VoiceXML-Based Dialogue Systems

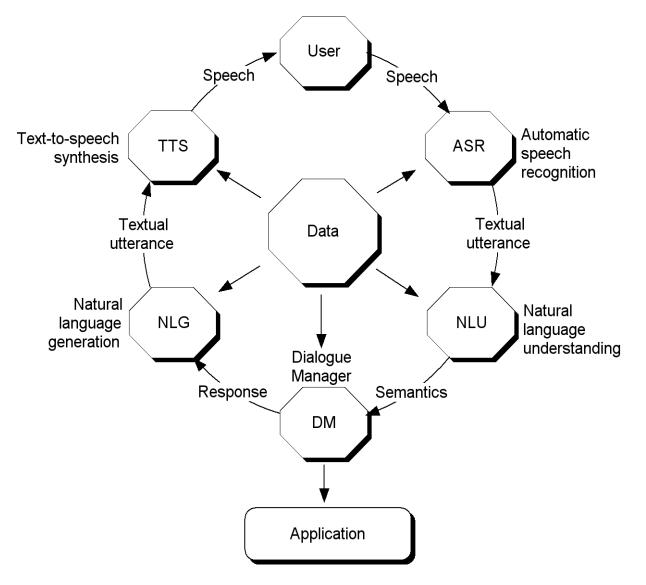
Brno

Pavel Cenek

Laboratory of Speech and Dialogue Faculty of Informatics Masaryk University

Dialogue system (DS) VoiceXML

- Frame-based DS in general



Dialogue System (DS)

- Computer based system
- Communicates with the user by means of natural language
 - □ Spoken or written form
- Interactive system

Dialogue System Structure

DS Components Automatic Speech Recognition

- Transforms speech to text
- Two basic types
 - □ Grammar-based ASR
 - The set of accepted phrases defined by regular/context-free grammars (i.e. language model in the form of a grammar)
 - Usually speaker independent
 - Dictation machine
 - Recognizes "any utterance"
 - N-gram language model
 - Often speaker dependent

DS Components Natural Language Understanding

- Analyzes textual utterance and returns its formal semantic representation
 - □Logical formula
 - □Name/value pairs

□...

When using a grammar-based ASR, semantics is usually encoded in the grammar (referred to as semantic-based grammar)

DS Components Dialogue Manager

- Coordinates activity of all components
- Maintains representation of the current state of the dialogue
- Communicates with external applications
- Decides about the next dialogue step

DS Components Natural Language Generation

- Produces a textual utterance (so called surface realization) from an internal (formal) representation of the answer
- The surface realization can include formatting information
 - Speaking style, prosody, pauses
 - Earcons
 - Background sounds
 - □...

DS Components Text-to-Speech

Renders an acoustic representation of the surface realization

DS Taxonomy According to the Dialogue Management Approach

- Finite-state dialogue systems
 - Dialogue expressed as a network of states connected by edges
- Frame-based dialogue systems
- Agent-based dialogue systems
 - Communication modelled as an interaction of two intelligent agents that are able to reason
 - Agents have some mental attitudes, e.g. beliefs, desires, intentions and goals

Frame-Based Dialogue Systems

- Based on the slot-filling concept
 - Slots represent "containers" for information that must be elicited from the user
 - □ Semantics is expressed as name/value pairs
- Slots are stored in a structure called frame
- Manageable with the current level of technology

Frame-based Dialogue Systems (2)

Prompt: Where and when do you want to travel? **Grammar:** <departure and arrival city, date and time specification> **Help:** Please specify the departure and arrival city, date and time

FROM

Prompt: From which city are you leaving?

Grammar: <city specification>

Help: Tell me the name of the city you want to leave from

ТО

Prompt: To which city do you want to travel?

Grammar: <city specification>

Help: Tell me the name of the city you want to travel to

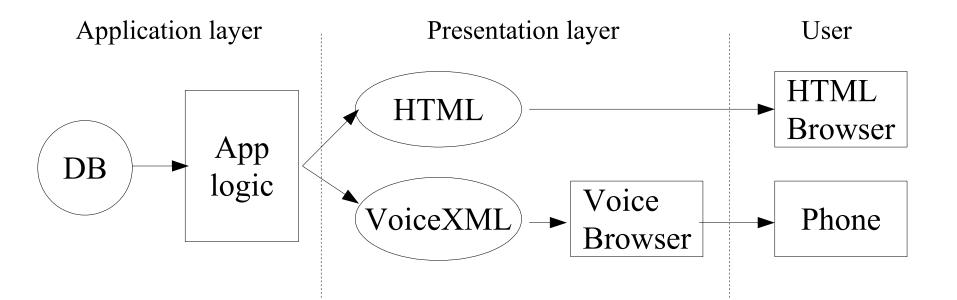
WHEN

Prompt: When do you want to travel?

Grammar: <date and time specification>

Help: Please specify date and time of your journey

Filled: SELECT * FROM connections WHERE departure like 'FROM' AND destination like 'TO' AND time like 'WHEN'

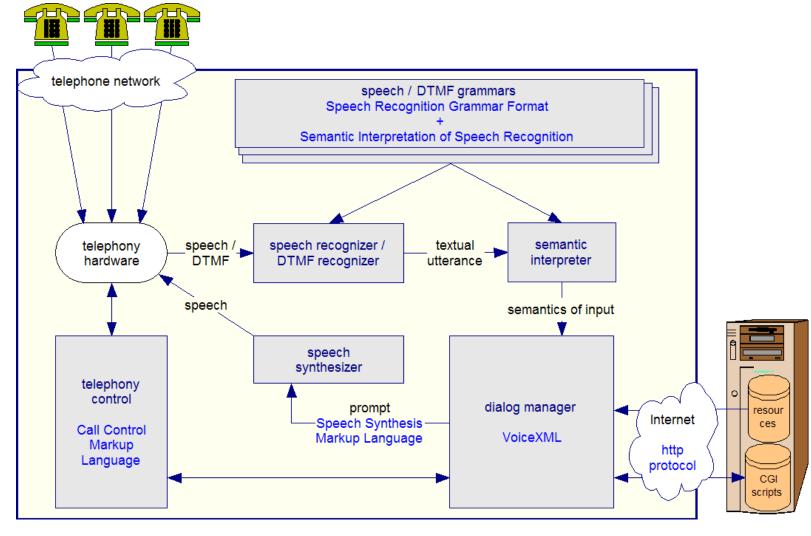

- Dialogue system (DS)
- VoiceXML
- Frame-based DS in general

VoiceXML

- Markup language with XML syntax designed for creating audio dialogues featuring
 - Speech recognition and DTMF input
 - Recording of spoken input
 - □ Speech synthesis and digitized audio playback
 - Mixed initiative conversation
- Declarative with procedural parts
- W3C Voice Browser Activity
 - □ W3C Voice Browser Working Group
 - Applying Web technology to enable users to access services from their telephone via a combination of speech and DTMF

Application Architecture

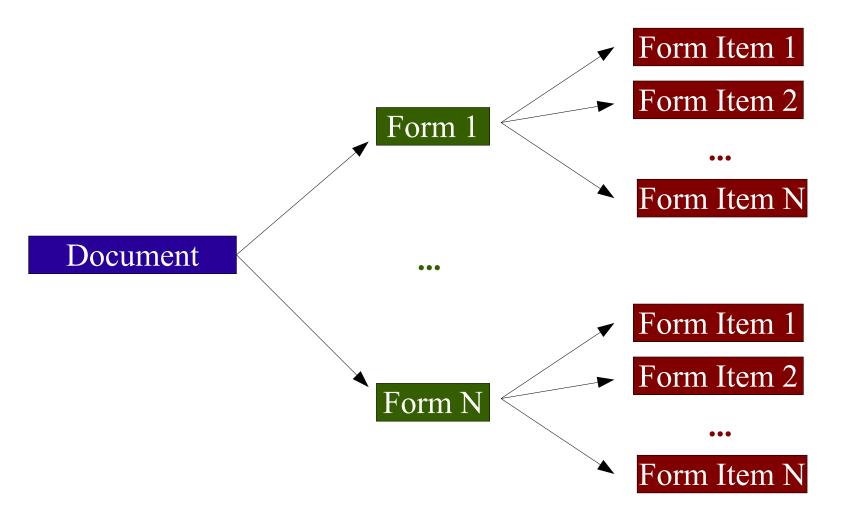
VoiceXML (2)


W3C Speech Interface Framework

VoiceXML 2.0 (VXML) – dialogue management

- Speech Recognition Grammar Specification (SRGS) – grammar syntax
- Semantic Interpretation for SR (SISR) process of semantic interpretation of utterances
- Speech Synthesis Markup Language (SSML) description of the utterance surface realization
- □ Call Control XML (CCXML) telephony support
- http://www.w3.org/Voice/

Voice Browser


VoiceXML Platform @ptimTalk

Monthead Active Acti

- Free for private and educational use and for non-profit research
- Extremely modular and extensible
- Can work on a desktop computer with microphone and speakers
- Special features for research

VoiceXML Document Structure

Form Items

Form items

- <block> contains executable code
- Getain the set of the set of
- <initial> defines first step of a mixed-initiative conversation
- subdialog> calling "subrutine" (mechanism for reusing common dialogs)
- <record> records user's input
- <object> calls platform specific extensions
 <transfer> transfers to another phone number

Variables and Scripts

- VoiceXML exploits ECMAScript
- Each variable in VoiceXML is an ECMAScript variable (types: undefined, null, bool, integer, double, string, object)
- Each expression in VoiceXML is an ECMAScript expression
- Variable is declared using the <var> tag (e.g. <var name="age" expr="20">)
- Variable can be later assigned value using the <assign> tag (e.g. <assign name="age" expr="age+1">)

Variables and Scripts (2)

- Each variable must be declared before it is used
- The <script> tag can contain or refer to some ECMAScript code
- Declaration of a variable in a script is equivalent to the declaration using the <var> tag

Form Interpretation Algorithm (FIA)

- Applies to one form, no implicit transition between forms is performed by the interpreter
- Each form item has an attribute name specifying name of a variable that is declared by the interpreter and associated with the form item (if the attribute is missing, a name is generated internally)
- At the beginning, the variable value is undefined (so called unvisited form item)
- FIA finds the first unvisited form item in document order and interprets it
- Interpretation of each form item leads under normal cirstumcances to filling in a value into its associated variable

Form Item <block>

- Block of executable code
- Before <block> is interpreted, its associated variable is set to true to prevent it from being visited again
- Interpreting <block> means to execute code contained in the <block>, in particular
 - <goto> transition among form items/forms/documents
 - <if><elseif><else> conditional execution

 - assign>
 - □ <script>

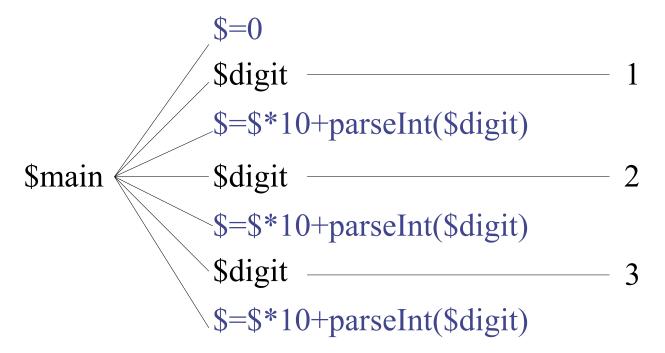
Form Item <field>

- Gathers input form the user
- Contains specification of
 - Prompts that should be spoken to the users tag <prompt>
 - □ Grammars that define set of acceptable user's utterances and their semantics tag **<grammar>**
 - Actions that should be performed when the form item variable is filled (tag <filled>)

<prompt>

Content of the tag is the SSML language
 <audio> plays an audio file
 <emphasis> emphasises its content
 <break> places a break into the speech
 <voice> sets voice parameters
 <prosody> influences prosody of the speech

- Content of the tag is the SRGS language, content of the semantic tags is the SISR language
- SRGS has two equivalent forms XML form and ABNF form
- If user's utterance matches the grammar, the corresponding parse tree is used for semantic interpretation



<grammar> (2)

#ABNF 1.0 UTF-8; language en; mode dtmf; root \$main;

public \$main = {\$=0;} (\$digit {\$=\$*10+parseInt(\$digit)})<1-10>; \$digit = 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0;

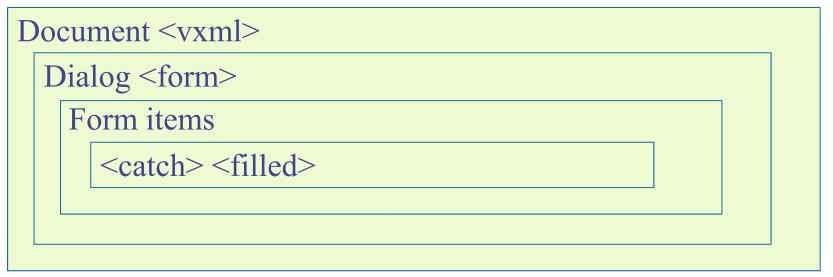
Utterance 123

<filled>

- Descendant of <form> or a form item
- Content of the <filled> tag is executable code
- After interpreting a form item, the interpreter iterates through all <filled> in document order and executes that ones which fire.
- There is no priority of form descendants and form item descendatns!
- <filled> can fire if a specified combination of form items has been filled (and at least one in the last dialogue step) or any of specified form items has been filled

Events

- Events are named objects that are generated as reaction to the occurrence of a particular situation or condition
 - □ User does not respond (noinput)
 - □ User's response is not intelligible (nomatch)
 - □ An error occurred (error.*)
 - Explicitly thrown using the <throw> tag
- Events are caught by event handlers (<catch event="name">, <nomatch>, <noinput>, <error>, <help>)
- Event handlers contain executable code



Links

- The voice analogy to HTML hyperlinks
- link> contains <grammar>s
- When a grammar contained in the link is matched, the action defined by the link is performed
- The action can be
 - □ Transition to a place in a document
 - □ Throwing an event with specified name

Scopes

Scopes can contain in general

- □ Grammars
- Event handlers
- Variables and scripts
- Not all the items are allowed in each of the scopes
- Grammars are matched and event handlers and variables searched from the most inner scope

Counters

- Each form item and each event has associated a counter
- The counters are reset when the form is entered and increased each time the prompt in the form item is spoken / the event is thrown
- This allows for tapered prompting and different reactions on repeatedly occuring events

Mixed Initiative Dialogues (Form Item <initial>)

- <initial> defines prompts and event handlers used for opening the dialogue
- When interpreted
 - Computer speaks the prompts (an open ended question)
 - User answers with an utterance. User has a higher freedom of utterance formulation and can fill multiple form items in a single step
 - Form-level (and higher level) grammars are active to match the utterance
 - Form-level <filled> sections triggered by a combination of filled form items are executed
- Values of unfilled form items are elicited in a directed dialogue in next iterations of the FIA

- Dialogue system (DS)
- VoiceXML
- Frame-based DS in general

Dialogue Strategies

- The task of the dialogue strategy is to decide what the next step of the dialogue will be
- The decision is made based on
 - Semantics of the last user's utterance
 - □ History of the conversation
 - □ Knowledge of the domain
 - □ Knowledge of the user (user model)

Dialogue Strategies (2)

Local dialogue strategies

Control subdialogues with the aim of eliciting values of one or several slots or a special command from the user

Global dialogue strategies

Process the newly filled slots and plan the continuation of the dialogue on the global level

Local Dialogue Strategies

- Request for help
- No input from the user
- Rejection of utterance by the speech recognizer (no match)
- Information about current context
- Repetition of last system prompt (reprompt)
- Pause/Resume
- Restart
- Transfer to operator

Global Dialogue Strategies

Confirmation strategy No confirmation Implicit confirmation Explicit confirmation

- Selection based on the degree of certainty that the recognized information is correct
- Problem: How to recognize that the user corrects a recognition error instead of giving new information

Global Dialogue Strategies (2)

- Integration of the newly acquired information
 - □ Filled only empty slots
 - Entered identical values for previously filled slots
 - Entered new values for previously filled slots
 - Problem: which value is valid
 - The new value refine the previously entered value (e.g. less than 15000 + more than 10000)

Global Dialogue Strategies (3)

- Relaxing of overconstrained requests
 - No solution satisfying the criteria specified by the user (no suitable object, no item in the database etc.)
 - □ The value of a slot must be erased/changed
 - Problem: how to select an appropriate candidate

Global Dialogue Strategies (4)

Dialogue initiative control

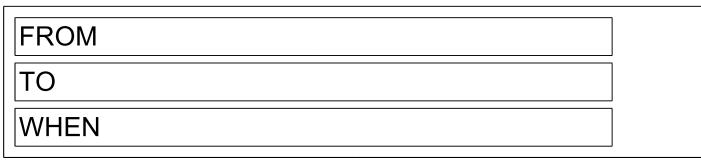
- □ As long as the dialogue proceeds well, the dialogue system leaves initiative to the user
- The user can use a large scale of utterances and the conversation can cover a larger part of the domain (i.e. several slots in one dialogue step)
- When problems arise, the dialogue system must control the conversation and ask more focused questions
- Problem: How to recognize that problems arose

Global Dialogue Strategies (5)

Conversational focus selection

 Problem: which slot should be selected as the topic of conversation (if the conversation is controlled by the system)
 Important question – the order in which slots are discussed can significantly reduce the length of the dialogue

Global Dialogue Strategies – Summary

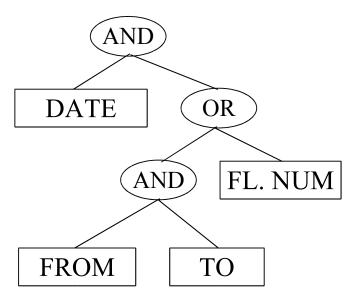

- Confirmation strategy
- Integration of the newly acquired information
- Relaxing of overconstrained requests
- Dialogue initiative control
- Conversational focus selection

Domain Representation in Frame-based DS

- Domain (task) represented by
 - □ Structure of the frame
 - Conditions for filling slot values
 - Relations among slot values
 - □ Slot priority
- Other possibilities
 Control table
 - Path constraints

Frame as a Form

Flat


Suitable for simple domains

The flat structure can be compensated by richer relations among slot values and conditions for filling slots

Hierarchical frame

Reflects internal structure of the task
 Example: Airplane ticket reservation domain

