
A Frame-Based Dialogue Management Approach

Tomáš Nestorovi

University of West Bohemia in Pilsen, Department of Computer Science and Engineering

Pilsen

nestorov@kiv.zcu.cz

Abstract

This paper is focused on our approach to hierar-

chical frame-based dialogue management. As we

show, even when dealing with this simple technique,

the manager exhibits complex skills, as for example

acceptance of references to historical entities or

maintenance of context causality (by utilizing appli-

cation of a journaling system). Our research goal is

to create a generic and easy-to-use manager. At the

end of this paper, future work is outlined, as the

manager is still under development.

1. Introduction

Dialogue management focuses on machine

reasoning, in particular, in finding the best machine

response to a user's utterance on a basis of given

circumstances within the dialogue. Since the

beginning of research in this field, many approaches

based on different backgrounds emerged: from finite

state machines to intelligent agents and recently

Markov models. However, we decided to follow the

way of using frames in our approach. Not only due

to the fact that it covers many tasks (regardless it is

relatively simple technique), but moreover, because

it seems to be a promising way of dialogue

management [1].

The rest of the paper is divided as follows. First,

we describe the term frame and summarize it briefly

(section 2). Next, we move the attention to our

approach and describe manager's context and history

modules (section 3). Finally, planned future work is

outlined and paper concluded (sections 4 and 5).

2. Overview of frame-based management

Frame-based management attempts to reflect

most of the state-based approach disadvantages

(inflexi-bility above all). Here the basic construction

asset is a frame (sometimes also referred to as an

entity, topic, template, etc.) consisting of a set of

slots.

To control the dialogue flow the system needs to

select one of empty (in general, unacceptably filled)

slots. To inform the user about which slot was

chosen, an appropriate prompt needs to be uttered by

the system. The prompt is usually attached to a slot

and invoked as a reaction to the “value-needed”

event. Traditionally, additional event handlers are

assigned as well, instructing what actions the system

needs to carry out when these events (situations)

arise during the conversation. However, the main

purpose of a frame still remains to accumulate

information gathered from the user.

For a simple demonstration, we can refer to the

VoiceXML. Its algorithm for a slot selection is called

the Form Interpretation Algorithm (FIA, described in

[2]), and its frame implementation distinguishes

among several events – no-input, no-match, help-

asked and “value-needed” (<prompt/> element).

A variety of frame types evolved during research.

All of them are an extension of the classical flat

technique. The wide well known one is the so-called

E-Frame, employed in the WHEELS car system [3].

The extension lies in giving every slot a priority and

selecting them accordingly in descent order. A

complete overview of different approaches to frames

may be seen in [1].

Under frame-based management, a dialogue gets

more flexible – a possibility to exhibit initiative

during the discussion is granted not only to the

system, but instead it is distributed between both

partners [4] (the so-called mixed initiative). The

scenario is always the same: at the beginning, the

user provides an incomplete demand (due to his/her

unfamiliarity with the system or speech recognition

errors). To satisfy the demand, the system takes the

initiative over and elicits additional information.

Therefore, the frame-based management is mainly

accommodated in information retrieval systems

(traveling, weather or timetable services) [5].

However, due to its relative simplicity, it still is hard

to apply on domains with complex information

structure [6].

3. Application of frames in our approach

Due to the fact that our dialogue management

approach employs hierarchical extension to basic flat

978-1-4244-4457-1/09/$25.00 ©2009 IEEE 327

frames, many algorithms solving particular issues are

needed. They will be described in the next sections,

however, now on to a top-level description.

The manager is divided into four collaborative

modules (Figure 1). The Context module maintains

information about the current dialogue (active frames

and relations between them are stored here). The

History module serves as a source of historical data –

it provides a basis for dereferencing/disambi-guating

user's utterances (for example “the previous train”).

The Core module controls the behaviour of both

modules – it interprets the current state of the

dialogue and coordinates information stream flows.

Additionally, the Core produces CTS (Concept-to-

Speech) utterances descriptions and feeds them into

the Prompt Planner module. Here, we will apply

natural speech paradigms to the descriptions –

however, this module still remains unimplemented.

Figure 1. Manager topology and its information flows

From the top-level point of view, the manager

loops in a cycle “system prompt – user's answer.” All

related actions are depicted in Figure 2: the semantic

information received from the ASR (Automatic

Speech Recognition) module (1) needs to be

disambiguated based on given dialogue history (2).

Next, it is integrated into the current task context (3),

and finally, the new context is interpreted and system

prompt produced (4). Note that the system utterances

follow the same way of processing as the user's ones

do (5-8). The reason is that even the system may

introduce new information that needs to be anchored

within given context and recorded to history (“The

next train leaves at 15:00”).

Figure 2. Action loop performed by the manager

The manager deals with several key situations

which may arise during the conversation:

a) introduction of a new concept by the user,

b) corrections (not only of current concepts,

but of relations between them as well),

c) confirmations (of context fragments), and

d) recalling information from the History

module.

Solutions to these issues are the following. Every

fragment of semantics is a priori supposed to either

refer to historical data (d), or to introduce new

information (a). Situations (b) and (c) are perceived

as very similar ones – in particular, we deal with

confirmation as with a special case of correction.

Hence, the input semantics model gets more simpler

as it is possible to represent both of them using the

same semantic element:

Figure 3. Confirmation is a special case of correction

3.1. Frames and relations

As mentioned above, both frames and relations

between them are parts of the Context module. Our

notion of a frame is quite “concept-like” since it may

hold single domain information at most. Hence we

design a frame to handle a specific concept type (for

example Time concept). Additionally, our implemen-

tation of frame is equipped with a message queue

containing demands for actions to be performed, and

a journal for a (cascade) roll-back operation.

Relations express how active frames are bound to

each other. Templates for possible relations are

defined in the manager's editor environment, and in

run-time they are constructed in accordance with

these templates. Generally, the Context module

contains two types of relations – standard relations

(to maintain relevant bindings) and disambiguation

relations (to express a detailed description of a

particular frame).

Note that the Context consists of relations only,

i.e., every frame is within the Context registered

using a registration relation (a special case of the

standard relation). We found this approach of

Context very useful, as operations with historical

entities get simpler; see below.

3.2. Semantics integration

Let us stick to the Context module description and

skip the process of semantics dereferencing for now,

we shall return to it later. Suppose that the input

Core

History

Context

Prompt
Planner

ASR

TTS

Semantic information flow

System response flow

__ACCEPT__

"Yes." (confirmation)

__ACCEPT__

Arrival

City:Prague

"I want to Prague." (correction)

System utterance
semantics

User's utterance
semantics

Semantics
dereferencing

Semantics
integration

Task model
interpretation

System prompt
production

Semantics
dereferencing

Semantics
integration

Task model
interpretation

ASR

CTS

HISTORY

CONTEXT

1

2

3

4

5

6

7

8

328

semantics went through dereferencing and is about to

be integrated into the current context model. The

basic idea is a production and evaluation of all

possible unification trees. The best evaluated one is

then used as a template for the semantics integration.

Let us demonstrate the algorithm and consider a

simple fragment of a timetable domain (Figure 4). In

the model, solid lines represent standard relation

templates and the dotted ones disambiguation relation

templates. Additionally, consider the user uttered

“London” when the system asked for arrival city

(Figure 5 represents current context where grayed is

a path to the currently interpreted Arrival frame).

Figure 4. Timetable domain model

Figure 5. Current context model

Figure 6. Integration process

The algorithm for integration is as follows.

1. Let F denote a set of active frames within

the Context and D a set of frame templates

within the domain model. Then for every

elemental semantic information find a

collection of all possible integration paths

within F × D.

2. Join “similar” paths together. Paths are simi-

lar if they end in the same elemental seman-

tics. In case they differ in some part, these

parts are made parallel sub-paths in the

joined path. In our case, all path are similar

because we have only one elemental seman-

tic information (London), see Figure 6a.

3. Build all possible trees upon joined paths

and evaluate them (Figure 6b). There are

six criteria for evaluation, as for example

whether a particular relation does exist or

not, or whether a particular frame is on the

path to the one interpreted as last.

4. Select the best evaluated tree. Try to perform

implicit disambiguation according to

evaluation (Figure 6c; the Train frame

beats Bus and Ship – a train is being

discussed in the current context, Figure 5).

Next, process the disambiguated tree as a

LISP program structure. The basic

interpretation may be affected by system

semantic element (correction, for instance),

however, this is not the case in this example.

3.3. Dialogue stack

The manager maintains currently discussed

“topics” in a form o a stack. This approach found an

inspiration in Grosz and Sidner's framework [9].

However, in comparison to it, ours stack topics are

frames themselves, not abstract descriptors. There is

another deflection: an absence of interruption

detection, i.e. absence of a capability to detect a

discussion topic shift – to make a change, the user is

supposed to utter an explicit correction demand, for

example “No, I want to get there by ship.” Therefore

in our approach, the stack plays a role of a purely

passive component of the manager, designed to collect

newly emerged concepts (i.e. frames) in the

discussion,

frames with an updated content, and

currently discussed frames.

Frames are stored in the stack as long as they meet at

least one of the conditions above, otherwise they are

popped out. To be more specific, a frame is popped

out of the stack if

user's correction affects its existence in the

context,

user's utterance does not answer a question

asked by a system disambiguation process

(see below), or

frame is, from the system's point of view, no

longer needed to be discussed, i.e., its

interpretation is completed.

3.4. User's corrections

The ability to make corrections in a current model

must be an essential part of every manager. It is due to

ASR (Automatic Speech Recognition) errors arising

during an interaction, as the ASR module serves as the

weakest part of every dialogue system [12]. However,

sentences like “I don't want Y, but X instead” or “X,

not Y!” provide semantics distinguishable by the ASR

only, but say nothing about user's intentions. It is the

manager's task to guess them.

MainLoop

Dep.Question

ArrivalQuestion

Train

Ship

Bus

Departure

Arrival

City

Time

[...slots...]

[...slots...]

[...slots...]

[...slots...]

[...slots...]

[...slots...]

[...slots...]

[...slots...]

[...slots...]

[...slots...]

0..5

0..5

0..5

0..5

0..5

0..5

MainLoop

[...slots...]

Dep.Question

[...slots...]

Train

[...slots...]

Departure

Arrival

[...slots...]

[...slots...]

City

> Prague <

Time

> 10.00 - 14.00 <

MainLoop Bus

Train

Ship

Dep.Question

ArrivalQuestion

Departure

Arrival
City:London

MainLoop Bus

Train

Ship

Departure

Arrival
City:London

Dep.Question

ArrivalQuestion

MainLoop Dep.Question Train Arrival City:London

a

b

c

329

Our approach to this issue is a restriction to a last

manipulation with a particular frame. We distinguish

between two types of manipulations – construction

of frame, and its use as a super-frame for another

one (Train is a super-frame for Arrival). Hence, if

Y has not been used as any super-frame until now,

user's correction “I don't want Y” is perceived as a

rejection of Y. Similarly, if the last manipulation was

making Y a super-frame for Z, then by uttering the

same sentence user is rejecting the relation between

Y and Z, not the existence of Y itself.

Our current approach expects system's prompts to

inform the user about recognized concepts as soon as

possible. For example, instead of sentence “Which

time do you want to leave?” a production of “Which

time do you want to leave by train from Prague?”

offers a user a possibility to make instant changes of

transportation means or departure city. Better

composed sentences help users to feel more

confidently while interacting with a spoken language

dialogue system [10].

The manager is able to infer an invalidation of

related parts of the context on the basis of one

particular change. This mechanism is called a

causality consistence mechanism (its description

follows). Using it, information dependent on

changed fragment disappears from the context and

the system is forced to re-elicit it. However, we

would like to extend the current

“correction/causality” mechanisms with the

possibility of recovering last confirmed fragments.

An open question remains whether this introduces

rather more confusion than help.

3.5. Causality consistence mechanism

As mentioned above, the mechanism helps to

keep the current context in causal consistence. We

decided for a distributed approach, i.e., every part of

the context (frame and relation) maintains its own

agenda of what operations it was involved in.

Compared to a centralized approach, the distributed

one offers more flexibility regarding a roll-back.

We distinguish between three types of operations:

information reading and writing, and interpretation

of a frame. Entries of these operations are inserted

into particular frame journals, and in a case of

reading, also into journals of relations the operation

covers as well. Information changing causes a roll-

back of journals. For an illustration of a roll-back, let

us stick to the timetable domain and consider a

context fragment depicted in Figure 7. Here, the

system uttered a particular transportation means in

Q/3 (DepartureQuestion frame, slot 3; “The next ship

from Delft to London leaves at 10:15”), and an

additional back-end reading was performed in S/1

(Ship). Journal contents for each of frame are

depicted in Figure 8. The figure also serves as a

trace of the interpretation algorithm as time is

involved. Consider the user changed the City of

departure from Delft to Oslo. Now, neither of the

previous readings R1 and R4 is valid and the journal

of the City of departure will be rolled-back up to R4.

However, the rolled-back fragment still remains

stored in a REDO part of the journal. The same must

be done with both readers (Ship and

DepartureQuestion), temporarily losing the Arrival

branch (during the reinterpretation it is recovered

utilizing the REDO). As for the Departure, it remains

unaffected. To keep track of what parts of the context

were modified, notification messages with D/0, S/0

and Q/0 are sent to Departure, Ship and

DepartureQuestion, respectively. By this, the model

reaches the consistency and a new interpretation may

begin. (Example continues.)

Figure 7. Readings within given context fragment

Figure 8. Content of frame journals in time; R repre-
sents a reading, W a writing and I an interpretation

3.6. Context interpretation

An essential goal of the interpretation is to search

for newly emerged, updated or missing fragments of

the context, and invoke their integration (see section

3.2), validation (proving they are true) or elicitation,

respectively. As mentioned above, the behaviour of

frames is modeled by message passing. To reach not

only a flexible, but a collaborative interpretation

environment as well, we additionally employ

the dialogue stack (only the message queue

of a frame on its top is processed as long as

it is not empty), and

an interpretation token (a frame which

holds it may pass it over to one of its sub-

Departure

1

0

Ship

1

0

City

Time

Arrival

1

0

0

0

City

Time

0

0

2

Dep.Question

1

0

R4

R1

R2

R3

User's initiative provided several concepts

This information was inferredThis information was provided on system's request

0

1

0

1

2

0

1

0

0

0

1

0

0

Ship

Departure

City (Dep.)

Time (Dep.)

Arrival

City (Arr.)

Time (Arr.)

Dep.Question

time

I

I

I

I

I

I

I

I

I

I

I

R1

R1 R3

R3

R2

R2

R4

R4

I

I

W1

W1

W1

W1

W1

W2

W3

330

frames; the interpretation token is realized

as a standard message).

In combination of both of these components the

dialogue flow is managed on one side quite strictly,

however, on the other hand it is still easily adaptable

to new circumstances. For example, although the

user provides new information (new frames are

pushed onto the stack), from the manager's point of

view, it may be currently irrelevant (until the frames

do not hold the interpretation token, the manager

mostly ignores them; mostly = except for necessary

operations like disambiguation). If the information is

currently really irrelevant, it will disappear from the

stack (however, not from the context) and the

dialogue will continue in accordance with manager's

original plan. Note that this plan may be affected by

user's corrections.

Let us continue and finish the “roll-back”

example above. The interpretation starts with

obtaining the messages, and hence, reinterpreting the

City of departure. Next, it continues reevaluating S/1

and moves to S/2. Here, REDO part of the journal

will be employed and the formerly lost branch

recovered. Finally, the interpretation reaches Q/1 and

a new prompt is generated – “The next ship from

Oslo to London leaves at 11:35.” Note that the new

time was obtained by searching in database, initiated

by the DepartureQuestion frame.

3.7. History module

Now, as the Context module is described, let us

return to the semantics dereferencing depicted in

Figure 2. The structure of the History module

consists of a series of previously used entities,

similarly as proposed in [8]. We define an entity to

be a set of relations (i.e., a fragment of context)

which meet the following conditions.

All information held in frames is confirmed.

All standard relations are confirmed.

Every frame content is acceptable (i.e., it

does not need to be disambiguated any

further).

The history is built automatically after semantics

has been integrated. If a context fragment meets the

conditions above, a set of entities based on this

fragment is created. The process of generation starts

with an entity containing the most concrete

information and ends with the most general one –

Figure 9 demonstrates.

The dual operation, reading the history, is initiated

implicitly, i.e., every incoming semantic unit is

perceived as a reference to historical data. The

process of dereferencing tries to take as big fragment

of semantics as possible and match it against the

most general historical entity found closest to the

“present.” If a match is found, the entity is

transformed into a semantics replacing the original

fragment in the input. However, the reading is a

complex issue. For example in the reference “the

previous ship,” first an entity expressing a ship must

be found (in Figure 9 the above one), and once

found, the “previous <entity>” must be dereferenced

(in Figure 9 the below one). We approach this by

introducing a stack of pointers to the history time

line where successful dereferences were realized.

Therefore, once the inner reference is resolved, the

outer starts searching from the point the inner was

satisfied either back or forward in the history (in our

case marked with
�

 sign in Figure 9).

Ship

Departure

Arrival

City: Oslo

Time: 11.35

City: London

Time: 19.55

Departure
City: Oslo

Time: 11.35

City: Oslo

Time: 11.35

. . .

Ship

Departure

Arrival

City: Delft

Time: 10.15

City: London

Time: 23.51

Figure 9. A fragment of History containing two “Ships”

3.8. Disambiguation process

Disambiguation is another key capability the

manager must carry out. Our approach is inspired by

McGlashan's one [11] and involves an ordered list of

disambiguation questions related to a particular

frame. The manager sequentially picks up questions

to clear an ambiguous frame. For example, if a user

wants an information about departure of a ship, there

may be more than one ship in the database and it is

not clear which one of them s/he meant. The proper

list of sub-frames (holding the questions) is:
1. Departure.City

2. Arrival.City

3. Departure.Time

4. Arrival.Time

The order may be overridden (constrained) by items

of a list related to any of super-frames (Departure-

Question), however, this is currently only a vision

and a matter of future, hence, it will not be detailed

any further here. The current algorithm is as follows.

1. Build a database query and obtain results. If

the number of results (database instances)

exceeds the acceptable amount (for example

5 ships at most) continue in the disambi-

guation process. Otherwise, disambiguation

is completed. The parameter relaxation

process is currently omitted, however, we

have a quite clear conception about it.

2. Pick up first yet undiscussed sub-frame in

the list (Departure.City, for example).

331

Such frame must not have been provided by

the user in the past. If all sub-frames in the

list are discussed, the disambiguation

process is completed.

3. Create artificially the frame selected in (2),

and produce a question it holds. In fact, the

frame needs to be created in order to be

interpreted and the question produced.

4. Wait for the user's reaction and integrate its

semantics.

5. After regaining the control, test if it was

necessary to create the frame in (3). If not,

remove it (it was unnecessary if the user did

not answer the question, and hence, it now

does not hold any information).

6. Repeat the process from step (1).

4. Future work

In this paper, we have omitted to describe a

production of the system utterances. We currently

employ a XML-based description of a sentence to

first express the content itself, and second, to mark

distinguished fragments. For example, “<q><concept

ship><TheShipFrom><concept departure><r _parent.#1/></concept>

<Leave/>...</concept></q>“ is our current (simplified)

description of “The ship from Oslo leaves…”.

Hopefully, this approach will lead to the CTS output

fed into the Prompt planner (Figure 1) which is

currently not realized.

Also the manager lacks a confirmation process.

However, because finding entities in the context

depends on it, we simulate it on-the-fly. As a real

solution, we propose an introduction of a special

type of slot which question will be built with respect

to information to be confirmed. This would enable

the manager to automatically detect which fragments

of context should be considered as believable after a

user's positive answer is obtained.

5. Conclusion

The research goal we follow is to create a generic

and easy-to-use dialogue manager. Our approach

utilizes frames technique for context knowledge

representation. In this paper, we presented and

demonstrated broad scale of algorithms providing

manager's particular capabilities. We found an

inspiration for them in several of the cited sources.

We adjusted well known approaches to fit our

purposes of creating a manager with complex

behaviour. In [1] we found a motivation for nested

frames technique, from [2] we adjusted FIA to work

recursively using message passing, [8] served us as a

basis for historical entities processing we augmented

with stack of pointers – another stack besides the one

(partially) adopted from [9]; our disambiguation

process is inspired by [11], however, we extended it

to work in nested frames environment and will

continue on “reversible” version as well (enabling

relaxation). Last but not least, we presented here our

journaling system for keeping the context in causal

and coherent state. Once the manager is finished, it

will be applied in car navigation and timetable

domains to thoroughly test its management skills. Its

previous version [7] was applied in car navigation

domain only. We expect to obtain far better results in

this domain since the previous version employed flat

frames only (extended with another features). Finally,

we also would like to offer the manager as a free

software on our website,1 as the development seems

to evolve promisingly towards our specified goal.

References

[1] P. Cenek, Hybrid dialogue management in frame-based

dialogue system exploiting VoiceXML, Ph.D. thesis

proposal, Masaryk University, Brno, 2004.

[2] W3C, Voice Extensible Markup Language, Version 2.0,

2004. Available: http://www.w3.org/TR/voicexml20/

[3] Meng H. et al, “Wheels: A Conversational System In

The Automobile Classifieds Domain,” in Proc. of ICSLP,

1996, pp. 542-545.

[4] Levin E. et al, "The AT&t-DARPA communicator

mixed-initiative spoken dialog system," in Proc. of ICSLP,

2000, vol.2, pp. 122-125.

[5] McTear M. F., “Modeling spoken dialogues with state

transition diagrams: experiences with the CSLU toolkit,”

in Proc. of ICSLP, 1998, paper 0545.

[6] Bui T. H., Multimodal Dialogue Management - State of

the Art, CTIT Technical Report series No. 06-01, University

of Twente (UT), Enschede, The Netherlands, 2006.

[7] Nestorovi T., Matoušek V., “Entwurf der

Sprachkomunnikation mit einem Car-navigationssystem und

Ihre Implementation in der VoiceXML Sprache,” in Proc. of

Elektronische Sprachsignalverarbeitung, 2006, pp 119-126.

[8] Zahradil J., Müller L., and Jur í ek F., “Model sv!ta

hlasového dialogového systému,” in Proc. of Znalosti,

Ostrava, 2003, pp. 404-409.

[9] Grosz B. J., and Sidner C. L., "Attention, intention and

the structure of discourse," in Computational Linguistics,

12(3):175-204.

[10] Yankelovich N., "How do users know what to say?,"

in Interactions, vol 3, 1996, pp. 32-43.

[11] McGlashan S., “Towards Multimodal Dialogue

Management,” in Proc. of Twente Workshop on Language

Technology 11, pp. 1-10.

[12] Gustafson J., Developing Multimodal Spoken

Dialogue Systems - Empirical Studies of Spoken Human-

Computer Interaction, Ph.D. thesis, KTH, Department of

Speech, Music and Hearing, 2002.

1 http://liks.fav.zcu.cz

332

