedy algorithm need not be optimal — that
is, it need not yield the most compact rule.

Summary

Non-metric data consists of lists of nominal attributes; such lists might be unordered
or ordered (strings). Tree-based methods such as CART, ID3 and C4.5 rely on answers
to a series of questions (typically binary) for classification. The designer selects the
form of question and the tree is grown, starting at the root node, by finding splits
of data that make the representation more “pure.” There are several acceptable
impurity measures, such as misclassification, variance and Gini; the entropy impurity,
however, has found greatest use. To avoid overfitting and to improve generalization,
one must either employ stopped splitting (declaring a node with non-zero impurity to
be a leaf), or instead prune a tree trained to minimum impurity leafs. Tree classifiers
are very flexible, and can be used in a wide range of applications, including those with
data that is metric, non-metric or in combination.

When comparing patterns that consist of strings of non-numeric symbols, we use
edit distance — a measure of the number of fundamental operations (insertions, dele-
tions, exchanges) that must be performed to transform one string into another. While
the general edit distance is not a true metric, edit distance can nevertheless be used
for nearest-neighbor classification. String matching is finding whether a test string
appears in a longer text. The requirement of a perfect match in basic string matching
can be relaxed, as in string matching with errors, or with the don’t care symbol. These
basic string and pattern recognition ideas are simple and straightforward, addressing
them in large problems requires algorithms that are computationally efficient.

Grammatical methods assume the strings are generated from certain classes of
rules, which can be described by an underlying grammar. A grammar G consists of
an alphabet, intermediate symbols, a starting or root symbol and most importantly
a set of rewrite rules, or productions. The four different types of grammars — free,
context-sensitive, context-free, and regular — make different assumptions about the
nature of the transformations. Parsing is the task of accepting a string x and deter-
mining whether it is a member of the language generated by G, and if so, finding a
derivation. Grammatical methods find greatest use in highly structured environments,
particularly where structure lies at many levels. Grammatical inference generally uses
positive and negative example strings (i.e., ones in the language generated by G and
ones not in that language), to infer a set of productions.

Rule-based systems use either propositional logic (variable-free) or first-order logic
to describe a category. In broad overview, rules can be learned by sequentially “cov-
ering” elements in the training set by successively more complex compound rules.

Bibliographical and Historical Remarks

Most work on decision trees addresses problems in continuous features, though a
key property of the method is that they apply to nominal data too. Some of the
foundations of tree-based classifiers stem from the Concept Learning System described
in [42], but the important book on CART [10] provided a strong statistics foundation
and revived interest in the approach. Quinlan has been a leading exponent of tree
classifiers, introducing ID3 [66], C4.5 [69], as well as the application of minimum
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description length for pruning [71, 56]. A good overview is [61], and a comparison
of multivariate decision tree methods is given in [11]. Splitting and pruning criteria
based on probabilities are explored in [53], and the use of an interesting information
metric for this end is described in [52]. The Gini index was first used in analysis
of variance in categorical data [47]. Incremental or on-line learning in decision trees
is explored in [85]. The missing variable problem in trees is addressed in [10, 67],
which describe methods more general than those presented here. An unusual parallel
“neural” search through trees was presented in [78].

The use of edit distance began in the 1970s [64]; a key paper by Wagner and Fischer
proposed the fundamental Algorithm 3 and showed that it was optimal [88]. The
explosion of digital information, especially natural language text, has motivated work
on string matching and related operations. An excellent survey is [5] and two thorough
books are [23, 82]. The computational complexity of string algorithms is presented
in [21, Chapter 34]. The fast string matching method of Algorithm 2 was introduced
in [9]; its complexity and speedups and improvements were discussed in [18, 35, 24,
4, 40, 83]. String edit distance that permits block-level transpositions is discussed
in [48]. Some sophisticated string operations — two-dimensional string matching,
longest common subsequence and graph matching — have found only occasionally
use in pattern recognition. Statistical methods applied to strings are discussed in
[26]. Finite-state automata have been applied to several problems in string matching
[23, Chapter 7], as well as time series prediction and switching, for instance converting
from an alphanumeric representation to a binary representation [43]. String matching
has been applied to the recognition DNA sequences and text, and is essential in most
pattern recognition and template matching involving large databases of text [14].
There is a growing literature on special purpose hardware for string operations, of
which the Splash-2 system [12] is a leading example.

The foundations of a formal study of grammar, including the classification of
grammars, began with the landmark book by Chomsky [16]. An early exposition
of grammatical inference [39, Chapter 6] was the source for much of the discussion
here. Recognition based on parsing (Latin pars orationis or “part of speech”) has
been fundamental in automatic language recognition. Some of the earliest work on
three-dimensional object recognition relied on complex grammars which described
the relationships of corners and edges, in block structures such arches and towers.
It was found that such systems were very brittle; they failed whenever there were
errors in feature extraction, due to occlusion and even minor misspecifications of the
model. For the most part, then, grammatical methods have been abandoned for object
recognition and scene analysis [60, 25]. Grammatical methods have been applied to
the recognition of some simple, highly structured diagrams, such as electrical circuits,
simple maps and even Chinese/Japanese characters. For useful surveys of the basic
ideas in syntactic pattern recognition see [33, 34, 32, 13, 62, 14], for parsing see [28, 3],
for grammatical inference see [59]. The complexity of parsing type 3 is linear in the
length of the string, type 2 is low-order polynomial, type 1 is exponential; pointers to
the relevant literature appear in [76]. There has been a great deal of work on parsing
natural language and speech, and a good textbook on artificial intelligence addressing
this topic and much more is [75]. There is much work on inferring grammars from
instances, such as Crespi-Reghizzi algorithm (context free) [22]. If queries can be
presented interactively, the learning of a grammar can be speeded [81].

The methods described in this chapter have been expanded to allow for stochastic
grammars, where there are probabilities associated with rules [20]. A grammar can
be considered a specification of a prior probability for a class; for instance, a uniform
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prior over all (legal) strings in the language L. Error-correcting parsers have been
used when random variations arise in an underlying stochastic grammar [50, 84]. One
can also apply probability measures to languages [8].

Rule-based methods have formed the foundation of expert systems, and have been
applied extensively through many branches of artificial intelligence such as planning,
navigation and prediction; their use in pattern recognition has been modest, however.
Early influential systems include DENDRAL, for inferring chemical structure from
mass spectra [29], PROSPECTOR, for finding mineral deposits [38], and MYCIN,
for medical diagnosis [79]. Early use of rule induction for pattern recognition include
that of Michalski [57, 58]. Figure 8.17 was inspired by Winston’s influential work
on learning simple geometrical structures and relationships [91]. Learning rules can
be called inductive logic programming; Clark and Niblett have made a number of
contributions to the field, particularly their CN2 induction algorithm [17]. Quinlan,
who has contributed much to the theory and application of tree-based classifiers,
describes his FOIL algorithm, which uses a minimum description length criterion to
stop the learning of first-order rules [68]. Texts on inductive logic include [46, 63] and
general machine learning, including inferencing [44, 61].

Problems⊕
Section 8.2

1. When a test pattern is classified by a decision tree, that pattern is subjected
to a sequence of queries, corresponding to the nodes along a path from root to leaf.
Prove that for any decision tree, there is a functionally equivalent tree in which every
such path consists of distinct queries. That is, given an arbitrary tree prove that
it is always possible to construct an equivalent tree in which no test pattern is ever
subjected to the same query twice.⊕

Section 8.3

2. Consider classification trees that are non-binary.

(a) Prove that for any arbitrary tree, with possibly unequal branching ratios through-
out, there exists a binary tree that implements the same classification function.

(b) Consider a tree with just two levels — a root node connected to B leaf nodes
(B ≥ 2). What are the upper and the lower limits on the number of levels in a
functionally equivalent binary tree, as a function of B?

(c) As in part (b), what are the upper and lower limits on the number of nodes in
a functionally equivalent binary tree?

3. Compare the computational complexities of a monothetic and a polythetic tree
classifier trained on the same data as follows. Suppose there are n/2 training patterns
in each of two categories. Every pattern has d attributes, each of which can take on
k discrete values. Assume that the best split evenly divides the set of patterns.

(a) How many levels will there be in the monothetic tree? The polythetic tree?

(b) In terms of the variables given, what is the complexity of finding the optimal
split at the root of a monothetic tree? A polythetic tree?
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(c) Compare the total complexities for training the two trees fully.

4. The task here is to find the computational complexity of training a tree classifier
using the twoing impurity where candidate splits are based on a single feature. Sup-
pose there are c classes, ω1, ω2, ..., ωc, each with n/c patterns that are d-dimensional.
Proceed as follows:

(a) How many possible non-trivial divisions into two supercategories are there at
the root node?

(b) For any one of these candidate supercategory divisions, what is the computa-
tional complexity of finding the split that minimizes the entropy impurity?

(c) Use your results from parts (a) & (b) to find the computational complexity of
finding the split at the root node.

(d) Suppose for simplicity that each split divides the patterns into equal subsets
and furthermore that each leaf node corresponds to a single pattern. In terms
of the variables given, what will be the expected number of levels of the tree?

(e) Naturally, the number of classes represented at any particular node will depend
upon the level in the tree; at the root all c categories must be considered, while at
the level just above the leaves, only 2 categories must be considered. (The pairs
of particular classes represented will depend upon the particular node.) State
some natural simplifying assumptions, and determine the number of candidate
classes at any node as a function of level. (You may need to use the floor or
ceiling notation, bxc or dxe, in your answer, as described in the Appendix.)

(f) Use your results from part (e) and the number of patterns to find the compu-
tational complexity at an arbitrary level L.

(g) Use all your results to find the computational complexity of training the full
tree classifier.

(h) Suppose there n = 210 patterns, each of which is d = 6 dimensional, evenly
divided among c = 16 categories. Suppose that on a uniprocessor a fundamental
computation requires roughly 10−10 seconds. Roughly how long will it take to
train your classifier using the twoing criterion? How long will it take to classify
a single test pattern?

5. Consider training a binary tree using the entropy impurity, and refer to Eqs. 1 &
5.

(a) Prove that the decrease in entropy impurity provided by a single yes/no query
can never be greater than one bit.

(b) For the two trees in Example 1, verify that each split reduces the impurity
and that this reduction is never greater than 1 bit. Explain nevertheless why
the impurity at a node can be lower than at its descendent, as occurs in that
Example.

(c) Generalize your result from part (a) to the case with arbitrary branching ratio
B ≥ 2.
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6. Let P (ω1), . . . , P (ωc) denote the probabilities of c classes at node N of a binary

classification tree, and
c∑
j=1

P (ωj) = 1. Suppose the impurity i(P (ω1), . . . , P (ωc)) at

N is a strictly concave function of the probabilities. That is, for any probabilities

ia = i(P a(ω1), . . . , P a(ωc))
ib = i(P b(ω1), . . . , P b(ωc))

and
i∗(α) = i(α1P

a(ω1) + (1− α1)P b(ω1), . . . , αcP a(ωc) + (1− αc)P b(ωc)),

then for 0 ≤ αj ≤ 1 and
c∑
j=1

αj = 1, we have

ia ≤ i∗ ≤ ib.

(a) Prove that for any split, we have ∆i(s, t) ≥ 0, with equality if and only if
P (ωj |TL) = P (ωj |TR) = P (ωj |T ), for j = 1, . . . , c. In other words, for a concave
impurity function, splitting never increases the impurity.

(b) Prove that entropy impurity (Eq. 1) is a concave function.

(c) Prove that Gini impurity (Eq. 3) is a concave function.

7. Show that the surrogate split method described in the text corresponds to the
assumption that the missing feature (attribute) is the one most informative.
8. Consider a two-category problem and the following training patterns, each having

four binary attributes:

ω1 ω2

0110 1011
1010 0000
0011 0100
1111 1110

(a) Use the entropy impurity (Eq. 1) to create by hand an unpruned classifier for
this data.

(b) Apply simple logical reduction methods to your tree in order to express each
category by the simplest logical expression, i.e., with the fewest ANDs and ORs.

9. Show that the time complexity of recall in an unpruned, fully trained tree classifier
with uniform branching ratio is O(log n) where n is the number of training patterns.
For uniform branching factor, B, state the exact functional form of the number of
queries applied to a test pattern as a function of B.
10. Consider impurity functions for a two-category classification problem as a func-

tion of P (ω1) (and implicitly P (ω2) = 1−P (ω1)). Show that the simplest reasonable
polynomial form for the impurity is related to the sample variance as follows:

(a) Consider restricting impurity functions to the family of polynomials in P (ω1).
Explain why i must be at least quadratic in P (ω1).
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(b) Write the simplest quadratic form for P (ω1) given the boundary conditions
i(P (ω1) = 0) = i(P (ω1) = 1) = 0; show that your impurity function can be
written i ∝ P (ω1)P (ω2).

(c) Suppose all patterns in category ω1 are assigned the value 1.0, while all those in
ω2 the value 0.0, thereby giving a bimodal distribution. Show that your impurity
measure is proportional to the sample variance of this full distribution. Interpret
your answer in words.

11. Show how general costs, represented in a cost matrix λij , can be incorporated
into the misclassification impurity (Eq. 4) during the training of a multicategory tree.
12. In this problem you are asked to create tree classifiers for a one-dimensional two-

category problem in the limit of large number of points, where P (ω1) = P (ω2) = 1/2,
p(x|ω1) ∼ N(0, 1) and p(x|ω2) ∼ N(1, 2), and all nodes have decisions of the form “is
x ≤ xs” for some threshold xs. Each binary tree will be small — just a root node plus
two other (non-terminal) nodes and four leaf nodes. For each of the four impurity
measures below, state the splitting criteria (i.e., the value xs at each of the three
non-terminal nodes), as well as the final test error. Whenever possible, express your
answers functionally, possibly using the error function erf(·), as well as numerically.

(a) Entropy impurity (Eq. 1).

(b) Gini impurity (Eq. 3).

(c) Misclassification impurity (Eq. 4).

(d) Another splitting rule is based on the so-called Kolmogorov-Smirnov test. Let Kolmogorov-
Smirnov
test

the cumulative distributions for a single variable x for each categories be Fi(x)
for i = 1, 2. The splitting criterion is the maximum difference in the cumulative
distributions, i.e.,

max
xs
|F1(xs)− F2(xs)|.

(e) Using the methods of Chap. ??, calculate the Bayes decision rule, and the Bayes
error.

13. Repeat Problem 12 but for two one-dimensional Cauchy distributions,

p(x|ωi) =
1
πbi
· 1

1 +
(
x−ai
bi

)2 , i = 1, 2,

with P (ω1) = P (ω2) = 1/2, a1 = 0, b1 = 1, a2 = 1 and b2 = 2. (Here error functions
are not needed.)
14. Generalize the missing attribute problem to the case of several missing features,

and to several deficient patterns. Specifically, write pseudocode for creating a binary
decision tree where each d-dimensional pattern can have multiple missing features.
15. During the growing of a decision tree, a node represents the following six-

dimensional binary patterns:



50 CHAPTER 8. NON-METRIC METHODS

ω1 ω2

110101 011100
101001 010100
100001 011010
101101 010000
010101 001000
111001 010100
100101 111000
011000 110101

Candidate decision are based on single feature values.

(a) Which feature should be used for splitting?

(b) Recall the use of statistical significance for stopped splitting. What is the null
hypothesis in this example?

(c) Calculate chi-squared for your decision in part (a). Does it differ significantly
from the null hypothesis at the 0.01 confidence level? Should splitting be
stopped?

(d) Repeat part (c) for the 0.05 level.

16. Consider the following patterns, each having four binary-valued attributes:

ω1 ω2

1100 1100
0000 1111
1010 1110
0011 0111

Note especially that the first patterns in the two categories are the same.

(a) Create by hand a binary classification tree for this data. Train your tree so that
the leaf nodes have the lowest impurity possible.

(b) Suppose it is known that during testing the prior probabilities of the two cat-
egories will not be equal, but instead P (ω1) = 2P (ω2). Modify your training
method and use the above data to form a tree for this case.

⊕
Section 8.4

17. Consider training a binary decision tree to classify two-component patterns from
two categories. The first component is binary, 0 or 1, while the second component
has six possible values, A through F:

ω1 ω2

1A 0A
0E 0C
0B 1C
1B 0F
1F 0B
0D 1D
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Compare splitting the root node based on the first feature with splitting it on the
second feature in the following way.

(a) Use an entropy impurity with a two-way split (i.e., B = 2) on the first feature
and a six-way split on the second feature.

(b) Repeat (a) but using a gain ratio impurity.

(c) In light of your above answers discuss the value of gain ratio impurity in cases
where splits have different branching ratios.

⊕
Section 8.5

18. Consider strings x and text, of length m and n, respectively, from an alphabet A
consisting of d characters. Assume that the naive string-matching algorithm (Algo-
rithm 1) exits the implied loop in line 4 as soon as a mismatch occurs. Prove that the
number of character-to-character comparisons made on average for random strings is

(n−m+ 1)
1− d−m
1− d−1

≤ 2(n−m+ 1).

19. Consider string matching using the Boyer-Moore algorithm (Algorithm 2) based
on the trinary alphabet A = {a, b, c}. Apply the good-suffix function G and the
last-occurrence function F to each of the following strings:

(a) “acaccacbac”

(b) “abababcbcbaaabcbaa”

(c) “cccaaababaccc”

(d) “abbabbabbcbbabbcbba”

20. Consider the string-matching problem illustrated in the top of Fig. 8.8. Assume
text began at the first character of “probabilities.”

(a) How many basic character comparisons are required by the naive string-matching
algorithm (Algorithm 1) to find a valid shift?

(b) How many basic character comparisons are required by the Boyer-Moore string
matching algorithm (Algorithm 2)?

21. For each of the texts below, determine the number of fundamental character
comparisons needed to find all valid shifts for the test string x = “abcca” using
the naive string-matching algorithm (Algorithm 1) and the Boyer-Moore algorithm
(Algorithm 2).

(a) “abcccdabacabbca”

(b) “dadadadadadadad”

(c) “abcbcabcabcabc”

(d) “accabcababacca”
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(e) “bbccacbccabbcca”

22. Write pseudocode for an efficient construction of the last-occurrence function F
used in the Boyer-Moore algorithm (Algorithm 2). Let d be the number of elements
in the alphabet A, and m the length of string x.

(a) What is the time complexity of your algorithm in the worst case?

(b) What is the space complexity of your algorithm in the worst case?

(c) How many fundamental operations are required to compute F for the 26-
letter English alphabet for x = “bonbon”? For x = “marmalade”? For x =
“abcdabdabcaabcda”?

23. Consider the training data from the trinary alphabet A = {a, b, c} in the table

ω1 ω2 ω3

aabbc bccba caaaa
ababcc bbbca cbcaab
babbcc cbbaaaa baaca

Use the simple edit distance to classify each of the below strings. If there are ambi-
guities in the classification, state which two (or all three) categories are candidates.

(a) “abacc”

(b) “abca”

(c) “ccbba”

(d) “bbaaac”

24. Repeat Problem 23 using its training data but the following test data:

(a) “ccab”

(b) “abdca”

(c) “abc”

(d) “bacaca”

25. Repeat Problem 23 but assume that the cost of different string transformations
are not equal. In particular, assume that an interchange is twice as costly as an
insertion or a deletion.
26. Consider edit distance with positive but otherwise arbitrary costs associated

with each of the fundamental operations of insertion, deletion and substitution.

(a) Which of the criteria for a metric are always obeyed and which not necessarily
obeyed?

(b) For any criteria that are not always obeyed, construct a counterexample.

27. Algorithm 3 employs a greedy heuristic for computing the edit distance between
two strings x and y; it need not give a global optimum. In the following, let |x| = n1

and |y| = n2.
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(a) State the computational complexity of an exhaustive examination of all trans-
formations of x into y. (Assume that no transformation need be considered if
it leads to a string shorter than Min[n1, n2] or longer than Max[n1, n2].)

(b) Recall from Chap. ?? the basic approach of linear programming. Write pseu-
docode that would apply linear programming to the calculation of edit distances.

28. Consider the general edit distance with positive costs and whether it has the
four properties of a true metric: non-negativity, reflexivity, symmetry and the triangle
inequality.
29. Consider strings x and text, of length m and n, respectively, from an alphabet
A consisting of d characters.

(a) Modify the pseudocode of the naive string-matching algorithm to include the
don’t care symbol.

(b) Employ the assumptions of Problem 18 but also that x has exactly k don’t
care symbols while text has none. Find the number of character-to-character
comparisons made on average for otherwise random strings.

(c) Show that in the limit of k = 0 your answer is closely related to that of Prob-
lem 18.

(d) What is your answer in part (b) in the limit k = m?

⊕
Section 8.6

30. Mathematical expressions in the computer language Lisp are of the form
(operation operand1 operand2) where spaces delineate potentially ambiguous sym-
bols and expressions can be nested, for example (quotient (plus 4 9) 6).

(a) Write a simple grammar for the four basic arithmetic operations plus, difference,
times and quotient, applied to positive single-digit integers. Be sure to include
parentheses in your alphabet.

(b) Determine by hand whether each of the following candidate Lisp expressions can
be derived in your grammar, and if so, show a corresponding derivation tree.

• (times (plus (difference 5 9)(times 3 8))(quotient 2 6))

• (7 difference 2)

• (quotient (7 plus 2) (plus 6 3))

• ((plus) (6 2))

• (difference (plus 5 9) (difference 6 8)) .

31. Consider the language L(G) = {anb|n ≥ 1}.

(a) Construct by hand a grammar that generates this language.

(b) Use G to form derivation trees for the strings “ab” and “aaaaab.”

32. Consider the grammar G: A = {a, b, c}, S = S, I = {A,B} and
P = {S → cAb, A→ aBa, B → aBa, B → cb}.
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(a) What type of grammar is G?

(b) Prove that this grammar generates the language L(G) = {cancbanb|n ≥ 1}.

(c) Draw the derivation tree the following two strings: “caacbaab” and “cacbab.”

33. A palindrome is a sequence of characters that reads the same forward andpalindrome
backward, such as “i,” “tat,” “boob,” and “sitonapotatopanotis.”

(a) Write a grammar that generates all palindromes using 26 English letters (no
spaces). Use your grammar to show a derivation tree for “noon” and “bib.”

(b) What type is your grammar (0, 1, 2 or 3)?

(c) Write a grammar that generates all words that consist of a single letter followed
by a palindrome. Use your grammar to show a derivation tree for “pi,” “too,”
and “stat.”

34. Consider the grammar G in Example 3.

(a) How many possible derivations are there in G for numbers 1 through 999?

(b) How many possible derivations are there for numbers 1 through 999,999?

(c) Does the grammar allow any of the numbers (up to six digits) to be pronounced
in more than one way?

35. Recall that ε is the empty string, defined to have zero length, and no man-
ifestation in a final string. Consider the following grammar G: A = {a}, S = S,
I = {A,B,C,D,E} and eight rewrite rules:

P =


S → ACaB Ca → aaC

CB → DB CB → E
aD → Da aD → AC
aE → Ea AE → ε

 .

(a) Note how A and B mark the beginning and end of the sentence, respectively,
and that C is a marker that doubles the number of as (while moving from left
to right through the word). Prove that the language generated by this grammar
is L(G) = {a2n |n > 0}.

(b) Show a derivation tree for “aaaa” and for “aaaaaaaa” (cf. Computer exer-
cise ??).

36. Explore the notion of Chomsky normal form in the following way.

(a) Show that the grammar G with A = {a, b}, S = S, I = {A,B} and rewrite
rules:

P =

 S → bA OR aB
A → bAA OR aS OR a
B → aBB OR bS OR b

 ,

is not in Chomsky normal form.
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(b) Show that grammar G′ with A = {a, b}, S = S, I = {A,B,Ca, Cb, D1, D2},
and

P =


S → CbA OR CaB D1 → AA
A → CaS OR CbD1 OR a D2 → BB
B → CbS OR CaD2 OR b Ca → a

Cb → b

 .

is in Chomsky normal form.

(c) Show that G and G′ are equivalent by converting the rewrite rules of G into
those of G′ in the following way. Note that the rules A → a and B → b of G
are already acceptable. Now convert other rules of G appropriate for Chomsky
normal form. First replace S → bA in G by S → CbA and Cb → b. Likewise,
replace A → aS by A → CaS and Ca → a. Continue in this way, keeping in
mind the final form of the rewrite rules of G′.

(d) Give a derivation of “aabab” in G and in G′.

37. Prove that each of the following languages are not context-free.

(a) L(G) = {aibjck|i < j < k}.

(b) L(G) = {ai|i a prime}.

38. Consider a grammar with A = {a, b, c}, S = S, I = {A,B}, and

P =

 S → aSBA OR aBA AB → BA
bB → bb bA → bc
cA → cc aB → ab

 .

Prove that this grammar generates the language L(G) = {anbncn|n ≥ 1}.
39. Try to parse by hand the following utterances. For each successful parse, show

the corresponding derivation tree.

• three hundred forty two thousand six hundred nineteen

• thirteen

• nine hundred thousand

• two thousand six hundred thousand five

• one hundred sixty eleven

⊕
Section 8.7

40. Let D1 = {ab, abb, abbb} and D2 = {ba, aba, babb} be positive training examples
from two grammars, G1 and G2, respectively.

(a) Suppose both grammars are of type 3. Generate some candidate rewrite rules.

(b) Infer grammar G1 using D2 as negative examples.

(c) Infer grammar G2 using D1 as negative examples.
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(d) Use your trained grammars to classify the following sentences; label any sentence
that cannot be parsed in either grammar as “ambiguous”: “bba,”“abab,”“bbb”and
“abbbb.”

⊕
Section 8.8

41. For each of the below, write an rule giving an equivalent relation using any of
the following predicates: Male(·), Female(·), Parent(·,·), Married(·,·),

(a) Sister(·,·), where Sister(x,y) = True means that x is the sister of y.

(b) Father(·,·), where Father(x,y) = True means that x is the father of y.

(c) Grandmother(·,·), where Grandmother(x,y) = True means that x is the grand-
mother of y.

(d) Husband(·,·), where Husband(x,y) = True means that x is the husband of y.

(e) IsWife(·), where IsWife(x) = True means that simply that x is a wife.

(f) Siblings(·,·)

(g) FirstCousins(·,·)

Computer exercises

Several exercises will make use of the following data sampled from three categories.
Each of the five features takes on a discrete feature, indicated by the range listed at
the along the top. Note particularly that there are different number of samples in
each category, and that the number of possible values for the features is not the same.
For instance, the first feature can take on four values (A − D, inclusive), while the
last feature can take on just two (M −N).

sample category A−D E −G H − J K − L M −N
1 ω1 A E H K M
2 ω1 B E I L M
3 ω1 A G I L N
4 ω1 B G H K M
5 ω1 A G I L M
6 ω2 B F I L M
7 ω2 B F J L N
8 ω2 B E I L N
9 ω2 C G J K N
10 ω2 C G J L M
11 ω2 D G J K M
12 ω2 B D I L M
13 ω3 D E H K N
14 ω3 A E H K N
15 ω3 D E H L N
16 ω3 D F J L N
17 ω3 A F H K N
18 ω3 D E J L M
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⊕
Section 8.3

1. Write a general program for growing a binary tree and use it to train a tree fully
using the data from the three categories in the table, using an entropy impurity.

(a) Use the (unpruned) tree to classify the following patterns: {A,E, I, L,N},
{D,E, J,K,N}, {B,F, J,K,M}, and {C,D, J, L,N}.

(b) Prune one pair of leafs, increasing the entropy impurity as little as possible.

(c) Modify your program to allow for non-binary splits, where the branching ratio
B as is determined at each node during training. Train a new tree fully using a
gain ratio impurity and then classify the points in (a).

2. Recall that one criterion for stopping the growing of a decision tree is to halt
splitting when the best split reduces the impurity by less than some threshold value,
that is, when maxs ∆i(s) ≤ β where s indicates the split and β is the threshold.
Explore the relationship between classifier generalization and β through the following
simulations.

(a) Generate 200 training points, 100 each for two two-dimensional Gaussian dis-
tributions: p(x|ω1) ∼ N(

(−0.25
0

)
, I) and p(x|ω2) ∼ N(

(
+0.25

0

)
, I). Also use your

program to generate an independent test set of 100 points, 50 each of the cate-
gories.

(b) Write a program to grow a tree classifier, where a node is not split if maxs ∆i(s) ≤
β.

(c) Plot the generalization error of your tree classifier versus β for β = 0.01→ 1 in
steps of 0.01, as estimated on the test data generated in part (a).

(d) In light of your plot, discuss the relationship between β and generalization error.

3. Repeat all parts of Computer exercise 2, but instead of considering β, focus
instead on the role of α as used in Eq. 8.⊕

Section 8.4

4. Write a program for training an ID3 decision tree in which the branching ratio
B at each node is equal to the number of discrete “binned” possible values for each
attribute. Use a gain ratio impurity.

(a) Use your program to train a tree fully with the ω1 and ω2 patterns in the table
above.

(b) Use your tree to classify {B,G, I,K,N} and {C,D, J, L,M}.

(c) Write a logical expression which describes the decisions in part (b). Simplify
these expressions.

(d) Convert the information in your tree into a single logical expression which de-
scribes the ω1 category. Repeat for the ω2 category.

5. Consider the issue of tree-based classifiers and deficient patterns.
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(a) Write a program to generate a binary decision tree for categories ω1 and ω2

using samples points 1 – 10 from the table above and an entropy impurity. For
each decision node store the primary split and four surrogate splits.

(b) Use your tree to classify the following patterns, where as usual * denotes a
missing feature.

• {A,F,H,K,M}
• {∗, G,H,K,M}
• {C,F, I, L,N}
• {B, ∗, ∗,K,N}

(c) Now write a program to train a tree using deficient points. Train with sample
points 1 – 10 from the table, used in part (a), as well as the following four points:

• ω1: {∗, F, I,K,N}
• ω1: {B,G,H,K, ∗}
• ω2: {C,G, ∗, L,N}
• ω2: {∗, F, I,K,N}

(d) Use your tree from part (c) to classify the test points in part (b).

6. Train a tree classifier to distinguish all three categories ωi, i = 1, 2, 3, using all
20 sample points in the table above. Use an entropy criterion without pruning or
stopping.

(a) Express your tree as a set of rules.

(b) Through exhaustive search, find the rule or rules, which when deleted, lead to
the smallest increase in classification error as estimated by the training data.

⊕
Section 8.5

7. Write a program to implement the naive string-matching algorithm (Algorithm 1).
Insert a conditional branch so as to exit the innermost loop whenever a mismatch
occurs (i.e., the shift is found to be invalid). Add a line to count the total number of
character-to-character comparisons in the complete string search.

(a) Write a small program to generate a text of n characters, taken from an alphabet
having d characters. Let d = 5 and use your program to generate a text of length
n = 1000 and a test string x of length m = 10.

(b) Compare the number of character-to-character comparisons performed by your
program with the theoretical result quoted in Problem 18 for all pairs of the
following parameters: m = {10, 15, 20} and n = {100, 1000, 10000}.

8. Write a program to implement the Boyer-Moore algorithm (Algorithm 2) in the
following steps. Throughout let the alphabet have d characters.

(a) Write a routine for constructing the good-suffix function G. Let d = 3 and apply
your routine to the strings x1 = “abcbab”and x2 = “babab.”
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(b) Write a routine for constructing the last-occurrence function F . Apply it to the
strings x1 and x2 of part (a).

(c) Write an implementation of the Boyer-Moore algorithm incorporating your rou-
tines from parts (a) and (b). Generate a text of n = 10000 characters chosen
from the alphabet A = {a, b, c}. Use your program to search for x1 in text, and
again x2 in text.

(d) Make some statistical assumptions to estimate the number of occurrences of x1

and x2 in text, and compare that number to your answers in part (c).

9. Write an algorithm for addressing the subset-superset problem in string matching.
That is, search a text with several strings, some of which are factors of others.

(a) Let x1 = “beats,” x2 = “beat,” x3 = “be,” x4 = “at,” x5 = “eat,” x6 = “sat.”
Search for these possible factors in text = “beats beats beats . . . beats︸ ︷︷ ︸

100 ×

,” but

do not return any strings that are factors of other test strings found in text.

(b) Repeat with text consisting of 100 appended copies of “repeatable ,” and the
test items “repeatable,” “pea,” “table,” “tab,” “able,” “peat,” and “a.”

10. String matching with errors. Test on segments xxxx⊕
Section 8.6

11. Write a parser for the grammar described in the text: A = {a, b}, I = {A,B},

S = S and P =


p1 : S → AB OR BC
p2 : A → BA OR a
p3 : B → CC OR b
p4 : C → AB OR a

.

Use your program to attempt to parse each of the following strings. In all cases,
show the parse tree; for each successful parse show moreover the corresponding deriva-
tion tree.

• “aaaabbab”

• “ba”

• “baabab”

• “babab”

• “aaa”

• “baaa”

⊕
Section 8.7

12. Write a program to infer a grammar G from the following positive and negative
examples:

• D+ = {abc, aabbcc, aaabbbccc}

• D− = {abbc, abcc, aabcc}
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Take the following as candidate rewrite rules:

S → aSBA AB → BA cB → aC
S → bSBA BA → AB bA → bc
S → aBA bB → bb bC → bc
S → aSB bC → ba aB → ab
S → aSA cA → cc aB → ca

Proceed as follows:

(a) Implement the general bottom-up parser of Algorithm 4.

(b) Implement the general grammatical inferencing method of Algorithm 5.

(c) Use your programs in conjunction to infer G from the data.
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