
Contents

7 Stochastic Methods 3
7.1 Introduction . 3
7.2 Stochastic search . 4

7.2.1 Simulated annealing . 5
7.2.2 The Boltzmann factor . 5
Algorithm 1: Simulated annealing . 8
7.2.3 Deterministic simulated annealing 9
Algorithm 2: Deterministic annealing 11

7.3 Boltzmann learning . 12
7.3.1 Stochastic Boltzmann learning of visible states 13
7.3.2 Missing features and category constraints 17
7.3.3 Deterministic Boltzmann learning 20
Algorithm 3: Deterministic Boltzmann learning 20
7.3.4 Initialization and setting parameters 20

7.4 *Boltzmann networks and graphical models 23
7.5 *Evolutionary methods . 25

7.5.1 Genetic Algorithms . 27
Algorithm 4: Basic Genetic algorithm 27
7.5.2 Further heuristics . 31
7.5.3 Why do they work? . 31

7.6 *Genetic Programming . 32
Summary . 33
Bibliographical and Historical Remarks . 35
Problems . 36
Computer exercises . 41
Bibliography . 42
Index . 47

1

2 CONTENTS

Chapter 7

Stochastic Methods

7.1 Introduction

L earning plays a central role in the construction of pattern classifiers. As we have
seen, the general approach is to specify a model having one or more parameters

and then estimate their values from training data. When the models are fairly simple
and of low dimension, we can use analytic methods such as computing derivatives
and performing gradient descent to find optimal model parameters. If the models
are somewhat more complicated, we may calculate local derivatives and use gradient
methods, as in neural networks and some maximum-likelihood problems. In most
high-dimensional and complicated models, there are multiple maxima and we must
use a variety of tricks — such as performing the search multiple times from different
starting conditions — to have any confidence that an acceptable local maximum has
been found.

These methods become increasingly unsatisfactory as the models become more
complex. A naive approach — exhaustive search through solution space — rapidly
gets out of hand and is completely impractical for real-world problems. The more
complicated the model, the less the prior knowledge, and the less the training data, the
more we must rely on sophisticated search for finding acceptable model parameters. In
this chapter we consider stochastic methods for finding parameters, where randomness
plays a crucial role in search and learning. The general approach is to bias the search
toward regions where we expect the solution to be and allow randomness — somehow
— to help find good parameters, even in very complicated models.

We shall consider two general classes of such methods. The first, exemplified by
Boltzmann learning, is based on concepts and techniques from physics, specifically
statistical mechanics. The second, exemplified by genetic algorithms, is based on
concepts from biology, specifically the mathematical theory of evolution. The former
class has a highly developed and rigorous theory and many successes in pattern recog-
nition; hence it will command most of our effort. The latter class is more heuristic
yet affords flexibility and can be attractive when adequate computational resources
are available. We shall generally illustrate these techniques in cases that are simple,
and which might also be addressed with standard gradient procedures; nevertheless
we emphasize that these stochastic methods may be preferable in complex problems.

3

4 CHAPTER 7. STOCHASTIC METHODS

The methods have high computational burden, and would be of little use without
computers.

7.2 Stochastic search

We begin by discussing an important and general quadratic optimization problem.
Analytic approaches do not scale well to large problems, however, and thus we focus
here on methods of search through different candidate solutions. We then consider a
form of stochastic search that finds use in learning for pattern recognition.

Suppose we have a large number of variables si, i = 1, . . . , N where each variable
can take one of two discrete values, for simplicity chosen to be ±1. The optimization
problem is this: find the values of the si so as to minimize the cost or energyenergy

E = −1
2

N∑
i,j=1

wijsisj , (1)

where the wij can be positive or negative and are problem dependent. We require
the self-feedback terms to vanish, i.e., wii = 0, since non-zero wii merely add an
unimportant constant to E, independent of the si. This optimization problem can be
visualized in terms of a network of nodes, where bi-directional links or interconnec-
tions correspond to the weights wij = wji. (It is very simple to prove that we can
always replace a non-symmetric connection matrix by its symmetric part, as asked in
Problem 2. We avoid non-symmetric matrices because they unnecessarily complicate
the dynamics described in Sect. 7.2.1.) Figure 7.1 shows such a network, where nodes
are labeled input, output, and hidden, though for the moment we shall ignore such
distinctions.

This network suggests a physical analogy which in turn will guide our choice of
solution method. Imagine the network represents N physical magnets, each of which
can have its north pole pointing up (si = +1) or pointing down (si = −1). The wij
are functions of the physical separations between the magnets. Each pair of magnets
has an associated interaction energy which depends upon their state, separation and
other physical properties: Eij = −1/2 wijsisj . The energy of the full system is the
sum of all these interaction energies, as given in Eq. 1. The optimization task is to
find the configuration of states of the magnets with the most stable configuration, the
one with lowest energy. This general optimization problem appears in a wide range of
applications, in many of which the weights do not have a physical interpretation.∗ As
mentioned, we shall be particularly interested in its application to learning methods.

Except for very small problems or few connections, it is infeasible to solve directly
for the N values si that give the minimum energy — the space has 2N possible
configurations (Problem 4). It is tempting to propose a greedy algorithm to search
for the optimum configuration: Begin by randomly assigning a state to each node.
Next consider each node in turn and calculate the energy with it in the si = +1 state
and then in the si = −1 state, and choose the one giving the lower energy. (Naturally,
this decision needs to be based on only those nodes connected to node i with non-zero
weight wij .) Alas, this greedy search is rarely successful since the system usually
gets caught in local energy minima or never converges (Computer exercise 1).

Another method is required.

∗ Similar generalized energy functions, called Lyapunov functions or objective functions, can be used
for finding optimum states in other problem domains as well.

7.2. STOCHASTIC SEARCH 5

hi
dd

en
wij

-1 +1 -1 -1

-1 +1 -1 +1+1 -1

+1
-1

-1

+1

-1

+1

-1i

j

αβ

visible

visible

vi
si

bl
e

Figure 7.1: The class of optimization problems of Eq. 1 can be viewed in terms of
a network of nodes or units, each of which can be in the si = +1 or si = −1 state.
Every pair of nodes i and j is connected by bi-directional weights wij ; if a weight
between two nodes is zero then no connection is drawn. (Because the networks we
shall discuss can have an arbitrary interconnection, there is no notion of layers as in
multilayer neural networks.) The optimization problem is to find a configuration (i.e.,
assignment of all si) that minimizes the energy described by Eq. 1. The state of the
full network is indexed by an integer γ, and since here there are 17 binary nodes, γ
is bounded 0 ≤ γ < 217. The state of the visible nodes and hidden nodes are indexed
by α and β, respectively and in this case are bounded 0 ≤ α ≤ 210 and 0 ≤ β < 27.

7.2.1 Simulated annealing

In physics, the method for allowing a system such as many magnets or atoms in an al-
loy to find a low-energy configuration is based on annealing. In physical annealing the annealing
system is heated, thereby conferring randomness to each component (magnet). As a
result, each variable can temporarily assume a value that is energetically unfavorable
and the full system explores configurations that have high energy. Annealing proceeds
by gradually lowering the temperature of the system — ultimately toward zero and
thus no randomness — so as to allow the system to relax into a low-energy config-
uration. Such annealing is effective because even at moderately high temperatures,
the system slightly favors regions in the configuration space that are overall lower in
energy, and hence are more likely to contain the global minimum. As the temperature
is lowered, the system has increased probability of finding the optimum configuration.
This method is successful in a wide range of energy functions or energy “landscapes,”
though there are pathological cases such as the “golf course” landscape in Fig. 7.2
where it is unlikely to succeed. Fortunately, the problems in learning we shall consider
rarely involve such pathological functions.

7.2.2 The Boltzmann factor

The statistical properties of large number of interacting physical components at a
temperature T , such as molecules in a gas or magnetic atoms in a solid, have been
thoroughly analyzed. A key result, which relies on a few very natural assumptions, is

6 CHAPTER 7. STOCHASTIC METHODS

x1
x1

x2
x2

E
E

Figure 7.2: The energy function or energy “landscape” on the left is meant to suggest
the types of optimization problems addressed by simulated annealing. The method
uses randomness, governed by a control parameter or “temperature” T to avoid getting
stuck in local energy minima and thus to find the global minimum, like a small ball
rolling in the landscape as it is shaken. The pathological “golf course” landscape
at the right is, generally speaking, not amenable to solution via simulated annealing
because the region of lowest energy is so small and is surrounded by energetically
unfavorable configurations. The configuration space of the problems we shall address
are discrete and thus the continuous x1 − x2 space shown here is a bit misleading.

the following: the probability the system is in a (discrete) configuration indexed by γ
having energy Eγ is given by

P (γ) =
e−Eγ/T

Z(T)
, (2)

where Z is a normalization constant. The numerator is the Boltzmann factor and theBoltzmann
factor denominator the partition function, the sum over all possible configurations

partition
function Z(T) =

∑
γ′

e−Eγ′/T , (3)

which guarantees Eq. 2 represents a true probability.∗ The number of configurations
is very high, 2N , and in physical systems Z can be calculated only in simple cases.
Fortunately, we need not calculate the partition function, as we shall see.

Because of the fundamental importance of the Boltzmann factor in our discus-
sions, it pays to take a slight detour to understand it, at least in an informal way.
Consider a different, but nontheless related system: one consisting of a large number
of non-interacting magnets, that is, without interconnecting weights, in a uniform
external magnetic field. If a magnet is pointing up, si = +1 (in the same direction
as the field), it contributes a small positive energy to the total system; if the magnet
is pointing down, a small negative energy. The total energy of the collection is thus
proportional to the total number of magnets pointing up. The probability the system
has a particular total energy is related to the number of configurations that have
that energy. Consider the highest energy configuration, with all magnets pointing
up. There is only

(
N
N

)
= 1 configuration that has this energy. The next to highest

∗ In the Boltzmann factor for physical systems there is a “Boltzmann constant” which converts a
temperature into an energy; we can ignore this factor by scaling the temperature in our simulations.

7.2. STOCHASTIC SEARCH 7

energy comes with just a single magnet pointing down; there are
(
N
1

)
= N such con-

figurations. The next lower energy configurations have two magnets pointing down;
there are

(
N
2

)
= N(N − 1)/2 of these configurations, and so on. The number of states

declines exponentially with increasing energy. Because of the statistical independence
of the magnets, for large N the probability of finding the state in energy E also
decays exponentially (Problem 7). In sum, then, the exponential form of the Boltz-
mann factor in Eq. 2 is due to the exponential decrease in the number of accessible
configurations with increasing energy. Further, at high temperature there is, roughly
speaking, more energy available and thus an increased probability of higher-energy
states. This describes qualitatively the dependence of the probability upon T in the
Boltzmann factor — at high T , the probability is distributed roughly evenly among all
configurations while at low T , it is concentrated at the lowest-energy configurations.

If we move from the collection of independent magnets to the case of magnets
interconnected by weights, the situation is a bit more complicated. Now the energy
associated with a magnet pointing up or down depends upon the state of others.
Nonetheless, in the case of large N , the number of configurations decays exponentially
with the energy of the configuration, as described by the Boltzmann factor of Eq. 2.

Simulated annealing algorithm

The above discussion and the physical analogy suggest the following simulated an-
nealing method for finding the optimum configuration to our general optimization
problem. Start with randomized states throughout the network, si(1), and select a
high initial “temperature” T (1). (Of course in the simulation T is merely a control
parameter which will control the randomness; it is not a true physical temperature.)
Next, choose a node i randomly. Suppose its state is si = +1. Calculate the system
energy in this configuration, Ea; next recalculate the energy, Eb, for a candidate new
state si = − 1. If this candidate state has a lower energy, accept this change in
state. If however the energy is higher, accept this change with a probability equal to

e−∆Eab/T , (4)

where ∆Eab = Eb−Ea. This occasional acceptance of a state that is energetically less
favorable is crucial to the success of simulated annealing, and is in marked distinc-
tion to naive gradient descent and the greedy approach mentioned above. The key
benefit is that it allows the system to jump out of unacceptable local energy minima.
For example, at very high temperatures, every configuration has a Boltzmann factor
e−E/T ≈ e0 roughly equal. After normalization by the partition function, then, every
configuration is roughly equally likely. This implies every node is equally likely to be
in either of its two states (Problem 6).

The algorithm continues polling (selecting and testing) the nodes randomly several polling
times and setting their states in this way. Next lower the temperature and repeat the
polling. Now, according to Eq. 4, there will be a slightly smaller probability that a
candidate higher energy state will be accepted. Next the algorithm polls all the nodes
until each node has been visited several times. Then the temperature is lowered
further, the polling repeated, and so forth. At very low temperatures, the probability
that an energetically less favorable state will be accepted is small, and thus the search
becomes more like a greedy algorithm. Simulated annealing terminates when the
temperature is very low (near zero). If this cooling has been sufficiently slow, the
system then has a high probability of being in a low energy state — hopefully the
global energy minimum.

8 CHAPTER 7. STOCHASTIC METHODS

Because it is the difference in energies between the two states that determines
the acceptance probabilities, we need only consider nodes connected to the one being
polled — all the units not connected to the polled unit are in the same state and
contribute the same total amount to the full energy. We let Ni denote the set of
nodes connected with non-zero weights to node i; in a fully connected net would
include the complete set of N − 1 remaining nodes. Further, we let Rand[0, 1) denote
a randomly selected positive real number less than 1. With this notation, then, the
randomized or stochastic simulated annealing algorithm is:

Algorithm 1 (Stochastic simulated annealing)

1 begin initialize T (k), kmax, si(1), wij for i, j = 1, . . . , N
2 k ← 0
3 do k ← k + 1
4 do select node i randomly; suppose its state is si

5 Ea ← −1/2
Ni∑
j

wijsisj

6 Eb ← −Ea
7 if Eb < Ea
8 then si ← −si
9 else if e−(Eb−Ea)/T (k) > Rand[0, 1)

10 then si ← −si
11 until all nodes polled several times
12 until k = kmax or stopping criterion met
13 return E, si, for i = 1, . . . , N
14 end

Because units are polled one at a time, the algorithm is occasionally called sequential
simulated annealing. Note that in line 5, we define Ea based only on those units
connected to the polled one — a slightly different convention than in Eq. 1. Changing
the usage in this way has no effect, since in line 9 it is the difference in energies that
determines transition probabilities.

There are several aspects of the algorithm that must be considered carefully, in
particular the starting temperature, ending temperature, the rate at which the tem-
perature is decreased and the stopping criterion. This function is called the cooling
schedule or more frequently the annealing schedule, T (k), where k is an iteration in-annealing

schedule dex. We demand T (1) to be sufficiently high that all configurations have roughly equal
probability. This demands the temperature be larger than the maximum difference
in energy between any configurations. Such a high temperature allows the system to
move to any configuration which may be needed, since the random initial configura-
tion may be far from the optimal. The decrease in temperature must be both gradual
and slow enough that the system can move to any part of the state space before being
trapped in an unacceptable local minimum, points we shall consider below. At the
very least, annealing must allow N/2 transitions, since a global optimum never differs
from any configuration by more than this number of steps. (In practice, annealing
can require polling several orders of magnitude more times than this number.) The
final temperature must be low enough (or equivalently kmax must be large enough or
a stopping criterion must be good enough) that there is a negligible probability that
if the system is in a global minimum it will move out.

Figure 7.3 shows that early in the annealling process when the temperature is
high, the system explores a wide range of configurations. Later, as the temperature

7.2. STOCHASTIC SEARCH 9

is lowered, only states “close” to the global minimum are tested. Throughout the
process, each transition corresponds to the change in state of a single unit.

A typical choice of annealing schedule is T (k + 1) = cT (k) with 0 < c < 1. If
computational resources are of no concern, a high initial temperature, large c < 1,
and large kmax are most desirable. Values in the range 0.8 < c < 0.99 have been
found to work well in many real-world problems. In practice the algorithm is slow,
requiring many iterations and many passes through all the nodes, though for all but
the smallest problems it is still faster than exhaustive search (Problem 5). We shall
revisit the issue of parameter setting in the context of learning in Sect. 7.3.4.

While Fig. 7.3 displayed a single trajectory through the configuration space, a more
relevant property is the probability of being in a configuration as the system is annealed
gradually. Figure 7.4 shows such probability distributions at four temperatures. Note
especially that at the final, low temperature the probability is concentrated at the
global minima, as desired. While this figure shows that for positive temperature all
states have a non-zero probability of being visited, we must recognize that only a
small fraction of configurations are in fact visited in any anneal. In short, in the
vast majority of large problems, annealing does not require that all configurations be
explored, and hence it is more efficient than exhaustive search.

7.2.3 Deterministic simulated annealing

Stochastic simulated annealing is slow, in part because of the discrete nature of the
search through the space of all configurations, i.e., an N -dimensional hypercube. Each
trajectory is along a single edge, thereby missing full gradient information that would
be provided by analog state values in the “interior” of the hypercube. An alternate,
faster method is to allow each node to take on analog values during search; at the
end of the search the values are forced to be si = ±1, as required by the optimization
problem. Such a deterministic simulated annealing algorithm also follows from the
physical analogy. Consider a single node (magnet) i connected to several others; each
exerts a force tending to point node i up or down. In deterministic annealing we sum
the forces and give a continuous value for si. If there is a large “positive” force, then
si ≈ +1; if a large negative force, then si ≈ −1. In the general case si will lie between
these limits.

The value of si also depends upon the temperature. At high T (large randomness)
even a large upward force will not be enough to insure si = +1, whereas at low
temperature it will. We let li =

∑
j

wijsj be the force exerted on node i, the updated

value is:

si = f(li, T) = tanh[li/T], (5)

where there is an implied scaling of the force and temperature in the response function response
functionf(·, ·) (Fig. 7.5). In broad overview, deterministic annealing consists in setting an

annealing schedule and then at each temperature finding an equilibrium analog value
for every si. This analog value is merely the expected value of the discrete si in a
system at temperature T (Problem 8). At low temperatures (i.e., at the end of the
anneal), each variable will assume an extreme value ±1, as can be seen in the low-T
curve in Fig. 7.5.

It is instructive to consider the energy landscape for the continuous case. Differ-
entiation of Eq. 1 shows that the energy is linear in each variable when others held
fixed, as can be seen in Fig. 7.6 — there are no local minima along any “cut” parallel

10 CHAPTER 7. STOCHASTIC METHODS

-
-
-
-
-
-

+
-
-
-
-
-

+
+
-
-
-
-

-
+
-
-
-
-

-
+
+
-
-
-

+
+
+
-
-
-

+
-
+
-
-
-

-
-
+
-
-
-

-
-
+
+
-
-

+
-
+
+
-
-

+
+
+
+
-
-

-
+
+
+
-
-

-
+
-
+
-
-

+
+
-
+
-
-

+
-
-
+
-
-

-
-
-
+
-
-

-
-
-
+
+
-

+
-
-
+
+
-

+
+
-
+
+
-

-
+
-
+
+
-

-
+
+
+
+
-

+
+
+
+
+
-

+
-
+
+
+
-

-
-
+
+
+
-

-
-
+
-
+
-

+
-
+
-
+
-

+
+
+
-
+
-

-
+
+
-
+
-

-
+
-
-
+
-

+
+
-
-
+
-

+
-
-
-
+
-

-
-
-
-
+
-

-
-
-
-
+
+

+
-
-
-
+
+

+
+
-
-
+
+

-
+
-
-
+
+

-
+
+
-
+
+

+
+
+
-
+
+

+
-
+
-
+
+

-
-
+
-
+
+

-
-
+
+
+
+

+
-
+
+
+
+

+
+
+
+
+
+

-
+
+
+
+
+

-
+
-
+
+
+

+
+
-
+
+
+

+
-
-
+
+
+

-
-
-
+
+
+

-
-
-
+
-
+

+
-
-
+
-
+

+
+
-
+
-
+

-
+
-
+
-
+

-
+
+
+
-
+

+
+
+
+
-
+

+
-
+
+
-
+

-
-
+
+
-
+

-
-
+
-
-
+

+
-
+
-
-
+

+
+
+
-
-
+

-
+
+
-
-
+

-
+
-
-
-
+

+
+
-
-
-
+

+
-
-
-
-
+

-
-
-
-
-
+

T
(k

)

E
(k)

k k

E

s
1

s
2

s
3

s
4

s
5

s
6

begin

end

γ

Figure 7.3: Stochastic simulated annealing (Algorithm 1) uses randomness, governed
by a control parameter or “temperature” T (k) to search through a discrete space
for a minimum of an energy function. In this example there are N = 6 variables;
the 26 = 64 configurations are shown at the bottom along as a column of + and -.
The plot of the associated energy of each configuration given by Eq. 1 for randomly
chosen weights. Every transition corresponds to the change of just a single si. (The
configurations have been arranged so that adjacent ones differ by the state of just
a single node; nevertheless most transitions corresponding to a single node appear
far apart in this ordering.) Because the system energy is invariant with respect
to a global interchange si ↔ −si, there are two “global” minima. The graph at
the upper left shows the annealing schedule — the decreasing temperature versus
iteration number k. The middle portion shows the configuration versus iteration
number generated by Algorithm 1. The trajectory through the configuration space
is colored red for transitions that increase the energy; late in the annealing such
energetically unfavorable (red) transitions are rarer. The graph at the right shows
the full energy E(k), which decreases to the global minimum.

7.2. STOCHASTIC SEARCH 11

-
-
-
-
-
-

+
-
-
-
-
-

+
+
-
-
-
-

-
+
-
-
-
-

-
+
+
-
-
-

+
+
+
-
-
-

+
-
+
-
-
-

-
-
+
-
-
-

-
-
+
+
-
-

+
-
+
+
-
-

+
+
+
+
-
-

-
+
+
+
-
-

-
+
-
+
-
-

+
+
-
+
-
-

+
-
-
+
-
-

-
-
-
+
-
-

-
-
-
+
+
-

+
-
-
+
+
-

+
+
-
+
+
-

-
+
-
+
+
-

-
+
+
+
+
-

+
+
+
+
+
-

+
-
+
+
+
-

-
-
+
+
+
-

-
-
+
-
+
-

+
-
+
-
+
-

+
+
+
-
+
-

-
+
+
-
+
-

-
+
-
-
+
-

+
+
-
-
+
-

+
-
-
-
+
-

-
-
-
-
+
-

-
-
-
-
+
+

+
-
-
-
+
+

+
+
-
-
+
+

-
+
-
-
+
+

-
+
+
-
+
+

+
+
+
-
+
+

+
-
+
-
+
+

-
-
+
-
+
+

-
-
+
+
+
+

+
-
+
+
+
+

+
+
+
+
+
+

-
+
+
+
+
+

-
+
-
+
+
+

+
+
-
+
+
+

+
-
-
+
+
+

-
-
-
+
+
+

-
-
-
+
-
+

+
-
-
+
-
+

+
+
-
+
-
+

-
+
-
+
-
+

-
+
+
+
-
+

+
+
+
+
-
+

+
-
+
+
-
+

-
-
+
+
-
+

-
-
+
-
-
+

+
-
+
-
-
+

+
+
+
-
-
+

-
+
+
-
-
+

-
+
-
-
-
+

+
+
-
-
-
+

+
-
-
-
-
+

-
-
-
-
-
+

T
(k

)

k E

s
1

s
2

s
3

s
4

s
5

s
6

γ

P(γ)

E
[E

]

k

Figure 7.4: An estimate of the probability P (γ) of being in a configuration denoted
by γ is shown for four temperatures during a slow anneal. (These estimates, based on
a large number of runs, are nearly the theoretical values e−Eγ/T) Early, at high T ,
each configuration is roughly equal in probability while late, at low T , the probability
is strongly concentrated at the global minima. The expected value of the energy, E [E]
(i.e., averaged at temperature T), decreases gradually during the anneal.

to any axis. Note too that there are no stable local energy minima within the volume
of the space; the energy minima always occur at the “corners,” i.e., extreme si = ±1
for all i, as required by the optimization problem.

This search method is sometimes called mean-field annealing because each node
responds to the average or mean of the forces (fields) due to the nodes connected to
it. In essence the method approximates the effects of all other magnets while ignoring
their mutual interactions and their response to the magnet in question, node i. Such
annealing is also called deterministic because in principle we could deterministically
solve the simultaneous equations governing the si as the temperature is lowered. The
algorithm has a natural parallel mode of implementation, for instance where each value
si is updated simultaneously and deterministically as the temperature is lowered. In
and inherently serial simulation, however, the nodes are updated one at a time. Even
though the nodes might be polled pseudo randomly, the algorithm is in principle
deterministic — there need be no inherent randomness in the searchn. If we let si(1)
denote the initial state of unit i, the algorithm is:

Algorithm 2 (Deterministic simulated annealing)

1 begin initialize T (k), wij , si(1), i, j = 1, . . . N
2 k ← 0
3 do k ← k + 1

12 CHAPTER 7. STOCHASTIC METHODS

-4 -2 2 4

-1

-0.5

0.5

1
.01

.1

1

5

li = Σ wij sj
j

si = f(li,T)

Figure 7.5: In deterministic annealing, each node can take on a continuous value
−1 ≤ si ≤ +1, which equals the expected value of a binary node in the system at
temperature T . In other words, the analog value si replaces the expectation of the
discrete variable, E [si]. We let li denote a force exerted by the nodes connected to si.
The larger this force, the closer the analog si is to +1; the more negative this force,
the closer to −1. The temperature T (marked in red) also affects si. If T is large,
there is a great deal of randomness and even a large force will not insure si ≈ +1.
At low temperature, there is little or no randomness and even a small positive force
insures that si = +1. Thus at the end of an anneal, each node has value si = +1 or
si = −1.

4 Select node i randomly

5 li ←
Ni∑
j

wijsj

6 si ← f(li, T (k))
7 until k = kmax or convergence criterion met
8 return E, si, i = 1, . . . , N
9 end

In practice, deterministic and stochastic annealing give very similar solutions. In
large real-world problems deterministic annealing is faster, sometimes by two or three
orders of magnitude.

Simulated annealing can also be applied to other classes of optimization problem,
for instance, finding the minimum in

∑
ijk

wijksisjsk. We will not consider such higher-

order problems, though they can be the basis of learning methods as well.

7.3 Boltzmann learning

For pattern recognition, we will use a network such as that in Fig. 7.1, where the input
units accept binary feature information and the output units represent the categories,
generally in the familiar 1-of-c representation (Fig. 7.7). During classification the
input units are held fixed or clamped to the feature values of the input pattern; theclamp
remaining units are annealed to find the lowest energy, most probable configuration.
The category information is then read from the final values of the output units.
Of course, accurate recognition requires proper weights, and thus we now turn to a

7.3. BOLTZMANN LEARNING 13

1

-2

-1

0

1

-1
-0.5

0
0.5

1

-1
-0.5

0
0.5

1

E

-2

-1

0

1

-1
-0.5

0
0.5

1

-1
-0.5

0
0.5

1

E

-2

-1

0

1

-1
-0.5

0
0.5

1

-1
-0.5

0
0.5

E

s1

s2

s1

s2

s1

s3 = -1 s3 = 0 s3 = +1

Figure 7.6: If the state variables si can assume analog values (as in mean-field anneal-
ing), the energy in Eq. 1 is a general quadratic form having minima at the extreme val-
ues si = ±1. In this case N = 3 nodes are fully interconnected with arbitrary weights
wij . While the total energy function is three-dimensional, we show two-dimensional
surfaces for each of three values of s3. The energy is linear in each variable so long as
the other variables are held fixed. Further, the energy is invariant with respect to the
interchange of all variables si ↔ −si. In particular, here the global minimum occurs
as s1 = −1, s2 = +1 and s3 = −1 as well as the symmetric configuration s1 = +1,
s2 = −1 and s3 = +1.

method for learning weights from training patterns. There are two closely related
approaches to such learning, one based on stochastic and the other on deterministic
simulated annealing.

7.3.1 Stochastic Boltzmann learning of visible states

Before we turn to our central concern — learning categories from training patterns
— consider an alternate learning problem where we have a set of desired probabilities
for all the visible units, Q(α) (given by a training set), and seek weights so that the
actual probability P (α), achieved in random simulations, matches these probabilities
over all patterns as closely as possible. In this alternative learning problem the desired
probabilities would be derived from training patterns containing both input (feature)
and output (category) information. The actual probability describes the states of a
network annealed with neither input nor output variables clamped.

We now make use of the distinction between configurations of “visible” units (the
input and output, denoted α), and the hidden states, denoted β, shown in Fig. 7.1.
For instance, whereas a and b (c.f., Eq. 4) refered to different configurations of the
full system, α and β sill specify visible and hidden configurations.

The probability of a visible configuration is the sum over all possible hidden con-
figurations:

P (α) =
∑
β

P (α, β)

=

∑
β

e−Eαβ/T

Z
(6)

14 CHAPTER 7. STOCHASTIC METHODS

input

output

hi
dd

en

wij

-1 +1 -1 -1

-1 +1 -1 +1+1 -1

+1
-1

-1

+1

-1

+1

-1i

j

β

visible

visible d

αi

αo

1 2

c1

Figure 7.7: When a network such as shown in Fig. 7.1 is used for learning, it is
important to distinguish between two types of visible units — the d input units and
c output units, which receive external feature and category information — as well as
the remaining, hidden units. The state of the full network is indexed by an integer
γ, and since here there are 17 binary nodes, γ is bounded 0 ≤ γ < 217. The state
of the visible nodes is described by α; moreover, αi describes the input and αo the
output (the superscripts are not indexes, but merely refer to the input and output,
respectively). The state of the hidden nodes is indexed by β.

where Eαβ is the system energy in the configuration defined by the visible and hidden
parts, and Z is again the full partition function. Equation 6 is based on Eq. 3 and
states simply that to find the probability of a given visible state α, we sum over all
possible hidden states. A natural measure of the difference between the actual and
the desired probability distributions is the relative entropy, Kullback-Leibler distance
or Kullback-Leibler divergence,

DKL(Q(α), P (α)) =
∑
α

Q(α)log
Q(α)
P (α)

. (7)

Naturally, DKL is non-negative and can be zero if and only if P (α) = Q(α) for all α
(Appendix ??). Note that Eq. 6 depends solely upon the visible units, not the hidden
units.

Learning is based on gradient descent in the relative entropy. A set of training
patterns defines Q(α), and we seek weights so that at some temperature T the actual
distribution P (α) matches Q(α) as closely as possible. Thus we take an untrained
network and update each weight according to:

∆wij = −η ∂DKL

∂wij
= η

∑
α

Q(α)
P (α)

∂P (α)
∂wij

, (8)

where η is a learning rate. While P depends on the weights, Q does not, and thus we
used ∂Q(α)/∂wij = 0. We take the derivative in Eq. 6 and find:

7.3. BOLTZMANN LEARNING 15

∂P (α)
∂wij

=

∑
β

e−Eαβsi(αβ)sj(αβ)/T

TZ
−

(∑
β

e−Eαβ/T

)∑
λµ

eEλµsi(λµ)sj(λµ)

TZ2

=
1
T

∑
β

si(αβ)sj(αβ)P (α, β)− P (α)E [sisj]

 . (9)

Here si(αβ) is the state of node i in the full configuration specified by α and β. Of
course, if node i is a visible one, then only the value of α is relevant; if the node is
a hidden one, then only the value of β is relevant. (Our notation unifies these two
cases.) The expectation value E [sisj] is taken at temperature T . We gather terms
and find from Eqs. 8 & 9

∆wij =
η

T

∑
α

Q(α)
P (α)

∑
β

si(αβ)sj(αβ)P (α, β)−
∑
α

Q(α)E [sisj]

=

η

T

∑
αβ

Q(α)P (β|α)si(αβ)sj(αβ)− E [sisj]

=

η

T

EQ[sisj]α clamped︸ ︷︷ ︸
learning

−E [sisj]free︸ ︷︷ ︸
unlearning

 (10)

where P (α, β) = P (β|α)P (α). We have defined

EQ[sisj]α clamped =
∑
αβ

Q(α)P (β|α)si(αβ)sj(αβ) (11)

to be the correlation of the variables si and sj when the visible units are held fixed
— clamped — in visible configuration α, averaged according to the probabilities of
the training patterns, Q(α).

The first term on the right of Eq. 10 is informally referred to as the learning
component or teacher component (as the visible units are held to values given by learning

componentthe teacher), and the second term the unlearning or student component (where the

unlearning
component

variables are free to vary). If EQ[sisj]α clamped = E [sisj]free, then ∆wij = 0 and we
have achieved the desired weights. The unlearning component reduces spurious cor-
relations between units — spurious in that they are not due to the training patterns.
A learning algorithm based on the above derivation would present each pattern in
the full training set several times and adjust the weights by Eq. 10, just as we saw in
numerous other training methods such as backpropagation (Chap. ??).

Stochastic Learning of input-output associations

Now consider the problem of learning mappings from input to output — our real in-
terest in pattern recognition. Here we want the network to learn associations between
the (visible) states on the input units, denoted αi, and states on the output units,
denoted αo, as shown in Fig. 7.1. Formally, we want P (αo|αi) to match Q(αo|αi)

16 CHAPTER 7. STOCHASTIC METHODS

as closely as possible. The appropriate cost function here is the Kullback-Leibler
divergence weighted by the probability of each input pattern:

D̄KL(Q(αo|αi), P (αo|αi)) =
∑
αi

P (αi)
∑
αo

Q(αo|αi)log
Q(αo|αi)
P (αo|αi) . (12)

Just as in Eq. 8, learning involves changing weights to reduce this weighted distance,
i.e.,

∆wij = −η ∂D̄KL

∂wij
. (13)

The derivation of the full learning rule follows closely that leading to Eq. 11; the only
difference is that the input units are clamped in both the learning and unlearning
components (Problem 11). The result is that the weight update is

∆wij =
η

T

EQ[sisj]αiαo clamped︸ ︷︷ ︸
learning

−E [sisj]αi clamped︸ ︷︷ ︸
unlearning

 . (14)

In Sect. 7.3.3 we shall present pseudocode for implementing the preferred, deter-
ministic version of Boltzmann learning, but first we can gain intuition into the general
method by considering the learning of a single pattern according to Eq. 14. Figure 7.8
shows a seven-unit network being trained with the input pattern s1 = +1, s2 = +1
and the output pattern s6 = −1, s7 = +1. In a typical 1-of-c representation, this
desired output signal would represent category ω2. Since during both training and
classification, the input units s1 and s2 are clamped at the value +1, we have shown
only the associated 25 = 32 configurations at the right. The energy before learn-
ing (Eq. 1), corresponding to randomly chosen weights, is shown in black. After the
weights are trained by Eq. 14 using the pattern shown, the energy is changed (shown
in red). Note particularly that all states having the desired output pattern have their
energies lowered through training, just as we need. Thus when these input states are
clamped and the remaining networked annealed, the desired output is more likely to
be found.

Equation 14 appears a bit different from those we have encountered in pattern
recognition, and it is worthwhile explaining it carefully. Figure 7.9 illustrates in
greater detail the learning of the single training pattern in Fig. 7.8. Because s1 and
s2 are clamped throughout, EQ[s1s2]αiαoclamped = 1 = E [s1s2]αiclamped, and thus the
weight w12 is not changed, as indeed given by Eq. 14. Consider a more general case,
involving s1 and s7. During the learning phase both units are clamped at +1 and
thus the correlation is EQ[s1s7] = +1. During the unlearning phase, the output s7 is
free to vary and the correlation is lower; in fact it happens to be negative. Thus, the
learning rule seeks to increase the magnitude of w17 so that the input s1 = +1 leads
to s7 = +1, as can be seen in the matrix on the right. Because hidden units are only
weakly correlated (or anticorrelated), the weights linking hidden units are changed
only slightly.

In learning a training set of many patterns, each pattern is presented in turn, and
the weights updated as just described. Learning ends when the actual output matches
the desired output for all patterns (cf. Sect. 7.3.4).

7.3. BOLTZMANN LEARNING 17

+----++
+---+++

+- ...++

+--++++
+--+-++
+-++-++
+-+++++
+-+-+++
+-+--++
+++--++
+++-+++
+++++++
++++-++
++-+-++
++-++++
++--+++
++---++
-+---++
-+--+++
-+-++++
-+-+-++
-+++-++
-++++++
-++-+++
-++--++
--+--++
--+-+++
--+++++
--++-++
---+-++
---++++
----+++
-----++

E

training pattern

after training

s
1

s
2

s
5

s
7

s
6

s
3 s

4

s7
s6
s5
s4
s3
s2
s1

before training

these
configurations
become more

probable after training

+ +

- +

input

output

γ

ω1 ω2

Figure 7.8: The fully connected seven-unit network at the left is being trained via
the Boltzmann learning algorithm with the input pattern s1 = +1, s2 = +1, and the
output values s6 = −1 and s7 = +1, representing categories ω1 and ω2, respectively.
All 25 = 32 configurations with s1 = +1, s2 = +1 are shown at the right, along
with their energy (Eq. 1). The black curve shows the energy before training; the
red curve shows the energy after training. Note particularly that after training all
configurations that represent the full training pattern have been lowered in energy,
i.e., have become more probable. Consequently, patterns that do not represent the
training pattern become less probable after training. Thus, after training, if the input
pattern s1 = +1, s2 = +1 is presented and the remaining network annealed, there is
an increased chance of yielding s6 = −1, s7 = +1, as desired.

7.3.2 Missing features and category constraints

A key benefit of Boltzmann training (including its preferred implementation, described
in Sect. 7.3.3, below) is its ability to deal with missing features, both during training
and during classification. If a deficient binary pattern is used for training, input units
corresponding to missing features are allowed to vary — they are temporarily treated
as (unclamped) hidden units rather than clamped input units. As a result, during
annealing such units assume values most consistent with the rest of the input pattern
and the current state of the network (Problem 14). Likewise, when a deficient pattern
is to be classified, any units corresponding to missing input features are not clamped,
and are allowed to assume any value.

Some subsidiary knowledge or constraints can be incorporated into a Boltzmann
network during classification. Suppose in a five-category problem it is somehow known
that a test pattern is neither in category ω1 nor ω4. (Such constraints could come
from context or stages subsequent to the classifier itself.) During classification, then,
the output units corresponding to ω1 and ω4 are clamped at si = −1 during the
anneal, and the final category read as usual. Of course in this example the possible
categories are then limited to the unclamped output units, for ω2, ω3 and ω5. Such
constraint imposition may lead to an improved classification rate (Problem 15).

18 CHAPTER 7. STOCHASTIC METHODS

s1 s3 s5s2 s4 s6 s7

s1

s3

s5

s2

s4

s6

s7

s1 s3 s5s2 s4 s6 s7

s1

s3

s5

s2

s4

s6

s7

s1 s3 s5s2 s4 s6 s7

s1

s3

s5

s2

s4

s6

s7

+1+0.5

EQ[s1 s2]αi αo clamped E[s1 s2]αi clamped
∆w =

EQ[s1 s2]αi αo clamped - E[s1 s2]αi clamped

learning unlearning weight update

0-0.5-1

Figure 7.9: Boltzmann learning of a single pattern is illustrated for the seven-node
network of Fig. 7.8. The (symmetric) matrix on the left shows the correlation of units
for the learning component, where the input units are clamped to s1 = +1, s2 = +1,
and the outputs to s6 = −1, s7 = +1. The middle matrix shows the unlearning
component, where the inputs are clamped but outputs are free to vary. The difference
between those matrices is shown on the right, and is proportional to the weight update
(Eq. 14). Notice, for instance, that because the correlation between s1 and s2 is
large in both the learning and unlearning components (because those variables are
clamped), there is no associated weight change, i.e., ∆w12 = 0. However, strong
correlations between s1 and s7 in the learning but not in the unlearning component
implies that the weight w17 should be increased, as can be seen in the weight update
matrix.

Pattern completion

The problem of pattern completion is to estimate the full pattern given just a part
of that pattern; as such, it is related to the problem of classification with missing
features. Pattern completion is naturally addressed in Boltzmann networks. A fully
interconnected network, with or without hidden units, is trained with a set of repre-
sentative patterns; as before, the visible units correspond to the feature components.
When a deficient pattern is presented, a subset of the visible units are clamped to
the components of a partial pattern, and the network annealed. The estimate of the
unknown features appears on the remaining visible units, as illustrated in Fig. 7.10
(Computer exercise 3). Such pattern completion in Boltzmann networks can be more
accurate when known category information is imposed at the output units.

Boltzmann networks without hidden or category units are related to so-called
Hopfield networks or Hopfield auto-association networks (Problem 12). Such networksHopfield

network store patterns but not their category labels. The learning rule for such networks does
not require the full Boltzmann learning of Eq. 14. Instead, weights are set to be
proportional to the correlation of the feature vectors, averaged over the training set,

7.3. BOLTZMANN LEARNING 19

deficient
pattern

presented

learned patterns

pattern
completed
by network

s
1

s
2

s
3s

4

s
5

s
6s

7

- +

s
8

s
9

s
10

s
11

s
12

s
1

s
2

s
3

s
4

s
5

s
6

s
7

visible

hidden

Figure 7.10: A Boltzmann network can be used for pattern completion, i.e., filling in
unknown features of a deficient pattern. Here, a twelve-unit network with five hidden
units has been trained with the 10 numeral patterns of a seven-segment digital display.
The diagram at the lower left shows the correspondence between the display segments
and nodes of the network; a black segment is represented by a +1 and a light gray
segment as a −1. Consider the deficient pattern consisting of s2 = −1, s5 = +1. If
these units are clamped and the full network annealed, the remaining five visible units
will assume values most probable given the clamped ones, as shown at the right.

wij ∝ EQ[sisj], (15)

with wii = 0; further, there is no need to consider temperature. Such learning is of
course much faster than true Boltzmann learning using annealing. If a network fully
trained by Eq. 15 is nevertheless annealed, as in full Boltzmann learning, there is no
guarantee that the equilibrium correlations in the learning and unlearning phases are
equal, i.e., that ∆wij = 0 (Problem 13).

The successes of such Hopfield networks in true pattern recognition have been
modest, partly because the basic Hopfield network does not have as natural an output
representation for categorization problems. Occassionally, though they can be used in
simple low-dimensional pattern completion or auto-association problems. One of their
primary drawbacks is their limited capacity, analogous to the fact that a two-layer
network cannot implement arbitrary decision boundaries as can a three-layer net. In
particular, it has been shown that the number of d-dimensional random patterns that
can be stored is roughly 0.14d — very limited indeed. In a Boltzmann with hidden
units such as we have discussed, however, the number of hidden units can be increased
in order to allow more patterns to be stored.

Because Boltzmann networks include loops and feedback connections, the internal
representations learned at the hidden units are often difficult to interpret. Occasion-
ally, though, the pattern of weights from the input units suggests feature groupings
that are important for the classification task.

20 CHAPTER 7. STOCHASTIC METHODS

7.3.3 Deterministic Boltzmann learning

The computational complexity of stochastic Boltzmann learning in a network with
hidden units is very high. Each pattern must be presented several times, and every
anneal requires each unit to be polled several times. Just as mean-field annealing is
usually preferable to stochastic annealing, so too a mean-field version of Boltzmann
learning is preferable to the stochastic version. The basic approach in deterministic
Boltzmann learning is to use Eq. 14 with mean-field annealing and analog values for
the si. Recall, at the end of deterministic simulated annealing, the values of si are
±1, as required by the problem.

Specifically, if we let D be the set of training patterns x containing feature and
category information, the algorithm is:

Algorithm 3 (Deterministic Boltzmann learning)

1 begin initialize D, η, T (k), wij i, j = 1, . . . , N
2 do Randomly select training pattern x
3 Randomize states si
4 Anneal network with input and output clamped
5 At final, low T, calculate [sisj]αiαoclamped
6 Randomize states si
7 Anneal network with input clamped but output free
8 At final, low T, calculate [sisj]αiclamped
9 wij ← wij + η/T

[
[sisj]αiαoclamped − [sisj]αiclamped

]
10 until k = kmax or convergence criterion met
11 return wij
12 end

Using mean-field theory, it is possible to efficiently calculate approximations of the
mean of correlations entering the gradient. The analog state si of each unit replaces
its average value E [si] and could in theory be calculated by iteratively solving a set
of nonlinear equations. The mean of correlations is then calculated by making the
approximation E [sisj] ≈ E [si]E [sj] ≈ sisj , as shown in lines 5 & 8.

7.3.4 Initialization and setting parameters

As with virtually every classifier, there are several interrelated parameters that must
be set in a Boltzmann network. The first are the network topology and number of
hidden units. The number of visible units (input and output) is determined by the
dimensions of the binary feature vectors and number of categories. In the absence
of detailed information about the problem, we assume the network is fully intercon-
nected, and thus merely the number of hidden units must be set. A popular alternate
topology is obtained by eliminating interconnections among input units, as well as
among output units. (Such a network is faster to train but will be somewhat less
effective at pattern completion or classifying deficient patterns.) Of course, generally
speaking the harder the classification problem the more hidden units will be needed.
The question is then, how many hidden units should be used?

Suppose the training set D has n distinct patterns of input-output pairs. An
upper bound on the minimum number of hidden units is n — one for each pattern
— where for each pattern there is a corresponding unique hidden unit having value
si = +1 while all others are −1. This internal representation can be insured in the

7.3. BOLTZMANN LEARNING 21

following way: for the particular hidden unit i, set wij to be positive for each input
unit j corresponding to a +1 feature in its associated pattern; further set wij to be
negative for input units corresponding to a −1 feature. For the remaining hidden
units, the sign of the corresponding weights should be inverted. Next, the connection
from hidden unit i to the output unit corresponding to the known category should be
positive, and negative to all other output units. The resulting internal representation
is closely related to that in the probabilistic neural network implementation of Parzen
windows (Chap. ??). Naturally, this representation is undesirable as the number of
weights grows exponentially with the number of patterns. Training becomes slow;
furthermore generalization tends to be poor.

Since the states of the hidden units are binary valued, and since it takes dlog2ne
bits to specify n different items, there must be at least dlog2ne hidden units if there
is to be a distinct hidden configuration for each of the n patterns. Thus a lower
bound on the number of hidden units is dlog2ne, which is necessary for a distinct
hidden configuration for each pattern. Nevertheless, this bound need not be tight, as
there may be no set of weights insuring a unique representation (Problem 16). Aside
from these bounds, it is hard to make firm statements about the number of hidden
units needed — this number depends upon the inherent difficulty of the classification
problem. It is traditional, then, to start with a somewhat large net and use weight
decay. Much as we saw in backpropagation (Chap. ??), a Boltzmann network with
“too many” hidden units and weights can be improved by means of weight decay.
During training, a small increment ε is added to wij when si and sj are both positive
or both negative during learning phase, but subtracted in the unlearning phase. It is
traditional to decrease ε throughout training. Such a version of weight decay tends
to reduce the effects on the weights due to spurious random correlations in units and
to eliminate unneeded weights, thereby improving generalization.

One of the benefits of Boltzmann networks over backpropagation networks is that
“too many” hidden units in a backpropagation network tend to degrade performance
more than “too many” in a Boltzmann network. This is because during learning, there
is stochastic averaging over states in a Boltzmann network which tends to smooth
decision boundaries; backpropagation networks have no such equivalent averaging.
Of course, this averaging comes at a higher computational burden for Boltzmann
networks.

The next matter to consider is weight initialization. Initializing all weights to
zero is acceptable, but leads to unnecessarily slow learning. In the absence of infor-
mation otherwise, we can expect that roughly half the weights will be positive and
half negative. In a network with fully interconnected hidden units there is nothing
to differentiate the individual hidden units; thus we can arbitrarily initialize roughly
half of the weights to have positive values and the rest negative. Learning speed is
increased if weights are initialized with random values within a proper range. Assume
a fully interconnected network having N units (and thus N − 1 ≈ N connections to
each unit). Assume further that at any instant each unit has an equal chance of being
in state si = +1 or si = −1. We seek initial weights that will make the net force
on each unit a random variable with variance 1.0, roughly the useful range shown in
Fig. 7.5. This implies weights should be initialized randomly throughout the range
−
√

3/N < wij < +1
√

3/N (Problem 17).
As mentioned, annealing schedules of the form T (k+ 1) = cT (k) for 0 < c < 1 are

generally used, with 0.8 < c < 0.99.
If a very large number of iterations — several thousand — are needed, even

c = 0.99 may be too small. In that case we can write c = e−1/k0 , and thus

22 CHAPTER 7. STOCHASTIC METHODS

T (k) = T (1)e−k/k0 , and k0 can be interpreted as a decay constant. The initial tem-
perature T (1) should be set high enough that virtually all candidate state transitions
are accepted. While this condition can be insured by choosing T (1) extremely high,
in order to reduce training time we seek the lowest adequate value of T (1). A lower
bound on the acceptable initial temperature depends upon the problem, but can be
set empirically by monitoring state transitions in short simulations at candidate tem-
peratures. Let m1 be the number of energy-decreasing transitions (these are always
accepted), and m2 the number of energy-increasing queries according to the anneal-
ing algorithm; let E+[∆E] denote the average increase in energy over such transitions.
Then, from Eq. 4 we find that the acceptance ratio is

R =
number of accepted transitions
number of proposed transitions

≈ m1 +m2 · exp[−E+[∆E]/T (1)]
m1 +m2

. (16)

Rearranging terms we see that the initial temperature obeys

T (1) =
E+[∆E]

ln[m2]− ln[m2R−m1(1−R)]
. (17)

For any initial temperature set by the designer, the acceptance ratio may or may
not be nearly the desired 1.0; nevertheless Eq. 17 will be obeyed. The appropriate
value for T (1) is found through a simple iterative procedure. First, set T (1) to zero
and perform a sequence of m0 trials (pollings of units); count empirically the number
of energetically favorable (m1) and energetically unfavorable (m2) transitions. In
general, m1 + m2 < m0 because many candidate energy increasing transitions are
rejected, according to Eq. 4. Next, use Eq. 17 to calculate a new, improved value of
T (1) from the observed m1 and m2. Perform another sequence of m0 trials, observe
new values for m1 and m2, recalculate T (1), and so on. Repeat this procedure until
m1 +m2 ≈ m0. The associated T (1) gives an acceptance ratio R ≈ 1, and is thus to
be used. In practice this method quickly yields a good starting temperature.

The next important parameter is the learning rate η in Eq. 14. Recall that the
learning is based on gradient descent in the weighted Kullback-Leibler divergence
between the actual and the desired distributions on the visible units. In Chap. ??
we derived bounds on the learning rate for multilayer neural networks by calculating
the curvature of the error, and finding the maximum value of the learning rate that
insured stability. This curvature was based on a Hessian matrix, the matrix of second-
order derivatives of the error with respect to the weights. In the case of an N -unit,
fully connected Boltzmann network, whose N(N − 1)/2 weights are described by a
vector w, this curvature is proportional to wtHw, where

H =
∂2D̄KL

∂w2
(18)

is the appropriate Hessian matrix and the Kullback-Liebler divergence is given by
Eq. 12. Given weak assumptions about the classification problem we can estimate this
Hessian matrix; the stability requirement is then simply η ≤ T 2/N2 (Problem 18).
Note that at large temperature T , a large learning rate is acceptable since the effective
error surface is smoothed by high randomness.

While not technically parameter setting, one heuristic that provides modest com-
putational speedup is to propose changing the states of several nodes simultaneously
early in an anneal. The change in energy and acceptance probability are calculated

7.4. *BOLTZMANN NETWORKS AND GRAPHICAL MODELS 23

as before. At the end of annealing, however, polling should be of single units in order
to accurately find the optimum configuration.

A method which occasionally improves the final solution is to update and store the
current best configuration during an anneal. If the basic annealing converges to a local
minimum that is worse than this stored configuration, this current optimal should be
used. This is a variant of the pocket algorithm which finds broad use in methods that pocket

algorithmdo not converge monotonically or can get caught in local minima (Chap ??).
There are two stopping criteria associated with Boltzmann learning. The first

determines when to stop a single anneal (associated with either the learning or the
unlearning components). Here, the final temperature should be so low that no ener-
getically unfavorable transitions are accepted. Such information is readily apparent
in the graph of the energy versus iteration number, such as shown at the right of
Fig. 7.3. All N variables should be polled individually at the end of the anneal, to
insure that the final configuration is indeed a local (though perhaps not global) energy
minimum.

The second stopping criterion controls the number of times each training pattern
is presented to the network. Of course the proper criterion depends upon the inherent
difficulty of the classification problem. In general, overtraining is less of a concern
in Boltzmann networks than it is in multilayer neural networks trained via gradient
descent. This is because the averaging over states in Boltzmann networks tends to
smooth decision boundaries while overtraining in multilayer neural networks tunes
the decision boundaries to the particular training set. A reasonable stopping criterion
for Boltzmann networks is to monitor the error on a validation set (Chap. ??), and
stop learning when this error no longer changes significantly.

7.4 *Boltzmann networks and graphical models

While we have considered fully interconnected Boltzmann networks, the learning al-
gorithm (Algorithm 3) applies equally well to networks with arbitrary connection
topologies. Furthermore, it is easy to modify Boltzmann learning in order to impose
constraints such as weight sharing. As a consequence, several popular recognition
architectures — so-called graphical models such as Bayesian belief networks and Hid-
den Markov Models — have counterparts in structured Boltzmann networks, and this
leads to new methods for training them.

Recall from Chap. ?? that Hidden Markov Models consist of several discrete hidden
and visible states; at each discrete time step t, the system is in a single hidden state
and emits a single visible state, denoted ω(t) and v(t), respectively. The transition
probabilities between hidden states at successive time steps are

aij = P (ωj(t+ 1)|ωi(t)) (19)

and between hidden and visible states at a given time are

bjk = P (vk(t)|ωj(t)). (20)

The Forward-Backward or Baum-Welch algorithm (Chap. ??, Algorithm ??) is tra-
ditionally used for learning these parameters from a pattern of Tf visible states∗

VTf = {v(1), v(2), . . . , v(Tf)}.
∗ Here we use Tf to count the number of discrete time steps in order to avoid confusion with the

temperature T in Boltzmann simulations.

24 CHAPTER 7. STOCHASTIC METHODS

..

...

..

...

..

...

..

...

..

...

..

...

hi
dd

en
 u

ni
ts

Aij

Bjk

Aij

Bjk

Aij

Bjk Bjk

Aij

Bjk Bjk

....

t = 1 2 3 4 Tf -1 Tf

visible units

Figure 7.11: A Hidden Markov Model can be “unfolded” in time to show a trellis,
which can be represented as a Boltzmann chain, as shown. The discrete hidden
states are grouped into vertical sets, fully interconnected by weights Aij (related to
the HMM transition probabilities aij). The discrete visible states are grouped into
horizontal sets, and are fully interconnected with the hidden states by weights Bjk
(related to transition probabilities bjk). Training the net with a single pattern, or list
of Tf visible states, consists of clamping the visible states and performing Boltzmann
learning throughout the full network, with the constraint that each of the time shifted
weights labeled by a particular Aij have the same numerical value.

Recall that a Hidden Markov model can be “unfolded” in time to yield a trellis
(Chap. ??, Fig. ??). A structured Boltzmann network with the same trellis topology
— a Boltzmann chain — can be used to implement the same classification as theBoltzmann

chain corresponding Hidden Markov Model (Fig. 7.11). Although it is often simpler to
work in a representation where discrete states have multiple values, we temporarily
work in a representation where the binary nodes take value si = 0 or +1, rather than
±1 as in previous discussions. In this representation, a special case of the general
energy (Eq. 1) includes terms for a particular sequence of visible, VTf , and hidden
states ωTf = {ω(1), ω(2), . . . , ω(Tf)} and can be written as

EωV = E[ωTf ,VTf] = −
Tf−1∑
t=1

Aij −
Tf∑
t=1

Bjk (21)

where the particular values of Aij and Bjk terms depend implicitly upon the sequence.
The choice of binary state representation implies that only the weights linking nodes
that both have si = +1 appear in the energy. Each “legal” configuration — consisting
of a single visible unit and a single hidden unit at each time — implies a set of Aij
and Bjk (Problem 20). The partition function is the sum over all legal states,

Z =
∑
ωV

e−EωV/T , (22)

which insures normalization. The correspondence between the Boltzmann chain at
temperature T and the unfolded Hidden Markov model (trellis) implies

7.5. *EVOLUTIONARY METHODS 25

Aij = T ln aij and Bjk = T ln bjk. (23)

(As in our discussion of Hidden Markov Models, we assume the initial hidden state is
known and thus there is no need to consider the correspondence of prior probabilities in
the two approaches.) While the 0−1 binary representation of states in the structured
network clarifies the relationship to Hidden Markov Models through Eq. 21, the more
familiar representation si = ±1 works as well. Weights in the structured Boltzmann
network are trained according to the method of Sect. 7.3, though the relation to
transition probabilities in a Hidden Markov Model is no longer simple (Problem 21).

Other graphical models

In addition to Hidden Markov Models, a number of graphical models have analogs
in structured Boltzmann networks. One of the most general includes Bayesian belief
nets, directed acyclic graphs in which each node can be in one of a number of discrete
states, and nodes are interconnected with conditional probabilities (Chap. ??). As
in the case of Hidden Markov Models, the correspondence with Boltzmann networks
is clearest if the discrete states in the belief net are binary states; nevertheless in
practice multistate representations more naturally enforce the constraints and are
generally preferred (Computer exercise ??).

A particularly intriguing recognition problem arises when a temporal signal has
two inherent time scales, for instance the rapid daily behavior in a financial market
superimposed on slow seasonal variations. A standard Hidden Markov Model typically
has a single inherent time scale and hence is poorly suited to such problems. We might
seek to use two interconnected HMMs, possibly with different numbers of hidden
states. Alas, the Forward-Backward algorithm generally does not converge when
applied to a model having closed loops, as when two Hidden Markov Models have
cross connections.

Here the correspondence with Boltzmann networks is particularly helpful. We can
link two Boltzmann chains with cross connections, as shown in Fig. 7.12, to form
a Boltzmann zipper. The particular benefit of such an architecture is that it can Boltzmann

zipperlearn both short-time structure (through the “fast” component chain) as well as long-
time structure (through the “slow” chain). The cross connections, labeled by weight
matrix E in the figure, learn correlations between the “fast” and “slow” internal
representations. Unlike the case in Eq. 23, the E weights are not simply related to
transition probabilities, however (Problem ??).

Boltzmann zippers can address problems such as acoustic speech recognition,
where the fast chain learns the rapid transitions and structure of individual phonemes
while the slow component chain learns larger structure associated with prosody and
stress throughout a word or a full phrase. Related applications include speechreading
(lipreading), where the fast chain learns the acoustic transitions and the slow chain
the much slower transitions associated with the (visible) image of the talker’s lips,
jaw and tongue and body gestures, where fast hand motions are coupled to slower
large-scale motions of the arms and torso.

7.5 *Evolutionary methods

Inspired by the process of biological evolution, evolutionary methods of classifier de-
sign employ stochastic search for an optimal classifier. These admit a natural imple-

26 CHAPTER 7. STOCHASTIC METHODS

..

...

..

...

..

...

..

...

..

...

..

...

"f
as

t"
 h

id
de

n
un

it
s

A

B

A

B

A

B B

A

B B

"fast" visible units

..

.

..

..

.

....

..

.

..

....

"slow" visible units

"s
lo

w
"

hi
dd

en
 u

ni
ts

C

D D D

E E E

....

Figure 7.12: A Boltzmann zipper consists of two Boltzmann chains (cf. Fig. 7.11),
whose hidden units are interconnected. The component chains differ in the rate
at which visible features are sampled, and thus they capture structure at different
temporal scales. Correlations are learned by the weights linking the hidden units,
here labeled E. It is somewhat more difficult to train linked Hidden Markov Models
to learn structure at different time scales.

mentation on massively parallel computers. In broad overview, such methods proceed
as follows. First, we create several classifiers — a population — each varying somewhatpopulation
from the other. Next, we judge or score each classifier on a representative version of

score the classification task, such as accuracy on a set of labeled examples. In keeping with
the analogy with biological evolution, the resulting (scalar) score is sometimes called
the fitness. Then we rank these classifiers according to their score and retain the bestfitness
classifiers, some portion of the total population. Again, in keeping with biological
terminology, this is called survival of the fittest.survival

of the
fittest

We now stochastically alter the classifiers to produce the next generation — the
children or offspring. Some offspring classifiers will have higher scores than their

offspring
parents in the previous generation, some will have lower scores. The overall process

parent

is then repeated for subsequent generation: the classifiers are scored, the best ones
retained, randomly altered to give yet another generation, and so on. In part because
of the ranking, each generation has, on average, a slightly higher score than the
previous one. The process is halted when the single best classifier in a generation has
a score that exceeds a desired criterion value.

The method employs stochastic variations, and these in turn depend upon the
fundamental representation of each classifier. There are two primary representations
we shall consider: a string of binary bits (in basic genetic algorithms), and snippets
of computer code (in genetic programming). In both cases, a key property is that

7.5. *EVOLUTIONARY METHODS 27

occasionally very large changes in classifier are introduced. The presence of such
large changes and random variations implies that evolutionary methods can find good
classifiers even in extremely complex discontinuous spaces or “fitness landscapes” that
are hard to address by techniques such as gradient descent.

7.5.1 Genetic Algorithms

In basic genetic algorithms, the fundamental representation of each classifier is a bi-
nary string, called a chromosome. The mapping from the chromosome to the features chromosome
and other aspects of the classifier depends upon the problem domain, and the designer
has great latitude in specifying this mapping. In pattern classification, the score is
usually chosen to be some monotonic function of the accuracy on a data set, possibly
with penalty term to avoid overfitting. We use a desired fitness, θ, as the stopping
criterion. Before we discuss these points in more depth, we first consider more specif-
ically the structure of the basic genetic algorithm, and then turn to the key notion of
genetic operators, used in the algorithm.

Algorithm 4 (Basic Genetic algorithm)

1 begin initialize θ, Pco, Pmut, L N -bit chromosomes
2 do Determine fitness of each chromosome, fi, i = 1, . . . , L
3 Rank the chromosomes
4 do Select two chromosomes with highest score
5 if Rand[0, 1) < Pco then crossover the pair at a randomly chosen bit
6 else change each bit with probability Pmut
7 Remove the parent chromosomes
8 until N offspring have been created
9 until Any chromosome’s score f exceeds θ

10 return Highest fitness chromosome (best classifier)
11 end

Figure 7.13 shows schematically the evolution of a population of classifiers given by
Algorithm 4.

Genetic operators

There are three primary genetic operators that govern reproduction, i.e., producing
offspring in the next generation described in lines 5 & 6 of Algorithm 4. The last two
of these introduce variation into the chromosomes (Fig. 7.14):

Replication: A chromosome is merely reproduced, unchanged.

Crossover: Crossover involves the mixing — “mating” — of two chromosomes. A mating
split point is chosen randomly along the length of either chromosome. The first
part of chromosome A is spliced to the last part of chromosome B, and vice
versa, thereby yielding two new chromosomes. The probability a given pair of
chromosomes will undergo crossover is given by Pco in Algorithm 4.

Mutation: Each bit in a single chromosome is given a small chance, Pmut, of being
changed from a 1 to a 0 or vice versa.

28 CHAPTER 7. STOCHASTIC METHODS

11010100101000
01001110111011
11100010110100
00001110010100
11001010101010
00101100100100
11110100101011
10001001010001
11010110101000
11110101101001

generation k

15
11
29
36
54
73
22
92
84
27

11010100101000 15
01001110111011 11

11100010110100 29
00001110010100 36
11001010101010 54
00101100100100 73

11110100101011 22

10001001010001 92
11010110101000 84

11110101101001 27

11010100101000
01001110111011

11100010110100
00001110010100
11001010101010
00101100100100

11110100101011

10001001010001
11010110101000

11110101101001

score rank

survival of
the fittest and
reproduction

generation k+1

N

i
f
 f >

 θ
t
h
e
n

e
n
dfi

parents offspring

Figure 7.13: A basic genetic algorithm is a stochastic iterative search method. Each
of the L classifiers in the population in generation k is represented by a string of
bits of length N , called a chromosome (on the left). Each classifier is judged or
scored according its performance on a classification task, giving L scalar values fi.
The chromosomes are then ranked according to these scores. The chromosomes are
considered in descending order of score, and operated upon by the genetic operators
of replication, crossover and mutation to form the next generation of chromosomes —
the offspring. The cycle repeats until a classifier exceeds the criterion score θ.

Other genetic operators may be employed, for instance inversion — where the chromo-
some is reversed front to back. This operator is used only rarely since inverting a
chromosome with a high score nearly always leads to one with very low score. Below
we shall briefly consider another operator, insertions.

Representation

When designing a classifier by means of genetic algorithms we must specify the map-
ping from a chromosome to properties of the classifier itself. Such mapping will depend
upon the form of classifier and problem domain, of course. One of the earliest and
simplest approaches is to let the bits specify features (such as pixels in a character
recognition problem) in a two-layer Perceptron with fixed weights (Chap. ??). The
primary benefit of this particular mapping is that different segments of the chromo-
some, which generally remain undisturbed under the crossover operator, may evolve
to recognize different portions of the input space such as the descender (lower) or the
ascender (upper) portions of typed characters. As a result, occasionally the crossover
operation will append a good segment for the ascender region in one chromosome
to a good segment for the descender region in another, thereby yielding an excellent
overall classifier.

Another mapping is to let different segments of the chromosome represent the
weights in a multilayer neural net with a fixed topology. Likewise, a chromosome
could represent a network topology itself, the presence of an individual bit implying
two particular neurons are interconnected. One of the most natural representations
is for the bits to specify properties of a decision tree classifier (Chap. ??), as shown
in Fig. 7.15.

7.5. *EVOLUTIONARY METHODS 29

11010100101001010101111010100011111010010

11010100101001010101111010100011111010010

11010100101001010101111010100011111010010

11011100100001110101111110110011101010010

11010100101001010101111010100011111010010

00101100001010001010100001010110101001110

11010100101001010101111011010110101001110

00101100001010001010100000100011111010010

replication mutationcrossover

parents
(generation k)

offspring
(generation k+1)

A

B

Figure 7.14: Three basic genetic operations are used to transform a population of
chromosomes at one generation to form a new generation. In replication, the chromo-
some is unchanged. Crossover involves the mixing or “mating” of two chromosomes
to yield two new chromosomes. A position along the chromosomes is chosen randomly
(red vertical line); then the first part of chromosome A is linked with the last part of
chromosome B, and vice versa. In mutation, each bit is given a small chance of being
changed from a 1 to a 0 or vice versa.

Scoring

For a c-category classification problem, it is generally most convenient to evolve c
dichotomizers, each to distinguish a different ωi from all other ωj for j 6= i. During
classification, the test pattern is presented to each of the c dichotomizers and assigned
the label accordingly. The goal of classifier design is accuracy on future patterns, or if
decisions have associated costs, then low expected cost. Such goals should be reflected
in the method of scoring and selection in a genetic algorithm. Given sample patterns
representative version of the target classification task, it is natural to base the score on
the classification accuracy measured on the data set. As we have seen numerous times,
there is a danger that the classifier becomes “tuned” to the properties of the particular
data set, however. (We can informally broaden our usage of the term “overfitting”
from generic learning to apply to this search-based case as well.) One method for
avoiding such overfitting is penalizing classifier complexity, and thus the score should
have a term that penalizes overly large networks. Another method is to adjusting
the stopping criterion. Since the appropriate measure of classifier complexity and
the stopping criterion depend strongly on the problem, it is hard to make specific
guidelines in setting these parameters. Nevertheless, designers should be prepared to
explore these parameters in any practical application.

Selection

The process of selection specifies which chromosomes from one generation will be
sources for chromosomes in the next generation. Up to here, we have assumed that
the chromosomes would be ranked and selected in order of decreasing fitness until the
next generation is complete. This has the benefit of generally pushing the population
toward higher and higher scores. Nevertheless, the average improvement from one
generation to the next depends upon the variance in the scores at a given generation,

30 CHAPTER 7. STOCHASTIC METHODS

110101001

110101001001011010111001010110110001101100010001011001001010110

xi < θ xi < θ xi < θ xi < θ

xi < θ xi < θ

xi < θ

00 → x1
01 → x2
10 → x3
11 → x4

feature
sign threshold θ

ω1 ω2 ω1 ω2 ω1 ω2ω1 ω2

chromosome

Figure 7.15: One natural mapping is from a binary chromosome to a binary tree
classifier, illustrated here for a four-feature, monothetic tree dichotomizer. In this
example, each of the nodes computes a query of the form ±xi < θ? and is governed
by nine bits in the chromosome. The first bit specifies a sign, the next two bits
specify the feature queried. The remaining six bits are a binary representation of the
threshold θ. For instance, the left-most node encodes the rule +x3 < 41? (In practice,
larger trees would be used for problems with four features.)

and because this standard fitness-based selection need not give high variance, other
selection methods may prove superior.

The principle alternative selection scheme is fitness-proportional selection, or fitness-fitness-
proportional
selection

proportional reproduction, in which the probability that each chromosome is selected
is proportional to its fitness. While high-fitness chromosomes are preferentially se-
lected, occasionally low-fitness chromosomes are selected, and this may preserve di-
versity and increase variance of the population.

A minor modification of this method is to make the probability of selection propor-
tional to some monotonically increasing function of the fitness. If the function instead
has a positive second derivative, the probability that high-fitness chromosomes is en-
hanced. One version of this heuristic is inspired by the Boltzmann factor of Eq. 2;
the probability that chromosome i with fitness fi will be selected is

7.5. *EVOLUTIONARY METHODS 31

P (i) =
efi/T

E [efi/T]
, (24)

where the expectation is over the current generation and T is a control parameter
loosely referred to as a temperature. Early in the evolution the temperature is set
high, giving all chromosomes roughly equal probability of being selected. Late in the
evolution the temperature is set lower so as to find the chromosomes in the region of
the optimal classifier. We can express such search by analogy to biology: early in the
search the population remains diverse and explores the fitness landscape in search of
promising areas; later the population exploits the specific fitness opportunities in a
small region of the space of possible classifiers.

7.5.2 Further heuristics

There are many additional heuristics that can occasionally be of use. One concerns
the adaptation of the crossover and mutation rates, Pco and Pmut. If these rates are
too low, the average improvement from one generation to the next will be small, and
the search unacceptably long. Conversely, if these rates are too high, the evolution
is undirected and similar to a highly inefficient random search. We can monitor the
average improvement in fitness of each generation and the mutation and crossover
rates as long as such improvement is rapid. In practice, this is done by encoding the
rates in the chromosomes themselves and allowing the genetic algorithm to select the
proper values.

Another heuristic is to use a ternary, or n-ary chromosomes rather than the tradi-
tional binary ones. These representations provide little or no benefit at the algorith-
mic level, but may make the mapping to the classifier itself more natural and easier
to compute. For instance, a ternary chromosome might be most appropriate if the
classifier is a decision tree with three-way splits.

Occasionally the mapping to the classifier will work for chromosomes of differ-
ent length. For example, if the bits in the chromosome specify weights in a neural
network, then longer chromosomes would describe networks with a larger number of
hidden units. In such a case we allow the insertion operator, which with a small insertion
probability inserts bits into the chromosome at a randomly chosen position. This
so-called “messy” genetic algorithm method has a more appropriate counterpart in
genetic programming, as we shall see in Sect. 7.6.

7.5.3 Why do they work?

Because there are many heuristics to choose as well as parameters to set, it is hard to
make firm theoretical statements about building classifiers by means of evolutionary
methods. The performance and search time depend upon the number of bits, the size
of a population, the mutation and crossover rates, choice of features and mapping
from chromosomes to the classifier itself, the inherent difficulty of the problem and
possibly parameters associated with other heuristics.

A genetic algorithm restricted to mere replication and mutation is, at base, a
version of stochastic random search. The incorporation of the crossover operator,
which mates two chromosomes, provides a qualitatively different search, one that
has no counterpart in stochastic grammars (Chap. ??). Crossover works by finding,
rewarding and recombining “good” segments of chromosomes, and the more faithfully
the segments of the chromosomes represent such functional building blocks, the better

32 CHAPTER 7. STOCHASTIC METHODS

we can expect genetic algorithms to perform. The only way to insure this is with prior
knowledge of the problem domain and the desired form of classifier.

7.6 *Genetic Programming

Genetic programming shares the same algorithmic structure of basic genetic algo-
rithms, but differs in the representation of each classifier. Instead of chromosomes
consisting of strings of bits, genetic programming uses snippets of computer programs
made up of mathematical operators and variables. As a result, the genetic operators
are somewhat different; moreover a new operator plays a significant role in genetic
programming.

The four principal operators in genetic programming are (Fig. 7.16):

Replication: A snippet is merely reproduced, unchanged.

Crossover: Crossover involves the mixing — “mating” — of two snippets. A splitmating
point is chosen from allowable locations in snippet A as well as from snippet B.
The first part of snippet A is spliced to the back part of chromosome B, and
vice versa, thereby yielding two new snippets.

Mutation: Each bit in a single snippet is given a small chance of being changed to
a different value. Such a change must be compatible with the syntax of the
total snippet. For instance, a number can be replaced by another number; a
mathematical operator that takes a single argument can be replaced by another
such operator, and so forth.

Insertion: Insertion consists in replacing a single element in the snippet with anotherinsertion
(short) snippet randomly chosen from a set.

In the c-category problem, it is simplest to form c dichotomizers just as in genetic
algorithms. If the output of the classifier is positive, the test pattern belongs to
category ωi, if negative, then it is NOT in ωi.

Representation

A program must be expressed in some language, and the choice affects the complexity
of the procedure. Syntactically rich languages such as C or C++ are complex and
somwhat difficult to work with. Here the syntactic simplicity of a language such asLisp
is advantageous. Many Lisp expressions can be written in the form (<operator>
<operand> <operand>), where an <operand> can be a constant, a variable or another
parenthesized expression. For example, (+ X 2) and (* 3 (+ Y 5)) are valid Lisp
expressions for the arithmetic expressions x + 2 and 3(y + 5), respectively. These
expressions are easily represented by a binary tree, with the operator being specified
at the node and the operands appearing as the children (Fig. 7.17).

Whatever language is used, genetic programming operators used for mutation
should replace variables and constants with variables and constants, and operators
with functionally compatible operators. They should aslo be required to produce
syntactically valid results. Nevertheless, occassionally an ungrammatical code snippet
may be produced. For that reason, it is traditional to employ a wrapper — a routinewrapper
that decides whether the classifier is meaningful, and eliminates them if not.

7.6. SUMMARY 33

(OR (AND (NOT X0)(NOT X1))(AND X0 X1))

(OR (AND (NOT X0)(NOT X1))(AND X0 X1))

(OR (AND (NOT X0)(NOT X1))(AND X0 X1))

(OR (OR (NOT X1)(NOT X1))(AND X2 X1))

(OR (AND (NOT X0)(NOT X1))(AND X0 X1))

(OR (AND (X2)(NOT X0))(AND X2 X0))

(OR (AND (NOT X0)(NOT X1))(AND X2 X0))

(OR (AND (X2)(NOT X0))(AND X0 X1))

replication mutationcrossover

(OR (AND (NOT X0)(NOT X1))(AND X0 X1))

(OR (AND (NOT X0)(NOT X1))(AND (NOT X2) X1))

insertion

parents
(generation k)

offspring
(generation k+1)

A

B

(NOT X2)

Figure 7.16: Four basic genetic operations are used to transform a population of
snippets of code at one generation to form a new generation. In replication, the
snippet is unchanged. Crossover involves the mixing or “mating” of two snippets to
yield two new snippets. A position along the snippet A is randomly chosen from the
allowable locations (red vertical line); likewise one is chosen for snippet B. Then the
front portion of A is spliced to the back portion of B and vice versa. In mutation,
each element is given a small chance of being changed. There are several different
types of elements, and replacements must be of the same type. For instance, only a
number can replace another number; only a numerical operator that takes a single
argument can replace a similar operator, and so on. In insertion, a randomly selected
element is replaced by a compatible snippet, keeping the entire snippet grammatically
well formed and meaningful.

It is nearly impossible to make sound theoretical statements about genetic pro-
gramming and even the rules of thumb learned from simulations in one domain, such
as control or function optimization are of little value in another domain, such as clas-
sification problems. Of course, the method works best in problems that are matched
by the classifier representation, as simple operations such as multiplication, division,
square roots, logical NOT, and so on.

Nevertheless, we can state that as computation continues to decrease in cost, more
of the burden of solving classification problems will be assumed by computation rather
than careful analysis, and here techniques such as evolutionary ones will be of use in
classification research.

Summary

When a pattern recognition problem involves a model that is discrete or of such
high complexity that analytic or gradient descent methods are unlikely to work, we
may employ stochastic techniques — ones that at some level rely on randomness to
find model parameters. Simulated annealing, based on physical annealing of metals,
consists in randomly perturbing the system, and gradually decreasing the randomness
to a low final level, in order to find an optimal solution. Boltzmann learning trains the
weights in a network so that the probability of a desired final output is increased. Such
learning is based on gradient descent in the Kullback-Liebler divergence between two
distributions of visible states at the output units: one distribution describes these
units when clamped at the known category information, and the other when they
are free to assume values based on the activations throughout the network. Some

34 CHAPTER 7. STOCHASTIC METHODS

(- (+ (+ X0 X1) (* X2 (- X4 X0)))(+ (/ X3 X2)(* X2 X0)))

-

+

+

X0 X1 X2

X4 X0

X3 X2 X2 X0

* / *

+

-

/

*

X2 X4 X3

X4 X1

*

/

(/ (* X2 X4) (* X3 (/ X4 X1)))

(- (+ (+ X0 X1) (* X2 (- X4 X0)))(/ X4 X1))

-

+

+

X0 X1 X2

X4 X0

*

-

/

*

X2 X4 X3

*

(/ (* X2 X4) (* X3 (+ (/ X3 X2)(* X2 X0))))

X3 X2 X2 X0

/ *

+

/

X4 X1

parents
(generation k)

offspring
(generation k+1)

Figure 7.17: Unlike the decision trees of Fig. 7.15 and Chap. ??, the trees shown here
are merely a representation using the syntax of Lisp that implements a single function.
For instance, the upper-right (parent) tree implements x2x4

x3(x4/x1) . Such functions are
used with an implied threshold or sign function when used for classification. Thus
the function will operate on the features of a test pattern and emit category ωi if the
function is positive, and NOT ωi otherwise.

graphical models, such as hidden Markov models and Bayes belief networks, have
counterparts in structured Boltzmann networks, and this leads to new applications of
Boltzmann learning.

Search methods based on evolution — genetic algorithms and genetic programming
— perform highly parallel stochastic searches in a space set by the designer. The fun-
damental representation used in genetic algorithms is a string of bits, or chromosome;
the representation in genetic programming is a snippet of computer code. Variation
is introduced by means of crossover, mutation and insertion. As with all classification
methods, the better the features, the better the solution. There are many heuristics
that can be employed and parameters that must be set. As the cost of computation
contiues to decline, computationally intensive methods, such as Boltzmann networks
and evolutionary methods, should become increasingly popular.

7.6. BIBLIOGRAPHICAL AND HISTORICAL REMARKS 35

Bibliographical and Historical Remarks

The general problem of search is of central interest in computer science and artificial
intelligence, and is far to expansive to treat here. Nevertheless, techniques such as
depth first, breadth first, branch-and-bound, A* [19], occassionally find use in fields
touching upon pattern recognition, and practitioners should have at least a passing
knowledge of them. Good overviews can be found in [33] and a number of textbooks
on artificial intelligence, such as [46, 67, 55]. For rigor and completeness, Knuth’s
book on the subject is without peer [32].

The infinite monkey theorem, attributed to Sir Arthur Eddington, states that if
there is a sufficiently large number of monkeys typing at typewriters, eventually one
will bang out the script to Hamlet. It reflects one extreme of the tradeoff between prior
knowledge about the location of a solution on the one hand and the effort of search
required to fit it on the other. Computers made available in the early 1950s permitted
the first automated attempts at highly stochastic search, most notably the pioneering
work of Metropolis and colleagues for simulating chemical processes [40]. One of the
earliest and most influential applications of stochastic methods for pattern recognition
was the Pandemonium learning method due to Selfridge, which used stochastic search
for input weights in a feed-forward network model [57]. Kirkpatrick, Gelatt and Vec-
chi [30], and independently Černý [64], introduced the Boltzmann factor to general
stochastic search methods, the first example of simulated annealing. The statistical
physics foundations of Boltzmann factors, at the present level of mathematical sophis-
tication, can be found in [31]. The physical model of stochastic binary components
was introduced by Wilhemlm Lenz in 1920, but became associated with his doctoral
student Ernst Ising several years thereafter, and first called the “Ising model” in a
paper by R. Peierls [50]. It has spawned a great deal of theoretical and simulation
research [20].

The use of simulated annealing for learning was proposed by Ackley, Hinton and
Sejnowski [2], a good book on the method is [1], which described the procedure for ini-
tializing the temperature in simulated annealing and was the inspiration for Fig. 7.10.
Peterson and Anderson introduced deterministic annealing and mean-field Boltzmann
learning and described some of the (rare) conditions when the mean-field approxima-
tion might lead to non-optimal solutions [51]. Hinton showed that the Boltzmann
learning rule performs steepest descent in weight space for deterministic algorithm
[21].

A number of papers explore structured Boltzmann networks, including Hopfield’s
influential paper on networks for pattern completion or auto-association [25]. The
linear storage capacity of Hopfield networks quoted in the text, and nlogn relationships
for partial storage, are derived in [66, 39, 65]. The learning rule described in that work
has roots in the Learning matrix of [59, 60]. Harmonium [58, 14], another two-layer
variant of a Boltzmann network is primarily of historical interest. The relation of
Boltzmann networks to graphical models such as Hidden Markov models has been
explored in [27, 37] and [56], which was the source for our discussion in Sect. 7.4.
Implementation of constraints for Boltzmann machines was introduced in [42] and a
second-order pruning algorithm was described in [49].

Boltzmann learning has been applied to a number of real-world pattern recognition
problems, most notably speech recognition [8, 52] and stochastic restoration of images
or pattern completion [16]. Because Boltzmann learning has high computational
burden yet a natural VLSI implementation, a number of special-purpose chips have
been fabricated [23, 43, 44]. The ordering of configurations in Fig. 7.3, in which

36 CHAPTER 7. STOCHASTIC METHODS

neighboring configurations differe in just one bit, is a version of a Gray code; an
elegant method for constructing such codes is described in [18, Sect. 5.16 – 5.17].

Some of the earliest work inspired by evolution was described in [12, 13], but the
computational power available was insufficient for anything but toy problems. Later,
Rechenberg’s “evolution strategies” were applied to optimization in aeronautical de-
sign problems [53]. His earliest work did not employ full populations of candidate
solutions, nor the key operation of crossover. Evolutionary programming saves good
parents while evolutionary strategies generally does not. Neither employ mating, i.e.,
crossover. Holland introduced genetic algorithms in 1975 [24], and like the algorithm
itself, researchers have explored a very wide range of problems in search, optimization
and pattern recognition. A review appears in [6], and there is an increasing number
of textbooks [17, 41], the latter with a more rigorous approach to the mathemat-
ics. Koza’s extensive books on Genetic Programming provide a good introduction,
and include several illustrative simulations [34, 35], though relatively little on pattern
recognition. There are several collections of papers on evolutionary techniques in pat-
tern recognition, including [48]. An intriguing effect due to the interaction of learning
and evolution is the Baldwin effect, where learning can influence the rate of evolution
[22]; it has been shown that too much learning (as well as too little learning) leads to
slower evolution [28]. Evolutionary methods can lead to “non-optimal” or inelegant
solutions, and there is computational evidence that this occurs in nature [61, 62].

Problems⊕
Section 7.1

1. One version of the infinite monkey theorem states that a single (immortal) monkey
typing randomly will ultimately reproduce the script of Hamlet. Estimate the time
needed for this, assuming the monkey can type two characters per second, that the
play has 50 pages, each containing roughly 80 lines, and 40 characters per line. Assume
there are 30 possible characters (a through z), space, period, exclamation point and
carriage return. Compare this time to the estimated age of the universe, 1010 years.⊕

Section 7.2

2. Prove that for any optimization problem of the form of Eq. 1 having a non-
symmetric connection matrix, there is an equivalent optimization problem in which
the matrix is replaced by its symmetric part.
3. The complicated energy landscape in the left of Fig. 7.2 is misleading for a number
of reasons.

(a) Discuss the difference between the continuous space shown in that figure with
the discrete space for the true optimization problem.

(b) The figure shows a local minimum near the middle of the space. Given the
nature of the discrete space, are any states closer to any “middle”?

(c) Suppose the axes referred to continuous variables si (as in mean-field annealing).
If each si obeyed a sigmoid (Fig. 7.5), could the energy landscape be non-
monotonic, as is shown in Fig. 7.2?

4. Consider exhaustive search for the minimum of the energy given in Eq. 1 for
binary units and arbitrary connections wij . Suppose that on a uniprocessor it takes

7.6. PROBLEMS 37

10−8 seconds to calculate the energy for each configuration. How long will it take to
exhaustively search the space for N = 100 units? How long for N = 1000 units?
5. Suppose it takes a uniprocessor 10−10 seconds to perform a single multiply-

accumulate, wijsisj , in the calculation of the energy E = −1/2
∑
ij

wijsisj given in

Eq. 1.

(a) Make some simplifying assumptions and write a formula for the total time re-
quired to search exhaustively for the minimum energy in a fully connected net-
work of N nodes.

(b) Plot your function using a log-log scale for N = 1, . . . , 105.

(c) What size network, N , could be searched exhaustively in a day? A year? A
century?

6. Make and justify any necessary mathematical assumptions and show analytically
that at high temperature, every configuration in a network of N units interconnected
by weights is equally likely (cf. Fig. 7.1).
7. Derive the exponential form of the Boltzmann factor in the following way. Consider
an isolated set of M + N independent magnets, each of which can be in an si = +1
or si = −1 state. There is a uniform magnetic field applied and this means that the
energy of the si = +1 state has some positive energy, which we can arbitrarily set to
1; the si = −1 state has energy −1. The total energy of the system is therefore the
sum of the number pointing up, ku, minus the number pointing down, kd; that is,
ET = ku − kd. (Of course, ku + kd = M +N regardless of the total energy.)

The fundamental statistical assumptions describing this system are that the mag-
nets are independent, and that the probability a subsystem (viz., the N magnets),
has a particular energy is proportional to the number of configurations that have this
energy.

(a) Consider the subsystem of N magnets, which has energy EN . Write an expres-
sion for the number of configurations K(N,EN) that have energy EN .

(b) As in part (a), write a general expression for the number of configurations in
the subsystem M magnets at energy EM , i.e., K(M,EM).

(c) Since the two subsystems consist of independent magnets, total number of
ways the full system can have total energy ET = EN + EM is the product
K(N,EN)K(M,EM). Write an analytic expression for this total number.

(d) In statistical physics, if M À N , the M -magnet subsystem is called the heat
reservoire or heat bath. Assume that M À N , and write a series expansion for
your answer to part (c).

(e) Use your answer in part (d) to show that the probability the N -unit system has
energgy EN has the form of a Boltzmann factor, e−EN .

8. Prove that the analog value of si given by Eq. 5 is the expected value of a binary
variable in temperature T in the following simple case. Consider a single binary
magnet whose s = +1 state has energy +E0 and s = −1 state has energy −E0, as
would occur if an external magnetic field has been applied.

38 CHAPTER 7. STOCHASTIC METHODS

(a) Construct the partition function Z by summing over the two possible states
γ′ = 0 and γ′ = 1 according to Eq. 3.

(b) Recall that the probability of finding the system in state s = +1 is given by a
Boltzmann factor divided by the partition function (Eq. 2). Define the (analog)
expected value of the state to be

s = E [s] = P (s = +1)(+1) + P (s = −1)(−1).

Show that this implies the analog state of a single magnet obeys Eq. 5.

(c) Argue that if the N − 1 other magnets in a large system can be assumed to give an
average field (this is the mean-field approximation), then the analog value of a single
magnet will obey a function of the form given in Eq. 5.
9. Consider Boltzmann networks applied to the exclusive-OR problem.

(a) A fully connected network consisting solely of two input units and a single output
unit, whose sign gives the class, cannot solve the exclusive-OR problem. Prove
this by writing a set of inequalities for the weights and show that they are
inconsistent.

(b) As in part (a), prove that a fully connected Boltzmann network consisting solely
of two input units and two output units representing the two categories cannot
solve the exclusive-OR problem.

(c) Prove that a Boltzmann network of part (b) with a single hidden unit can im-
plement the exclusive-OR problem.

10. Consider a fully-connected Boltzmann network with two input units, a single
hidden unit and a single (category) output unit. Construct by hand a set of weights
wij for i, j = 1, 2, 3, 4 which allows the net to solve the exclusive-OR problem for a
representation in which si = ±1.⊕

Section 7.3

11. Show all intermediate steps in the derivation of Eq. 14 from Eq. 12. Be sure
your notation distinguishes this case from that leading to Eq. 10.
12. Train a six-unit Hopfield network with the following three patterns using the

learning rule of Eq. 15.

x1 = {+1,+1,+1,−1,−1,−1}
x2 = {+1,−1,+1,−1,+1,−1}
x3 = {−1,+1,−1,−1,+1,+1}

(a) Verify that each of the patterns gives a local minium in energy by perturbing
each of the six units individually and monitoring the energy.

(b) Verify that the symmetric state si → −si for i = 1, . . . , 6 also gives a local energy
minimum of the same energy.

13. Repeat Problem 12 but with the eight-unit network and the following patterns:

x1 = {+1,+1,+1,−1,−1,−1,−1,+1}
x2 = {+1,−1,+1,+1,+1,−1,+1,−1}
x3 = {−1,+1,−1,−1,+1,+1,−1,+1}

7.6. PROBLEMS 39

14. show that a missing feature assumes the appropriate value when training a
deficient pattern in a Boltzmann network.
15. show how if constraints that a pattern is not in a set of categories improves the

recognition for the others.
16. The text states a lower bound on the number of hidden units needed in a

Boltzmann network trained with n patterns is dlog2ne. This is, of course, the number
of hiddens needed to insure a distinct hidden representation for each pattern. Show
that this lower bound is not tight, as there may not be weights to insure such a
representation. Do this by considering a Boltzmann network with three input units,
three hiddens and a single output, addressing the 3-bit parity problem.

(a) Argue that the hidden representation must be equivalent to the input represen-
tation.

(b) Argue that there is no two-layer Boltzmann network (here, hidden to output)
that can solve the three-bit parity problem. Explain why this implies that the
dlog2ne bound is not tight.

17. Consider the problem of initializing the N weights in a fully connected Boltzmann
network. Let there be N − 1 ≈ N weights connected to each unit. Suppose too that
the chance that any particulat units will be in the si = +1 state is 0.5, and likewise
for the si = −1 state. We seek weights such that the variance of the net activation
of each unit is roughly 1.0, a reasonable measure of the end of the linear range of the
sigmoid nonlinearity. The variance of li is

VAR[li] =
N∑
j=1

V AR[wijsj] = NV AR[wij]V AR[sj]..

Set V AR[li] = 1, and solve for V AR[wij] and thereby show that weights should be
initialized randomly in the range −1

√
3/N < wij < +

√
3/N .

18. Show that under reasonable conditions, the learning rate η in Eq. 14 for a
Boltzmann network of N units should be bounded η ≤ T 2/N to insure stability as
follows:

(a) Take the derivative of Eq. 14 to prove that the Hessian is

H =
∂2D̄KL

∂w2
=

∂2D̄KL

∂wij∂wuv

=
1
T 2

[E [sisjsusv]− E [sisj]E [susv]] .

(b) Use this to show that

wtHw ≤ 1
T 2
E

∑

ij

|wij |

2
 .

(c) Suppose we normalize weights such that ‖w‖ = 1 and thus∑
ij

wij ≤
√
N.

Use this fact together with your answer to part (b) to show that the curvature
of the D̄KL obeys

wtHw ≤ 1
T 2
E
[(√

N
)2
]

=
N

T 2
.

40 CHAPTER 7. STOCHASTIC METHODS

(d) Use the fact that stability demands the learning rate to be the inverse of the
curvature, along with your answer in (c), to show that the learning rate should
be bounded η ≤ T 2/N .

⊕
Section 7.4

19. For any HMM, there exists a Boltzmann chain that implements the equivalent
probability model. Show the converse is not true, that is, for every chain, there
exists an HMM. Use the fact that weights in a Boltzmann chain are bounded −∞ <
Aij , Bjk < +∞, but probabilities in an HMM are positive and sum to 1.
20. For a Boltzmann chain with Tf steps, c hidden units and xx visible units, how

many legal paths are there (cf. Fig. 7.11).
21. The discussion of the relation between Boltzmann chains and hidden Markov

models in the text assumed the initial hidden state was known. Show that if this
hidden state is not known, the energy of Eq. 21 has another term which describes the
prior probability the system is in a particular hidden state.⊕

Section 7.5

22. Consider the populations of size L of N -bit chromosomes.

(a) Show the number of different populations is
(
L+2N−1

2N−1

)
.

(b) Assume some number 1 ≤ Ls ≤ L are selected for reproduction in a given
generation. Use your answer to part (a) to write an expression for the number
of possible sets of parents as a function of L and La. (It is just the set, not their
order that is relevant.)

(c) Show that your answer to part (b) reduces to that in part (a) for the case
La = L.

(d) Show that your answer to part (b) gives L in the case La = 1.

⊕
Section 7.6

23. For each of the below snippets, mark suitable positions for breaks for the crossover
operator.

(a) (* (X0 (+ x4 x8)) x5 (SQRT 5))

(b) (SQRT (X0 (+ x4 x8)))

(c) (* (- (SIN X0) (* (TAN 3.4) (SQRT X4)))

(d) (* (X0 (+ x4 x8)) x5 (SQRT 5))

(e) Separate the following Lisp symbols into groups such that any member in a
group can be replaced by another through the mutation operator in genetic
programming:
{+, X3, NOR, *, X0, 5.5, SQRT, /, X5, SIN, -, -4.5, NOT, OR, 2.7, TAN}

7.6. COMPUTER EXERCISES 41

Computer exercises

Several of the exercises use the data in the following table.

ω1 ω2

xxxxx xxxxx
xxxxx xxxxx
xxxxx xxxxx
xxxxx xxxxx
xxxxx xxxxx
xxxxx xxxxx
xxxxx xxxxx
xxxxx xxxxx
xxxxx xxxxx
xxxxx xxxxx

⊕
Section 7.2

1. Consider the problem of searching for a global minimum of the energy given in
Eq. 1 for a system of N units, fully interconnected by weights randomly chosen in the
range −1/

√
N < wij < +1/

√
N . Let N = 10.

(a) Write a program to search through all 2N configurations to find global minima,
and apply it to your network. Verify that there are two “global” minima.

(b) Write a program to perform the following version of gradient descent. Let
the units be numbered and ordered i = 1, . . . , N for bookkeeping. For each
configuration, find the unit with the lowest index i which can be changed to
lower the total energy. Iteratively make this change until the system converges,
or it is clear that it will not converge.

(c) Perform a search as in part (b) but with random polling of units.

(d) Repeat parts (a – c) for N = 100 and N = 1000.

(e) Discuss your results, paying particular attention to convergence and the problem
of local minima.

2. Algorithm 1⊕
Section 7.3

3. Train a Boltzmann network consisting of eight input units and ten category units
with the characters of a seven-segment display shown in Fig. 7.10.

(a) Use the network to classify each of the ten patterns, and thus verify that all
have been learned.

(b) Explore pattern completion in your network the following way. For each of the
28 possible patterns do pattern completion for several characters. Add hidden
units and show that better performance results for ambiguous characters

42 CHAPTER 7. STOCHASTIC METHODS

4. ;laskjdf⊕
Section 7.4

5. lskjdf⊕
Section 7.5

6. lksdfj⊕
Section 7.6

7. Consider a two-category problem with four features bounded region −1 ≤ xi ≤ +1
for i = 1, 2, 3, 4.

(a) Generate training points in each of two categories defined by

ω1 : x1 + 0.5x2 − 0.3x3 − 0.1x4 < 0.5
ω2 : −x1 + 0.2x2 + x3 − 0.6x4 < 0.2

by randomly selecting a point in the four-dimensional space. If it satisfies neither
of the two inequalities, delete the point. If it satisfies just one of the inequalities,
label its category accordingly. If it satisfies both inequalities, randomly choose
a label with probability 0.5. If it satisfies neither of the inequalities, discard the
point. Continue in this way until you have 50 points for each category.

(b) GP

Bibliography

[1] Emile Aarts and Jan Korst. Simulated Annealing and Boltzmann Machines:
A Stochastic Approach to Combinatorial Optimization and Neural Computing.
Wiley, New York, NY, 1989.

[2] David H. Ackley, Geoffrey E. Hinton, and Terrence J. Sejnowski. A learning
algorithm for Boltzmann machines. Cognitive Science, 9(1):147–169, 1985.

[3] Rudolf Ahlswede and Ingo Wegener. Search Problems. Wiley, New York, NY,
1987.

[4] Frantzisko Xabier Albizuri, Alicia d’Anjou, Manuel Graña, Francisco Javier Tor-
realdea, and Mari Carmen Hernandez. The high-order Boltzmann machine:
Learned distribution and topology. IEEE Transactions on Neural Networks,
TNN-6(3):767–770, 1995.

[5] David Andre, Forrest H. Bennett III, and John R. Koza. Discovery by genetic
programming of a cellular automata rule that is better than any known rule
for the majority classification problem. In John R. Koza, David E. Goldberg,
David B. Fogel, and Rick L. Riolo, editors, Genetic Programming 1996: Proceed-
ings of the First Annual Conference, pages 3–11, Cambridge, MA, 1996. MIT
Press.

[6] Thomas Bäck, Frank Hoffmeister, and Hans-Paul Schwefel. A survey of evolu-
tion strategies. In Rik K. Belew and Lashon B. Booker, editors, Proceedings of
the Fourth International Conference on Genetic Algorithms, pages 2–9. Morgan
Kaufmann, San Mateo, CA, 1991.

[7] J. Mark Baldwin. A new factor in evolution. American Naturalist, 30:441–451,
536–553, 1896.

[8] John S. Bridle and Roger K. Moore. Boltzmann machines for speech pattern
processing. Proceedings of the Institute of Acoustics, 6(4):315–322, 1984.

[9] Lawrence Davis, editor. Genetic Algorithms and Simulated Annealing. Research
Notes in Artificial Intelligence. Morgan Kaufmann, Los Altos, CA, 1987.

[10] Lawrence Davis, editor. Handbook of Genetic Algorithms. Van Nostrand Rein-
hold, New York, NY, 1991.

[11] Michael de la Maza and Bruce Tidor. An analysis of selection procedures with
particular attention paid to proportional and Boltzmann selection. In Stephanie
Forrest, editor, Proceedings of the 5th International Conference on Genetic Al-
gorithms, pages 124–131, San Mateo, CA, 1993. Morgan Kaufmann.

43

44 BIBLIOGRAPHY

[12] Lawrence J. Fogel, Alvin J. Owens, and Michael J. Walsh. Artificial Intelligence
through Simulated Evolution. Wiley, New York, NY, 1966.

[13] Lawrence J. Fogel, Alvin J. Owens, and Michael J. Walsh. Intelligence through
Simulated Evolution. Wiley, New York, NY, updated and expanded edition, 1999.

[14] Yoav Freund and David Haussler. Unsupervised learning of distributions on
binary vectors using two layer networks. In John E. Moody, Stephen J. Hanson,
and Richard P. Lippmann, editors, Advances in Neural Information Processing
Systems 4, pages 912–919, San Mateo, CA, 1992. Morgan Kaufmann.

[15] Conrad C. Galland. The limitations of deterministic Boltzmann machine learn-
ing. Network, 4(3):355–379, 1993.

[16] Stewart Geman and Donald Geman. Stochastic relaxation, Gibbs distributions,
and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis
and Machine Intelligence, PAMI-6(6):721–741, 1984.

[17] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, Reading, MA, 1989.

[18] Richard W. Hamming. Coding and Information Theory. Prentice-Hall, Engle-
wood Cliffs, NJ, second edition, 1986.

[19] Peter E. Hart, Nils Nilsson, and Bertram Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions of Systems Science
and Cybernetics, SSC-4(2):100–107, 1968.

[20] John Hertz, Anders Krogh, and Richard G. Palmer. Introduction to the Theory
of Neural Computation. Addison-Wesley Publishing Company, Redwood City,
CA, 1991.

[21] Geoffrey E. Hinton. Deterministic Boltzmann learning performs steepest descent
in weight space. Neural Computation, 1(1):143–150, 1989.

[22] Geoffrey E. Hinton and Stephen J. Nowlan. How learning can guide evolution.
Complex Systems, 1(1):495–502, 1987.

[23] Yuzo Hirai. Hardware implementation of neural networks in Japan. Neurocom-
puting, 5(1):3–16, 1993.

[24] John H. Holland. Adaptation in Natural and Artificial Systems: An introduc-
tory analysis with applications to biology, control and artificial intelligence. MIT
Press, Cambridge, MA, second edition, 1992.

[25] John J. Hopfield. Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the National Academy of Sciences of the
USA, 79(8):2554–2558, 1982.

[26] Hugo Van Hove and Alain Verschoren. Genetic algorithms and trees I: Recogni-
tion trees (the fixed width case). Computers and Artificial Intelligence, 13(5):453–
476, 1994.

[27] Michael I. Jordan, editor. Learning in Graphical Models. MIT Press, Cambridge,
MA, 1999.

BIBLIOGRAPHY 45

[28] Ron Keesing and David G. Stork. Evolution and learning in neural networks:
The number and distribution of learning trials affect the rate of evolution. In
Richard P. Lippmann, John E. Moody, and David S. Touretzky, editors, Advances
in Neural Information Processing Systems 3, pages 804–810, San Mateo, CA,
1991. Morgan Kaufmann.

[29] James D. Kelly, Jr. and Lawrence Davis. A hybrid genetic algorithm for clas-
sification. In Raymond Reiter and John Myopoulos, editors, Proceedings of the
12th International Joint Conference on Artificial Intelligence, pages 645–650, San
Mateo, CA, 1991. Morgan Kaufmann.

[30] Scott Kirkpatrick, C. Daniel Gelatt, Jr., and Mario P. Vecchi. Optimization by
simulated annealing. Science, 220(4598):671–680, 1983.

[31] Charles Kittel and Herbert Kroemer. Thermal Physics. Freeman, San Francisco,
CA, second edition, 1980.

[32] Donald E. Knuth. The Art of Computer Programming, volume 3. Addison-
Wesley, Reading, MA, 1 edition, 1973.

[33] Richard E. Korf. Optimal path finding algorithms. In Laveen N. Kanal and
Vipin Kumar, editors, Search in Artificial Intelligence, chapter 7, pages 223–267.
Springer-Verlag, Berlin, Germany, 1988.

[34] John R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA, 1992.

[35] John R. Koza. Genetic Programming II: Automatic Discovery of Reusable Pro-
grams. MIT Press, Cambridge, MA, 1994.

[36] Vipin Kumar and Laveen N. Kanal. The cdp: A unifying formulation for heuristic
search, dynamic programming, and branch bound procedures. In Laveen N.
Kanal and Vipin Kumar, editors, Search in Artificial Intelligence, pages 1–27.
Springer-Verlag, New York, NY, 1988.

[37] David J. C. MacKay. Equivalence of Boltzmann chains and hidden Markov
models. Neural Computation, 8(1):178–181, 1996.

[38] Robert E. Marmelstein and Gary B. Lamont. Pattern classification using a hybrid
genetic program decision tree approach. In John R. Koza, Wolfgang Banzhaf,
Kumar Chellapilla, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max H.
Garzon, David E. Goldberg, Hitoshi Iba, and Rick Riolo, editors, Genetic Pro-
gramming 1998: Proceedings of the Third Annual Conference, pages 223–231,
San Mateo, CA, 1998. Morgan Kaufmann.

[39] Robert J. McEliece, Edward C. Posner, Eugene R. Rodemich, and Santosh S.
Venkatesh. The capacity of the Hopfield associative memory. IEEE Transactions
on Information Theory, IT-33(4):461–482, 1985.

[40] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Au-
gusta H. Teller, and Edward Teller. Equation of state calculations by fast com-
puting machines. Journal of Chemical Physics, 21(6):1087–1092, 1953.

[41] Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge,
MA, 1996.

46 BIBLIOGRAPHY

[42] John Moussouris. Gibbs and Markov random systems with constraints. Journal
of Statistical Physics, 10(1):11–33, 1974.

[43] Michael Murray, James B. Burr, David G. Stork, Ming-Tak Leung, Kan
Boonyanit, Gregory J. Wolff, and Allen M. Peterson. Deterministic Boltzmann
machine VLSI can be scaled using multi-chip modules. In Jose Fortes, Edward
Lee, and Teresa Meng, editors, Proceedings of the International Conference on
Application-Specific Array Processors ASAP-92, volume 9, pages 206–217, Los
Alamitos, CA, 1992. IEEE Press.

[44] Michael Murray, Ming-Tak Leung, Kan Boonyanit, Kong Kritayakirana,
James B. Burr, Greg Wolff, David G. Stork, Takahiro Watanabe, Ed Schwartz,
and Allen M. Peterson. Digital Boltzmann VLSI for constraint satisfaction and
learning. In Jack D. Cowan, Gerald Tesauro, and Joshua Alspector, editors,
Advances in Neural Information Processing Systems, volume 6, pages 896–903,
Cambridge, MA, 1994. MIT Press.

[45] Dana S. Nau, Vipin Kumar, and Laveen N. Kanal. General branch and bound,
and its relation to A* and AO*. Artificial Intelligence, 23(1):29–58, 1984.

[46] Nils J. Nilsson. Artificial Intelligence: A New Synthesis. Morgan Kaufmann, San
Mateo, CA, 1998.

[47] Mattias Ohlsson, Carsten Peterson, and Bo Söderberg. Neural networks for op-
timization problems with inequality constraints: The knapsack problem. Neural
Computation, 5(2):331–339, 1993.

[48] Sankar K. Pal and Paul P. Wang, editors. Genetic Algorithms for Pattern Recog-
nition. CRC Press, Boca Raton, FL, 1996.

[49] Morton With Pederson and David G. Stork. Pruning Boltzmann networks and
Hidden Markov Models. In Thirteenth Asilomar Conference on Signals, Systems
and Computers, volume 1, pages 258–261, New York, NY, 1997. IEEE Press.

[50] Rudolf Peierls. On Ising’s model of ferromagnetism. xxxx, 1936.

[51] Carsten Peterson and James R. Anderson. A mean-field theory learning algorithm
for neural networks. Complex Systems, 1(5):995–1019, 1987.

[52] Richard W. Prager, Tim D. Harrison, and Frank Fallside. Boltzmann machines
for speech recognition. Computer Speech and Language, 1(1):3–27, 1986.

[53] Ingo Rechenberg. Bionik, evolution und optimierung (in German). Naturwis-
senschaftliche Rundschau, 26(11):465–472, 1973.

[54] Ingo Rechenberg. Evolutionsstrategie – optimierung nach prinzipien der biologis-
chen evolution (in German). In Jörg Albertz, editor, Evolution und Evoultions-
strategien in Biologie, Technik und Gesellschaft, pages 25–72. Freie Akademie,
1989.

[55] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice-Hall Series in Artificial Intelligence. Prentice-Hall, Englewood Cliffs,
NJ, 1995.

BIBLIOGRAPHY 47

[56] Lawrence K. Saul and Michael I. Jordan. Boltzmann chains and Hidden Markov
Models. In Gerald Tesauro, David S. Touretzky, and Todd K. Leen, editors,
Advances in Neural Information Processing Systems, volume 7, pages 435–442,
Cambridge, MA, 1995. MIT Press.

[57] Oliver G. Selfridge. Pandemonium: a paradigm for learning. In Mechanisation
of Thought Processes: Proceedings of a Symposium held at the National Physical
Laboratory, pages 513–526, London, UK, 1958. HMSO.

[58] Paul Smolensky. Information processing in dynamical systems: Foundations of
Harmony theory. In David E. Rumelhart and James L. McClelland, editors,
Parallel Distributed Processing, volume 1, chapter 6, pages 194–281. MIT Press,
Cambridge, MA, 1986.

[59] Karl Steinbuch. Die lernmatrix (in German). Kybernetik (Biological Cybernetics),
1(1):36–45, 1961.

[60] Karl Steinbuch. Automat und Mensch (in German). Springer, New York, NY,
1971.

[61] David G. Stork, Bernie Jackson, and Scott Walker. Non-optimality via pre-
adaptation in simple neural systems. In Christopher G. Langton, Charles Taylor,
J. Doyne Farmer, and Steen Rasmussen, editors, Artificial Life II, pages 409–429.
Addison Wesley, Reading, MA, 1992.

[62] David G. Stork, Bernie Jackson, and Scott Walker. Nonoptimality in a neurobi-
logical system. In Daniel S. Levine and Wesley R. Elsberry, editors, Optimality in
Biological and Artificial Networks?, pages 57–75. Lawrence Erlbaum Associates,
Mahwah, NJ, 1997.

[63] Harold Szu. Fast simulated annealing. In John S. Denker, editor, Neural Net-
works for Computing, pages 420–425, New York, NY, 1986. American Institute
of Physics.

[64] Vladimı́r Černý. Thermodynamical approach to the traveling salesman problem:
An efficient simulation algorithm. Journal of Optimization Theory and Applica-
tions, 45:41–51, 1985.

[65] Santosh S. Venkatesh and Demetri Psaltis. Linear and logarithmic capacities
in associative neural networks. IEEE Transactions on Information Theory, IT-
35(3):558–568, 1989.

[66] Gérard Weisbuch and Françoise Fogelman-Soulié. Scaling laws for the attractors
of Hopfield networks. Journal of Physics Letters, 46(14):623–630, 1985.

[67] Patrick Henry Winston. Artificial Intelligence. Addison-Wesley, Reading, MA,
third edition, 1992.

Index

annealing
deterministic

Algorithm, 11
mean-field, see simulated anneal-

ing, deterministic, see anneal-
ing, deterministic

schedule, 8, 21
ascender (character), 28

Baldwin effect, 36
Boltzmann

chain, 24
constant, 6
factor, 6
zipper, 25

Boltzmann learning, see learning, Boltz-
mann, 12–25

application, 35
deterministic

Algorithm, 20
stochastic, 13–19

Boltzmann network
weight initialization, 21

chromosome, 26, 27
clamp, 12, 15
classifier

representation, 28
configuration, 4

hidden, 13
constraint

imposition, 17
cooling schedule, see annealing, sched-

ule
correlation, 15

spurious, 15
unit, 20

crossover, 32

descender (character), 28
deterministic annealing, see simulated

annealing, deterministic

Eddington, Sir Arthur, 35
energy, 4

interaction, 4
landscape, 5, 9

energy (Lyapunov), 4
entropy

relative, see Kullback-Leibler dis-
tance, 14

evolution
strategies, 36

evolutionary method, 25–33

feature
missing, 17

fitness, 26, 27, 29
fittest

survival of, 26
force

magnet, 9

genetic
Algorithm, 27
algorithm, 3
operator, 27

genetic programming, 32–33
golf course landscape, 5
gradient descent, 3
Gray code, 36
greedy search, see search, greedy

Hamlet, 35
Harmonium, 35
hypercube, 9

infinite monkey theorem, 35
insertion, 28, 32
insertion operator, 31
inversion (genetic operator), 28

Kullback-Leibler distance, 14
weighted, 16

48

INDEX 49

Kullback-Leibler divergence, see Kullback-
Leibler distance

learning
Boltzmann, 3

application, 35
evolution interaction, 36
rate

Boltzmann, 14
learning component, 15
Lisp, 32
local minimum, 8
Lyapunov function, 4

magnet
analogy for optimization, 4

mating, see crossover, see crossover
maximum likelihood, 3
mutation, 32

neural network, 28
chromosome representation, 28

objective function, see Lyapunov func-
tion

offspring, 26, 27
one-of-c representation, 12
optimization problem, 4
overfitting, 27

and genetic algorithms, 29

Pandemonium, 35
parent

genetic algorithm, 26
partition function, 6, 14
Parzen window, 21
pattern

completion, 35
Boltzmann network, 18–19

deficient, 17
training, 14

Perceptron, 28
pocket algorithm, 23
poll, 7
population, 26
Probabilistic Neural Network, 21
pruning

Boltzmann network, 35

relative entropy, 14
replication, 32

response function, 9

score (evolutionary methods), see fit-
ness

search
exhaustive, 3
greedy, 4
stochastic, 4

selection
and genetic algorithm, 29
fitness-proportional, 30

sigmoid, 9
simulated annealing, 5–12

deterministic, 9–12
sequential, see simulated anneal-

ing, stochastic
stochastic

Algorithm, 8
statistical mechanics, 3
stopping criterion

and genetic algorithms, 29
student component, see unlearning com-

ponent
survival of the fittest, 26

teacher component, see learning com-
ponent

temperature
annealing, 5
in genetic algorithms, 31

temperature (randomness), 5
topology

Boltzmann net, 20

unlearning component, 15

visible unit, 13

weight decay
Boltzmann net, 21

wrapper, 32

