Flexible Dialogue

Staffan Larsson, Gabriel Amores, Elena Karagjosova,
David Milward, Dimitra Tsovalzi

Distribution; PUBLIC

Specification, Interaction and Reconfiguration in Dialogue Understanding Systems
IST-1999-10516

Deliverable D1.4
October, 2002

IST-1999-10516 SIRIDUS

Specification, Interaction and Reconfiguration in Dialogue Understanding Systems

Goteborg University
Department of Linguistics

Telefonica Investigacion y Desarrollo SA Unipersonal
Speech Technology Division

Universitat des Saarlandes
Department of Computational Linguistics

Universidad de Sevilla
Departamento de Lengua Inglesa

For copies of reports, updates on project activities and other sIRIDUS-related information, con-
tact:

The sSIRIDUS Project Administrator
Universitdt des Saarlandes
Fachrichtung 5.7

Allgemeine Linguistik Gebdude 17.2
D-66041

Saarbriicken

Germany

Copies of reports and other material can also be accessed from the project’s homepage
http://www.ling.gu.se/projekt/siridus

(©2002, The Individual Authors

No part of this document may be reproduced or transmitted in any form, or by any means, elec-
tronic or mechanical, including photocopy, recording, or any information storage and retrieval
system, without permission from the copyright owner.

Responsibility for the authorship is divided as follows. Staffan Larsson was the overall editor
and wrote Chapters 2, 3 and 4. Chapter 5 was written by Elena Karagjosova with assistance
from Kepa Rodriguez and lvana Kruijff-Korbayova. Chapter 6 was written by Dimitra Tsovalzi.
Chapter 7 was written by Gabriel Amores. Chapter 8 was written by David Milward. Chapters 1

and 9 were written jointly by the authors.

Contents

1

Introduction

1.1 Grounding
1.2 Addressingunraised iSSUES
1.3 Flexible menu-based dialogue
1.4 Negotiativedialogue
1.5 Conditional responses
1.6 Tutorialdialogue

1.7 Conflicts

1.8 Over informative answers and clarification questions

Flexible Issue-based Dialogue Management

Grounding issues

2.1 Introduction
2.1.1 Dialogueexamples
2.2 Background

15
16
19
20
21
21
23
24

24

27

29

2.3

2.4

2.5

2.2.1 Clark: Adding to thecommonground 32

2.2.2 Ginzburg: QUD-based utterance processing protocols 34
2.2.3 Allwood: Interactive Communication Management 37
Preliminary discussion 38
2.3.1 Levelsofactionindialogue 38
2.3.2 Reaction level feedback 39
2.3.3 Levelsofunderstanding 41
2.3.4 Some comments on Ginzburg’s protocol L. 42
Feedback and related behaviour in human-human dialogue 44
2.4.1 Classifying explicitfeedback 44
2.4.2 Positive, negative, and neutral feedback 45
2.4.3 Eliciting and non-eliciting feedback 46
244 Formoffeedback 46
2.45 Meta-level and object-level feedback 47
2.4.6 Fragment feedback / clarificationellipsis 47
2.4.7 Own Communication Management 48
2.4.8 Repairandrequestforrepair 48
2.4.9 Requestforfeedback L 49
Update strategies forgrounding 49
2.5.1 Optimistic and pessimistic strategies 49
2.5.2 Grounding updates and actionlevels 50
2.5.3 Thecautiousstrategy 51

2.6 Feedback and grounding strategiesfor GoDIS 52

2.6.1 Grounding strategies for dialogue systems 53
2.6.2 “Implicit” and “explicit” verification in dialogue systems 54
2.6.3 Issue-based groundinginGoDIS L 54
2.6.4 Enhancing the information state to handle feedback 57
2.6.5 Feedback and sequencing dialoguemoves 59
2.6.6 Grounding of user utterancesin GoDIS2 63
2.6.7 Grounding of system utterancesin GoDI1S2 84
2.6.8 Evidence requirements and implicitgrounding 92
2.6.9 Sequencing ICM: reraising issues and loadingplans 96
2.7 Further implementationissues 99
2.7.1 Updatemodule 99
2.7.2 Selectionmodule 100
2.8 DISCUSSION o o 102
2.8.1 Some grounding-related phenomena not handled by GoD1S2 102
2.8.2 Towards an issue-based account of grounding and action levels 103
2.8.3 Comparison to Traum’s computational theory of grounding 103
2.9 Summary ... 105
Addressing unraised issues 107
3.1 Introduction 107
3.2 Some limitationsof GODIS2 108

3.3

3.4

3.5

3.6

3.7

Thenature(s)of QUD 109

3.3.1 Ginzburg’s definitionof QUD L. 109
3.3.2 Open questions not available for ellipsis resolution 110
3.3.3 Open but not explicitly raised questions 111
3.34 Globalandlocal QUD, 111
3.3.5 Some other notions of what a QUD mightbe 113
Question Accommodation 113
3.4.1 Background: Accommodation 114
3.4.2 Accommodation, interpretation, and tacitmoves 114
3.4.3 Extending the notion of accommodation 115
Formalizing question accommodation 116
3.5.1 Informationstate inGoDIS3 116
Varieties of question accommodation and reaccommodation 118
3.6.1 Issue accommodation: from dialogue planto ISSUES 119
3.6.2 Local question accommodation: from ISSUEStoQUD 122
3.6.3 Issueclarification 123
3.6.4 Dependent issue accommodation: from domain resource to ISSUES . . . 125
3.6.5 Dependent issue clarification 130
3.6.6 Question reaccommodation 132
3.6.7 Opening up implicit groundingissues 135
Further implementationissues 144
3.7.1 Dialoguemoves. 144

3.8

3.9

3.72 GoDIS3update module
3.7.3 Selectionmodule
DiSCUSSION e
3.8.1 Phrase spotting and syntax in flexible dialogue
3.8.2 Relaxing constraints using denial and dependent reaccommodation

3.8.3 “Smart” interpretation
3.8.4 Separating understanding, acceptance, and integration
3.8.5 Accommodation and the speaker’s own utterances
3.8.6 Accommodation vs. normal integration
3.8.7 Dependent issue accommodation in VoiceXML?

SUMMANY . . o o e

Action-oriented and negotiative dialogue

4.1

4.2

4.3

4.4

Introduction
Issues and actions in action-oriented dialogue
Extending GoDIS to handle action oriented dialogue
4.3.1 Enhancing the informationstate
43.2 Dialogue moves
Interacting with menu-based devices
4.4.1 Connecting devicestoGoDIS
4.4.2 Frommenutodialogueplan
4.4.3 Extending the resolves relation for menu-based AOD

9

4.5 Implementation of the VCR control domain 165
4.6 Update rules and dialogueexamples 167
4.6.1 Integrating and rejectingrequests L. 167
4.6.2 Executingdeviceactions 168
4.6.3 Selecting and integrating confirm-moves 169
4.6.4 Dialogue example: menu traversal and multiple threads 170
4.6.,5 Action accommodation and clarification 172
4.6.6 Dialogue examples: action accommodation and clarification 174
4.7 Issues under negotiation in negotiative dialogue L. 174
4.7.1 Sidner’s theory of negotiative dialogue 175
4.7.2 Negotiation as discussing alternatives 178
4.7.3 Issues Under Negotiation (IUN) 180
474 Anexample 181
4.8 DISCUSSION o 183
4.8.1 Negotiation in inquiry-oriented dialogue 183
4.8.2 Rejection, negotiation and downshifting 183
4.8.3 Dialogue structure and issue-based dialogue management 185
4.9 SUMMANY e e e 186
Conditional responses 187
51 Introduction 187
5.2 The nature of conditional responses 190

521 Meaning 191

5.2.2 Dialogue behavior 195

53 Implementation 201
53.1 Userquestions 203

532 Thesearch 207

533 Productionof CRs 214

5.3.4 Interpretationof CRs 231

54 Summary and futurework 232
6 Tutorial Dialogues 235
6.1 Introduction 235
6.2 Characteristics of Tutorial Dialogues 235
6.2.1 Guided ProblemSolving 236

6.2.2 TutoringMethods 238

6.2.3 Hinting 238
6.2.4 Explanations 239

6.2.5 Collaborative Responses in Tutorial Dialogues 240

6.3 Obligations-based Modeling of Tutorial Dialogues 241
6.4 Reconfigurability of TRINDIKIT, GODIS and IMDIS for Tutorial Dialogues . . . 243

6.4.1 Dialogue Moves and Dialogue Context 243
6.4.2 Semantic Representation and Lexicon 245
6.43 Planning 246

6.4.4 Collaborative Responses and Planning 251

6.45 Mixed Initiative 252
6.4.6 Obligation Modeling in TRINDIKIT 253
6.4.7 Miscellaneous 253

6.5 Conclusion 254
Issues in Flexible Dialogue 257

Flexibility and Cooperative Behaviour in Natural Command Language Dialogues 259

7.1 Introduction 259
7.2 Natural Command Language Dialogues 260

721 Siridus ... 260

722 D’Homme 260
7.3 Comparing NCLDs with other types of dialogue 261

7.3.1 Functional Embedding 261
7.4 Adding flexibility through dialogue commands 262
7.5 Adding flexibility by expanding the linguistic coverage of the system 265
7.6 Cooperative behaviour inNCLDs 265
7.7 Sourcesof conflict inNCLDs 266
7.8 Advanced Cooperation 268
7.9 DISCGuidelines 270
7.10 Conclusion 271

8

9

Over informative answers and clarification questions

Summary and conclusions

Summary and conclusions

9.1 Overall summary and conclusions

0.2 Dialoguegenres e
9.2.1 Relation to Dahlbdck’s dialogue taxonomy
9.2.2 Relation to Allen et. al.’s dialogue classification

9.3 Future research areas in flexible issue-based dialogue management
9.3.1 Developing the issue-based approach to grounding
9.3.2 Other dialogue and activity types
0.3.3 SemantiCsS
9.34 Generalinference
9.3.5 Natural language inputand output

9.3.6 Applicationsand evaluation

13

273

277

279

14

Chapter 1

| ntroduction

This deliverable presents various strains of work on flexible dialogue management conducted
in SIRIDUS. By “flexible dialogue management” we mean, approximately, mechanisms needed
for dealing with dialogue phenomena that fall outside the scope of current commercial systems,
such as those based on (plain) VoiceXML (McGlashan et al. (2001)).

We will be dealing with a host of dialogue phenomena that we regard as requiring flexible dia-
logue management:

e grounding and feedback

e addressing unraised issues

e action-oriented dialogue, including menu-based dialogue
e negotiative dialogue

e tutorial dialogue

e conditional responses

e clarification subdialogues

e cooperation and collaboration

In the remaining chapters of this deliverable we will investigate these phenomena and provide
techniques for dealing with them in dialogue systems. Most of the work presented here also
involves implementations of these techniques. The deliverable is divided into two main parts, the

15

first collecting contributions dealing with flexible issue-based dialogue management in GoDiS,
and the second collecting work based on other approaches to dialogue management..

In this introduction, we will briefly try to motivate why handling these phenomena are important
for dialogue systems. Further motivations can be found in the respective chapters.

1.1 Grounding

In all dialogue, issues concerning contact, perception, understanding and acceptance of utter-
ances are of central importance. We refer to these as “meta-issues”, or “grounding issues”. We
give an account of these issues where the concepts of optimism and pessimism regarding ground-
ing are employed. A partial-coverage model of feedback related to grounding is motivated from
the perspective of usefulness in a dialogue system, and implemented. This allows the system to
produce and respond to feedback concerning issues dealing with the grounding of utterances.

We will first attempt to give an impression of how grounding is handled in current commercial
dialogue systems. We will then show examples of grounding in human-human dialogue, an show
an example of grounding behaviour in GoDiS.

In the literature concerning practical dialogue systems (e.g. San-Segundo et al., 2001), grounding
is often reduced to verification of the system’s recognition of user utterances. Two common ways
of handling verification are described as “explicit” and “implicit” verification, exemplified in (1)
(example from San-Segundo et al., 2001).

(1) a. I understood you want to depart from Madrid. Is that
correct? [explicit]

b. You leave from Madrid. Where are you arriving at? [im-
plicit]

Actually, both “explicit” and “implicit” feedback contain a verbatim repetition or a reformulation
of the original utterance, and in this sense they are both explicit. The actual base for the distinc-
tion is what we have here referred to as polarity: “explicit” verification is neutral (and eliciting
and interrogative) whereas “implicit” verification is positive.

In human-human dialogue, explicit confirmations occur in noisy environments and in situations
where understanding is critical (e.g. when arranging a meeting in a busy airport). Given that
verification is presumably a rather marginal phenomena in human-human dialogue, it is perhaps
surprising that it is often the only aspect of feedback covered in dialogue systems literature.
Firstly, because it is usually not necessary for humans to verify what they (think they) have heard;

16

that is, it is a rather uncommon grounding procedure in human-human dialogue. Second, because
it only involves part of the full spectrum of feedback behaviour, excluding e.g. acceptance-related
feedback behaviour.

Of course, verification of user utterances are of central importance in dialogue systems, given
the quality of current speaker-independent speech recognition. This explains to some extent
why verification is often the only aspect of feedback handled by current systems - it is simply
necessary. However, this is no reason not to explore further the possible uses of a wider range of
feedback behaviour in dialogue systems.

The human-human dialogue excerpt! in (2) shows two common kinds of feedback. J’s “mm”
shows that J (thinks that he) understood P’s previous utterance; P’s “pardon” shows that P was
not able to hear J’s previous utterance. The example also includes a hesitation sound (“um”)
from J. (P is a customer and J a travel agent.)

(2) P:06m(.) flyg ti paris
um (.) flight to paris
J:mm (.) ska du ha en returbiljett
mm (.) do you want a return ticket
P:vasadu
pardon
J: ska du ha en tur & retur
do you want a round trip

The feedback in (2) consisted of conventionalized feedback words (“mm?”, “pardon”). However,
feedback may also be more explicit and repeat the central content of the previous utterance, as
K’s second feedback utterance in (3).

(3) B :jaskavaframme i [, goteborg]; e e ungefér vi nietiden
om de finns na tidit [, morgonflyg],
I need to be in Gothenburg er er around nine if there is an
early morning flight
Kilim]
m
K : [5 Vi]2 nietiden m vi ska se
Around nine m let’s see

The function of an utterance answering a question is not primarily to give feedback, but rather to
provide task-related information. However, an answer also shows that the previous question was

1Except where noted, the human-human dialogues in this chapter have been collected by the University of Lund
as part of the SDS project. We quote transcriptions done in G oteborg as part of the same project. The (.) symbol
indicates a pause.

17

understood and integrated. Example (4) shows that feedback is sometimes given in reaction to a
question before the question is answered.

(4) J:sen maste du ha e san dar intenationellt studentkort ocksa
ha du de
then you need one of those international student cards do
you have that
P:mm na
mm no

However, often human-human communication proceeds without explicit feedback, as in the ex-
cerpt from a telephone dialogue in (5).

(5) K :vartskadu aka
where are you going
B : e jag ska aka till goteborg
er i’m going to gothenburg
K : vilket datum
what date
B : den sjatte juni
the sixth of june
K : vill du ka me flyg eller me tag
do you want to fly or take the train

By contrast, in current commercial systems it is common to check the system’s interpretation
of recognized user input asking a y/n-question, as seen in the (invented) dialogue in (6). This
behaviour is much less common in human-human dialogue, but may occur in noisy environments
or when communicating over an unreliable communication channel (e.g. when using a mobile
phone on a train).

(6) S :Whatday do you wish to travel?
U : Friday
S : Friday the 5th of April, is that correct?

A similar but not identical behaviour does occur in human-human dialogue, as in (7), taken from
the London-Lund corpus and used by Clark and Schaefer (1989a). In this example, B gives an
explicit report of how A’s utterance was interpreted, whereupon A confirms that the interpretation
IS correct by saying “yes”.

(7) A:F.sixtwo
B : Fsix two
A :yes
B : thanks very much

18

The dialogue in (DIALOGUE 1.1) gives an impression of what feedback capabilities we aim to
add to GoDIS in this chapter.

(DIALOGUE 1.1)

S>Wel cone to the travel agency!

S>hello

U>price information pl ease

S> You asked about price. How do you want to travel?
U> pardon

S> How do you want to travel ?

U> by pl ane

S>By plane, is that correct?

U>yes

S>Okay. Wiat city do you want to go to?

U> | ododo

S> Par don?

U> | ondon

S>Okay, to |ondon. What city do you want to go fronf
U>1yons

S>Sorry, Lyons is not in the database. So, What city do you want
to go

fronf?

U>paris

U> What about connecting flights?
S>You asked about connecting flights. Sorry, | cannot answer that.

1.2 Addressing unraised issues

In real dialogue, one often sees utterances which can be construed as addressing issues which
have not been explicitly raised in the dialogue. To enable more flexible dialogue behaviour, we
make a distinction between a local and a global QUD (referring to the latter as “open issues”, or
just “issues”). The notions of question and issue accommodation are then introduced to allow the
system to be more flexible in the way utterances are interpreted relative to the dialogue context.

19

Question accommodation allows the system to understand answers addressing issues which have
not yet been raised. In cases of ambiguity, where an answer matches several possible questions,
clarification dialogues may be needed.

One of the action levels to which grounding applies is that of pragmatic understanding, i.e. mak-
ing sense of the meaning of an utterance in the current dialogue context. Some basic mechanisms
for grounding on the understanding level have been implemented in the version of GoDiS de-
scribed in Chapter 2. However, the kinds of dialogues handled by this system are still rather rigid
and system-controlled.

We introduce the notion of question accommodation to allow the system to be more flexible in
the way utterances are interpreted relative to the dialogue context. Among other things, question
accommodation allows the system to understand answers to questions which have not yet been
asked, and to understand such answers even before any issue has been explicitly raised. In cases
of ambiguity, clarification dialogues may be needed. Although some very basic mechanisms for
dealing with unrequested information exists on Voice XML, there is no support e.g. for clarifica-
tion subdialogues. Also, Voice XML provides only very limited support for information sharing
between subtasks and dealing with several simultaneous tasks; these are all dealt with by GoDisS.

Question accommodation combined with (very basic) belief revision abilities also allows GoDiS
to reaccommodate questions which have previously been resolved. Finally, a version of reac-
commodation, where reaccommodation of one issue requires reaccommodation of a dependent
issue as well, allows for successive modifications of database queries.

1.3 Flexible menu-based dialogue

While menu interfaces are ubiquitous in modern technology they are often tedious and frustrat-
ing. The mechanisms of accommodation used in GoDiS offers the possibility of allowing the
user to present several pieces of relevant information at one time or to present information in the
order in which the user finds most natural. This means that users can use their own conception
of the knowledge space and not be locked to that of the designer of the menu system.

We extend our theory and the GoDIS system to handle action-oriented dialogue (AOD), which
involve DPs performing non-communicative actions such as e.g. reserving tickets. In addition to
issues and questions under discussion, this system also has to keep track of actions. The concept
of issue accommodation is extended to include action accommodation. We illustrate AOD with
an implementation of a VCR control system, whose dialogue plans are based on menus.

Although menu-based dialogue is possible also in Voice XML, the limitations mentioned in the
previous section apply here as well, i.e., problems with information sharing between subtasks,

20

switching between several tasks, and user utterances that fit with several tasks.

1.4 Negotiative dialogue

In GoDiS, we regard negotiative dialogue as dialogue where several alternative solutions (an-
swers) to a problem (question or issue) can be discussed and compared before a solution is
finally settled on. Sidner (1994a)is aware of this aspect of negotiation, and notes that “maintain-
ing more than one open proposal is a common feature of human discourses and negotiations.”
What we want to do is to find a way of capturing this property independently of grounding and
of other aspects of negotiation, and use it as a minimal requirement on any dialogue that is to be
regarded as negotiative.

GoDiS is readily extendible to handle negotiative dialogue (Larsson (2002b)) where it is im-
portant to be able to refer to and discuss previously mentioned referents. VoiceXML does not
support more complex dialogue; for example, there is no support for representing mentioned
referents and implement referent identification.

1.5 Conditional responses

A flexible and natural dialogue is characterized by different ways of responding to questions. For
instance, typical responses in an inquiry-oriented dialogue (a.k.a Information-Seeking Dialogue,
ISD) are the short answers. Such answers contain just the response particles yes, no or ok and
only affirm or negate the propositional content of the question without conveying any additional
information. However, there are situations in which such answers may be insufficiently collab-
orative with respect to the task. For instance, in the travel domain, the task is to determine a
set of parameters of a possible journey with respect to a database to which only the system has
access. In a typical application like GoDiS, the system collects from the user a set of parameters
constraining a journey by asking questions. It then performs a database search with these con-
straints. If the search succeeds, GoDiS returns the price of the journey. Otherwise, it indicates
the search has failed.

However, an information-seeking dialogue often does not stop at the result of the database search,
be it negative or positive. The user may revise or refine some parameter(s) and initiate a new
search. For example, after the system has indicated that the search has failed, the user may try
to change a parameter to achieve successful search, say by changing the departure day. Then,
upon success, the user may continue by trying to further constrain the search by specifying an
additional parameter, for example the airline. However, such continuations can become dull as

21

the user is trying to find out which combinations of parameters succeed, as in (8c)-(8f).

(8) a. U:Canl fly on the second?
b. S: Yes.

o

U: Can I fly with Ryanair?

o

S: Sorry, there is nothing matching your request.

e. U: What about Lufthansa?

—h

S: Sorry, there is nothing matching your request.

In order to avoid such unnatural and inefficient dialogues, we can enable the system to help the
user in finding a satisfiable set of parameters by providing responses that help the user to revise
or refine the initial parameters. This involves the system being able to indicate a parameter to
relax upon failed database search, or to indicate a parameter to keep in cases where some hits are
found but they are too many to enumerate, and thus the search criteria need to be refined. One
useful way of accomplishing collaboration in the parameter revision and refinement phase is by
providing a conditional response (CR): a positive or negative response clarifying the condition(s)
under which this response holds. It is the making of the condition explicit that makes the response
collaborative. For example, a negative CR can be collaborative by mentioning such parameter(s)
in the condition, whose relaxation could result in a positive response instead (economy class in
(b)). A positive CR can be collaborative by mentioning such parameter(s) that are necessary for
preserving the positive response (business class in (12c)).

(9) a. U:Canl fly on the second?
b. S: Not if you want to fly economy class.

c. S’: Yes, if you can fly business class.

The result of the database search, and therefore the answer to a user’s question, can also be
contingent on a parameter the user has not specified. In this case, too, it makes sense to indicate
this contingency to the user: in (10b) the system gives a positive answer to the question and also
indicates that the database search is successful (and thus the answer to the question is positive)
as long as an additional parameter, namely the SAS airline, is assumed.

(10) a. U:Can | fly on the second?
b. S: Yes, if you can fly with SAS.

22

To simulate this collaborative system behaviour, we implement CRs in the ISU approach as an
additional kind of responses that can be produced and interpreted by GoDiS. Both the production
and interpretation of CRs in GoDiS involve some modification and extension of the update and
selection rules as well as the analysis, generation and search components in GoDiS.

1.6 Tutorial dialogue

In Chapter 6 we address the issue of developing a tutorial dialogue system using the TrindiKit
toolkit and the GoDiS system as a way of evaluating the potential of the framework implemented
within TrindiKit/GoDiS to deal with more complex dialogue phenomena.

There are several reasons for choosing tutorial dialogue as an evaluation measure. First, it is a
genre that has not been addressed within the Trindi or Siridus project. But also in more general
terms, tutorial dialogues have characteristics which make them different from other genres, such
as information seeking or action-oriented dialogues.

In particular, tutorial dialogues present a challenge for dialogue management, because they ex-
hibit more complex patterns of mixed dialogue and task initiative. This is necessary especially if
the tutor’s strategy is to encourage active learning by carefully guiding the student though solving
the problem at hand while avoiding to reveal any part of it directly. A consequence of that is that
the tutor’s behaviour does not appear cooperative at first glance, because she does not answer the
student’s questions to the best of her ability, and she avoids revealing information (Section 6.2).

Another challenge in tutorial dialogue is in the role of planning, plan recognition and reasoning.
In order to provide efficient feedback to the student, the tutor needs to follow the student’s rea-
soning rather than superimpose her own reasoning on the student. In addition, the tutor needs
to evaluate the student’s contributions on a scale of ”correctness” rather than straightforwardly
dismissing (or correcting) wrong answers. The tutor also needs to reason about possible sources
of mistakes, so as to provide appropriate explanations and give relevant hints. Therefore, a lot
of consideration has to go into the way domain knowledge is modeled and used in the system
(Section 6.4.3).

Giving useful and efficient feedback to the student also requires tailoring of the tutor’s contri-
butions to the context and to the student model. This in turn requires elaborate dialogue move
taxonomies, and rich models of the dialogue state and history, in order to support fine-grained
decisions about what the tutor should convey (Section 6.4.1).

Finally, having to deal with a complex interplay of factors is a challenge for the overall dialogue
modeling task from an engineering point of view. A modular system design is a prerequisite for
the development of such a complex system.

23

1.7 Conflicts

Enabling a dialogue system with the desired flexibility and cooperative behaviour is especially
relevant in the case of NCLDsr. First, since the system in NCLD applications is usually dispens-
able. Its role is to make our lives easier. If it fails to achieve that goal, the user may just ignore
it and proceed to perform the desired function in the ordinary way (by pressing a sequence of
digits in the telephone pad, light switches, etc.).

In this kind of scenario the system should be as cooperative as possible, trying to avoid a situation
of frustration on the other participant which would indeed lead to interrupting any communica-
tion between them. So, what is usually modelled in NCLD systems is a collaborative behaviour
in which the participants are in some sense working together to reach the desired outcome.

Second, systems implementing NCLDs should incorporate cooperative behaviour in order to
anticipate and provide an adequate response to conflicts arising in the course of the dialogue.

Conflict arises from different sources in NCLDs.

1. First, the user may just not know exactly what functionality is available, or the parameters
which they require. Providing help is one way of solving this conflict.

2. Second, given the dynamic nature of the domains in which we are working, one of the
agents (the user) may just ignore the exact state of the world at that precise moment.
Requesting information is then a collaborative activity which the system should model.

3. A third type of conflict arises when one of the agents wrongly believes that a specific goal
is possible, but the state of the world does not permit its accomplishment.

4. The last (and more productive) source of conflict arises from misunderstandings stemming
from misrecognition.

Finally, in addition to reacting to possible conflicts, some advanced modes of cooperation may
actually transfer the initiative to the system so that it anticipates what action the user might want
to perform, or how she usually likes to perform a specific action.

1.8 Over informative answers and clarification questions

Long prompts which provide the possible responses a user can make (e.g. “Do you want current
accounts, borrowing, saving, insurance or foreign exchange”) can become tiresome, especially

24

if the number of options is large. However, as soon as we adopt shorter prompts e.g. “which
service do you want?” there is a potential for mismatch between the level of detail the user
supplies, and what is expected by the system. The user may provide more detail e.g. “I want
home insurance” or “l want to insure a Ford Focus 1.6, or less e.g. “banking”. If the user
provides more information this should not be thrown away, since it might be useful later in the
dialogue. If the user supplies less, the system should provide a clarification question which shows
that it understood the users response, but requires more detail e.g. “what kind of banking do you
require?”.

As we move from system initiated dialogues to more free ranging dialogues in ontologically rich
domains, the potential for mismatch increases hugely, and there becomes a need for a general
mechanism to deal with clarifications. In this deliverable we discuss the use of ontological infor-
mation in the Linguamatics Dialogue Manager to automatically generate appropriate clarification
questions.

25

26

Part |

Flexible I ssue-based Dialogue M anagement

27

Chapter 2

Grounding issues

2.1 Introduction

In the basic GODIS system reported in Larsson et al. (2002), we assumed “perfect communi-
cation” in the sense that all utterances were assumed to be correctly perceived and understood,
and fully accepted®. Of course, these assumptions are unrealistic both in human-human and
human-computer conversation. A useful dialogue system needs to be able to deal with cases of
miscommunication and rejections.

We will not attempt to give a complete computational theory about the grounding process in
human-human dialogue. Rather, we will provide a basic issue-based account, influenced by
Ginzburg, which tries to cover the main phenomena that a dialogue system needs to be able
to handle. For instance, the fact that speech recognition is much harder for machines than for
humans may motivate different grounding strategies for handling system utterances than for han-
dling user utterances.

First, we provide some dialogue examples where various kinds of feedback are used. We then
review and discuss some relevant background, and discuss general types and features of feed-
back as it appears in human-human dialogue. Next, we discuss the concept of grounding from
an information update point of view, and introduce the concepts of optimistic, cautious and pes-
simistic grounding strategies. This is followed by the main section of this chapter, where we
relate grounding and feedback to dialogue systems, discuss the implementation of issue-based
grounding and feedback in GoD1S2, and provide dialogue examples showing the system’s be-
haviour and how it relates to internal updates. We then review additional implementation issues,
and provide a final discussion.

1This chapter isadightly altered version of Chapter 3 in Larsson (2002a).

29

2.1.1 Dialogue examples

The human-human dialogue excerpt? in (1) shows two common kinds of feedback. J’s “mm”
shows that J (thinks that he) understood P’s previous utterance; P’s “pardon” shows that P was
not able to hear J’s previous utterance. The example also includes a hesitation sound (“um”)
from J. (P is a customer and J a travel agent.)

(1) P:0m(.) flyg ti paris
um (.) flight to paris
J:mm (.) ska du ha en returbiljett
mm (.) do you want a return ticket
P:vasadu
pardon
J: ska du ha en tur & retur
do you want a round trip

The feedback in (1) consisted of conventionalized feedback words (“mm?”, “pardon”). However,
feedback may also be more explicit and repeat the central content of the previous utterance, as
K’s second feedback utterance in (2).

(2) B :jaskavaframme i [, goteborg]; e e ungefér vi nietiden
om de finns na tidit [, morgonflyg],
I need to be in Gothenburg er er around nine if there is an
early morning flight
Kilim]
m
K : [5 Vi]5 nietiden m vi ska se
Around nine m let’s see

The function of an utterance answering a question is not primarily to give feedback, but rather to
provide task-related information. However, an answer also shows that the previous question was
understood and integrated. Example (3) shows that feedback is sometimes given in reaction to a
question before the question is answered.

(3) J:sen maste du ha e san dér intenationellt studentkort ocksa
ha du de
then you need one of those international student cards do
you have that
P:mm na

mm no
2Except where noted, the human-human dialoguesin this chapter have been collected by the University of Lund
as part of the SDS project. We quote transcriptions done in G oteborg as part of the same project. The (.) symbol
indicates a pause.

30

However, often human-human communication proceeds without explicit feedback, as in the ex-
cerpt from a telephone dialogue in (4).

(4) K :vart ska du dka
where are you going
B : e jag ska aka till goteborg
er i’m going to gothenburg
K : vilket datum
what date
B : den sjatte juni
the sixth of june
K : vill du aka me flyg eller me tag
do you want to fly or take the train

By contrast, in current commercial systems it is common to check the system’s interpretation
of recognized user input asking a y/n-question, as seen in the (invented) dialogue in (5). This
behaviour is much less common in human-human dialogue, but may occur in noisy environments
or when communicating over an unreliable communication channel (e.g. when using a mobile
phone on a train).

(5) S:What day do you wish to travel?
U : Friday
S : Friday the 5th of April, is that correct?

A similar but not identical behaviour does occur in human-human dialogue, as in (6), taken from
the London-Lund corpus and used by Clark and Schaefer (1989a). In this example, B gives an
explicit report of how A’s utterance was interpreted, whereupon A confirms that the interpretation
IS correct by saying “yes”.

(6) A:F.sixtwo
B : Fsixtwo

A :yes
B : thanks very much

The dialogue in (DIALOGUE 2.1) gives an impression of what feedback capabilities we aim to
add to GoDIS in this chapter.

(DIALOGUE 2.1)

S>Wel cone to the travel agency!

31

S>hello

U>price information pl ease

S> You asked about price. How do you want to travel?
U> pardon

S> How do you want to travel ?

U> by pl ane

S>By plane, is that correct?

U>yes

S>Okay. Wiat city do you want to go to?

U> | ododo

S> Par don?

U> 1 ondon

S>Okay, to |ondon. What city do you want to go fronf
U>1yons

S>Sorry, Lyons is not in the database. So, What city do you want
to go

fronf?

U>paris

U> What about connecting flights?
S>You asked about connecting flights. Sorry, | cannot answer that.

2.2 Background

In this section, we provide a brief overview and of some previous accounts of grounding and
feedback.

2.2.1 Clark: Adding to the common ground

Clark and Schaefer (1989a) describe grounding as the process of adding to the common ground
(see Larsson et al. (2002)). They also formulate the grounding criterion:

Grounding criterion: The contributor and the partners mutually believe that the part-
ners have understood what the contributor meant, to a criterion sufficient for current
purposes. (Clark and Schaefer, 1989a, p. 148)

32

To achieve this, each grounding process goes through two phases:

e Presentation phase: A presents utterance u for B to consider. He does so on the assump-
tion that, if B gives evidence e or stronger, he can believe that B understands what A means
by u.

e Acceptance phase. B accepts utterance u by giving evidence e/ that he believes he under-
stands what A means by u. He does so on the assumption that, once A registers evidence
ef, he will also believe that B understands. (Clark and Schaefer, 1989a, p. 151)

Clark (1996) argues that utterances involve actions on (at least) four different levels:

Level | Speaker A’s actions Addressee B’s actions

4 A is proposing a joint project w to B | B is considering A’s
) proposal of w

3 A is signalling that p for B B is recognizing that p

2 A is presenting signal s to B B is identifying s

1 A is executing behaviour ¢ for B B is attending to ¢

Examples of joint projects are adjacency pairs, e.g. one DP asking a question and the other
answering it. According to Clark, these four levels of action constitute an action ladder, and
as such it is subject to the principle of downward evidence: “In a ladder of actions, evidence
that one level is complete is also evidence that all levels below it are complete”. For example,
if H understands », H must also have perceived v and H and S must have established contact;
however, H may not accept u.

In Clark and Schaefer (1989a), it is unclear whether grounding includes the proposal / consid-
eration level in addition to understanding®. However, in Clark (1996), grounding is redefined to
include all levels of action, i.e. attention, identification, recognition and consideration.

To ground a thing (. ..) is to establish it as part of common ground well enough for
current purposes. (...) On this hypothesis, grounding should occur at all levels of
communication. (Clark, 1996, p.221, italics in original)

We will adopt this general use of the term grounding to include all four action levels. Also, we
assume that the acceptance phase (potentially) concerns all four action levels, rather than only
understanding®.

3The defi nition suggests only understanding is involved, but some examples indicate that utterances which are
rejected because of being inappropriate are not grounded.

4The term “acceptance phase” is a bit unfortunate, since “acceptance” is used by e.g. Ginzburg to designate the
proposal-consideration action level.

33

Clark lists five ways to signal that a contribution has been successfully interpreted and accepted,
ordered from weakest to strongest:

e Continued attention

e Relevant next contribution

Acknowledgement: “uh-huh”, nodding, etc.

Demonstration: reformulation, collaborative completion

Display: verbatim display of presentation

The presentation and acceptance phases both focus on externally observable communicative be-
haviour. However, corresponding to presentations by a speaker on each level of action there is
also an “internal” action carried out by the addressee.

Clark views the proposal-consideration process in terms of negotiation, where an utterance such
as an assertion or a question is seen as a proposal for a joint project, followed by a response to
this proposal. Clark follows Goffman (1976) and Stenstrom (1984) in distinguishing four main
types of responses to proposals of joint projects:

1. full compliance, e.g. answering a question [acceptance]

2. alteration of project, where H alters the proposed project to something he is willing to
comply with; Clark asserts that alterations may be cooperative (in which case the altered
project is still relevant to the original one) or uncooperative [alteration]

3. declination of project, where H is unable or unwilling to comply with the project as pro-
posed. Declinations are often performed by offering a reason or justification for declining
the proposal. Clark gives the response “I don’t know” to a question as an example of
declination. [rejection]

4. withdrawal from project, where H withdraws from considering the proposal, e.g. by de-
liberately ignoring a question and changing the topic [withdrawal]

2.2.2 Ginzburg: QUD-based utterance processing protocols

Ginzburg offers an issue-based model of grounding on the understanding and acceptance levels
by positing two kinds of grounding-related questions: meaning-questions and acceptance ques-
tions®. If A produces utterance u, B is faced with a meaning-question, roughly “What does u

SThe latter termis ours. It refersto Ginzburg’'s MAX-QUD questions discussed below.

34

mean?”. If B cannot find an answer to this question, B should produce an utterance identical or
related to the meaning-question, e.g. “What do you mean?”. If B manages to find an answer to
this question, he proceeds to consider the acceptance-question, roughly “Should u be accepted?”.

Ginzburg’s utterance processing protocol (pt. 1) Ginzburg formulates his theory in terms of
an utterance processing protocol. Assuming the other DP A has uttered u, this is roughly what
happens in the first part of the protocol:

B is faced with the content-question geontent(u), Which we formalize as ?z.content(u,), para-
phrasable roughly as “What does » mean (given the current context)?”. To answer this question,
B must be able to provide a contextual interpretation ¢ of «. This involves, among other things,
finding referents for NPs. If B is not able to answer geontent(t), B Places geontent(u) 0N QUD
and produces a geontent (1)-Specific utterance, e.g. a request for clarification. Once an answer to
deontent (1) has been found, B can be said to have an understanding of « (which may, of course,
be a misunderstanding).

Ginzburg notes that utterances behave differently with regard to acceptance depending on whether
they have propositions or questions as content. A proposition p can be accepted in two ways:
as a fact or as a topic (issue) of discussion. In the latter case, the question under discussion is,
roughly, whether p should be accepted as a fact (at least for the purposes of current discussion)
or not. Accepting a proposition entails accepting it also as an issue for discussion (although the
“discussion” in this case will consist only of the acceptance of p as a fact). The exchanges in (8)
show some examples of reactions to assertions (note that these examples are not Ginzburg’s).

(8) a. A:The train leaves at 10 a.m. [answer/assert p]
B: OK, thanks. [accept p]

b. A: The train leaves at 10 a.m. [answer/assert p]
B: No it doesn’t! [reject p, accept ?p for discussion]

c. A: The train leaves at 10 a.m. [answer/assert p]
B: I’d prefer not to discuss this right now [reject ?p for
discussion]

d. A: The train leaves at 10 a.m. [answer/assert p]
B: Nice weather, isn’t it [ignore p]

Questions, by contrast, can only be accepted as issues for discussion. However, accepting ¢ does
not necessarily result in answering ¢q. On this account, answering ¢ should be viewed as one
possible way of displaying internal acceptance of ¢; however, contrary to Clark we also allow
the possibility of displaying acceptance of ¢ without answering q.

35

(9) a. A:Where do you want to go [ask q]
B: Paris [answer g, implicitly accept q]

b. A: Where do you want to go [ask q]
B: Hmmm, good question... Do you have any recom-
mendations? [explicitly accept q]

c. A:Where do you want to go [ask q]
B: That’s none of your business [explicitly reject g be-
cause of unwillingness]

d. A:Where do you want to go [ask q]
B: 1 don’t know [explicitly reject g because of inability]

e. A: Where do you want to go [ask q]
B: I’d like to travel in April [ignore g, answer other ques-
tion]

f. A: Where do you want to go [ask q]
B: Do you have a student discount? [ignore g, ask other
question]

Ginzburg’s utterance processing protocol, pt. 2 As we saw above in Section 2.2.2, according
to Ginzburg’s utterance processing protocol, for a DP B to understand an utterance u amounts to
finding an answer to the content-question g..

Once B is able to find an answer ¢ which resolves ?z.content(u,), B is faced with the question
daccept(¢) OF whether or not to accept ¢ for discussion, formalized by Ginzburg as ?MAX-QUD(c)
(“Whether ¢ should become QUD-maximal”®). At this point, the protocol is different for ques-
tions and propositions (“facts”). If ¢ is a question and B anSWers gq.c.pt(c) Negatively (rejects c
for discussion), B pushes ¢ on QUD and produces a c-specific utterance (e.g. “I don’t want to
discuss that”). If gaccept(c) is answered positively and B accepts ¢, ¢ will be added to QUD and
B will produce a c-specific utterance, e.g. an answer to the question c.

If ¢ instead is a proposition and if B answers guccept(c) negatively B should push gaecept(c) 0N
QUD and produce a guecept (c)-specific utterance. But if gaecept(c) is answered positively, B must
now consider the question whether ¢, i.e. ?c. If the answer is negative (i.e. B does not accept ¢),
the corresponding y/n-question ?c is pushed on QUD. This amounts to accepting ?¢ for discus-
sion, which is not the same as accepting c. If B answers gqccept(c) positively, B should add c to
her FACTS.

5This means that the arguably more intuitive interpretation of 2MAX-QUD(c) as “whether ¢ is maximal on
QUD” iswrong.

36

For clarity, we reproduce the full protocol in a more schematic way:

try to find an answer resolving geontent(u) = ?x.content(u, z)

e no answer found — push geontent(1) ON QUD, produce geontent(u)-Specific utterance
e answer ¢ found —

— cis aquestion — consider gaecept(c) = ?MAX-QUD(c)

* decide on “no” — push ggecept(c) 0N QUD, produce guccept(c)-specific utterance
[reject c]
* decide on *“yes” — push ¢ on QUD, produce c-specific utterance [accept c]
— cis a proposition — consider ggccept(?c)

% N0 — PUSh gaeeept(?c) ON QUD, produce gaecept(?c)-specific utterance [reject ?c
as topic for discussion]

* yes — consider ?c [accept ?c as topic for discussion]
- no — push ?¢ on QUD, produce ?c-specific utterance [reject c as fact]
- yes — add ¢ to FACTS [accept c as fact]

Note that there are a number of decisions that need to be made by B, and for each of these
decisions there is the possibility of rejecting u on the corresponding level. For a question, there
is only one way of rejecting it (once the content question has been resolved): to reject it as a
question under discussion. This amounts to refusing to discuss the question. For a proposition
p, there are two different ways of rejecting it. Firstly, one may reject the issue “whether p”
completely; this amounts to refusing to discuss whether p is true or not. Alternatively, one may
accept “whether p” for discussion but reject p as a fact.

2.2.3 Allwood: Interactive Communication Management

Allwood (1995) uses the concept of “Interactive Communication Management” to designate all
communication dealing with the management of dialogue interaction. This includes feedback
but also sequencing and turn management. Sequencing “concerns the mechanisms, whereby a
dialogue is structured into sequences, subactivities, topics etc. ...”.

Here, we will use the term ICM as a general term for coordination of the common ground, which
in an information state update approach comes to mean explicit signals (e.g. utterances) enabling
coordination of updates to the common ground. While feedback is associated with the grounding
of specific utterances, ICM signals in general does not need to concern any specific utterance.

37

As will be seen below, we will also be making use of various other parts of Allwood’s “activity-
based pragmatics” (Allwood, 1995), including Allwood’s action level terminology, the concept
of Own Communication Management (OCM), and various distinctions concerning ICM.

2.3 Preliminary discussion

In the previous section we have seen examples of different ways of accounting for grounding and
feedback. We feel that they all offer useful insights, and that they together can serve as a basis
for our further explorations.

Therefore, in this section we will discuss the accounts presented in Section 2.2, relate them to
each other, and establish some basic principles and terminological conventions.

2.3.1 Levels of action in dialogue

Both Allwood (1995) and Clark (1996) distinguish four levels of action involved in communi-
cation (S is the speaker of utterance u, H is the hearer/addressee). They use slightly different
terminologies; here we use Allwood’s terminology and add Clark’s (and, for the reaction level,
also Ginzburg’s) corresponding terms in parenthesis. The definitions are mainly derived from
Allwood.

Reaction (acceptance, consideration): whether H has integrated (the content of) u

Understanding (recognition): whether H understands u

Perception (identification): whether H perceives u

Contact (attention): whether H and S have contact, i.e. if they have established a channel
of communication

These levels of action are involved in all dialogue, and to the extent that contact, perception,
understanding and acceptance can be said to be negotiated, all human-human dialogue has an
element of negotiation built in. Note that the above list of levels is formulated in terms of the
hearer’s perspective.

Given that grounding is concerned with all levels, it follows that four aspects of an utterance «

in a dialogue between H and S can in principle be represented in the common ground, one for
each action level:

38

whether u has been integrated (taken up, accepted)

whether u has been understood

whether u has been perceived

whether S and H have contact

Also, grounding-related feedback may concern any (and possibly several) of these levels.

The level referred to as reaction/acceptance/consideration in the list above is defined differently
by different authors. Allwood calls it “reaction (to main evocative intention)”, Ginzburg talks
about “acceptance”, and Clark uses the term “consideration (of joint project)”. Perhaps it could
be argued that these different definitions are not concerned with the exact same phenomena.
Since we want to use the distinction rather than debate it, we choose to emphasize the similarities
rather than the differences.

2.3.2 Reaction level feedback

Once an utterance has been understood (or is believed to be understood), in the sense that the
hearer has interpreted the utterance to have a meaning and purpose which is relevant in the
activity (as perceived by the hearer), the hearer must decide what to do with the utterance. Should
he, for example, try to answer the question that was asked, or refuse? Should he choose to commit
to an asserted proposition, or raise objections?

The reaction process which follows the understanding of a move M can be analytically divided
into three substeps:

e consideration: whether or not to accept and integrate M (and consequently (try to) act on
the evocative intention)

e integration: updating the common ground according to M

e feedback: signalling the results of consideration of M

The division of the reaction phase into consideration and feedback is also made in Allwood
(1995), using the terms “evaluation” and “report” (respectively), and (though perhaps not so
explicitly) in Clark (1996). However, the integration step is not (at least not explicitly) included
in either of these accounts.

39

In the consideration phase, the DP investigates whether he can and wants to accept the proposed
joint project or not. If not, he needs to decide whether to alter, decline, or ignore the proposal.

We will use the term integration for the silent (internal) consequence of deciding to accept (com-
ply with) a proposed joint project, modelled as the process of updating one’s view of the common
ground with the full effects of a performed move. By “the full effects” we mean, for example,
taking a proposition to be true (at least for the purposes of the conversation) or taking a question
as being under discussion. In relation to Clark’s use of “uptake”, we would say that uptake sig-
nals integration. (Of course, uptake may be more than merely a signal that a previous utterance
has been integrated, e.g. in the case of answering a question.)

In the feedback phase, the results of the consideration process (acceptance or rejection of is-
sue or proposition) are signalled. Allowing for the possibility of silent acceptance means that
the feedback phase is optional, that is, utterances can be accepted without any feedback being
produced.

Issue and fact acceptance Extending Clark’s terminology, we can call the acceptance of a
proposition or question as a topic for discussion issue acceptance, and the acceptance of a propo-
sition as a fact fact acceptance. (We will also use the term proposition acceptance for the latter).
The former kind of acceptance is available both for questions and propositions, while the latter
is available only for propositions. Correspondingly, we can make a distinction between issue
rejection and fact rejection in the case of propositions.

Reasons for utterance rejection If a question is asked and the addressee DP decides not to
accept it (explicitly or implicitly), this may be explained in at least two ways:

e unwillingness: DP does not want to discuss the issue, e.g. because DP believes other
information is more important at the moment

e inability: DP is not able to discuss the issue, e.g. because of confidentiality or lack of
knowledge

Regarding the update effects of declining a question, there seems to be an important difference
between being unable to answer a question (as e.g. in the case where the response is “I don’t
know™), and being unwilling to answer it. In the former case, it is not clear that the question is
actually rejected as a topic for discussion. The addressee of the question may think that he might
eventually come up with an answer (as a result of new information or inference); in this case “I
don’t know” can be interpreted as “I don’t know right now, but I’ll keep the question in mind”.
In this case, the question might not have to be explicitly raised again before being responded to.

40

In the case where the rejection displays unwillingness to answer the question (e.g. “No com-
ment”, “I will not answer that”, “That’s none of your business”), it is much clearer that the
question is actually rejected as a topic for discussion.

There is also a difference between questions and propositions regarding the reasons for rejection.
As Ginzburg notes, asserted propositions may be rejected as issues for discussion, but even if
accepted as issues they may be rejected as facts. So for propositions, the consideration phase is
more complex than for questions, potentially involving two decisions (e.g. rejecting the asserted
proposition as a fact, but accepting it as an issue).

Rejecting a proposition as an issue can be explained by the same kinds of reasons as for any
issue. Rejecting a proposition as a fact may be caused, for example, by the addressee having a
conflicting belief, or not trusting the speaker. It may also be explained by a belief that accepting
the proposition will not serve the goals of the DPs, If a customer in a travel agency asserts that the
destination city of her flight is Kuala Lumpur, when in fact the agency only serves destinations
in Europe. Of course, the proposition that the customer wants to travel to Kuala Lumpur can
hardly be rejected by the clerk; however, the proposition that Kuala Lumpur is the destination
city of a trip that the clerk will provide information about can be rejected’. This kind of example
is especially relevant for database search systems, where information about the user’s desires and
intentions is not stored as such.

2.3.3 Levels of understanding

Concerning the levels of action described in Section 2.2.1, we can make further distinctions
between different levels of understanding, corresponding to three levels of meaning. These sub-
levels give a finer grading to the level of understanding. (A similar distinction is also used by
Ginzburg (forth)).

e domain-dependent and discourse-dependent meaning (roughly, “content” in the terminol-
ogy of Barwise and Perry, 1983 and Kaplan, 1979)
— referential meaning , e.g. referents of pronouns, temporal expressions
— pragmatic: the relevance of u in the current context
e discourse-independent (but possibly domain-dependent) meaning (roughly corresponding

to “meaning” in the terminology of Barwise and Perry, 1983 and Kaplan, 1979), e.g. static
word meanings

"The reason behind the clerk’s rejection in this case is that accepting the user’s answer would make the clerk
unable to perform the requested communicative action to answer the user’s question about price.

41

By “discourse-independent” we mean “independent of the dynamic dialogue context” (modelled
in GoDIS by the information state proper). However, discourse-independent meaning may still
be dependent on static aspects of the activity/domain. It is obvious that these levels of meaning
are intertwined and do not have perfectly clear boundaries. Nevertheless, we believe they are
useful as analytical approximations.

Since dialogue systems usually operate in limited domains, we will assume that we do not have
to deal with ambiguities which are resolved by static knowledge related to the domain. For
example, a dialogue system for accessing bank accounts does not have to know that “bank” may
also refer to the bank of a river; it is simply very unlikely (though of course not impossible) that
the word will be used with this meaning in the activity. It can be argued whether this is always a
good strategy, but for now we accept this as a reasonable simplification.

2.3.4 Some comments on Ginzburg’s protocol

The first thing to note about Ginzburg’s grounding protocol is that it does not specify exactly
what kind of feedback should be produced. The notion of question-specificity (see Larsson et
al. (2002)) is a minimal requirement that needs to be supplemented with additional heuristics
to decide on exactly what feedback to provide. Also, it does not specify how a DP decides
when a satisfactory interpretation has been found, or how to resolve the content- and acceptance
questions. These are all things we need to be specific about when implementing a dialogue
system. (Of course, to the extent they are domain-dependent, we would not expect to find them
in a general theory of dialogue. Whether they are domain-dependent or not is, on our view, an
open question.)

Second, Ginzburg seems to assume a certain degree of freedom concerning the sharedness of
QUD. According to the grounding protocol, DPs are free to add a grounding-related question ¢
to QUD without informing the other DP(s), provided this is followed by an utterance specific to
the added question. In fact, the mechanism of question accommodation that will be presented
in Chapter 3 provides an explanation of how DPs can understand answers to unasked questions.
However, it is not clear that this should allow the speaker to modify QUD before uttering the
g-specific utterance. It seems inconsistent to say that a DP that assumes QUD is shared can
modify QUD without having given any indication of this to the other DP; how would the other
DP be able to know about this modification before the g-specific utterance has been made? So it
appears that Ginzburg has a notion of QUD as not necessarily entirely shared, and this is slightly
different from the notion of QUD we are using. (See also Section 3.8.5.) Note that on our
account different DPs can still have different views of QUD (in the case of as yet undiscovered
misunderstandings); however, they always assume that the other DP has the same view of QUD
as themselves, or else they would not be assuming that it was shared.

Third, Ginzburg only deals with understanding and acceptance; contact and perception are left

42

out. So the protocol above does not deal explicitly with cases where a DP is unsure which
words were uttered (however, it deals with perception indirectly since understanding is based on
perception).

Relation between Clark’s and Ginzburg’s accounts

It seems possible to draw some parallels between the two accounts reviewed above. Clark’s
“recognition of meaning” would presumably be modelled by Ginzburg as finding an answer to
the content-question. Similarly, Clark’s “consideration of proposal” is modelled as consideration
of the acceptance question.

Clark talks about joint projects in “track 2” (meta-communication, as opposed to “track 1”, for
task-level communication) as involving speakers (often implicitly) raising various issues related
to grounding, e.g. “Do you understand this?”, and the responder answering these issues (often
implicitly). This fits well with the issue-based approach proposed by Ginzburg. A single utter-
ance may include both feedback and domain-level information. Domain-level information is on
track 1 while ICM is on track 2.

On Clark’s account, there is no asymmetry between questions and propositions concerning ac-
ceptance. The question-related counterpart of accepting a proposition as a fact, according to
Clark, is answering the question. However, it can be argued that answering the question is
merely an external behaviour caused by (and acting as positive feedback concerning) the actual
acceptance of the question as an issue. Clark’s question-related counterpart of rejecting a propo-
sition as a fact (declination) is answering e.g. “I don’t know” (Clark, 1996, p. 204), and thereby
signalling lack of ability or willingness to “comply with the project as proposed”. Presumably,
“No comment” or “I refuse to answer that question” would also count as rejections on the same
level, which indicates that they are really issue-rejections. The “withdrawal” that Clark talks
about, where the addressee deliberately ignores a proposal, seems to be equally applicable to
both assertions and questions. (In fact, Lewin (2000) views cases where a DP answers a differ-
ent question than the one that was asked, thereby withdrawing from the proposed question, as
rejections.)

43

2.4 Feedback and related behaviour in human-human dia-
logue

By feedback we mean behaviour whose primary function is to deal with grounding of utterances
in dialogue®. This distinguishes feedback from behaviour whose primary function is related
to the domain-level task at hand, e.g. getting price information. Non-feedback behaviour in
this sense includes asking and answering task-level questions, giving instructions, etc. (cf. the
“Core Speech Acts” of Poesio and Traum, 1998b). Answering a domain-level question (e.g.
saying “Paris” in response to “What city do you want to go to?”) certainly involves aspects
of grounding and acceptance, since it shows that the question was understood and accepted.
However, the primary function of a domain-level answer is to resolve the question, not to show
that it was understood and accepted.

In this section we will attempt to give an overview of various aspects of feedback. We will return
to sequencing ICM in Section 2.6.9.

2.4.1 Classifying explicit feedback

To get an overview of the range of explicit feedback behaviour that exists in human-human
dialogue, we will classify feedback according to five criteria. We will assume that DP S has just
uttered or is uttering » to DP H, when the feedback utterance f (uttered by H to .S) occurs.

e level of action / basic communicative function (contact, perception, understanding, reac-
tion / acceptance)

e polarity (positive / negative): whether f indicates contact / perception / understanding /
acceptance or lack thereof

e eliciting / non-eliciting: whether f is intended to evoke a response (e.g. a reformulation or
a reason to accept some content)

e form of f: single word, repetition etc.

content of f: object-level or meta-level

The action level criterion has been explained above; the others will be explained presently. The
criteria of basic communicative function, polarity, eliciting/non-eliciting, and surface form are
all derived from Allwood et al. (1992) and Allwood (1995).

8Since thisthesis is not concerned with multimodal dialogue, we will only discuss verbal feedback.

44

2.4.2 Positive, negative, and neutral feedback

Positive feedback indicates one or several of contact, perception, understanding, and integration,
while negative feedback indicates lack thereof.

While there are clear cases of positive (“uhuh”, “ok”) and negative (“pardon?”, “I don’t under-
stand”) feedback, there are also some cases which are not so clear. For example, are check-
questions (e.g. “To Paris?” in response to “I want to go to Paris”) positive or negative? If pos-
itive feedback shows understanding, and negative feedback lack of understanding, then check-
questions are somewhere in between; they indicate understanding but also that the lack of confi-
dence in that understanding.

Here we will assume a third category of neutral feedback for check-questions and similar feed-
back types. If negative feedback indicates a lack of understanding, neutral feedback indicates
lack of confidence in one’s understanding.

Negative feedback can be caused by failure to integrate U on any of the levels of action in
dialogue:

e lack of contact - H did not notice that S said something
e lack of perception - H did not hear what S said

e lack of understanding on a semantic/pragmatic level - H recognized all the words, but could
not extract a content

— context-independent meaning, e.g. word meanings
— context-dependent meaning, e.g. referents
— pragmatic meaning, i.e. the relevance of S’s utterance in relation to the context

e rejection of content (lack of acceptance)

For negative feedback, detecting the level with which the feedback is concerned is important for
being able to respond appropriately. Here are some possibilities for the different levels:

e contact: try to establish contact (“Hey there”)
e perception: speak louder, articulate
e understanding

— meaning: reformulate

45

— pragmatic meaning: reformulate, or explain how the utterance is relevant

e rejection: abandon or argue for the acceptance of the content

2.4.3 Eliciting and non-eliciting feedback

We will use the term “eliciting feedback”, borrowed from Allwood et al. (1992), to refer to
feedback utterances intended to elicit a response, or more specifically utterances «’ such that '
is intended to make S respond to u’ because H is not sure about how to interpret S’s utterance w.
Check-questions (both y/n- and alternative-questions) are seen as eliciting feedback in this sense.
Eliciting feedback can also occur after S’s utterance w is finished.

Feedback on all levels of action can be eliciting: contact (“are you there?”), perception (“what
did you say?”), understanding (“what do you mean?”) and acceptance (“why do you say that?”).

2.4.4 Form of feedback

As with all utterances, feedback utterances can have various syntactic forms:

e assertion

— declarative (“I heard you say ‘go to Paris’.”, “You want to go to Paris.”)
e imperative (“Please repeat.”)
e interrogative

— y/n-question (“Did you say ‘Paris’?”, “Do you want to go to Paris?”)

— wh-question (“What did you say?”, “What do you mean?”, “Where do you want to
go?”)

— alternative-question (“Did you say ‘Paris’ or “Ferris’?”, “Do you want to go to Paris,
France or Paris, Texas?”)

e ellipsis (“Paris?”, “to Paris.”)

e conventional feedback phrases and words (“Pardon?”, “Beg you pardon?”, “Okay”)

Apart from showing the speaker that one has understood, feedback in the form of an explicit
declarative report, repetition or reformulation has the additional function of making sure that

46

the understanding is actually correct, by providing a chance for correction. A y/n-question has a
similar function, but it indicates less confidence in the interpretation (i.e. is more neutral) and has
a stronger eliciting element than an assertion; a question requires an answer, while an assertion
can often be assumed to be accepted in the absence of protest.

A related dimension of classification is how the form of the feedback utterance relates to the
previous utterance. One way of giving positive feedback is to simply repeat verbatim the pre-
vious utterance (e.g. “To Paris.” in response to “To Paris.”). A similar strategy is to provide a
reformulation (e.g. “Your destination city is Paris, the capital of France.”). The latter is perhaps a
stronger signal of understanding then the former, since a verbatim repetition does not in principle
require that the utterance was understood.

2.4.5 Meta-level and object-level feedback

A final distinction can be made depending on whether the feedback explicitly talks about what
the speaker said or meant, in which case the feedback can be said to be meta-level feedback, or if
instead it talks about the subject matter of the dialogue, in which case we talk about object-level
feedback.

o Meta-level

— perception (“Did you say ‘Paris’?”)

— understanding (“Did you mean that you want to go to Paris?”)

e Object-level (“Do you want to go to Paris?”)

This distinction does not necessarily apply to all kinds of feedback. For example, for conven-
tional phrases like “Pardon?” and elliptical phrases like “Paris?” it is not clear if they refer to
what the speaker said or meant, or about the subject matter of the dialogue, or neither.

2.4.6 Fragment feedback / clarification ellipsis

Often, feedback does not concern a complete utterance, but only a part of it; this is the case, for
example, with failure to identify a referent to an NP. We can refer to this kind of feedback as
fragment feedback (exemplified in (10)) and contrast it with complete feedback which concerns
a whole utterance (as in (11)).

47

(10) A: 1 metJim yesterday.
B: Who? [negative partial understanding ICM]
Who did you say you met? [negative partial understanding
ICM + partial positive understanding ICM]
Jim? [interrogative partial understanding ICM]
Jim Jones? [intermediate partial understanding]
Jim Jones or Jim Lewis? [intermediate partial understand-
ing]
No, it was Bob that you met [partial acceptance, partial re-
jection!]

(11) A: I metJim yesterday.
B: Pardon? [negative complete perception]
B: What do you mean? [negative complete understanding]
B: Liar! [(probably) complete rejection]

Itis also possible to give negative partial feedback to one part of an utterance and simultaneously
give positive partial feedback to some other part, as when B says “Who did you say you met?”;
here, B gives positive feedback that B understood that A met someone, but negative feedback
concerning who A met. Cooper and Ginzburg (2001) discuss negative partial feedback using the
term “clarification ellipsis” and give an account in the QUD framework.

2.4.7 Own Communication Management

A further aspect related to feedback and ICM is what Allwood refers to as Own Communication
Management, which involves hesitation sounds, such as “um”, “er” etc., (which also have the
effect of keeping the turn), and self-corrections (initiated either by the speaker or by the hearer).
It should also be noted that some feedback behaviour also has an OCM aspect; for example, one

can explicitly accept a question to “buy time” for coming up with an answer.

2.4.8 Repair and request for repair

One type of behaviour very closely related to feedback, and also to Own Communication Man-
agement (see below), is what Traum refers to as “other-initiated repair”.

1That is, acceptance of the proposition “A met someone”, but rejection of the proposition “the person that A met
was Jim”.

48

e other-initiated other-repair: repair by A (*You mean Paris.”)

e other-initiated self-repair: request for repair by A (“Do you mean Paris?”)

This overlaps with what Clark calls alteration, i.e. the case where A accepts an altered version
of the proposed joint project.

2.4.9 Request for feedback

Above, we have analyzed feedback produced by the addressee A in response to an utterance u
produced by a speaker S. An additional type of feedback behaviours which are produced by the
speaker of v are requests for feedback, e.g. “Do you understand?”, “Got that?”.

e understanding (“Got that?”, “Do you understand?”)

e acceptance (“OK?”, “Do you agree?”)

2.5 Update strategies for grounding

After having reviewed grounding-related interactive communication management in human-
human dialogue, we will now explore update strategies related to grounding. In this section,
we introduce the concepts of optimism, caution, and pessimism regarding grounding update
strategies.

2.5.1 Optimistic and pessimistic strategies

According to Clark and Schaefer (1989a), many models of dialogue make a tacit idealization
(1) that DPs assume that the content of each utterance is automatically added to the common
ground. Some models make the weaker idealization (2) that DPs assume that the content of
each utterance is automatically added to the common ground unless there is evidence to the
contrary. Clark and Schaefer argue against these idealizations and propose to replace them with
“systematic procedures” for establishing mutual belief regarding the addressee’s understanding
of utterances.

Following Clark, more recent computational models of grounding (e.g. Traum (1994) and
Ginzburg (forth)) take it for granted that utterances are not taken to be grounded until some

49

form of feedback has been produced. This feedback need not be explicit: for example, a relevant
answer to a question shows that the DP producing the answer has understood and accepted the
question posed in the previous utterance. That is, DPs do not make assumptions about grounding
until there is some evidence.

However, as noted by Traum this cannot apply to all utterances. If it did, each confirmation of
understanding would again have to be confirmed and so on ad infinitum. In our terminology, this
means that it is necessary to assume optimism on some level. In Traum’s model, acknowledge-
ments are optimistically assumed to be grounded (that is, they do not need to be acknowledged
themselves before being added to the common ground) whereas any other conversational acts
must receive some acknowledgement before being grounded.

While we believe that Clark is correct in criticizing tacit idealizations about DPs assumptions
regarding grounding, we also believe that these tacit assumptions, if made in an explicit and sys-
tematic fashion, are not necessarily incorrect or more idealizing than Clark’s alternative. Further-
more, they deserve to be explored both theoretically and for practical use in dialogue systems.
We should also keep open the possibility that DPs may make different assumptions regarding
grounding depending on various factors of the context.

If issues of tacitness are put aside, it seems that what we are dealing with are different accounts of
when an utterance is to be regarded as grounded. The need for such an assumption arises partly
because the communicative behaviour itself does not completely determine whether an utterance
is grounded. At some point, a DP must simply assume that an utterance has been grounded, and
we believe that the main difference between them can be described in terms of optimism and
pessimism.

The first type of “tacit idealization” described by Clark ((1) above) can thus be restated as an op-
timistic grounding assumption; a DP adhering to this assumption will assume, for any utterance
u, that u is grounded as soon as it has been uttered, with no regard to feedback. The second type
of “idealization” ((2) above) can be restated as a pessimistic grounding assumption, since it re-
quires some way of determining the absence of negative feedback before grounding is assumed.
Clark’s suggested assumption is also pessimistic, since DPs adhering to it will require positive
evidence before assuming that an utterance is grounded.

2.5.2 Grounding updates and action levels

From an information state update perspective, it seems sensible to regard an utterance as grounded
when it has been added to the common ground. Each action level connected to an utterance can
be associated with a certain type of update. To assume grounding on the perception level can be
seen as updating the common ground with the assumed surface form of the utterance; to assume
grounding on the understanding level is to update the common ground with a semantic repre-

50

sentation of the utterance. Finally, to assume an utterance has been grounded on the acceptance
level is to update the common ground with the intended effects of the utterance (e.g. pushing
a question on QUD). Thus, the grounding assumption can be divided into four independent as-
sumptions, one for each of these levels; we will concentrate on the understanding and integration
levels.

The independence of these assumptions means e.g. that it is possible to make an optimistic
assumption about understanding but a pessimistic one about acceptance. This would mean as-
suming that an utterance was understood as soon as it was uttered, but requiring positive evidence
before it is assumed to be accepted.

2.5.3 The cautious strategy

Clark seems to assume that once an utterance has been grounded, there is no turning back; the
grounding assumption cannot be undone. That is, the moment information about an utterance
is added to the common ground there is no way (short of general strategies for belief revision)
of understanding negative feedback and reacting to it by modifying or removing the grounded
material.

However, we believe that there is a difference between assuming an utterance as grounded (added
to the common ground) and giving up the possibility of modifying or correcting the grounded
material. This opens up a new kind of grounding strategy not included in Clark’s account: the
cautious strategy.

For a DP using a cautious strategy, it is possible to assume an utterance as being grounded, while
still being able to understand and react appropriately to negative feedback. This requires (1) that
negative feedback, which is often underspecified in the sense that it does not explicitly identify
which part of an utterance it concerns, can be correctly interpreted, and (2) that the DP can
revise the common ground in a way which undoes all effects of the erroneous assumption that
the utterance was grounded. A simple example is shown in (12).

(12) A: Dol needavisa?
A optimistically assumes that ““does A need a visa?” is now
under discussion.
B : Pardon?
A correctly interprets B’s utterance as negative feedback
(probably on the perception level) regarding the previous ut-
terance, and retracts the assumption that ““does A need a
visa?”” is on QUD.

On this view, the updates associated with grounding involves two steps: adding the material to

ol

the common ground, and consequently, removing the possibility of (easily) undoing the updates
from the first step.

One advantage of the cautious strategy is that inferences resulting from an utterance can be
drawn immediately, without having to wait for feedback, while not requiring costly strategies for
general belief revision in cases where the grounding assumption turns out to be premature.

We leave open the question of which strategy is the most cognitively plausible; in fact, the
most reasonable assumption is probably that an intelligent combination of different strategies
is the most realistic model. But we do believe that the cautious strategy deserves the same
attention as the pessimistic strategy advocated by Clark. Moreover, we do not want to preclude
the possibility that even the optimistic strategy might come in handy sometimes. As always,
questions of cognitive plausibility are best resolved by empirical experimentation rather than by
rhetoric. What we want to do here, apart from implementing useful grounding mechanisms for a
dialogue system, is to show that the cautious approach is at least a possible alternative.

To repeat, we will use the qualification “optimistic”, “cautious” and *“pessimistic” for grounding
update strategies, with the following meanings:

e optimistic grounding update: DGB? is updated immediately after u was produced (and, in
the case of utterances produced by other DP, understood and accepted); no backtracking
mechanism available

e cautious grounding update: DGB is updated immediately after » was produced (and, in the
case of utterances produced by other DP, understood and accepted); however, backtracking
is available

e pessimistic grounding update: DGB is updated when positive evidence of grounding have
been acquired

2.6 Feedback and grounding strategies for GoDIS

In the previous sections, we discussed grounding-related ICM (and in particular feedback) and
grounding strategies in human-human dialogue. In this section, we discuss feedback and ground-
ing from the perspective of dialogue systems in general, and GoDIS in particular.

Most (if not all) dialogue systems today have an asymmetrical treatment of grounding, i.e. the
grounding of system utterances is handled very differently from the grounding of user utterances.

9Dialogue Gameboard, i.e. the SHARED part of the information statein GoDIS. See Larsson et al. (2002).

52

Typically, the system will provide fairly elaborate feedback on user input, usually in the form of
questions such as “Did you say you want to go to Paris?”. The user must then answer these
questions affirmatively before the system will go on. The reason for this, of course, is the low
quality of speech recognition.

2.6.1 Grounding strategies for dialogue systems

In this section, we discuss grounding update strategies from the viewpoint of their usefulness in
dialogue systems. The two main factors determining the usefulness of an update strategy in a
dialogue system is usability (including efficiency of dialogue interaction) and the efficiency of
internal processing. On this view, pessimism has the disadvantage that it makes dialogue less
efficient since each utterance must be explicitly grounded and accepted; for user utterances this
is often achieved by asking check questions to which the user must reply before communication
can proceed.

However, the cautiously optimistic approach has the disadvantage that revision is necessary when
grounding or acceptance fails, which happens if the user responds negatively to the feedback. The
solution presented solves the revision problem by keeping relevant parts of previous information
states around.

A common method is to use the recognition score of a user utterance to determine the feedback
behaviour from the system, given that the system has understood the utterance sufficiently. We
believe that the best solution for an experimental speech-to-speech dialogue system is to switch
between grounding update strategies depending on the reliability of communication (which de-
pends on noisiness of environment, previous ratio of successful vs. unsuccessful communication,
etc). We link pessimistic and optimistic grounding update to interrogative and positive feedback,
respectively. Interrogative feedback from the system raises a question regarding the meaning of a
previous utterance, which would not make sense if the system had already assumed that a certain
answer to the meaning question had been grounded; in effect, this would amount to raising a
question whose answer is (already) assumed to be part of the common ground. Similarly, giving
positive feedback corresponds naturally to the case where some interpretation is deemed to be
already grounded.

A more sophisticated method for determining what grounding and feedback strategy to use would
also take into consideration the degree of relevance of a certain interpretation in the current dia-
logue context. If a recognition hypothesis which does not have the highest score is nevertheless
more relevant than the hypothesis with the highest score, this could result in choosing the former
hypothesis. This has not been implemented in GoDIS, and is an area for future research.®

10For example, one could assess the degree of relevance of a certain answer-move by checking how many ac-
commodation steps (see Chapter 3) would be necessary before integrating the question.

53

2.6.2 “Implicit” and “explicit” verification in dialogue systems

In the literature concerning practical dialogue systems (e.g. San-Segundo et al., 2001), grounding
is often reduced to verification of the system’s recognition of user utterances. Two common ways
of handling verification are described as “explicit” and “implicit” verification, exemplified in (13)
(example from San-Segundo et al., 2001).

(13) a. I understood you want to depart from Madrid. Is that
correct? [explicit]

b. You leave from Madrid. Where are you arriving at? [im-
plicit]

Actually, both “explicit” and “implicit” feedback contain a verbatim repetition or a reformulation
of the original utterance, and in this sense they are both explicit. The actual base for the distinc-
tion is what we have here referred to as polarity: “explicit” verification is neutral (and eliciting
and interrogative) whereas “implicit” verification is positive.

In human-human dialogue, explicit confirmations occur in noisy environments and in situations
where understanding is critical (e.g. when arranging a meeting in a busy airport). Given that
verification is presumably a rather marginal phenomena in human-human dialogue, it is perhaps
surprising that it is often the only aspect of feedback covered in dialogue systems literature.
Firstly, because it is usually not necessary for humans to verify what they (think they) have heard;
that is, it is a rather uncommon grounding procedure in human-human dialogue. Second, because
it only involves part of the full spectrum of feedback behaviour, excluding e.g. acceptance-related
feedback behaviour.

Of course, verification of user utterances are of central importance in dialogue systems, given
the quality of current speaker-independent speech recognition. This explains to some extent
why verification is often the only aspect of feedback handled by current systems - it is simply
necessary. However, this is no reason not to explore further the possible uses of a wider range of
feedback behaviour in dialogue systems.

2.6.3 Issue-based grounding in GoDIS

In this section we outline a (partially) issue-based account of grounding in terms of information
state updates, inspired by Ginzburg’s account of content questions and acceptance-questions.
However, we make significant departures from Ginzburg’s account, for various reasons.

A basic idea of the account used in GoDIS2 is that meta-issues (the content and acceptance

o4

questions) do not always have to be represented explicitly. However, in certain cases it is useful
to represent grounding issues explicitly.

Content questions in GoDIS

We regard explicit interrogative understanding feedback as explicitly raising content questions,
which may be responded to explicitly or implicitly. We also refer to these as understanding
questions. Explicit interrogative feedback is very relevant for dialogue systems, where poor
speech recognition often makes it necessary for the system to explicitly verify each recognized
user utterance, giving the user a chance to correct any misunderstandings.

Interrogative feedback can in principle be wh-questions (“What do you mean?”), y/n-questions
(“Do you mean Paris?”, “Paris, is that correct?”), or alternative questions (“Do you mean to Paris
or from Paris?”). However, we have chosen negative feedback (“I don’t understand”) rather than
y/n-questions to indicate lack of understanding. Clarification questions are not used in GODI1S2;
however, they will be introduced in Chapter 3. This leaves us with y/n understanding ques-
tions, which concern one specific interpretation of a previous utterance. These are represented
in GoDI1S2 as ?und(DP*C) where DP is a DP and C is a proposition, and can be paraphrased
as “Did DP mean C?” or “Is C' a correct understanding of D Ps utterance?”. In the case where
the understanding question concerns a question (raised by an ask-move), the proposition C' is
issue(@) where @ is a question. In this case, the paraphrase can be further specified as “Did DP
mean to raise Q?”.

To allow this, we have extended the GoODIS semantics presented in Larsson et al. (2002)to

include two new Kkinds of propositions.

e und(DP, P) : Proposition where P : Proposition and DP : Participant!!

e issue(Q) : Proposition where @Q : Question'?

Implicit understanding-questions Actually, the use of the term “implicit” in the context of
grounding (or verification) can be used to describe not the grounding behaviour itself but, rather,

"Note that this defi nition allows P to itself be a proposition of the form und(D P, P); however, we allow thisto
passin the interest of brevity.

12This defi nition allows issue(Q) as a proposition even when it is not embedded in a proposition und(DP,
issue(Q)). In GoDIS, the proposition issue(@) only appears inside understanding questions or as an argument
to an ICM move (see Section 2.6.5). However, in Chapter 3 we will use the corresponding question ?issue(@). A
suitable paraphrase of this question would be “Should @ becomean issue?’ or “Should @) be opened for discussion”;
thisis similar to Ginzburg’'s MAX-QUD question.

95

the status of the grounding issue. What is often referred to as implicit verification can arguably
be seen as implicitly raising a grounding question, which may or may not be responded to.

This idea will not be implemented until Chapter 3, since it requires some additional mechanisms
which will be needed anyway for the kind of behaviours we introduce there. Specifically, we need
a distinction between a global and a local QUD (see also Cooper et al. (2000) and Cooper and
Larsson (2002)), where the former contains explicitly raised or addressed (but as yet unresolved)
issues, and the latter contains questions which can be used for resolving short answers.

To give a short preview, the basic idea is that explicit positive feedback implicitly raises an
understanding-issue, i.e. when the implicit feedback is integrated, the understanding question
is pushed on local QUD. This allows the user to discard the system’s interpretation simply by
providing a negative answer to the grounding question, or confirm it by giving a positive answer.
Since the question is added only to the local QUD, and not to the global one, it will eventually
disappear if it is not answered. This allows dialogues to proceed more efficiently, since the user
does not have to give explicit confirmations all the time. Again, this will be explained in detail
in Chapter 3.

Acceptance questions

In Ginzburg’s protocol, a DP who has perceived and interpreted an utterance is faced with the
acceptance-question; whether to accept the content of the utterance or not. If the content is not
accepted, the DP should push the integrate question (push it on QUD) and address it.

One way of dealing with acceptance would be to follow Ginzburg’s account and explicitly rep-
resent an acceptance-question which is pushed on QUD in cases where a user utterance is under-
stood but cannot be integrated, and subsequently produce an utterance addressing the acceptance
question. We regard feedback-moves on the reaction level (compliance and declination moves,
in Clark’s terminology) as addressing acceptance questions. Above, we have argued against
pushing anything on QUD in this case since it is a shared structure, and the user in this case
has no chance of doing the corresponding update on her own QUD until the utterance has been
produced. So an alternative strategy would be to first produce the utterance addressing the accep-
tance gquestion and subsequently assume that the user will accommodate it and push it on QUD;
at this time, the system can do the same.

However, it appears that it is only useful to represent the acceptance question explicitly on QUD
in cases where it can give rise to a discussion where DPs argue for and against the acceptance
of a question as a topic for discussion, or for a proposition as a fact or as a topic for discussion.
For a dialogue system unable to perform such argumentation dialogues, it appears pointless to
represent the acceptance question explicitly. Since an acceptance or rejection move cannot be
challenged, the move will provide a definite answer to the integration question which would thus

56

be immediately removed from QUD once the rejection had been grounded.

For these reasons, we will not represent acceptance issues explicitly in GoDIS. In a system
capable of negotiation and/or argumentation, however, it would be necessary to do so, and to
regard feedback-moves on the acceptance level as relevant answers to this question (see Section
4.8.2 for further discussion).

Temporary storage

To enable cautious grounding we need some way of revising the dialogue gameboard when
optimistic grounding assumptions turn out to be premature, without having to deal with the
problems of generalized belief revision Gardenfors (1988). A straightforward way of doing this
is to keep around relevant parts of previous dialogue gameboard states, and copy the contents
of these back to the DGB when necessary. This strategy will be used for system utterances in
GoDiS2, and also for user utterances in GoDIS3.

2.6.4 Enhancing the information state to handle feedback

In this section, we show how the GoDIS information state needs to be modified to handle
grounding and feedback. The new information state type is shown in Figure 2.1.

[AGENDA : OpenQueue(Action) 1
PLAN . OpenStack(PlanConstruct)
BEL : Set(Prop)
PRIVATE COM . set(Prop) _
T™MP QUD : OpenStack(Question)
AGENDA : Stack(Action)
PLAN . Stack(PlanConstruct)
| NIM . OpenQueue(Move) |
[com : Set(Prop)
QUD : OpenStack(Question)
SHARED PM : OpenQueue(Move)
LU SPEAKER : Participant
I MOVE . Set(Move)

Figure 2.1: GoDI1S2 Information State type

o7

Temporary store

To enable the system to backtrack if an optimistic assumption turns out to be mistaken, relevant
parts of the information state is kept in /PRIVATE/TMP. The QUD and cowm fields may change
when integrating an ask or answer move, respectively. The plan may also be modified, e.g. if
a raise action is selected. Finally, if any actions are on the agenda when selection starts (which
means they were put there during by the update module), these may have been removed during
the move selection process.

Non-integrated moves

Since several moves can be performed per turn, GoDIS needs some way of keeping track of
which moves have been interpreted. This is done by putting all moves in LATEST_MOVES in a
queue structure called NiM, for Non-Integrated Moves. This structure is private, since it is an
internal matter for the system how many moves have been integrated so far. Once a move is as-
sumed to be grounded on the understanding level the move is added to the /SHARED/LU/MOVES
set. Since the move has now been understood on the pragmatic level, the content of the move will
be a question or a full proposition (for short answers, the proposition resulting from combining
it with a question on QUD).

Previous moves

To be able to detect irrelevant followups, GODIS needs to know what moves were performed
(and grounded) in the previous utterance. These are stored in the /SHARED/PM field.

Timeout

To be able to decide when the user has given up her turn, we have added a TIS variable TIMEOUT
of type Real, whose value is the time (in seconds) after which the system will assume that the
turn has been given up if no speech has been detected. This variable will be further discussed in
Section 2.6.6.

58

2.6.5 Feedback and sequencing dialogue moves

In this section, we first show how feedback dialogue moves in GODIS2 are represented. We
then review the full range of feedback moves, starting with system-generated feedback and then
moving on to user feedback.

The general notation for ICM dialogue moves used in GoDIS is the following:

(14) icm:L*P{:Args}

where L is an action level, P is a polarity, and Args are arguments.

e L: action level

con: contact (“Are you there?”)

per: perception (“I didn’t hear anything from you”, “I heard you say ’to Paris”’)
sem: semantic understanding (“I don’t understand”, “To Paris.”)

und: pragmatic understanding (“I don’t quite understand”, “You want to know about
price.”)

— acc: acceptance/reaction (“Sorry, | can’t answer questions about connecting flights”,
“Okay.”)

e P: polarity

— neg: negative
— int: interrogative

— pos: positive
e Args: arguments
Note that the “neutral” polarity has been replaced by the label “int”; we have made a simplifying
assumption that neutral feedback is always eliciting and interrogative.

The arguments are different aspects of the utterance or move which is being grounded, depending
action level:

13Note, however, that if we had included feedback formslike “What did you say?’, thiswould still be regarded as
negative feedback. The “int” label only refersto check-questions, which are usually y/n-questions. Thisis arguably
not an optimal labelling convention.

59

for per-level: String, the recognized string

for sem-level: Mowve, a move interpreted from the utterance
e for und-level: DP x C, where

— DP : Participant is the DP who performed the utterance
— C : Proposition is the propositional content of the utterance

for acc-level: C' : Proposition, the content of the utterance

For example, the ICM move icm:und*pos:usr*dest_city(paris) provides positive feedback re-
garding a user utterance that has been understood as meaning that the user wants to go to Paris.

In addition, sequencing ICM moves for indicating reraising of issues and loading a plan are
included:

e icm:reraise: indicate reraising implicitly (“So, ...”)
e icm:reraise:Q: reraising an issue @ explicitly (“Returning to the issue of Price.”)

e icm:loadplan (“Let’s see.”)

System feedback to user utterances in GoDIS2

In this section and the following section, we review surface forms related to feedback and other
ICM behaviour that will be implemented in GODI1S2.

For user utterances, GoDI1S2 will be able to produce e.g. the following kinds of feedback utter-
ances (for the examples, assume that the user just said “I want to go to Paris”):

e contact
— negative; icm:con*neg (“I didn’t hear anything from you”)
e perception

— negative; icm:per*neg realized as conventional feedback phrase or a declarative sen-
tence (“Pardon?”, “I didn’t hear what you said.”)

— positive; icm:per*pos:String realized as metalevel verbatim repetition (“I heard ‘to
paris’)

60

e understanding (semantic)

— negative; icm:sem*neg realized as fh-phrase (“I don’t understand.”)

— positive; icm:sem*pos:Content realized as repetition/reformulation of content (object-
level) (“Paris.”)

e understanding (pragmatic)

— negative; icm:und*neg realized as fb-phrase (“I don’t quite understand.”)

— positive; icm:und*pos: D P*Content realized as repetition/reformulation of content
(object-level) (“To Paris.”)

— interrogative; icm:und*int: DP*Content realized as ask about interpretation (“To
Paris, is that correct?”)

e integration

— negative

* proposition-rejection; icm:acc*neg:Content realized as explanation (“Sorry,
Paris is not a valid destination city”)

— positive; icm:acc*pos realized as fb-word (“Okay”)

In addition, GoDI1S2 will be able to perform issue-rejection using the move icm:acc*neg:issue(Q),
where @ : Question as illustrated in (DIALOGUE 2.2).

(DIALOGUE 2.2)

U> What about connecting flights?
S>Sorry, | cannot answer questions about connecting flights.

We are not claiming that humans always make these distinctions between action explicitly or
even consciously, nor that the link between surface form and feedback type is a simple one-to-
one correspondence; for example, “mm” may be used as positive feedback on the perception,
understanding, and acceptance levels. Feedback is, simply, often ambiguous. However, since
GoDIS is making all these distinctions internally we might as well try to produce feedback
which is not so ambiguous. Of course, there is also a tradeoff in relation to brevity; extremely
explicit feedback (e.g. “I understood that you referred to Paris, but | don’t see how that is relevant
right now.”) could be irritating and might decrease the efficiency of the dialogue. We feel that
the current choices of surface forms are fairly reasonable, but testing and evaluation on real users
would be needed to find the best ways to formulate feedback on different levels. This is an area
for future research.

61

A general strategy used by GoDIS in ICM selection is that if negative or interrogative feedback
on some level is provided, the system should also provide positive feedback on the level below.
For example, if the system produces negative feedback on the pragmatic understanding level, it
should also produce positive feedback on the semantic understanding level.

(15) S>Paris. | don’'t quite understand.

In some systems, positive or interrogative feedback to user utterances is not given immediately;
instead, the system repeats all the information it has received just before making a database query
and asks the user if it is correct. It is also possible to combine feedback after each utterance with
a final confirmation. In GoD1S2, we have not implemented final confirmations. It can be argued
that final confirmations are more important in action-oriented dialogue (see Chapter 4), whereas
they are not so important in inquiry-oriented dialogue since they never result in any actions other
than database searches.

User feedback to system utterances in GoDI1S2

For system utterances, GoD1S2 will react appropriately to the following types of user feedback:

e perception level

— negative; fb-phrase (“Pardon?”, “Excuse me?”, “Sorry, | didn’t hear you”) interpreted
as icm:per*neg

e reaction/acceptance level

— positive; fb-phrase (“Okay.”) interpreted as icm:acc*pos
— negative; issue rejection fb-phrase (“I don’t know”, “Never mind”, “It doesn’t mat-
ter”) interpreted as icm:acc*neg:issue
In addition, irrelevant followups to system ask-moves are regarded as implicit issue-rejections.
The coverage of user feedback behaviour is thus more limited than the coverage for system
behaviour. The main motivation for this is that system utterances are less likely to be problematic

for the user to interpret than vice versa.

Still, the available coverage allows some useful feedback-phrases, including negative perception
feedback which is useful if the output from the system’s speech synthesizer is of poor quality.

62

Ideally, this would provide a slight reformulation by the system, but since generation is not a
main topic here, this has not been implemented.

Understanding-level feedback has not been included but may be useful in cases where the user
hears the system but cannot understand the meaning of the words uttered by the system. In this
case, a reformulation by the system may again be useful.

2.6.6 Grounding of user utterances in GoD1S2

In this section we show how optimistic and pessimistic grounding of user utterances has been
integrated in GoD1S2. First we show how grounding strategies are dynamically selected de-
pending on recognition score, in the case where a move has been fully understood and accepted.
Next, we show how to deal with system responses to interrogative feedback associated with pes-
simistic grounding. Finally, we show how the system deals with failure to perceive, understand,
and integrate user utterances by giving negative feedback on the appropriate action level.

Dynamic selection of grounding strategies for user moves

For user utterances, GoODI1S2 uses optimistic or pessimistic grounding strategies based on the
recognition score and the dialogue move type. This makes the corresponding integration rules
more complex than the ones in GoDI1S1. For user “core” moves (in GoD1S2, ask and answer),
the integration strategy depends on the recognition score for the utterance in question. This
choice is determined by two recognition thresholds, T, and T5, where T; > Ts. If the recognition
score is higher than T5, an optimistic strategy is chosen; positive acceptance feedback (“OK”) is
selected, and if the score is lower than T positive understanding feedback (“To Paris.”) is also
selected.

If the score is lower than T5, the move is not integrated and in the selection phase a pessimistic
strategy involving interrogative understanding feedback (e.g. “To Paris, is that correct?”) is
selected (see Section 2.6.6).

Of course, the idea of using recognition score for determining whether and how to confirm user
utterances is not new (see e.g. San-Segundo et al., 2001), and more sophisticated decision pro-
cedures are certainly possible. We use it here to show how GoDI1S2 enables flexible choice both
of feedback type and of grounding update strategy.

In addition to being checked for relevance, contentful moves are checked for integratability (ac-

ceptability) and if these conditions are not fulfilled the move will not be integrated; instead, it
will give rise to negative acceptance feedback as explained in Section 2.6.6.

63

Integration of user ask move The integration rule for user ask move implementing the opti-
mistic grounding strategy is shown in (RULE 2.1).

(RULE 2.1) RULE: integrateUsrAsk

CLASS: integrate
$/SHARED/LU/SPEAK ER==USI

fst($/PRIVATE/NIM, ask(Q))
PRE: { $SCORE=Score
Score > 0.7
$DOMAIN :: plan(Q, _Plan)
(1 pop(/PRIVATE/NIM)
2 push(/PRIVATE/AGENDA, icm:acc*pos)
3 add(/SHARED/LU/MOVES, ask(Q))
4 if_do(Score < 0.9,
EFF: < push(/PRIVATE/AGENDA, icm:und*pos:usr*issue(Q®)))
5 if_do(in($/SHARED/QUD, Q) and not fst($/SHARED/QUD, @),
push(/PRIVATE/AGENDA, icm:reraise:Q))
6 push(/SHARED/QUD, Q)
7 push(/PRIVATE/AGENDA, respond(Q®))

The first two conditions pick out a user ask move on NiM. The third and fourth conditions
check the recognition score of the utterance and if it is higher than 0.7 (T3), the rule proceeds to
check for acceptability. If the score is too low, the move should not be optimistically integrated;
instead, a pessimistic grounding strategy should be applied and interrogative feedback selected
(see below).

The fifth condition checks for acceptability, i.e. that the system is able to deal with this question,
i.e. that there is a corresponding plan in the domain resource. If not, the integration rule will not
trigger and the ask move will remain on NIM until the selection phase, where it will give rise to
an issue rejection (see Section 2.6.6).

The first update pops the integrated move off NIM. In update 2, positive integration feedback
is added to the agenda, to indicate that the system can integrate the ask-move. Update 3 adds
the move to /SHARED/LU/MOVES, thereby reflecting the optimistic grounding assumption on the
understanding level. In update 4, positive understanding feedback is selected unless the score is
higher than 0.9 (T}).

Update 5 checks if this question is already on QUD:; if so, the system selects sequencing feedback
to show that it has understood that the user is reraising an open issue. (If the question is already
on top of QUD, however, it is not seen as a case of reraising.) See Section 2.6.9 for more cases
of reraising. Update 6 pushes @ on QUD; note that if Q) was already on QUD but not topmost,
pushing it will be equivalent to raising it to the topmost position. This is a property of the

64

OpenStack datatype (see SIRIDUS (2002)).

Update 7 pushes the action to respond to @ on the agenda. This can be regarded as a shortcut for
reasoning about obligations and intentions; when accepting a user question, thus accepting the
obligation to try to respond to it, the system will automatically intend to respond to it.

Default ICM move selection rule The role of the ICM move selection rules is to add moves to
be generated to the NEXT_MOVES TIS variable based on the contents of the agenda. ICM which
is added to the agenda by the update module will be moved to NEXT_MOVES by the default ICM
selection rule (RULE 2.2).

(RULE 2.2) RULE: selectlcmOther

CLASS; select.icm .
in($/PRIVATE/AGENDA, icm:A)

not in($NEXT_MOVES, B) and B=ask(C)
ErE- push(NEXT_MOVES, icm:A)
" | del(/PRIVATE/AGENDA, icm:A)

PRE:

Dialogue example: integrating user ask-move The dialogue below shows how a user ask
move with a score of 0.76 is successfully integrated, and positive understanding and acceptance
feedback is produced.

(DIALOGUE 2.3)
S>Wel cone to the travel agency!
U>price information pl ease [0.76]

getLatestMoves
(set(/PRIVATE/NIM, oqueue([ask(?A.price(A))])
set(/SHARED/LU/SPEAKER, USI)
clear(/SHARED/LU/MOVES)
| Set(/sHARED/PM, set([greet]))
integrateUsrAsk
(pop(/PRIVATE/NIM)
push(/PRIVATE/AGENDA, icm:acc*pos)
add(/sHARED/LU/MOVES, ask(?A.price(4)))
if _do(0.76 < 0.9, push(/PRIVATE/AGENDA, icm:und*pos:usr*issue(? A.price(4))))
if_do(in($/SHARED/QUD, ?4.price(A4)) and not fst($/SHARED/QUD, ?4.price(4)),
push(/PRIVATE/AGENDA, icm:reraise:? A.price(4)))
push(/SHARED/QUD, ?A.price(A4))
push(/PRIVATE/AGENDA, respond(? A.price(4)))

65

findPlan

icm:acc*pos W
_ AGENDA = << icm:und*pos:usr*issue(? A.price(4)) >>
PRIVATE = :
icm:loadplan
| NIM = {0
com = {}
Qub = (?A.price(4))
SHARED = Pm = { greet }
LU SPEAKER = uSr
| | mMoves = { ask(?A.price(4)) } J
backupShared

selectFromPlan

selectlicmOther
push(NEXT_MOVES, icm:acc*pos)

del(/PRIVATE/AGENDA, icm:acc*pos)

selecticmOther
push(NEXT_MOVES, icm:und*pos:usr*issue(? A.price(4)))
del(/PRIVATE/AGENDA, icm:und*pos:usr*issue(? A.price(4)))
selectlcmOther

selectAsk

S>Okay. You want to know about price. Lets see. How do you
want to travel ?

Interrogative understanding feedback for user ask move If a user ask move cannot be
assumed to be understood because of a low recognition score, interrogative feedback on the
understanding level is selected by (RULE 2.3).

(RULE 2.3) RULE: selecticmUndIntAsk

CLASS: select_icm
$/SHARED/LU/SPEAK ER==USI

PRE: { fst($/PRIVATE/NIM, ask(QR))
$SCORE < 0.7

ErE- pop(/PRIVATE/NIM)
" | push(NEXT_MOVES, icm:und*int:usr*issue(Q®))

The conditions are straightforward. The first update removes the move from Nim, even though
it has not been integrated. An alternative approach would be to keep this move on NIM and
explicitly represent the grounding as concerning this move. However, this would require labelling
all moves with unique move IDs; instead, we follow the general philosophy of GoDIS of trying
to keep our representation as simple as possible as long as it works. The interrogative feedback
selected in the second update will, in a sense, take over the function of the original move; if the

66

feedback is answered positively, the end result will be the same as if the ask move had been
integrated immediately (see Section 2.6.6 for further explanation).

Integration of user answer move The integration rule for user answer moves, shown in
(RULE 2.4) is similar to that for ask moves, except that answers are checked for relevance as
well as reliability and acceptability.

(RULE 2.4) RULE: integrateUsrAnswer
CLASS: integrate

(1 fst($/PRIVATE/NIM, answer(A))

2 $/SHARED/LU/SPEAKER==UST

3! $SCORE=Score

4 Score > 0.7

5 fst($/SHARED/QUD, Q)

6 $DOMAIN :: relevant(4, Q)

7 $DOMAIN :: combine(Q, A, P)
| 8 $DATABASE :: validDBparameter(P) or P=not(X)
(1 pop(/PRIVATE/NIM)
2 add(/SsHARED/LU/MOVES, answer(P))
3 push(/PRIVATE/AGENDA, icm:acc*pos)
4 if do(Score < 0.9 and A # yes and A # no,

push(/PRIVATE/AGENDA, icm:und*pos:usr*P))

5 add(/sHARED/cowm, P)

PRE: <

EFF. <

\

Conditions 1-4 are similar to those for the integrateUsrAsk rule. The relevance of the content
of the answer to a question on QUD is checked in condition 6.

The acceptability condition in condition 8 makes sure that the propositional content resulting

from combining the question topmost on QUD with the content of the answer-move is either

e avalid database parameter, or

e a negated proposition
Negated propositions can always be integrated (as long as they are relevant); for example, it is
okay to say that you do not want to go to Paris, even if Paris is not in the database.

Updates 1-3 again correspond closely to those in integrateUsrAsk. Update 4 checks if the score
was lower than or equal to 0.9; if so, a positive understanding feedback move is selected. If the

67

score is higher than 0.9 or if the answer is yes or no, no understanding feedback is produced.
The special special status of “yes” and “no” builds on the assumption that these are easily rec-
ognized; if this is not the case, their special status should be removed. Finally, update 5 adds

the proposition resulting from combining the question on QUD with the content of the answer
move to the shared commitments.

Interrogative understanding feedback for user ask move If a user ask move receives a low
score (lower than T5, which is here set to 0.7) and the question raised by the move is acceptable
to the system, interrogative understanding feedback is selected by (RULE 2.5). (If the question is
not acceptable it will instead be rejected; see Section 2.6.6).

(RULE 2.5) RULE: selecticmUndIntAnswer

CLASS: select_icm
(fst($/PRIVATE/NIM, answer(A))

$/SHARED/LU/SPEAKER==USI
$SCORE < 0.7
fst($/SHARED/QUD, B)
$DomAIN :: relevant(A, B)

| $DOMAIN :: combine(B, A4, C)

- pop(/PRIVATE/NIM)
"1 push(NEXT_MOVES, icm:und*int:usr*C)

PRE: <

The conditions check that there is a user answer move on NIM whose content is relevant to and
combines with a question on QUD, and that the recognition score was less than or equal to 0.7. If

these conditions are true, the move is popped off NIM and interrogative understanding feedback
is selected.

Integrating and responding to interrogative feedback

Integrating interrogative understanding feedback As explained in Section 2.6.3, Interroga-
tive feedback raises understanding questions. This is reflected in (RULE 2.6).

(RULE 2.6) RULE: integrateUndIntICM
CLASS: integrate
PRE: { fst($/PRIVATE/NIM, icm:und*int:DP*C)
pop(/PRIVATE/NIM)
EFF: ¢ add(/SHARED/LU/MOVES, icm:und*int: D P*C)
push(/SHARED/QUD, und(DP*C))

68

The condition simply checks that there is an icm:und*int: DP*C move on NIM, which is then
popped off by the first update and added to /SHARED/LU/MOVES by the second update. The third
update pushes the understanding question ?und(DP*C) on QUD.

Integrating positive answer to understanding-question When the system raises an under-
standing question (e.g. by saying “To Paris, is that correct?”), the user can either say “yes” or
“no”. (The case where the user does not give a relevant answer to the interrogative feedback is
treated in Section 2.6.8). In GoOD1S2, we do not represent propositions related to the understand-
ing of utterances in the same way as other propositions (which are stored in /SHARED/COM).
Therefore, special rules are needed for dealing with answers to understanding-questions.

The rule for integrating a negative answer to an understanding-question is shown in (RULE 2.7).

(RULE 2.7) RULE: integrateNeglcmAnswer
CLASS:. integrate
ore: { fst($/PRIVATE/NIM, answer(no))
"] fst($/SHARED/QUD, und(DP*C))
pop(/PRIVATE/NIM)
add(/sHARED/LU/MOVES, answer(und(DP*C)))
pop(/SHARED/QUD)
push(/PRIVATE/AGENDA, icm:und*pos: D P*not(C))

EFF.

The conditions check that there’s an answer(yes) move on NIM and an understanding-question
on QUD. The first three updates establish the move as shared and pop the understanding-question
off QUD. Finally, positive feedback is selected to indicate that the system has understood that
the assumed interpretation C was incorrect.

Integrating positive answer to understanding question The rule for integrating a positive
answer to an understanding-question is shown in (RULE 2.8).

69

(RULE 2.8) RULE: integratePoslcmAnswer
CLASS: integrate

PRE: { fst($/PRIVATE/NIM, answer(yes))

"1 fst($/sHARED/QUD, und(DP*Content))

[pop(/PRIVATE/NIM)
add(/sHARED/LU/MOVES, answer(und(DP*Content)))
pop(/SHARED/QUD)

EFF: < if_then_else(Content=issue(Q), |

push(/SHARED/QUD, @)

push(/PRIVATE/AGENDA, respond(Q)) |,
| add(/sHARED/cOM, Content))

The conditions and the first three updates are similar to those in the integrateNeglcmAnswer
rule. The final (conditionalized) update integrates the content C. If the “original” move (the
move which caused the interrogative feedback to be produced in the first place) was ask, C will
be a proposition issue(Q). Consequently, integrating this propositions has the same effects as
integrating an ask-move: pushing the question @ on QUD and pushing the action respond(Q)
on the agenda. If the proposition is not of this type, it is simply added to /SHARED/COM.

Dialogue example: positive and negative response to interrogative feedback In the follow-
ing dialogue, the system produces interrogative understanding feedback for two user utterances,
one containing an ask move and the other containing an answer move. The first interrogative
feedback is answered positively and the second negatively.

(DIALOGUE 2.4)

U>price information pl ease [0.65]

getLatestMoves
[[AGENDA = {{)) 1
PRIVATE = PLAN =)
| NIM = ((ask(?A.price(4))))
[com = {}
SHARED = Qo = _
o SPEAKER = USI]
MOVES = {}]
backupShared

selecticmUndIntAsk
pop(/PRIVATE/NIM)

push(/PRIVATE/AGENDA, icm:und*int:usr*issue(? A.price(4)))
selecticmOther

70

push(NEXT_-MOVES, icm:und*int:usr*issue(? A.price(4)))
del(/PRIVATE/AGENDA, icm:und*int:usr*issue(? A.price(4)))

S>You want to know about price , is that correct?

getLatestMoves

integrateUndIntICM

add(/sHARED/LU/MOVES, icm:und*int:usr*issue(? A.price(4)))

{ POP(/PRIVATE/NIM)

push(/SHARED/QUD, und(usr*issue(? A.price(4))))

PRIVATE

SHARED

U>yes

getLatestMoves

AGENDA
PLAN
NIM
CcoM
QUD

LU

integratePoslcmAnswer
(

\

findPlan

PRIVATE

SHARED

backupShared
selectFromPlan
selectlcmOther

pop(/PRIVATE/NIM)
add(/sHARED/LU/MOVES, answer(und(usr*issue(? A.price(4)))))
pop(/SHARED/QUD)
¢ if_then_else(issue(?A.price(A))=issue(B), |
push(/SHARED/QUD, B)
push(/PRIVATE/AGENDA, respond(B)) |,
add(/sHARED/coM, issue(? A.price(A4))))

AGENDA

PLAN

NIM
COoM
QUD

LU

—_—~r

}

und(usr*issue(? A.price(A4))) >

SPEAKER = Sys

Moves = { icmund*int:usrtissue(?A.price(4)) } J

((icm:loadplan))
findout(? A.how(A))
findout(? B.dest_city(B))

< findout(?C.dept_city(C)) >

findout(?D.month(D))
findout(? E.dept_day(E))
findout(?F'.class(F))
consultDB(?G.price(G))

= {0 1
{}
(?H .price(H))
SPEAKER = UuSr
[mMoves = { answer(und(usrtissue(?H.price(H)))) }

71

selectAsk
S>lLets see. How do you want to travel?

getLatestMoves
integrateOtherICM
integrateSysAsk

U> by pl ane [0.56] (user actually said “by train’)

getLatestMoves
backupShared

selecticmUndIntAnswer
pop(/PRIVATE/NIM)

push(/PRIVATE/AGENDA, icm:und*int:usr*how(plane))
selecticmOther

S>by flight , is that correct?

getLatestMoves
integrateUndIntICM

pop(/PRIVATE/NIM)
add(/sHARED/LU/MOVES, icm:und*int:usr*how(plane))

push(/SHARED/QUD, und(usr*how(plane)))

AGENDA = ({))
findout(? A.how(A))
findout(? B.dest_city(B))
findout(?C.dept_city(C))
PRIVATE = PLAN = <findout(?D.month(D)) >
findout(? E.dept_day(E))
findout(? F'.class(F))
consultDB(?G.price(G))
| Nim = ()]
com = {}
und(usr*how(plane))
SHARED = QUD = <?H.h0W(H) >
?I.price(X)
LU SPEAKER = SYS
i i Moves = { icmund*intusr*how(plane) } J
U>no
getLatestMoves

integrateNeglcmAnswer

72

(pop(/PRIVATE/NIM)

add(/sHARED/LU/MOVES, answer(und(usr*how(plane))))
pop(/SHARED/QUD)
[Push(/PRIVATE/AGENDA, icm:und*pos:usrnot(how(plane)))

[AGENDA = ({ icm:und*pos:usr*not(how(plane))))]
findout(? A.how(A))
findout(?B.dest_city(B))
findout(?C.dept_city(C))

PRIVATE = PLAN = <findout(?D.month(D)) >
findout(? E.dept_day(E))
findout(?F'.class(F))
consultDB(?G.price(G))

[Nim = ()

com = {}
o = <?H.how(H)>
SHARED = ?1 .price(I)
SPEAKER = usr
LU [Moves = { answer(und(usr*how(plane))) }] J
backupShared

reraiselssue

selecticmOther
push(NEXT_MOVES, icm:und*pos:usr*not(how(plane)))

del(/PRIVATE/AGENDA, icm:und*pos:usr*not(how(plane)))
selectlcmOther

selectAsk

S>not by flight. So, How do you want to travel?

Negative contact and perception level feedback

What happens if no system utterance is detected, or if the speech recognizer fails? Most speech
recognizers can tell the difference between not hearing anything at all, and hearing something
but not being able to come up with any hypothesis regarding what was said. We will use this
distinction to enable GoDIS to produce feedback on the contact and perception levels.

If GoDIS does not receive any input within a certain time-frame (specified by the TIMEOUT
TIS variable), it will produce feedback indicating that nothing was perceived, e.g. “I didn’t hear
anything from you.”. We classify this as negative feedback on the contact level. It could perhaps
be argued that the distinction between contact and perception level feedback is not very sharp,
and that this kind of feedback actually concerns the perception level. However, it is possible that
the reason that nothing was registered by the recognizer was a failure to establish a channel of
communication from the user to the system, e.g. if a microphone is broken or not plugged in

properly.

73

If something is detected by the speech recognizer but it was not able to come up with a good
enough guess about what was said, the system will produce negative feedback on the perception
level, e.g. “I didn’t hear what you said.”.

We have configured the input module to set the INPUT variable to “TIMED _OUT" if nothing is
detected, and to ‘FAIL if something unrecognizable was detected.

Negative system contact feedback If the speech recognizer does not get any input within a
certain time frame (specified by the TIMEOUT TIS variable), the INPUT variable will be set to
‘TIMED_OUT by the input module. The rule for selection of negative contact feedback is shown
in (RULE 2.9).

(RULE 2.9) RULE: selecticmConNeg

CLASS: select.icm
$INPUT= ‘TIMED_OUT’

PRE: < is_empty($NEXT_MOVES)
is_empty($/PRIVATE/AGENDA)

eFr: { push(NEXT_MOVES, icm:con*neg)

Unless the system has something else to do, this will trigger negative contact ICM by the system,
realised e.g. as “I didn’t hear anything from you.”. The purpose of this is primarily to indicate
to the user that nothing was heard, but perhaps also to elicit some response from the user to
show that she is still there. Admittedly, this is a rather undeveloped aspect of ICM in the current
GoDIS implementation, and alternative strategies could be explored. For example, the system
could increase the timeout span successively instead of repeating negative contact ICM every five
seconds. Other formulations with more focus on the eliciting function could also be considered,
e.g. “Are you there?” or simply “Hello?”.

The second and third condition check that nothing is on the agenda or in NEXT_MOVES. The
motivation for this is that there is no reason to address contact explicitly in this case, since any
utterance from the system implicitly tries to establish contact.

Default ICM integration rule Since contact is not explicitly represented in the information
state proper, integration of negative system contact ICM moves have no specific effect on the in-
formation state, and are therefore integrated by the default ICM integration rule shown in (RULE
2.10). Unless an ICM move has a specific integration rule defined for it, it will be integrated by
this rule.

74

(RULE 2.10) RULE: integrateOtherlCM
CLASS: integrate
PRE: { fSt($/PRIVATE/NIM, icm:A)

- pop(/PRIVATE/NIM)
" | add(/SHARED/LU/MOVES, icm:A)

The condition and updates in this rule are straightforward.

Negative system perception feedback If the speech recognizer gets some input from the user
but is not able to reliably figure out what was said (the recognition score may be too low), the
INPUT variable gets set to ‘FAIL. This will trigger negative perception ICM, e.g. “I didn’t hear
what you said”.

(RULE 2.11) RULE: selecticmPerNeg

CLASS; select.icm
[$INPUT='FAIL

PRE: . .
not in(BNEXT_MOVES, icm:per*neg)
eFr: { push(NEXT_MOVES, icm:perneg)

The purpose of the second condition is to prevent selecting negative perception feedback more
than once in the selection phase. As with negative system contact feedback, negative system
perception feedback is integrated by the integrateOtherlICM rule.

Negative understanding level feedback

Negative feedback can concern either of the two sublevels of the understanding level: semantic
and pragmatic understanding.

Negative system semantic understanding feedback If some input is recognized by the recog-
nition module, the interpretation module will try to find an interpretation of the input. If this fails,
the LATEST_MOVES gets set to failed which triggers selection of negative semantic understand-
ing feedback (e.g. “I don’t understand”). In addition, positive perception feedback (e.g. “I heard
‘perish’ ”) is produced to indicate to the user what the system thought she said.

This will only occur if the recognition lexicon covers sentences not covered by the interpretation
lexicon.

75

(RULE 2.12) RULE: selecticmSemNeg

CLASS: select_icm _
SLATEST_MoVES=failed

PRE: { $INPUT=String
not in($NEXT_MOVES, icm:sem*neg)
cer- { push(NEXT_MOVES, icm:per*pos:String)
" | push(NEXT_MOVES, icm:sem*neg)

The purpose of the third condition is to prevent negative semantic understanding feedback from
being selected more than one time. Since only one string is recognized per turn, there is never
any reason to apply the rule more than once; and if anything at all can be interpreted, the rule will
not trigger at all even if some material was not used in interpretation. In a system with a wide-
coverage recognizer and a more sophisticated interpretation module, one may consider producing
negative semantic understanding feedback for any material which cannot be interpreted (e.g. “I
understand that you want to go to Paris, but | don’t understand what you mean by ‘Londres’.”).

The first update in this rule selects positive perception ICM to show the user what the system
heard. The second update selects negative semantic understanding ICM.

Negative system pragmatic understanding feedback The system will try to integrate the
moves according to the rules above in Section 2.6.7. If this fails (if there are still moves which
have not been integrated), the rule in (RULE 2.13) will be triggered and a icm:und*neg-move will
be selected by the system. However, if the reason that the move was not integrated is that it had
a low score or was not acceptable to the system, interrogative understanding feedback (Section
2.6.6) or negative acceptance feedback (Section 2.6.6), respectively, will instead be selected and
the move will be popped off NIm before the rule in (RULE 2.13) is tried.

In GoDIS, only ask-moves can be irrelevant. Other moves, including ask, do not have any
relevance requirements. This means that answer moves are the only moves that can fail to be
understood on the pragmatic level, given that they have been understood on the semantic level.
Also, for an utterance to be completely irrelevant, no part of it must have been integrated. For
these reasons, the rule in (RULE 2.13) will trigger only if no move in the latest utterance was
integrated, and the utterance was interpreted as containing at least one answer-move.

76

(RULE 2.13) RULE: selecticmUndNeg

CLASS: select_icm _
(not in(NEXT_MOVES, icm:und*neg)

iN(BLATEST_MOVES, answer(A))
forall(BLATEST_MOVES/ELEM=M owve,
$/PRIVATE/NIM/ELEM=M ove)
forall(SLATEST_MOVES/ELEM=answer(A’),
not fst($/SHARED/QUD, D) and $DOMAIN :: relevant(A’, Q))
forall_do($LATEST_MOVES/ELEM=M owe,
EFF: push(NEXT_MOVES, icm:sem*pos: M ove))
push(NEXT_MOVES, icm:und*neg)

PRE: <

The first rule checks that negative pragmatic understanding feedback has not already been se-
lected. The second condition checks that the latest utterance contained an answer move, and
the third checks that none of the moves performed in the latest utterance has been integrated; all
moves in LATEST_MOVES are still on NIM. Finally, the fourth condition checks that no answer is
relevant to any question on QUD.

The first update selects positive feedback on the semantic understanding level for each move
performed in the latest utterance, to show that the utterance was at least understood to some
extent. The second update selects negative feedback and pushes it on NEXT_MOVES.

The system is thus able to make a distinction between utterances it cannot interpret (and thus not
ground), and utterances that it can interpret and ground but not integrate. The rule in (15) triggers
when integration fails because the system cannot see the relevance of the user utterance in the
current dialogue context. Negative pragmatic understanding feedback is currently realized as “I
don’t quite understand”; the idea is to indicate that the utterance was almost fully understood,
but not quite. Again, it can be argued what the best realization is.

Dialogue example: negative system contact, perception, and understanding feedback In
this dialogue, we see examples of negative system feedback on the contact, perception, and
understanding (both semantic and pragmatic) levels. (Since this dialogue uses the text-based
input module, we have simulated timeout and recognition failure.)

(DIALOGUE 2.5)
S>Wel cone to the travel agency!
U>' Tl MED_OUT’

77

getLatestMoves
integrateNoMove

{ pop(/PRIVATE/NIM)
selecticmConNeg

{ push(NEXT_MOVES, icm:con*neg)

S>1 didnt hear anything fromyou.

getLatestMoves
integrateOtherICM
{ pop(/PRIVATE/NIM)

U>"'FAI L’

backupShared
selecticmPerNeg
{ push(NEXT_MOVES, icm:per*neg)

S>Sorry, | didnt hear what you said.
getLatestMoves

integrateOtherICM
{ pop(/PRIVATE/NIM)

U>j f dbhaj hdgar bl edf dasd

backupShared
selecticmSemNeg

S>1 heard you say jfdbhaj hdgarbl edf dasd. Sorry, | dont understand.

getLatestMoves

integrateOtherICM
{ Ppop(/PRIVATE/NIM)
integrateOtherICM
{ pop(/PRIVATE/NIM)

U>paris
getLatestMoves

backupShared
selecticmUndNeg

78

forall _do($/SHARED/LU/MOVES/ELEM=A, push(NEXT_MOVES, icm:sem*pos: A))
push(NEXT_-MOVES, icm:und*neq)
forall_do(in($/sHARED/LU/MOVES, E) and E=answer(C") and $LEXICON :: yn_answer(C) and
in($/PRIVATE/NIM, E),
del(/PRIVATE/NIM, E))

S>paris. | dont quite understand.

getLatestMoves

integrateOtherICM
{ pop(/PRIVATE/NIM)
integrateOtherICM
{ pop(/PRIVATE/NIM)

Negative reaction level feedback

To be able to distinguish relevant but non-integratable utterances from utterances which are both
relevant and integratable, a dialogue system in general needs to be able to distinguish between
relevance and integratability (acceptability), i.e. it needs to understand the relevance of utterances
that it cannot integrate.

System proposition-rejection In addition to issue-rejection, proposition-rejection is also ar-
guably relevant to a dialogue system. A case in point is when the user supplies information
which results in an invalid database query, i.e. a query which would yield no results. An exam-
ple is given in (DIALOGUE 2.6) (understanding-feedback has been removed for readability).

(DIALOGUE 2.6)

U(l)>Price informati on pl ease

S(1)> OK. Where do you want to travel ?

U(2)>to Paris

S(2)> OK. What city you want to travel fronf

U@3)>GCsl o

S(3)>Cslo. Sorry, there are no flights matching your
speci fication.

However, this case is a bit more problematic - is S(3) really a rejection of U(3), or should it be

regarded as a negative answer to the user’s query in U(1)? We believe it makes more sense to
do the latter. On this view, the issue of price will be regarded as (negatively) resolved after S(3).

79

(Note that we are here assuming that Oslo is in fact a valid departure city, but there happen to be
no flights from Oslo to Paris in the database.)

A variant of the dialogue in (DIALOGUE 2.6) that is perhaps a better case of rejection is where
the user supplies a destination which is not available in the database. In this case, it seems to
make sense to say that it is indeed the utterance containing the information about the destination
that is rejected.

(DIALOGUE 2.7)

U(l)>Price information pl ease

S(1)> OK. Where do you want to travel ?

U(2)>to Paris

S(2)> OK. What city you want to travel fron?

U(3)> Kual a Lunpur

S(3)>Sorry, Kuala Lunpur is not in the database. So, What city
do you want to travel fronP%

In this case, the issue of price is still unresolved, as is the issue of destination city. To handle
a dialogue like that in (DIALOGUE 2.7), a system again needs to be able to recognize relevant
information that it cannot deal with, and distinguish it from such information that it can deal with.
One way of doing this is to encode relevant information in the domain knowledge resource that
is not necessarily in the database. If a user utterance that contains a relevant answer or assertion
is perceived and understood, the system should perform a database search to check if it is able to
deal with that information; if not, the user’s utterance should be rejected.

Of course, it is a well-known problem that bigger vocabularies make speech recognition harder,
and consequently there’s a tradeoff between recognizing and dealing correctly with non-acceptable
information, and getting the acceptable information right. Possibly, one could use collected di-
alogues in a domain to decide how much non-acceptable information the system should be able
to recognize and understand.

In GoDIS, we have implemented the ability to reject user answers by checking whether they
provide valid database parameters. This requires an additional database resource condition
“validDBparameter(P)” which is true if P is a valid parameter in the database. For example,
if a travel agency database contains flights within Europe, any destination outside Europe is an
invalid database parameter and should be rejected by the system.

14Optionally, one might want a system to be more helpful and offer a suitable alternative destination.

80

(RULE 2.14) RULE: rejectProp

CLASS: select_action
(in($/PRIVATE/NIM, answer(A))

$/SHARED/LU/SPEAK ER=USI
fst($/SHARED/QUD, Q)

$DOMAIN :: relevant(4, Q)

$DOMAIN :: combine(Q, A, P)

not SDATABASE :: validDBparameter(P)
del(/PRIVATE/NIM, answer(A))

EFF: { push(/PRIVATE/AGENDA, icm:und*pos:usr*P)
push(/PRIVATE/AGENDA, icm:acc*neg:P)

PRE: <

The first five conditions are identical to those for the rule for integrating user answers, integra-
teUsrAnswer (Section 2.6.6). The final condition checks that the proposition P, resulting from
combining a question on QUD with the content of the answer move, is not a valid database
parameter. The updates remove the move from NIM and selects positive understanding feedback
to show what the system understood, and negative acceptance feedback.

Of course, it is not optimally efficient that the same sequence of conditions is checked by several
different rules; an alternative approach would be to let one rule determine e.g. how an answer
move is relevant, combine it with a question on QUD, and store the result in a datastructure
containing pragmatically interpreted material. This datastructure could then be inspected by both
integration and rejection rules. (See also 9.3.1.)

Dialogue example: system proposition rejection In the following dialogue, we illustrate sys-
tem rejection of the proposition that the means of transport to search for will be train. A moti-
vation is also given by the system, i.e. that “train” is not available as a means of transport in the
database.

(DIALOGUE 2.8)

S>Okay. | need sone information. How do you want to travel ?
getLatestMoves

integrateOtherICM

integrateOtherICM

integrateSysAsk

U>train pl ease

81

getLatestMoves
backupShared

rejectProp
del(/PRIVATE/NIM, answer(train))
push(/PRIVATE/AGENDA, icm:und*pos:usr*how(train))
push(/PRIVATE/AGENDA, icm:acc*neg:how(train))

selecticmOther
push(NEXT_MOVES, icm:und*pos:usrhow(train))

del(/PRIVATE/AGENDA, icm:und*pos:usr*how(train))

selectlcmOther
push(NEXT_MOVES, icm:acc*neg:how(train))

del(/PRIVATE/AGENDA, icm:acc*neg:how(train))

S>by train. Sorry, by train is not in the database.

getLatestMoves
integrateOtherICM
integrateOtherICM

System issue-rejection For example, the system might know some questions which are rele-
vant in a certain activity, but not be able to answer them. This is not usually the case with existing
dialogue systems. For example, the Swedish railway information system (based on the Philips
dialog system (Aust et al., 1994) cannot answer questions about the availability of a cafeteria on
a train. If this question is asked, the system will try to interpret it as an answer to something it
just asked about (as illustrated in the made-up dialogue (16)). But one could imagine a system
that would have a store of potentially relevant questions which it cannot handle, enabling it to
respond to such questions in a more appropriate way, e.g. by saying “Sorry, | cannot answer
that question”. This would constitute a rejection (an issue-rejection, to be precise) of a question
whose meaning has been understood. An (made-up) example is shown in (17).

(16) U : Is there a cafeteria on the train?
S : You want to travel to Siberia, is that correct?

(17) U : Is there a cafeteria on the train?
S : Sorry, | cannot answer questions about cafeteria availabil-

ity.

Issue rejection has been implemented in GoDI1S2 for the travel agency domain; in the travel
agency domain, the system will recognize and understand, but reject, questions about connecting
flights. A possible extension of this would be to make the system more helpful and make it
explain why it cannot answer the question; this has not yet been done in GoDIS.

82

In case the system has interpreted a user utterance as an ask-move with content g, but the system
does not have a plan for dealing with g, the system must reject g and indicate this to the user using
appropriate feedback. This rule allows the system to respond intelligently to user questions even
if it cannot answer them (given that they can be recognized and interpreted).

(RULE 2.15) RULE: rejectlssue

CLASS: select_action
in($/PRIVATE/NIM, ask(Q))

PRE: { $/SHARED/LU/SPEAKER=USI
not SDOMAIN :: plan(Q, _Plan)
del(/PRIVATE/NIM, ask(Q))

EFF: ¢ push(/PRIVATE/AGENDA, icm:und*pos:usr*issue(Q))
push(/PRIVATE/AGENDA, icm:acc*neg:issue(Q))

The rule is similar to the rejectProp rule. The third condition checks that there is no plan for
dealing with the question Q.

Dialogue example: system issue rejection In the following dialogue, the user’s request for
information about connecting flights is rejected on the grounds that the system does not know
how to address that issue.

(DIALOGUE 2.9)
S> Ckay. The price is 123 crowns.
U>what about connecting flights

getLatestMoves

backupShared

rejectlssue
del(/PRIVATE/NIM, ask(?A.con_flight(A4)))
push(/PRIVATE/AGENDA,)
push(/PRIVATE/AGENDA, icm:acc*neg:issue(? A.con_flight(A)))

selectlcmOther
push(NEXT_MOVES, icm:und*pos:usr*issue(? A.con _flight(A4)))

del(/PRIVATE/AGENDA, icm:und*pos:usr*issue(? A.con_flight(A4)))

selecticmOther
push(NEXT_-MOVES, icm:acc*neg:issue(? A.con_flight(A4)))

del(/PRIVATE/AGENDA, icm:acc*neg:issue(? A.con _flight(A4)))

S> You asked about connecting flights. Sorry, | cannot answer
questi ons about connecting flights.

83

getLatestMoves
integrateOtherICM
integrateOtherICM

2.6.7 Grounding of system utterances in GoDIS2

In this section, we show how a cautiously optimistic grounding strategy for system utterances has
been implemented in GoODI1S2. We first present basic update rules reflecting the cautious strategy.
We then present integration rules for the “core” system dialogue moves (ask and answer), and
describe the rules for integrating user feedback to system moves.

Enabling cautious updates

GoDIS2 uses a mix of various grounding strategies. For system utterances, a cautiously opti-
mistic strategy is used.

Moving latest moves to NIM The GoDIS2 version of the update rule getLatestMoves is
shown in (RULE 2.16).

(RULE 2.16) RULE: getLatestMoves

CLASS: grounding

$LATEST_MOVES=Moves

PRE: { SLATEST_SPEAKER=DP
$/SHARED/LU/MOVES=PrevMoves
set(/PRIVATE/NIM, Mowves)
set(/SHARED/LU/SPEAKER, DP)
clear(/SHARED/LU/MOVES)
set(/SHARED/PM, PrevMoves)

EFF.

The rule loads information regarding the latest utterance performed into NIM and copies the pre-
viously grounded moves (in /SHARED/LU/MOVES) to the /SHARED/PM field. Note that this rule
has changed significantly compared to GoDI1S1; no optimistic assumption about understanding
of the latest utterance is made here. Instead of putting the latest moves in /SHARED/LU/MOVES,
which would be to assume that they have been mutually understood, GoDIS2 clears
/SHARED/LU/MOVES so that moves can be added when they are actually integrated; only then
are they assumed to be understood.

84

Saving previous state before integration Before selecting, producing, and integrating a new
system utterance, the rule in (RULE 2.17) copies relevant parts of the IS to the TMP field. This
makes it possible to backtrack to a previous state, should the optimistic grounding assumptions
concerning a system move turn out to be mistaken. This means that any optimistic updates
associated with integration of system moves are now cautiously optimistic.

(RULE 2.17) RULE: backupShared

CLASS:. none

PRE: {
/PRIVATE/TMP/QUD := $/SHARED/QUD
/PRIVATE/TMP/COM := $/SHARED/COM
/PRIVATE/TMP/AGENDA := $/PRIVATE/AGENDA
/PRIVATE/TMP/PLAN := $/PRIVATE/PLAN

EFF:

There are no conditions on this rule. It is executed at the start of the selection algorithm described
in Section 2.7, and is thus only called before system utterances.

Cautiously optimistic integration of system moves

For system ask and answer moves, the integration rules are similar to those in GoDIS1; how-
ever, rather than picking out moves from /SHARED/LU/MOVES, GODIS2 picks moves from /PRI-
VATE/NIM and adds them to /SHARED/LU/MOVES, thereby assuming grounding on the under-
standing level, only in connection with integration. Since optimistic grounding is assumed for
system moves, it would be okay to handle them the same way we did in GoDIS1; however,
user moves are no longer (always) optimistically grounded, and we have chosen to give a uni-
form treatment to all moves. Since in GoDIS system moves are always successfully integrated,
however, there is no real difference between the way they are handled in GoDI1S1 and GoDIS2.

(RULE 2.18) RULE: integrateSysAsk
CLASS: integrate
PRE: { $/SHARED/LU/SPEAK ER==SYS
"] fst($/PRIVATE/NIM, ask(A))
pop(/PRIVATE/NIM)
EFF. { add(/SHARED/LU/MOVES, ask(A))
push(/SHARED/QUD, A)

85

(RULE 2.19) RULE: integrateSysAnswer

CLASS: integrate
fst($/PRIVATE/NIM, answer(A))
$/SHARED/LU/SPEAK ER==SYS

PRE: ¢ $DOMAIN :: proposition(A)
fst($/SHARED/QUD, B)
$DoMmAIN :: relevant(A, B)
pop(/PRIVATE/NIM)

EFF. { add(/SHARED/LU/MOVES, answer(A))
add(/sHARED/com, A)

One complication is that in GODI1S2, several moves may be performed in a single utterance. To
keep track of which utterances have been integrated, the /PRIVATE/NIM stack of non-integrated
moves is popped for each move that gets integrated. Note also that each integrated (and thus
understood) move is added to /SHARED/LU/MOVES (whereas in GoDIS1 this was done at the
start of the update cycle).

The cautiously optimistic acceptance assumptions built into these rules can be retracted on inte-
gration of negative user perception feedback, as explained in Section 2.6.6, or on negative user
integration feedback, as show in Section 2.6.7. Dialogue examples involving the rules shown
above will be given in these sections.

User feedback to system utterances

In this section we review user feedback to system utterances and how these affect the optimistic
grounding assumptions.

Negative user perception feedback If the system makes an utterance, it will assume it is
grounded and accepted. If the user indicates that she did not understand the utterance, the rule in
(RULE 2.20) makes it possible to retract the effects of the system’s latest move, thus cancelling
the assumptions of grounding and acceptance.

86

(RULE 2.20) RULE: integrateUsrPerNegICM
CLASS: integrate
PRE: { $/SHARED/LU/SPEAK ER==USI
"] fst($/PRIVATE/NIM, icm:per*neg)

pop(/PRIVATE/NIM)
/SHARED/QUD := $/PRIVATE/TMP/QUD

EFF: { /SHARED/COM := $/PRIVATE/TMP/COM
/PRIVATE/AGENDA = $/PRIVATE/TMP/AGENDA
/PRIVATE/PLAN = $/PRIVATE/TMP/PLAN

The four last updates revert the com, QuUD, PLAN and AGENDA fields to the values stored in
[PRIVATE/TMP.

Dialogue example: negative user perception feedback This dialogue shows how GoDiS2
is able to react to negative user perception feedback (e.g. “pardon”) by retracting the opti-
mistic grounding assumption by backtracking relevant parts of SHARED to the state in /PRI-
VATE/TMP/SY S, stored before the system utterance was generated. Also, the plan and agenda are
backtracked to enable the system to continue the dialogue properly.

(DIALOGUE 2.10)

S> (kay. You asked about price. | need sone information. How
do you want to travel ?

getLatestMoves
integrateOtherICM
integrateOtherICM
integrateOtherICM
integrateSysAsk

87

[[AGENDA = (()) I
findout(? A.how(A))
findout(? B.dest_city(B))
findout(?C.dept_city(C))
PLAN = <findout(?D.month(D)) >
findout(? E.dept_day(E))
findout(?F'.class(F"))
consultDB(?G.price(GQ))
BEL = {}
[com = {} |
bR = QUD = (?H .price(H))
' icm:acc*pos
AGENDA = << icm:und*pos:usr*issue(? H .price(H)) >>
icm:loadplan
TMP _ findout(? A.how(A))
findout(? B.dest_city(B))
findout(?C.dept_city(C))
PLAN = <find0ut(?D.m0nth(D)) >
findout(? E.dept_day(E))
findout(?F'.class(F))
| consultDB(?G.price(G))]
L av = () _
[com = {}
o = <?I.how(I) >
. = ?H .price(H)
_ SPEAKER = SyS
U - [MovEs = ((icm:acc*pos, ...))
| | M = ({ ask(?H.price(H)))) |
U> par don
getLatestMoves

integrateUsrPerNegICM
pop(/PRIVATE/NIM)
/SHARED/QUD := $/PRIVATE/TMP/QUD
/SHARED/COM := $/PRIVATE/TMP/COM
/PRIVATE/AGENDA := $/PRIVATE/TMP/AGENDA
[PRIVATE/PLAN := $/PRIVATE/TMP/PLAN

88

icm:acc*pos
AGENDA = << icm:und*pos:usr*issue(? A.price(4)) >>
icm:loadplan
findout(? B.how(B))
findout(?C.dest_city(C))
findout(?D.dept_city(D))
PRIVATE = PLAN = <findout(?E.month(E)) >
findout(? F'.dept_day(F"))
findout(?G.class(G))
consultDB(?H .price(H))
BEL = {}
TMP = ...
am = () J
com = {}
QUD = ?A.price(4))
SHARED = SPEAKER = usr
LU = '
MOVES = oqueue([lcm:per*neg])]
| PM = ...
backupShared
selectFromPlan
selecticmOther
selectlcmOther
selectlcmOther
selectAsk
S> (Okay. You asked about price. | need sone information. How

do you want to travel ?

Explicit user issue rejection The rule in (RULE 2.21) allows the user to reject a system ques-
tion (by indicating inability to answer, i.e. by uttering “I don’t know” or similar). If this is done,
the optimistic grounding update is retracted by restoring the shared parts stored in NIMm, i.e. QUD
and cowm, to their previous states.

(RULE 2.21) RULE: integrateUsrAccNegICM

CLASS:. integrate

$/SHARED/LU/SPEAKER==USI

PRE: ¢ fst($/PRIVATE/NIM, icm:acc*neg:issue)
in($/sHARED/PM, ask(Q))
pop(/PRIVATE/NIM)
add(/SHARED/LU/MOVES, icm:acc*neg:issue)
/SHARED/QUD := $/PRIVATE/TMP/QUD
/SHARED/COM := $/PRIVATE/TMP/COM

EFF:

89

The third condition checks that the previous utterance contained an ask move. The final two
updates retract the optimistic grounding assumption on the integration / acceptance / reaction
level.

Of course, if a question is rejected by the user this may result in a failed database query (unless
the alternative database access method described in Larsson et al. (2002)is used). But how should
a system react if the user rejects a system question? In some frame-based dialogue systems for
database search (e.g. Chu-Carroll, 2000), fields in the frame can be labelled as obligatory or
optional. In GoDIS, this corresponds roughly to the distinction between the raise and findout
actions; the former has succeeded as soon as the system asks the question, whereas the latter
requires the question to be resolved. So if a question which was raised by a raise action was
rejected, it will not be asked again. Questions raised by findout actions, however, will currently
be raised again by GoDI1S2 immediately after a user rejection, since the action is still on top of
the plan. This is perhaps not very cooperative, and alternative strategies need to be explored. For
example, the findout action could be moved further down in the plan so that it will not be asked
immediately again, or it may be raised again only if the database search fails.

Dialogue example: explicit user issue rejection In the following dialogue example, the user
rejects the system question regarding how to travel. In this example, the plan has been al-
tered so that findout(?z.class(z)) has been replaced by raise(?z.class(x)), thereby making the
class-question optional. Also, the alternative database access method described in Larsson et al.
(2002)is used.

(DIALOGUE 2.11)
S>What class did you have in m nd?

getLatestMoves

integrateSysAsk
pop(/PRIVATE/NIM)
push(/SHARED/QUD, ?4.class(A))

90

[[AGENDA = (())
BLAN _ <raise(?A.cIass(A)) >
consultDB(?B.price(B))
BEL = {
[month(april) 1
dept_city(london
PRIVATE = CcoM - degt_cit)}jfparis))
™P _ how(plane)
QUD = (2C.price(C))
AGENDA = ({})
BLAN - raise(?A.class(A)) >
| consultDB(?B.price(B)) |
NIM o)

dest_city(paris)
how(plane)
?D.class(D)
?2C.price(C) >
SPEAKER = Sys
Moves = ((ask(?D.class(D))))
icm:acc*neg:issue))

SHARED =
QUD =

LU =

PM =

[| month(april)
com = l dept_city(london)
{

U>it doesnt natter

getLatestMoves

integrateUsrAccNegICM
pop(/PRIVATE/NIM)
add(/SHARED/LU/MOVES, icm:acc*neg:issue)
/SHARED/QUD := $/PRIVATE/TMP/QUD
/SHARED/COM := $/PRIVATE/TMP/COM
exec_consultDB

91

[[(([month(april)) Y 11
dept_city(london) .
db_entry(dest_city(paris) >, {class(economy)}, price(123))
_ how(plane)
BEL = (month(april) \ (
dept_city(london) . .
db_entry(< dest city(paris) >, {class(business)}, price(1234))
L [how(plane))
PR. = i month(april) 1
dept_city(london)
coM dest_city(paris)
™Mp = how(plane)
- QUD = (?B.price(B))
AGENDA = (())
BLAN raise(?C.class(C))
consultDB(?D.price(D))
| NIM = |
[(month(april)]
_ dept_city(london)
com = dest_city(paris)
. = | how(plane)
T QUD = ?B.price(B))
o _ | sPEAKER = usr
- Moves = ((icm:acc*neg:issue))
i | v = {({ ask(?C.class(C)))) J |
backupShared

selectRespond
selectAnswer

S>The price is 123 crowns. cheap. The price is 1234 crowns.
busi ness cl ass.

2.6.8 Evidence requirements and implicit grounding

In this section, we discuss evidence requirements for grounding and how these have been imple-
mented in the form of update rules for implicit grounding.

In GoD1S2 we use a cautiously optimistic grounding strategy for system utterances. This as-
sumption can be retracted if negative evidence concerning grounding is found. So, what counts
as negative and positive evidence? Recall Clark’s ranking of different forms of positive evidence,
ranging from weakest to strongest:

92

Continued attention

Relevant next contribution

Acknowledgement: “uh-huh”, nodding, etc.

Demonstration: reformulation, collaborative completion

Display: verbatim display of presentation

Regarding the attention level, we will not have much to say*®. The levels of acknowledgement,
demonstration and display are presumably what we would regard as explicit feedback, although
we have been mainly concerned with the acknowledgement level.

Evidence and relevance

The remaining level in Clark’s typology of evidence of understanding is “relevant next contribu-
tion”. Two questions arise here. First, what counts as a relevant followup? Second, if no relevant
followup is produced, should this count as negative evidence of grounding, and if so, on what
action level?

A property of dialogue systems sometimes discussed in the literature (The DISC consortium,
1999, Bohlin et al., 1999) is the ability of a system to understand and integrate information
different from that which was requested by the system. How does this relate to relevance and
grounding? One way to formulate the problem is this: if the system just asked ¢, and the user’s
response « did not contain an answer relevant to g or feedback concerning the system’s utter-
ance, what should be assumed about the grounding status of ¢g? This is, of course, also a problem
that human DPs must resolve; however, Clark does not (to our knowledge) directly discuss this
case.

(18) a. A:What city do you want to go to? [ask q]
B: I’d like to travel in April [answer other question]

b. A: What city do you want to go to? [ask q]
B: Do you have a student discount? [ask other question]

15Clark includes “continued attention” as the weakest form of positive evidence of grounding. However, in prin-
ciple continued attention from an addressee A after an utterance w is consistent with a complete lack of perception
on A’s side; A may not even have perceived w but is still waiting for the next utterance. While this example may
not be very relevant for human-human communication, it is not a completely unlikely scenario if A is a dialogue
system. Also, contact level feedback appearsrelated to this.

93

Regarding cases where a question is ignored (i.e. neither addressed by a relevant answer, ex-
plicitly accepted, nor explicitly rejected), it is not obvious whether the question was accepted or
not. The reason is that there are several possible explanations for this behaviour: one complies
silently with the question but thinks that other information is more important right now (in which
case the question was integrated by the hearer, and will be answered eventually), or one misheard
or did not hear the question at all (in which case it was not understood, and thus neither accepted
or rejected), or one does not think that the question is appropriate (in which case the question
was implicitly rejected).

One possible strategy for finding negative evidence is to look for signs of misunderstanding, and
to try to come up with a plausible explanation for how this misunderstanding came about. This
is, however, a fairly difficult task even for humans and not one we intend to explore here.

Cases where a question is not followed by a relevant answer or relevant ICM, can be regarded
as implicit rejections of that question. However, if the followup is relevant in some other way to
the question asked, this should not be regarded as rejection. One type of relevant followup can
be defined using Ginzburg’s notion of question dependence:

(19) Anask-move with content q is a relevant followup to an ask-
move with content ¢’ if ¢’ depends on gq.

In Larsson et al. (2002), we defined a domain-dependent notion of question dependence related
to terms of plans, where ¢’ depends on q if there is a plan for dealing with ¢’ which includes an
action findout(q).

Consequently, in GoD1S2 we have chosen the following requirements on an utterance u to count
as an irrelevant followup to an utterance raising a question g:

e 1 contains no ICM
e the previous move raised a question g
e 1 contains no answer to q

e 1 contains no ask-move raising a question ¢’ such that ¢ depends on ¢’

Concerning our second question, are irrelevant followups to be regarded as negative grounding
evidence? Or could it be the case that a D P understood and accepted an utterance u but opted to
change the subject temporarily, planning to respond to « eventually?

If the irrelevant followup is interpreted as negative grounding evidence, how do we know what
action level is concerned? Did the user implicitly reject the issue by ignoring it, or did she simply

94

not perceive or understand it? We suspect that the choice between these two interpretations might
depend on quite subtle issues concerning timing. For example, if the user’s followup overlaps
with the system’s question it is possible that the user has not even heard the system’s question.

In GoDI1S2 we have chosen to consider irrelevant followups to system ask moves as implicit
rejections. However, this choice is not obvious and is a further topic for future research.

Implicit user rejection of issue

If an irrelevant followup is detected, this is interpreted as an implicit issue rejection and conse-
quently the optimistic assumption that the question ¢’ was integrated by the user is assumed to
be mistaken. Therefore, the optimistic assumption is retracted by reverting the previous shared
state for the relevant parts of SHARED.

(RULE 2.22) RULE: irrelevantFollowup

CLASS: none
(1 $/PRIVATE/NIM=M oves

2 $/SHARED/LU/SPEAK ER==UST
3 not A/ELEM=icm:_
4 in($/SHARED/PM, PrevM ove)
5 PrevMove=ask(Q) or
(PrevMove=icm:und*int: DP*C and Q=und(DP*C))
6 not Moves/ELEM=ask(Q') and SDOMAIN :: depends(Q, Q')
| 7 not A/ELEM=answer(A4) and $DOMAIN :: relevant(A4, Q)

ErE- { /SHARED/QUD := $/PRIVATE/TMP/QUD

PRE:

/SHARED/COM := $/PRIVATE/TMP/COM

(Since this rule is called “by name” from the update algorithm, there is no need for including it
in a rule class.) Condition 3 checks that no ICM was included in the latest move. Condition 4
and 5 tries to find a question @ raised by the previous move, possibly an understanding-question.
Note here that we do not check QUD; in GoDI1S2, questions remain on QUD only for one turn
but it may be the case that we want questions to remain on QUD over several turns. What we are
interested here is thus not which questions are on QUD but which questions were raised by the
previous utterance, and this is the reason for looking in PM rather than QuD. Conditions 6 and 7
check that no move performed in the latest utterance is relevant to @, neither by answering it nor
by asking a question on which @@ depends. The updates are similar to those for integration of
negative acceptance feedback (Section 2.6.7).

As is the case for explicit rejections, questions raised by findout actions will be asked again, but
questions raised by raise actions will not. ICM-related questions (interrogative understanding

95

feedback) are not repeated since they are not in the plan but only on the agenda.

A dialogue involving implicit user rejection of an issue will be shown later in (DIALOGUE 3.12).

2.6.9 Sequencing ICM: reraising issues and loading plans

In this section, we review sequencing-related ICM and show how this has been implemented in
GoDi1S2.

We believe it is good practice to try to keep the user informed about what’s going on inside
the system, at least to a degree that facilitates a natural dialogue where system utterances “feel
natural”. One way of doing this is to produce ICM phrases indicating significant updates to
the information state which are not directly related to specific user utterances. Using Allwood’s
(1995) terminology, we refer to these instances of ICM as “sequencing ICM”.

For GoD1S2, we will implement two types of sequencing ICM. First, when loading a plan
GoDiS2 will indicate this. Second, GoDI1S2 will produce ICM to indicate when an issue is
being reraised (in contrast to being raised for the first time).

Loading plans

GoD1S2 will indicate when a plan is being loaded, thus preparing the user to answer questions.
This is currently generated as “Let’s see.”

The rule for finding an appropriate plan to deal with a respond-action on the agenda is similar
to that in GoODIS1. The difference is that the GODIS2 rule produces ICM to indicate that it has
loaded a plan, formalized as icm:loadplan and generated e.g. as “Let’s see”. Again, the choice
of output form is provisory.

(RULE 2.23) RULE: findPlan

CLASS: load_plan
in($/PRIVATE/AGENDA, respond(Q@))

PRE: ¢ $DOMAIN :: plan(@, Plan)
not in($/PRIVATE/BEL, P) and $DOMAIN :: resolves(P, Q)
del(/PRIVATE/AGENDA, respond(Q))

EFF set(/PRIVATE/PLAN, Plan)
push(/PRIVATE/AGENDA, icm:loadplan))

96

This rule is identical to that in GoD1S1 (Larsson et al. (2002)), expect for the final update which
pushes the icm:loadplan move on the agenda.

Reraising issues

System reraising of issue associated with plan If the user raises a question @) and then raises
Q' before @ has been resolved, the system should return to dealing with @ once Q' is resolved;
this was described in Section 2.6.9. The recoverPlan rule in GoDI1S2, shown in (20), is almost
identical to the one in GoDIS1, except that ICM is produced to indicate that an issue (gq1) is
being reraised. This ICM is formalized as icm:reraise:q where g is the question being reraised,
and expressed e.g. as “Returning to the issue of price”.

(RULE 2.24) RULE: recoverPlan

CLASS: load_plan
in($/SHARED/QUD, @)
is_.empty($/PRIVATE/AGENDA)

PRE: ¢ is_empty($/PRIVATE/PLAN)
$DOMAIN :: plan(Q, Plan)
not in($/PRIVATE/BEL, P) and $DOMAIN :: resolves(P, Q)
set(/PRIVATE/PLAN, Plan)

EFF. { push(/PRIVATE/AGENDA, icm:reraise:(Q)
push(/PRIVATE/AGENDA, icm:loadplan))

Issue reraising by user In the case where the user reraises an open issue, an icm:reraise:
move is selected by the integrateUsrAsk described in Section 2.6.6.

System reraising of issue not associated with plan The GoDIS1 reraiselssue rule described
in Larsson et al. (2002)reraises any questions on QUD which are not associated with any plan
(i.e. which have been raised previously by the system). In this case it is again helpful to indicate
that the system is aware that the issue is being reraised. However, since the issue will be reraised,
the sequencing ICM does not need to indicate which question is being reraised.

(RULE 2.25) RULE: reraiselssue

CLASS: select_action
| fst($/SHARED/ISSUES, @)

PRE- 1\ not $DomAIN :: plan(Q, P)
ErE- push(/PRIVATE/AGENDA, icm:reraise)
" | push(/PRIVATE/AGENDA, raise(Q))

97

The conditions of this rule checks that there is a question @ on ISSUES for which the system has
no plan, i.e. one that the system needs to ask the user.

The first update adds an icm:reraise (without an argument) to signal that it is reraising a ques-
tion; this is currently generated as prefixing “so” to the next ask move, which is an ordinary
raising of the question (placed on the agenda by the second update in the rule). In a more sophis-
ticated implementation one could consider abbreviating the original raising of the question to
make an appropriate reraising, e.g. “So, from what city?” But we do not have a general method
for doing that yet, even in these simple dialogues. To do it properly would probably require more
detailed syntactic and semantic analysis of contributions than we currently have in GoDIS.

Dialogue example: user and system reraising (DIALOGUE 2.12) is an example of a dialogue
where the user reraises an issue which was previously raised but not resolved.

Also subsequently the system reraises an issue which is relevant for addressing the issue that the
user reraised. In order to address the issue of price the system needs to get information from the
user concerning where she wishes to travel from.

(DIALOGUE 2.12)

S>Wel cone to the travel agency!
U>price information pl ease
S>Okay. Lets see. How do you want to travel?

U>a flight

S>Okay. Wiat city do you want to go to?
U>paris

S>Okay. Wiat city do you want to go fronf
U>right... actually, do i need a visa

user accepts departure city issue, then raises visa issue

S>Okay. Lets see. What country are you fronf
U>um .. lets tal k about price again

user implicitly rejects (avoids) citizenship issue, reraises price issue
S>Okay. Returning to the issue of price. Lets see. So, Wat
city do you want to go fronf

system indicates returning to price issue, then reraises departure city issue
U> 1 ondon

S>Okay. Wat nonth do you want to | eave?

U>apri |

S> Okay. Wat day do you want to | eave?

U>fifth

S>Okay. Wat class did you have in mnd?

98

U> cheap

S>Okay. The price is 123 crowns. Returning to the issue of
visa. Let’s see. Wat country are you fronf

system answers price issue, thereby resolving it, then reraises the visa issue, indicates plan load-
ing, and reraises citizenship issue

The first case of reraising here, where it is the user who reraises the price issue, is handled by the
conditional update of the integrateUsrAnswer (Section 2.6.6) which selects an icm:reraise:Q
move to signal that the system is aware that issue was already open by saying “You reraised the
issue of price”. In the same utterance, the system reraises the issue of where the user wants to
travel from, requires a selection rule for the system. When reraising an issue, GODI1S2 produces
ICM to indicate awareness that the issue has been raised before. This ICM is formalized as
icm:reraise and can be realized e.g. by the discourse particle “So”. Note that this would not
have happened if the user had not accepted this question (by saying “right”) when it was first
raised. Since the system does not regard the departure city question as dependent on the visa
issue, raising the visa issue in response to asking for departure city would have been regarded as
an implicit rejection (Section 2.6.8).

Once the price issue has been resolved, the system reraises the visa issue which is still unresolved;
this is done by the recoverPlan rule as described in Section 2.6.9.

2.7 Further implementation issues

In this section we describe parts of the implementation of GoD1S2 which have not been dis-
cussed earlier in this chapter, and which are not directly reused from GoD1S1.

2.7.1 Update module

The GoDI1S2 update algorithm is shown in (20).

99

(20) 1ifnot LATEST_-MOVES == failed
2 then (getLatestMove,
3 try irrelevantFollowup,
4 repeat integrate,
5 try load_plan,
6 repeat manage_plan
7 try downdate_qud)
8 else try unclearFollowup

Line 1 checks that the interpretation of the latest utterance was successful (of course, in the
case of system utterances this is always true). If not, the unclearFollowup rule described in
Section 2.6.8 is tried. If interpretation was successful, the latest moves are incorporated in the
information state proper by the getLatestMoves rule (see Section 2.6.7). Before integration
starts, the irrelevantFollowup rule described in Section 2.6.8 is tried to catch cases where a
system question has been ignored by the user. After this, the integration rule class is repeatedly
applied until the system has tried to integrate all moves in /PRIVATE/NIM. If the user asked a
question, the appropriate plan will be loaded by line 5. Any loaded plan is executed by applying
the exec_plan rule class until no more execution is possible at the current stage of the dialogue.

2.7.2 Selection module

As in GoDIS1, action selection rules add actions to the agenda. However, while in GoDI1S1
only one action was selected per turn, in GODI1S2 several actions may be selected per turn. For
example, the selectRespond in GoDi1S2, shown in (RULE 2.26), does not require the agenda
to be empty, but only that the respond action has not already been selected, and thus it allows
several moves to be selected per turn.

(RULE 2.26) RULE: selectRespond

CLASS: select_action
(is_empty($/PRIVATE/PLAN)

fst($/SHARED/QUD, A)
in($/PRIVATE/BEL, B)

not in($/SHARED/COM, B)

$DOMAIN :: resolves(B, A)

| not in($/PRIVATE/AGENDA, respond(A))

EFF: { push(/PRIVATE/AGENDA, respond(A))

PRE: <

Similarly, the move selection rules in GoDI1S2 are repeatedly applied, popping actions off the
AGENDA queue and pushing the corresponding moves on NEXT_MOVES. As an example, the

100

selectAnswer rule is shown in (RULE 2.27).

(RULE 2.27) RULE: selectAnswer

CLASS: select_move
fst($/PRIVATE/AGENDA, respond(A))

in($/PRIVATE/BEL, B)
not in($/SHARED/COM, B)
$DOMAIN :: resolves(B, A)

- { push(NEXT_MOVES, answer(B))

PRE:

pop(/PRIVATE/AGENDA)

The selection algorithm for GoDI1S2 is shown in (21).

(21) (backupShared,
if not in($/PRIVATE/AGENDA, A) and g_raising_action(A)
then try select_action,
repeat (select_icm orelse select_-move))

The select_action rule class selects actions and places them on the AGENDA, whereas the se-
lect_move and select_icm rule classes selects AGENDA items and places them on NEXT_MOVES.
Before selection, the backupShared (Section 2.6.7) is applied to copy relevant parts of the in-
formation state to /PRIVATE/NIM.

The basic strategy for selection in GoDIS is that only one question should be raised by the
system in each utterance. The GoDIS2 selection algorithm first checks if some question-raising
action is already on the agenda; if not, it tries to select a new action. Then, it selects moves and
ICM repeatedly until nothing more can be selected.

The “g_raising_action(A)” condition uses a macro condition (see SIRIDUS (2002)) whose defi-
nition is shown in (22). What this says is, basically, that interrogative ICM, raise and, findout
actions raise questions.

(22) g-raising_action(Move) if
Move = icm:und*int: X or Move = raise(X) or Move = findout(X)

101

2.8 Discussion

2.8.1 Some grounding-related phenomena not handled by GoDi1S2

In this section we mention some areas which have not been accounted for in the issue-based
approach presented here. We do not by any means claim that this list is complete.

Perhaps the most significant omission in GODIS2 is a treatment of semantic ambiguity, e.g.
ambiguous words. A possible direction of research in this area is to handle semantic ambiguity
on a pragmatic level. Specifically, the relevance of an ambiguous move in the current dialogue
context may be sufficient to resolve the semantic ambiguity, or at least reduce the number of
possible semantic interpretations. In any case, we see no reason that mechanisms similar to
those for dealing with pragmatic ambiguity could be used for semantic ambiguity.

Another area that remains unexplored from the point of view of issue-based dialogue manage-
ment is semantic vagueness. For instance, one might want a system to understand vague answers
(e.g. “l want to go to southern France”, “I want to travel around the 10th of April’””), and perhaps
also to ask less specific questions which leave more room for the user to choose how to specify
e.g. parameters for database search (e.g. “Where do you want to travel?” rather than “What city
do you want to go to?”).

On the pragmatic understanding level, we have concentrated on ellipsis resolution and relevance,
however we are still lacking a treatment of referent resolution. One reason for this is of course
that GoD1S2 does not represent referents. This is a fairly well-researched area, and we hope to
be able to include some existing account of referent resolution when this becomes necessary.

Overlapping user feedback and and barge-in

Most dialogue systems do not handle feedback from the user in any form, and most (if not all)
existing systems which handle barge-in will stop talking if they perceive any sound from the
speaker. This means that even positive feedback (e.g. “uhuh”) from the user will cause the
system to stop speaking. This problem is aggravated in noisy environments, where noises may
be misinterpreted as speech from the user and cause a system to stop speaking. What is needed
is clearly that the system makes a distinction between different kinds of feedback from the user;
positive feedback should usually not cause the system to stop speaking.

Mechanisms for handling overlapping user feedback has been explored within the GoDiS frame-
work (Berman, 2001), but are not included here. However, the inclusion of positive user feedback
in GODIS provides a basis for further explorations in this area.

102

2.8.2 Towards an issue-based account of grounding and action levels

We have hinted that a full-coverage account of grounding should include grounding on all four
action-levels. Ginzburg’s content- and acceptance-questions indicate how this could be accom-
plished in an issue-based theory of dialogue. For each action level, grounding issues can be
raised and addressed; feedback moves on level L are regarded as addressing grounding issues on
level L.

This would allow grounding to be handled by the same basic update mechanisms as questions and
answers. A distinction can be made between short (elliptical, underspecified) answers (feedback
utterances whose action level is not explicit) and full answers (feedback utterances whose action
level is clear from the form and content of the utterance).

In GoD1S, we strive for simplicity at the cost of completeness; however, the account given here
can be seen as a first step towards a more complete issue-based account of grounding an action
levels in dialogue. A sketch of a more complete account can be found in Section 9.3.1.

2.8.3 Comparison to Traum’s computational theory of grounding

Traum (1994) provides a computational account of grounding based on a combination of finite
automata and cognitive modelling. This model builds on Clark and Schaefer (1989b) but at-
tempts to solve some computational problems inherent in that account.

Traum argues that Clark’s account of the presentation and acceptance phases is problematic
from a computational point of view. Firstly, it may be hard to tell if a speech signal is part of the
presentation or acceptance phase. Second, it is hard to know when a presentation or acceptance
is finished; often, this is only possible in hindsight, which may cause problems for a dialogue
system engaged in real-time spoken dialogue. Third, it is unclear whether grounding acts (in our
terminology, ICM dialogue moves) themselves need to be grounded.

Regarding the last point, we follow Traum in assuming that ICM moves do not need to be
grounded. In fact, on our view this amounts to an optimistic grounding strategy where ICM
moves are concerned.

We agree that in general the problem of deciding when a contribution ends is one that should be
handled as a part of dialogue management, and that something like Traum’s atomic grounding
acts are needed for this. However, for the time being we make the simplifying assumption that
contributions are already segmented before dialogue management starts; in the implementation,
we rely on the speech recognizer’s built-in algorithms for deciding when an utterance is finished.

103

Our account does not address the first point, i.e. the problem of jointly produced contributions,
where DPs e.g. can repair each other’s utterances. Traum proposes a recursive transition network
(RTN) model of the grounding process which includes repairs, requests for repairs, acknowledge-
ments and requests for acknowledgements (a simpler finite state model is also provided). Our
account does not include repairs or requests for acknowledgements; however, Traum’s acknowl-
edgements correspond roughly to positive feedback and requests for repairs correspond (very)
roughly to negative feedback.

It is important to note here that Traum (1994) uses the term “grounding” to refer exclusively
to what we call “understanding-level grounding”. It is notable that Tram focuses almost exclu-
sively on positive feedback, whereas negative feedback is given a less detailed treatment. The
grounding act most closely corresponding to negative feedback is request for repair; however,
it is doubtful whether all negative feedback can be regarded as requests (e.g. “I don’t under-
stand”). To use Allwood’s terminology, feedback has both an expressive dimension (expressing
lack of perception, understanding, acceptance) and an evocative dimension (requesting a “repair”
or repetition/reformulation). It appears that Traum has focused more on the evocative dimension
whereas we have been more concerned with the expressive dimension. (We do feel that the
evocative aspect of feedback is something that perhaps deserves more attention than we have
given it so far; this is yet another area for future research.)

The dialogue acts “accept” and “reject” are regarded by Traum as “Core Speech Acts” on the
same level as assertions, asking questions, giving instructions etc. The accept act is defined as
“agreeing to a proposal” (p.58), which gives the impression that an acceptance act is a natural
followup to some proposal act.

However, Traum’s acceptance act also has similarities to what we refer to as positive reaction-
level feedback. For example, an acceptance move may follow an assertion or an instruction, and
the effects of the accept act is to change the status of the content of the assertion or instruction
from being merely proposed to actually being shared. Regarding questions, it is unclear whether
they need to be accepted before being shared. According to Traum, asking a question imposes
an obligation on the addressee to address the question, i.e. to either answer it or to reject it.
This seems (although it is far from clear) to indicate that questions on Traum’s account are
optimistically assumed to be grounded whereas assertions and instructions are not.

In Chapter 4, we extend the issue-based account of dialogue to negotiative dialogue, and argue
that two kinds of acceptances need to be distinguished: acceptance as positive feedback on the
reaction level, and acceptance of a proposed alternative solution to some problem (e.g. a certain
domain plan as one among several ways to reach some goal).

104

2.9 Summary

After providing some dialogue examples where various kinds of feedback are used, we reviewed
some relevant background, and discussed general types and features of feedback as it appears in
human-human dialogue. Next, we discussed the concept of grounding from an information up-
date point of view, and introduced the concepts of optimistic, cautious and pessimistic grounding
strategies. We then related grounding and feedback to dialogue systems, and discussed the imple-
mentation of a partial-coverage model of feedback related to grounding in GoDi1S2. This allows
the system to produce and respond to feedback concerning issues dealing with the grounding of
utterances.

105

106

Chapter 3

Addressing unraised issues

3.1 Introduction

In the previous chapter, we discussed various mechanisms for handling grounding?®. One of the
action levels to which grounding applies is that of pragmatic understanding, i.e. making sense
of the meaning of an utterance in the current dialogue context. Some basic mechanisms for
grounding on the understanding level were implemented in GoDI1S2. However, the kinds of
dialogues handled by this system are still rather rigid and system-controlled.

The aim of the current chapter is to enable more flexible dialogue. After reviewing some short-
comings of GoDIS2, we take a closer look at the notions underlying the QUD data structure,
which results in dividing QUD into two substructures, one global and one local. Next, the no-
tion of question accommaodation is introduced to allow the system to be more flexible in the way
utterances are interpreted relative to the dialogue context. Among other things, question accom-
modation allows the system to understand answers to questions which have not yet been asked,
and to understand such answers even before any issue has been explicitly raised. In cases of am-
biguity, clarification dialogues may be needed. Question accommodation combined with (very
basic) belief revision abilities also allows GoDIS to reaccommodate questions which have pre-
viously been resolved. Finally, a version of reaccommodation, where reaccommodation of one
issue requires reaccommaodation of a dependent issue as well, allows for successive modifications
of database queries.

The division of QUD into a global and a local structure also enables a simple accommodation
mechanism allowing the user to correct the system in cases where explicit positive feedback
shows that the system has misunderstood a user utterance.

1This chapter isadightly altered version of Chapter 4 in Larsson (2002a).

107

Apart from the initial and final sections, this chapter is structured around the various question
accommodation mechanisms. For each type of accommodation, there is an informal description,
a formalization consisting of one or more update rules, and dialogue examples.

3.2 Some limitations of GoDI1S2

Handling answers to unasked questions

The dialogue structure allowed by the GoD1S2 system is rather rigid and system-controlled. The
main part of the dialogue consists of the system asking questions which the user has to answer.
The user is not allowed to give more information, or different information, than what the system
has just asked for.

In general, we require that the content of each answer-move must match a question on QUD. In
GoDI1S2, the only way questions can end up on QUD is by being explicitly asked. This forces
a simple tree structure on dialogue. In real dialogue, however, people often perform utterances
which can be seen as answers to questions, or addressing issues, which have not yet been raised.

Revising information

Once the user has supplied some information to GoD1S2, this information cannot be changed.
This is clearly undesirable, and solving this problem would provide several advantages:

e The user may change his mind during the specification of the database query

e After the user has been given e.g. price information for a specified trip, he can modify
some of the information to produce a new query, without having to enter all information
again

Correcting explicit positive feedback

An important factor influencing the choice of feedback and grounding strategies in a dialogue
system is usability (including efficiency of dialogue interaction). A disadvantage of the confirmation-
question approach is that the dialogue becomes slow and tiring for the user, which decreases the
efficiency and usability of the system.

108

For this reason, in the previous chapter we added the capability of producing feedback on the
understanding level in non-eliciting form, i.e. as a declarative or elliptical sentence (without
question intonation). However, this solution is unsatisfactory since the system may be mistaken
and there is no way to correct it. A very natural response to positive explicit feedback which in-
dicates a misunderstanding is to protest, e.g. by saying “no!”, possibly followed by a correction.

In this chapter, we use a special case of question accommodation to allow this, thus extending
the issue-based account of grounding. If the user is satisfied with the system’s interpretation, she
does not have to do anything; the system will eventually continue (possibly after a short pause)
with the next step in the dialogue plan. The user’s silence is regarded as an implicit compliance
with the system’s feedback. There is also the option of giving an explicit positive response to
the feedback (e.g. “yes” or “right”). Finally, if the user responds negatively to the system’s
feedback (e.g. by saying “no”), the system will understand that it misunderstood the user and act
accordingly.

3.3 The nature(s) of QUD

Before extending the capabilities of GoDIS, we will investigate the nature of QUD and make
some distinctions between the different tasks that QUD can be used for. We will draw the con-
clusion that QUD needs to be divided into two substructures, one global and one local.

In this section, we present and compare some alternative notions of QUD.

3.3.1 Ginzburg’s definition of QUD
In Ginzburg (1997), Ginzburg provides the following definition of QUD:

QUD (’questions under discussion’): a set that specifies the currently discussable
questions, partially ordered by < (’takes conversational precedence’). If ¢ is maxi-
mal in QUD, it is permissible to provide any information specific to g using (option-
ally) a short-answer. (Ginzburg, 1997, p. 63)

While the definition above merely states that QUD is a partially ordered set, the operations
performed on QUD in Ginzburg’s protocols suggest that in fact it is more like a partially ordered
stack?. In GoDI1S1 and GoDI1S2 we made the simplification that QUD is simply a stack.

2A partially ordered stack would be a structure where elements can be pushed and popped, but which only has a
partial ordering. For example, more than one element can be topmost on the stack.

109

Ginzburg thus uses a single structure to do two jobs: (1) specifying the questions that are cur-
rently available for discussion (*open” questions), and (2) specifying the questions that can be
addressed by a short answer (namely, those that are QUD-maximal).

Based on Ginzburg’s QUD querying protocol (see Larsson et al. (2002)), Ginzburg’s QUD can
also be said to (3) represent questions which have been explicitly raised in the dialogue. While
this is not explicitly stated, it appears that the only way a task-level question can enter QUD
on Ginzburg’s account is by being explicitly asked. (However, grounding-related questions may
enter QUD without being raised as part of the internal reasoning of a DP; see Section 2.2.2).

Similarly, the QUD downdate protocol (see Larsson et al. (2002)) suggests that QUD also fulfills
a further property (4) of containing as-yet unresolved questions. Openness and unresolvedness
may not be identical properties; arguably, resolved questions may still to some extent be open
for discussion, and a question could be discarded from the open issues without being resolved,
e.g. if it becomes irrelevant (Larsson, 1998).

To summarize, given this basic characterization of QUD, we can say that questions on QUD are

1. open for discussion,
2. available for ellipsis resolution,
3. explicitly raised, and

4. not yet resolved.

In GoDIS2, the implemented QUD essentially fits with Ginzburg’s definition, except for the
simplification that it is a plain stack rather than an open, partially ordered stack. This is sufficient
for the relatively system-controlled, rigid dialogue handled by GoD1S2. When the dialogue
structure becomes more flexible, however, these various properties of the QUD listed above no
longer appear to co-occur in all situations.

3.3.2 Open questions not available for ellipsis resolution

Regarding QUD as a stack (or stack-like) structure suggests that when the topmost element (or
set of elements) is popped off the stack, the element (or set of elements) that was previously
next-to-maximal becomes maximal. This implies that questions can be answered elliptically at
an arbitrary distance from when they were raised. However, it can be argued that in many cases a
question which has been raised a few turns back is no longer available for ellipsis resolution (or
at least significantly less available than it was right after the question was raised). For example,

110

B’s final utterance in the made-up dialogue in (1) is unlikely to occur and it would be rather
confusing if it did, simply because it is not clear which question B is answering.

(1) A :Who’s coming to the party?
B : That depends, is Jill coming
A : Jill Jennings?
B: Yes
A

By the way, did you hear about her brother? What’s his
name anyway?

B : Umm.. I’m not sure. Anyway, 1’d rather not talk about it.
A : OK. So, No
B : So, Jim

If this argument is accepted, we see that a question may satisfy requirements (1) and (3) above,
to be a currently open for discussion, explicitly raised question, while not satisfying property (2)
of being available for ellipsis resolution.

3.3.3 Open but not explicitly raised questions

Studying recorded travel agency dialogues in light of the QUD approach indicates that it may
be the case that a question which has not been (explicitly) raised is in fact discussable, and even
available for ellipsis resolution, as the dialogue in (2) shows?.

(2) A :When do you want to travel?
B : April, as cheap as possible

Thus, we can observe that a question may satisfy requirements (1) of being open for discussion
and (2) of being available for ellipsis resolution, without satisfying property (3) of having been
explicitly raised.

3.3.4 Global and local QUD

The observations above suggest that it is not ideal to model QUD using a single structure satis-
fying properties (1) to (4). The solution we propose is to divide QUD into a global and a local

3Thisisasimplifi ed version of the dialoguein example 4.6.

111

structure; the former satisfying property (1) of being open for discussion and (4) of being unre-
solved, and the latter satisfying property (2) of being available for ellipsis resolution. Property
(3) of being explicitly raised is not satisfied by either structure. This enables more flexible ways
of introducing questions into a dialogue. This division of labour also appears to allow the use of
simpler data structures than partially ordered sets.

Definition of local QUD

For the local QUD, a set seems appropriate for modelling the questions currently available for
ellipsis resolution. A stack-like structure would suggest e.g. the (made-up) dialogues (3) should
be easily processed by DPs, but in fact it is very unclear what B means.

(3) A :Where are you going? Where is your wife going?
B : Paris. London.

Also, consider example (4):

(4) A :When are you leaving? When are you coming back?
B : ten thirty and eleven thirty

A simple stack structure also suggests a very unintuitive interpretation of B’s answer, where
10:30 is the time when B is coming back and 11:30 is the time when B is leaving. It appears that
among the constraints guiding ellipsis resolution in cases where multiple questions are available,
the order in which the questions were asked is not very significant. Of course, Ginzburg realizes
this and this appears to be the main reason for letting QUD be a partially ordered set where
several internally unordered elements may be topmost on QUD, and thus available for ellipsis
resolution.

In GoDI1S3 we define QUD to be an open stack of questions that can be addressed using short
answers. The reason for using an open stack is that it has the set-like properties we want, but
also retains a stack structure in case it should be useful for ellipsis resolution.

Definition of global QUD, or “Live Issues”

The global QUD contains all questions which have been raised in a dialogue (explicitly or implic-
itly) but not yet resolved. It thus contains a collection of current, or “live” issues. A suitable data
structure appears to be an open stack, i.e. a stack where non-topmost elements can be accessed.
This allows a non-rigid modelling of current issues and task-related dialogue structure.

112

3.3.5 Some other notions of what a QUD might be

In fact, there are some additional notions of what QUD might be, all of which in some sense
contain questions that are under discussion, and all of which have potential uses in a theory of
dialogue management and in a dialogue system.

closed issues: questions that have been raised and resolved (see Section 2.6.9)

raisable domain issues: all issues potentially relevant in regard to the domain

potential grounding issues: all issues pertaining to grounding of (a) recent utterance(s)

resolvable issues (for a DP): all issues that a DP knows some way of dealing with, either
by answering directly or by entering a subdialogue

However, while all these may be useful, it may not be necessary to model them explicitly as
separate structures in a dialogue system. For example, “raisable domain issues” and “resolvable
issues” may be derived from the (static) domain knowledge.

Regarding “closed issues”, we can to some extent derive them from the shared commitments by
checking which issues are resolved by propositional information, as in (5).

(5) @ isaclosed issue iff there is some P € /[SHARED/COM such
that P resolves @ and P does not resolve any other question
(in the domain)

However, this only works as long as each proposition resolves a unique issue. If this is not true,
a separate store of closed issues is needed e.g. for detecting reraisings of previously discussed
issues.

3.4 Question Accommodation

In this section, we introduce the concept of accommodation and show how it can be extended to
handle accommodation of questions in various ways. We also show how question accommoda-
tion can be implemented in GoDIS.

113

3.4.1 Background: Accommodation
Lewis’ notion of accommodation

David Lewis, in Lewis (1979), in discussing the concept of a conversational scoreboard, com-
pares conversation to a baseball game:

...conversational score does tend to evolve in such a way as is required in order to
make whatever occurs count as correct play (Lewis, 1979, p. 347)

He also provides a general scheme for rules of accommodation for conversational score:

If at time ¢ something is said that requires component s,, of conversational score to
have a value in the range r if what is said is to be true, or otherwise acceptable; and
if s,, does not have a value in the range r just before ¢; and if such-and-such further
conditions hold; then at ¢ the score-component s,, takes some value in the range .
(Lewis, 1979, p. 347)

This very general schema can be used for dealing with definite descriptions, presupposition pro-
jection (see e.g. Van Der Sandt, 1992), anaphora resolution, and many other pragmatic and
semantic problems.

One motivation for thinking in terms of accommodation has to do with generality. We could
associate expressions which introduce a presupposition as being ambiguous between a presup-
positional reading and a similar reading where what is the presupposition is part of what is
asserted. For example, an utterance of “The king of France is bald” can be understood either as
an assertion of the proposition that there is a king of France and he is bald, or as an assertion
of the proposition that he is bald with the presupposition that there is a king of France and that
“he” refers to that individual. However, if we assume that accommodation takes place before
the integration of the information expressed by the utterance then we can say that the utterance
always has the same interpretation.

3.4.2 Accommodation, interpretation, and tacit moves

In an information update framework, accommodation is naturally implemented as an update rule
which modifies the information state to include the information presupposed by an utterance, in

114

such a way as to make the utterance felicitous, i.e. to make it possible to understand the relevance
of and possibly integrate the move(s) associated with the utterance. The accommodation update
acts as a replacement for a dialogue move, which would have prepared the (common) ground for
the utterance actually performed. For this reason, accommodation updates may be referred to as
a kind of tacit move. For example, the silent accommodation move which adds “there is a king of
France” to allow the integration of “The king of France is bald” corresponds to a dialogue move
asserting this proposition.

Thus, we can simplify our dialogue move analysis so that the updates to the information state nor-
mally associated with a dialogue move are actually carried out by tacit accommodation moves.

This fits well with the fact that very few (if any) effects of a dialogue move are guaranteed as a
consequence of performing the move; rather, the actual resulting updates depend on reasoning by
the addressed participant. Accommodation is one type of reasoning involved in understanding
and integrating the effects of dialogue moves.

3.4.3 Extending the notion of accommodation

In this section, we extend the notion of accommodation introduced by Lewis to cover accommo-
dation of Questions Under Discussion.

As defined by Lewis, accommodation is not limited to only propositions®. It states that any
component of the scoreboard can be modified by accommodation. If we carry this over to the
issue-based approach to dialogue management, it follows that in addition to the accommodation
of propositions to the set of jointly committed propositions, questions can be accommodated to
QUD.

Thus, question accommodation can be exploited to provide an explanation of the fact that ques-
tions can be addressed (even elliptically) without having been explicitly raised. This is very
relevant for a dialogue system, since it allows the user more freedom regarding when and how to
provide information to the system. In addition, the related concept of question reaccommodation
can be used to enable addressing resolved issues, which among other things provides a way of
handling revision of jointly committed propositions in a principled manner.

Before proceeding to explore the exact formulation and formalization of question accommoda-
tion, we provide a rough characterization of the notions used:

40f course, all information on the DGB is, in the end, propositional in nature; a DGB containing a question Q
at the top of QUD could in principle be described by a set of propositionsincluding “Q is topmost on QUD”. This,
however, would be impractical and ineffi cient compared to maintaining a proper stack-like structure.

115

e (uestion/issue accommodation: adjustments of common ground required to understand an
utterance addressing an issue which has not been raised, but which is
— relevant to the current dialogue plan
— relevant to some issue in the domain
e uestion/issue reaccommodation: adjustments of common ground required to understand
an utterance addressing an issue which has been resolved and
— does not influence any other resolved issue
— influences another resolved issue
— concerns grounding of a previous utterance

Utterances which are relevant to the current dialogue plan can also be regarded as being indirectly
relevant to the goal of that plan. In inquiry-oriented dialogue we model goals as issues which al-
lows an alternative formulation of accommodation as “adjustments of common ground required
for understanding an utterance addressing an issue which has not been raised, but which is (di-
rectly or indirectly) relevant to some issue in the domain.” In action-oriented dialogue (Chapter
4), utterances may also be indirectly relevant to some goal action.

3.5 Formalizing question accommodation

In this section we discuss the various types of question accommodation and show how they
are formalized in GoDI1S3. We start by explaining and motivating some modifications of the
information state type required to handle dialogues involving question accommodation.

3.5.1 Information state in GoDIS3

The information state used in GoD1S3 is shown in Figure 3.1.

The first change compared to the GoDI1S2 information state is the addition of the open stack
/SHARED/ISSUES, which contains the open issues. The /SHARED/QUD field has not been modi-
fied in terms of data type, but is now used for modelling the local QUD.

The second change is the division of /SHARED/TMP into two subfields. The sys subfield cor-
responds to the TMP field in GoDi1S2, and contains parts of the information state copied right
before integrating the latest system utterance. As in GODIS2, system utterances are optimisti-
cally assumed to be grounded, and if the user gives negative feedback the TMP/SY s field is used

116

[AGENDA : OpenQueue(Action)
PLAN : OpenStack(PlanConstruct)
BEL . Set(Prop)
PRIVATE
USR : Tmp
T™MP
sYs : Tmp
| NIM : OpenQueue(Pair(DP,Move)) |
[COM : Set(Prop) 1
ISSUES : OpenStack(Question)
QUD . OpenStack(Question)
SHARED PM : OpenQueue(Move)
U SPEAKER : Participant]
i MOVES : Set(Move) | |
COM . Set(Prop)
ISSUES : OpenStack(Question)
Tmp=| QUD . OpenStack(Question)
AGENDA : OpenQueue(Action)
PLAN . OpenStack(PlanConstruct)

Figure 3.1: GoDIS3 Information State type

to retract the optimistic assumption. In addition, the system sometimes makes an optimistic as-
sumption regarding the grounding and understanding of a user utterance, and produces positive
feedback (e.g. “OK. To Paris.”). In GoDIS3, we will use a type of question accommodation
to enable retraction of the optimistic grounding assumption regarding user utterances, in cases
where the user rejects the system’s reported interpretation. For this, we also need to keep a
copy of relevant parts of the information state as they were right before the user’s utterance was
interpreted and integrated,; this is what the TMP/USR field contains.

Finally, the items on /PRIVATE/NIM are now pairs, where the first element is the DP who made
the move, and the second is the move itself. In GoD1S2, it can be assumed that all non-integrated
moves were performed in the latest utterance. In GoDI1S3, question accommodation mechanisms
allow less restricted dialogues, and there is no longer any guarantee that all non-integrated moves
were made in the latest utterance. Moves may be stored in NIm for several turns before being
integrated.

117

3.6 Varieties of question accommodation and reaccommoda-
tion

As shown by the dialogue in (6)°, questions can be answered (even elliptically) without previ-
ously having been raised.

(6) J:vicken manad ska du aka
what month do you want to go
B : ja: typ den: &: tredje fjarde april / nan gang dar
well around 3rd 4th april / some time there
P : sa billit som mojlit
as cheap as possible

But where does the accommodated question come from? In principle, we could imagine a huge
number of possible questions associated with any answer, especially if it is elliptical or semanti-
cally underspecified. How is this search space constrained? The answer lies in the activity which
is being performed; the question must be available as part of the knowledge associated with the
activity - either static knowledge describing how the activity is typically performed, or dynamic
knowledge of the current state of the activity.

In this section we first describe the three basic question accommodation mechanisms: global
question accommodation (issue accommodation), local question accommodation (QUD accom-
modation) and dependent issue accommodation. We then discuss the need for clarification ques-
tions in cases where it is not clear which question is being addressed, before moving on to
describing reaccommodation and dependent reaccommodation. For each type of accommoda-
tion we also describe the implementation and provide dialogue examples from the implemented
system.

In general, accommodation is tried only after “normal” integration has failed. The coordination
of the accommodation rules in relation to grounding (including integration) rules is handled by
the update algorithm described in Section 3.7.2.

SThisdialogue has been collected by the University of Lund as part of the SDS project. We quote the transcription
done in G'oteborg as part of the same project.

118

3.6.1 Issue accommodation: from dialogue plan to ISSUES

This type of accommodation occurs when a DP addresses an issue which is not yet open but
which is part of the current plan®. In the dialogue in example 6, P’s second utterance (“as cheap
as possible”) addresses the issue of which price class P is interested in. At this stage of the
dialogue, this issue has not been raised, but presumably J was planning to raise it eventually.

Before GODIS can integrate an answer, it needs to find an open issue to which the answer is
relevant (see the definition of the integrateUsrAnswer rule in Section 2.6.6). Thus, to handle
a dialogue like that in example 6 some mechanism is needed for finding an appropriate issue in
the current dialogue plan and moving it to the 1SSUES stack. A schematic representation of issue
accommodation is shown in Figure 3.2.

AGENDA : OpenQueue(Action)
PLAN : OpenStack(PlanConstruct)
BEL : Set(Prop)
PRIVATE
USR Tmp
TMP
[SYS Tmp]
NIM : OpenQueye(Move)
coMm : Set(Prop)
ISSUES : OpenStack(Question)
QUD : OpenStack(Question)
SHARED PM : OpenQueue(Move)
LU) SPEAKER : Participant
i i ' MOVE : Set(Move)

Figure 3.2: Issue accommodation

The issue accommodation update rule in (RULE 3.1) first checks whether a question which
matches the answer occurs in the current dialogue plan (provided there is one). A question
matches an answer if the answer is relevant to, or (in Ginzburg’s terminology) about the ques-
tion. If such a question can be found, it can be assumed that this is now an open issue. Accom-
modating this amounts to pushing the question on the ISSUES stack.

8Since the current plan is presumably being carried out in order to deal with some open issue, we may regard the
utterance as indirectly relevant to some open issue (viathe plan).

119

(RULE 3.1) RULE: accommodatePlan2lssues

CLASS. accommodate
($/PRIVATE/NIM/ELEM/SND = answer(A)

not $LEXICON :: yn_answer(A)
in($/PRIVATE/PLAN, findout(Q))
$DOMAIN :: relevant(4, Q)
$DOMAIN :: default_question(Q) or
not (in($/PRIVATE/PLAN, findout(Q"))
andQ # C
{ and $DOMAIN :: relevant(4, Q'))

EFF: { push(/SHARED/ISSUES, B)

PRE: <

The first condition picks out a non-integrated answer move with content A. The second con-
dition checks that A is not a y/n answer (e.g. yes, no, maybe etc.), and thus implements an
assumption that such answers cannot trigger question accommodation, since they are too am-
biguous’. The third and fourth conditions check if there is a findout action with content Q in
the currently loaded plan, such that A is relevant to Q. The final condition checks that there is
no other question in the plan that the answer is relevant to, or alternatively that) has the status
of a default question. If this condition does not hold, a clarification question should be raised
by the system; this is described in Section 3.6.3. The “default question” option allows encoding
of the fact that one issue may be significantly more salient in a certain domain. For example, in
a travel agency setting the destination city may be regarded as more salient than the departure
city question. If this is encoded as a default question, then if the user says simply “Paris” it is
interpreted as answering the destination city question; no clarification is triggered®

Example dialogue: issue accommodation The dialogue in (DIALOGUE 3.1) illustrates ac-
commodation of the question ?C'.class(C') from the plan to the stack of open issues.

(DIALOGUE 3.1)

S>Wat nonth do you want to | eave?

"However, in general one cannot rule out the possibility that y/n answers can trigger accommodation in severely
restricted domains. The assumption that this cannot happen can be regarded as a very simplifi ed version of a
constraint on the number of questions which an answer may be relevant without making question accommodation
infeasible.

8The normal grounding mechanisms should of course enable correction of this assumption. In GoDIS3 the
choice of grounding strategy depends solely on the recognition score which means that a high-scoring answer may
be interpreted as an answer to a default question and not receive any explicit feedback. This is one case which
indicates a need for taking more factors into account when choosing feedback and grounding strategy.

120

U>apri |

getLatestMoves
backupSharedUsr

PRIVATE

SHARED

AGENDA

PLAN

BEL
NIM

COM

ISSUES

QUD
PM

LU

findout(? A.month(A4))
findout(? B.dept_day(B))
findout(?C.class(C))
consultDB(”D price(D))

dest city(paris) i 1
dept_city(london)
how(plane)
?F.month(F’)
<’>E price(E) >
(?F.month(F))
SPEAKER = SYS
MOVES = ask(?F.month(F))
SCORE =1 1]

as cheap as possible

integrateUsrShortAnswer

downdatelSSUES
removeFindout

accommodatePlan2lssues
{ push(/SHARED/ISSUES, ?4.class(4))
integrateUsrFull Answer

downdatelSSUES
removeFindout
downdateQUD

PRIVATE

SHARED

AGENDA
PLAN

BEL
NIM

COM

ISSUES
QUD
PM

LU

((icm:acc*pos))

findout(? A.dept_day(A))
< consultDB(?B.price(B)) >
}

{
(M

class(economy)
month(april)

dest_city(paris)
dept_city(london)
how(plane)
(' ?D.price(D))
9
((icm:acc*pos, icm:loadplan, ask(?C.month(C))))
SPEAKER = uSr
MOVES ((answer(april), answer(class(economy))))
SCORE 1

121

S> Okay. Wat day do you want to | eave?

3.6.2 Local question accommodation: from ISSUES to QUD

If a move with underspecified content is made which does not match any question on the QUD,
the closest place to look for such a question is ISSUES, and if it can be found there it should
be pushed on the local QUD to enable ellipsis resolution. As a side-effect, the question has now
been brought into focus and should, if it is not topmost on the open issues stack, be raised to the
top of open issues. A schematic overview of local question accommodation is shown in Figure
3.3.

[AGENDA : OpenQueue(Action)
PLAN : OpenStack(PlanConstruct)
BEL : Set(Prop)
PRIVATE
USR : Tmp
TMP
[SYS : Tmp:|
NIM : OpenQueue(Move)
coMm : Set(Prop)
ISSUES : OpenStack(Question)
QUD : OpenStack(Question)
SHARED PM : OpenQueue(Move)
LU SPEAKER : Participant
MOVE : Set(Move)

Figure 3.3: Local question accommodation

This type of accommodation can e.g. occur if a question which was raised previously has dropped
off the local QUD but has not yet been resolved and remains on ISSUES. It should also be noted
that several accommodation steps can be taken during the processing of a single utterance; for
example, if an issue that is in the plan but has not yet been raised is answered elliptically.

(RULE 3.2) RULE: accommodatelssues2QUD

CLASS. accommodate
($/PRIVATE/NIM/ELEM=USr-answer(A)

$DOMAIN :: short_answer(A)
not SLEXICON :: yn_answer(A)
in($/SHARED/ISSUES, Q)

not in($/SHARED/QUD, Q)

[$DOMAIN :: relevant(4, Q)

.| push(/sHARED/QUD, Q)
EFF: :
raise(/SHARED/ISSUES, @)

PRE: <

122

The second condition in (RULE 3.2) checks that the content of the answer move picked out by
condition 1 is semantically underspecified. The third condition imposes a constraint on local
guestion accommaodation, excluding short answers to y/n-questions (“yes”, “no”, “maybe” etc.).
The remaining conditions check that the answer-content is relevant to an issue which is on
ISSUES but not on QUD. The first operation pushes the accommodated question on QuUD, and the
final update raises the question to the top of the stack of open issues.

3.6.3 Issue clarification

In GODIS2, user answers are either pragmatically relevant to the question topmost on QUD, or
not relevant at all. When we add mechanisms of accommodation to allow for answers to unraised
questions, it becomes necessary to deal with cases where an answer may be potentially relevant
to several different questions.

Semantically underspecified answers may (but need not) be pragmatically ambiguous, i.e. it is
not clear what question they provide an answer to. This can be resolved by asking the speaker
what question she intended to answer (or equivalently, which proposition she wanted to convey).

In this case, we can use the same strategy as for negative grounding, i.e. when a pragmatically
ambiguous utterance is to be interpreted the system raises a question whose answer will be in-
tegrated instead of the ambiguous answer. For example, “Paris” may be relevant to either the
destination city question or the departure city question. When the the clarification question “Do
you mean from Paris or to Paris?” is raised it is expected that the user will answer this question,
which means that the ambiguous answer no longer needs to be integrated and can be thrown
away®.

In this way we see how question accommodation, amended with a mechanism for resolving
which question to accommodate, can be used to resolve pragmatic ambiguities in user input. The
accommodation mechanism can thus be regarded as a refinement of the account of grounding on
the understanding level put forward in Chapter 2. The rule which selects the issue clarification
issue is shown in (RULE 3.3).

9GoDIS3 only handlesfull answersto clarifi cation questions, i.e. “To Paris.” or “From Paris.”. A slightly more
advanced semantics would be required to handle cases where the user again gives an underspecifi ed response which
resolves the question, i.e. “To.” or “From.”.

123

(RULE 3.3) RULE: clarifylssue

CLASS: select_action
in($/PRIVATE/NIM, usr-answer(A))

setof(C, in($/PRIVATE/PLAN, findout(Q)) and
$pomAIN :: relevant(4, Q), QSet)
$Farity(QSet) > 1
I setof(?P, in(QSet, Q) and $DOMAIN :: combine(Q, A, P), AltQ)
EFF: < push(/PRIVATE/AGENDA, findout(AltQ))
del(/PRIVATE/NIM, usr-answer(A))

PRE:

The first condition picks out the answer-move from the NIM queue. The second and third con-
ditions check that there is more than one question in the plan to which the answer is relevant,
by constructing the set of such questions. The first operation constructs the alternative-question
by applying each question in the set constructed in condition 2 to the answer to get a proposition
and prefixing the question operator ’?’ to each proposition to get a y/n-question. The alternative
question is this set of y/n-questions. The second operation pushes the action to raise the alterna-
tive question on the agenda, and the final operation removes the answer move from NiMm; this is
motivated above.

A sample dialogue with issue clarification is shown in (DIALOGUE 3.2).

(DIALOGUE 3.2)

S>Wel cone to the travel agency!

U>price information pl ease

S>Okay. | need sone information. How do you want to travel ?
U>flight umparis

S>OK, by flight. Do you nean fromparis or to paris?

The user’s utterance of “paris” is interpreted as answer(paris), which is relevant to two ques-
tions in the plan: ?z.dest_city(x) and ?z.dept_city(z). Because of this, the issue accommodation
rule in 1 will not fire and the answer is not integrated. This allows the clarifylssue rule to fire in
the selection phase. By combining each of these questions with the content of the answer (paris),
and turning each resulting proposition into a y/n-question, the set
{?dest_city(paris),?dest_city(paris)} is obtained. This set also works as an alternative-question,
which is used as the content of the clarification question in the system’s final utterance in (6).

Note that these clarification questions are dynamically put together by the system and thus do
not need to be pre-programmed. This means that the application designer does not even need to
realize that an ambiguity exists.

124

3.6.4 Dependent issue accommodation: from domain resource to ISSUES

Issue accommaodation, introduced above, presupposes that there is a current plan in which to look
for an appropriate question; this, in turn, presupposes that there is some issue under discussion
which the plan is meant to deal with. But what if there is currently no plan?

In this case, it may be necessary to look in at the set of stored domain-specific dialogue plans
(or come up with a new plan) to try to figure out which issue the latest utterance was addressing;
this can be regarded as a simple kind of plan recognition. An appropriate plan should contain
a question matching some information provided in the latest utterance. If such a plan is found,
it is possible that, in addition to the question answered by the latest utterance, a further issue
should also be accommodated: the “goal-issue” which the plan in question is aimed at dealing
with. Given our definition of dependence between questions in Larsson et al. (2002), the goal
issue is dependent on the issue directly addressed, and hence we refer to this as dependent issue
accommodation.

Dependent issue accommodation is thus the process of finding an appropriate background issue
and a plan for dealing with that issue which makes the latest utterance relevant, given “normal”
global issue accommodation. That is, dependent issue accommodation is always followed by
global issue accommodation. Dependent issue accommodation applies when no issues are under
discussion, and a previously unraised question is answered using a full or short answer (in the
latter case, global issue accommodation must in turn be followed by local question accommoda-
tion). A schematic overview of dependent issue accommodation is shown in Figure 3.4, and the
update rule is shown in (7).

(RULE 3.4) RULE: accommodateDependentlssue

CLASS. accommodate
[setof(A, $/PRIVATE/NIM/ELEM/SND=answer(A), AnsSet)

$Sarity(AnsSet) > 0

is_.empty($/PRIVATE/PLAN)

$DOMAIN :: plan(DepQ@, Plan)

forall(in(AnsSet, A), in(Plan, findout(Q)) and
$pomAIN :: relevant(4, Q))

not ($DOMAIN :: plan(DepQ@’, Plan’) and Dep@’ # Dep@ and
forall(in(AnswerSet, A), in(Plan’, findout(Q)) and

$DOMAIN :: relevant(4, Q)))

not in($/PRIVATE/AGENDA, icm:und*int:usr*issue(DepQ))

push(/SHARED/ISSUES, DepQ)

push(/PRIVATE/AGENDA, icm:accommodate: DepQ)

EFF: < push(/PRIVATE/AGENDA, icm:und*pos:usr*issue(DepQ))

set(/PRIVATE/PLAN, Plan)

push(/PRIVATE/AGENDA, icm:loadplan)

PRE: <

125

[[AGENDA : OpenQueue(Action) 1
PLAN : OpenStack(PlanConstruct)
BEL : Set(Prop)
PRIVATE
USR : Tmp
TMP
[SsYs Tmp]
| NIM : OpenQueue(Move)
[com : Set(Prop)
ISSUES : OpenStack(Question)
QUD : OpenStack(Question)
SHARED PM : OpenQueue(Move) :
LU . SPEAKER : Participant -
I i ' MOVE : Set(Moye)" |

DOMAIN
RESOURCE

v

Figure 3.4: Dependent issue accommodation

The first two conditions construct a set of all non-integrated answers and check that the arity
of this set is larger than zero, i.e. that there is at least one non-integrated answer. It should be
noted that this formulation of the rule relies on the assumption that all unintegrated answers have
been provided by the user. This is true for GODI1S3, since all system answers are integrated
immediately and never need accommodation. However, in a more complex system this may not
always be true; in this case, the rule would need some slight modifications to only pick out user
MOVeSs.

The third condition checks that the plan is empty. The consequence of this is that dependent
issue accommodation is not available when some plan is being executed, so if an issue is being
dealt with the only way to raise a new issue is to do so explicitly. We believe this is a reason-
able restriction, but if desired it can be disabled by removing the condition. However, doing so
may give problems in case speech recognition mistakenly recognizes an answer not matching
the current plan; if this answer triggers dependent accommodation this may result in confusing
utterances from the system.

The fourth and fifth conditions look for a plan in the domain resource to which all non-integrated
answers are relevant. This can be regarded as a simple version of plan recognition: given an
observed set of actions (user answers), try to find a plan and a goal (an issue) such that the
actions fit the plan. Here, the user answers fit the plan by being relevant answers to questions in
the plan (more precisely, questions such that the plan includes actions to resolve them).

126

The final condition checks that there is only one plan to which all the answers are relevant. If
there are several such plans, the accommodation rule should not trigger; instead, a clarification
question should be raised by the system (see Section 3.6.5).

The updates push the dependent issue on ISSUES, loads the plan, and pushes the appropriate
ICM moves on the agenda: positive feedback concerning the accommodated issue (“You want
to know about price.”) and feedback indicating that a new plan has been loaded (“I need some
information”). In addition, ICM indicating accommodation is produced (see Section 3.7.1).

(DIALOGUE 3.3)
S>Wel cone to the travel agency!
U>i want a flight

getLatestMoves
backupSharedUsr
accommodateDependentlssue
push(/SHARED/ISSUES, ?C .price(C))
push(/PRIVATE/AGENDA, icm:accommodate:?C.price(C))
push(/PRIVATE/AGENDA, icm:und*pos:usr*issue(?C.price(C)))
set(/PRIVATE/PLAN, stackset([findout(? D.how(D)), findout(? E.dest_city(F)), -.. 1))
push(/PRIVATE/AGENDA, icm:loadplan)
accommodatePlan2lssues
{ push(/SHARED/ISSUES, ?A.how(A))

accommodatelssues2QUD
push(/SHARED/QUD, ?4.how(A4))
raise(/SHARED/ISSUES, ?A4.how(A4))

integrateUsrAnswer

downdatelSSUES
removeFindout
downdateQUD

backupSharedSys

selectlcmOther
selectlcmOther

127

[AGENDA = ((icm:loadplan, icm:acc*pos))] T
findout(? A.dest _city(4))
findout(? B.dept_city(B))
BLAN findout(?C.month(C))
PRIVATE = findout(?D.dept_day(D))
findout(? E.class(E))
consultDB(? F'.price(F))
BEL =
| NIM = ... |
[com = { how(plane) }
ISsSUES = (?G.price(G))
o =)
SHARED = PM = ((greet))
SPEAKER = uSr
LU = l MOVES = ((answer(plane)))]
SCORE =1 i

S>Alright. You want to know about price.
u>

S>1 need sone information. GCkay. By flight. What city do you
want to go to?

The current solution has an optimistic strategy for dependent accommodation: the issue is as-
sumed to be under discussion and the system gives explicit positive feedback of this assumption.
It may be argued that a pessimistic strategy is more appropriate for dependent accommodation;
this can be achieved by replacing the list of updates in 4 with the update in (7).

(7) push(/PRIVATE/AGENDA, icm:und*int:usr*issue(D))

This will provide interrogative feedback from the system concerning whether the dependent issue
should be opened, e.g. “You want to know about price, is that correct?”. If the user gives
a positive response to this feedback, the system will use the same update rules as usual for
integrating the user’s response to interrogative feedback.

(DIALOGUE 3.4)
S>Wel cone to the travel agency!
U>i want a flight

getLatestMoves
backupSharedUsr

128

accommodateDependentlssue

{ push(/PRIVATE/AGENDA, icm:und*int:usr*issue(?C..price(C)))
downdateQUD

backupSharedSys

selecticmUndNeg

selectlcmOther

S>flight. | dont quite understand. You want to know about
price, is that correct?

getLatestMoves
integrateOtherICM
integrateOtherICM
integrateUndIntICM

U>yes

getLatestMoves
integratePoslcmAnswer
findPlan
accommodatePlan2lssues
accommodatelssues2QUD

integrateUsrAnswer
downdateQUD
[[AGENDA = ((icm:loadplan, icm:und*int:usr*how(plane))) 7
findout(? A.how(A))
findout(? B.dest_city(B))
findout(?C.dept_city(C))
PRIVATE = PLAN = <findout(?D.month(D)) >
findout(? E.dept_day(E))
findout(?F'.class(F))
consultDB(?G.price(G))
BEL = {}
| nw = ()]
COM = {}
\SSUES = <?A.how(A) >
?H .price(H)
SHARED = QUD - <>.
PM = ((icm:sem*pos:answer(plane), ...))
SPEAKER = usSr
LU = MOVES = oqueueanswer(yes)
| | SCORE = 1 | |
backupSharedSys

selectlcmOther

129

selectlcmOther

S>1 need sone information. by flight , is that correct?

3.6.5 Dependent issue clarification

If no plan is loaded and one or several non-integrated answers are relevant to several plans, a
clarification question should be raised by the system to find out which issue the user wants the
system to deal with. This is done by the selection rule in (RULE 3.5).

(RULE 3.5) RULE: clarifyDependentlssue

CLASS: select_action
[in($/PRIVATE/NIM, pair(usr, answer(A)))

setof(Q’, SDOMAIN :: plan(@Q’, Plan) and
in(Plan, findout(SomeQ)) and
PRE: { $DOMAIN :: relevant(A, SomeQ),
QSet')
remove_unifiables(QSet’, QSet)
| $Sarity(QSet) > 1
| Vsetof(Issue@, in(QSet, I) and Issue@Q=?issue(l), AltQ)
" | push(/PRIVATE/AGENDA, findout(AltQ))

The first condition checks if there is at least one non-integrated user answer left after the system
has attempted to integrate the latest user utterance. The second and third conditions constructs
the set @QSet of dependent issues that the non-integrated answer is indirectly relevant to (i.e.
issues for which there is a plan containing an action to resolve a question to which the answer is
relevant)®®. The final condition checks that there is more than one such dependent issue.

The first update constructs an alternative-question by picking out each question I in Q)Set and
adding ?issue([) to the set which constitutes the alternative-question. The final update pushes an
action to resolve alternative-question on the agenda.

In the travel agency domain, an example of dependent issue clarification occurs if the user’s first
utterance is “to Paris”, interpreted as answer(dest_city(paris)). This answer is relevant to the
question ?z.dest_city(z) which occurs in both the plan for addressing the price issue and that for
addressing the visa issue. This blocks the dependent issue accommodation rule. In the dialogue
in (DIALOGUE 3.5), the system instead raises a clarification question. Note that GODIS3 here

10The remove_unifi ables condition is used to remove multiple occurrences of the same issue. Note that these
occurrences are not identical, since they may differ in the identity of variables. One may of course argue whether
sets should have this property, but in the current TRINDIK T implementation they do.

130

makes use of the fact that an ask-move can supply an answer to a question concerning which
issue to pursue.

(DIALOGUE 3.5)
S>Wel cone to the travel agency!
U>to paris

getLatestMoves
backupSharedUsr
downdateQUD

backupSharedSys

clarifyDependentlssue
I setof (E, in(set([need_visa, ?D.price(D)]), F') and E=issue(F), G)
push(/PRIVATE/AGENDA, findout(G))

selecticmUndNeg

selectAsk

S>to paris. | dont quite understand. Do you nmean to ask about
visa or to ask about price?

getLatestMoves
integrateOtherICM
integrateOtherICM
integrateSysAsk

U> vi sa

getLatestMoves
backupSharedUsr
integrateUsrAsk
downdateSSUES
findPlan
accommodatePlan2lssues
integrateUsrAnswer
downdateQUD

S>Okay. | need sone information. to paris , is that correct?

131

3.6.6 Question reaccommodation

In GoDIS1 and GoDIS2 the user has a limited ability to reraise previously resolved issues; this
will typically result in the system giving the same answer again. However, this kind of reraising
is not very useful since the user is not able to modify her own answers to the system’s previous
questions.

Global question reaccommodation (Issue reaccommodation)

In general, if the user provides an alternative resolution of an issue which has been previously
resolved, this triggers a reraising of that issue. If the previous answer is incompatible with the
new one, the old answer is removed. This allows the user to change his/her mind during the
dialogue. Here is an example dialogue with the system:

(DIALOGUE 3.6)

S>Wel cone to the travel agency!

U>price information pl ease

S> You asked about price. How do you want to travel?
U>a flight, april the fifth

S>by flight. in april. the fifth. GOkay. Wuat city do you
want to go to?

U> | ondon

S>COkay. to |ondon.

U>actually, i want to go on the fourth

S>the fourth. Wat city do you want to go fronf

Initially, integration of the answer using integrateUsrAnswer (Section 2.6.6) will fail since there
IS no matching question on ISSUES. The system will then try various accommodation strategies,
including accommodation from /sHARED/com formulated in (RULE 3.6).

(RULE 3.6) RULE: accommodateComz2Issues

CLASS: accommodate
$/PRIVATE/NIM/ELEM/SND=answer(A)

in($/sHARED/coOM, P)
PRE: ' $DOMAIN :: question(Q)

$DOMAIN :: relevant(4, Q)

$pomAIN :: relevant(P, Q)

EFF: { push(/SHARED/ISSUES, Q)

132

This accommodation rule looks for an answer A among the moves which have not yet been
integrated (first condition). It then looks for a proposition among the shared commitments estab-
lished in the dialogue so far (second condition) which according to the system’s domain resource
IS an appropriate answer to some question for which A is also an answer (third to fifth condi-
tions). Given that in this simple system answers can only be relevant to a single question'!, this
strategy will be successful in identifying cases where we have two answers to the same question.
A system that deals with more complex dialogues where this is not the case would need to keep
track of closed issues in a separate list of closed issues. Thus the conditions will succeed if there
IS a question such that both the user answer and a stored proposition are relevant answers to it;
in the example dialogue above, “departure date is the fourth” and “departure date is the fifth” are
both relevant answers to the question “which day do you want to travel?”. If such a question is
found it is accommodated to ISSUES, that is, it becomes an open issue again.

When accommodateComz2lssues has been successfully applied, the retract rule in (RULE 3.7)
will remove the incompatible information from the system’s view of shared commitments repre-
sented in /SHARED/COM.

(RULE 3.7) RULE: retract
CLASS: integrate
[$/PRIVATE/NIM/ELEM/SND=answer(A)

in($/sHARED/cOM, P’)
fst($/SHARED/ISSUES, Q)
PRE: ¢ $DOMAIN :: relevant(P, Q)

$DOMAIN :: relevant(4, Q)

$DOMAIN :: combine(Q, A, P)
| SDOMAIN :: incompatible(P, P’)
EFF: { del(/sHARED/coMm, P')

The conditions here are similar to those in (RULE 4.6). We look for an unintegrated answer (first
condition) which is relevant to a question at the head of the list of open issues (third and fifth
conditions) and for which there is already a relevant answer in the shared commitments (second
and fourth conditions). Finally, we determine that the result of combining the answer with the
question (sixth condition) is incompatible with the answer already found (seventh condition).
If all this is true we delete the answer which is currently in the shared commitments. This will
finally allow the new answer to be integrated by a rule that integrates an answer from the user, and
a further rule will remove the resolved issue from QUD. Note that this rule is of class integrate.
It is tried before any other integration rule, to avoid integration of conflicting information.

UThat is, in the full form in which they appear in $/SHARED/COM. “Chicago” can be an answer to “Which city
do you want to go to?’ and “Which city do you want to go from?’ but when it has been combined with the questions
the result will be “destination(Chicago)” and “from(Chicago)” respectively and it is this which is entered into the
commitments.

133

Note also that the “incompatible” relation is defined as a part of the domain resource, and can
thus be domain specific. The simple kind of revision that GODIS currently deals with is also
handled by some form-based systems (although they usually do not give feedback indicating
that information has been removed or replaced, as GoDIS does). For example, Chu-Carroll
(2000) achieves a similar result by extracting parameter values from the latest user utterance and
subsequently (if possible) copying values from the previous form for any parameters not specified
in the latest utterance. A similar mechanism is referred to as “overlay” by Alexandersson and
Becker (2000). While we are dealing only with very simple revision here, the rule in (RULE 3.7)
and the “incompatible” relation can be seen as placeholders for a more sophisticated mechanism
of belief revision.

Itis also possible to remove the old answer by denying it (asserting its negation) as in (DIALOGUE
3.7).

(DIALOGUE 3.7)

S>Wel cone to the travel agency!

U>price information for a flight to paris on april the fifth
S> You asked about price. by flight. to paris. in april. the
fifth. Wat city do you want to go fronf

U>actually, not the fifth

S>not the fifth. So, what day do you want to | eave?

In this case, the system will explicitly reraise the issue to get a new response from the user.
Again, the system will use the rule in 25 and signal reraising using ”so, ”. All the rules will be
applied as in the previous case, but the departure date question will not be removed since it is not
resolved by the given answer. Eventually, this leads to the system reraising the question.

Reraising of dependent questions (dependent issue reaccommodation)

In some cases, an issue might be reraised which influences the answer to a further issue that has
also been resolved. For example, the choice of price class for a flight influences the price of
the flight. In this case, the influenced question also needs to be reaccommodated and answered
again.

(DIALOGUE 3.8)

S>Wel cone to the travel agency!
U>what’'s the price of a flight fromlondon to paris april the

134

fifth?

S>You asked about price. by flight. fromlondon. to paris. in
april. the fifth. Wat class did you have in m nd?

U>as cheap as possible

S>cheap. Okay. The price is 123 crowns.

U>actually, i mght go for business class

S>first class. GCkay. Concerning your question about price :

The price is 1234 crowns.

The rule that achieves the reraising of a dependent question COM-to-1SSUES accommodation is
shown in (RULE 3.8).

(RULE 3.8) RULE: accommodateComz2lssuesDependent

CLASS. accommodate
($/PRIVATE/NIM/ELEM/SND=answer(A)

in($/sHARED/cOM, P)
$DOMAIN :: question(Q)
$DoMAIN :: relevant(4, Q)
PRE: { $DOMAIN :: relevant(P, Q)
is_.empty($/SHARED/ISSUES)
$DOMAIN :: depends(Q’, @)
in($/sHARED/coM, P’)

[$DOMAIN :: relevant(P’, Q')
del(/PRIVATE/BEL, P')
del(/sHARED/com, P')

EFF: { push(/SHARED/ISSUES, Q')

push(/SHARED/ISSUES, Q)

push(/PRIVATE/AGENDA, respond(Q"))

This rule is similar to 6 except that is looks for a question which depends on the question it
finds corresponding to the answer provided by the user. It puts both question onto the list of
open issues and plans to respond to the dependent question. This rule, as currently implemented,
is specific to the particular case treated in the system. There is, of course, a great deal more to
say about what it means for one question to be dependent on another and how the system knows
whether it should respond to dependent questions or raise them with the user.

3.6.7 Opening up implicit grounding issues

In Chapter 2 we outlined a general issue-based account of grounding, where issues of contact,
perception, understanding and acceptance of utterances may be raised and addressed. Parts of

135

this account were implemented in GoDI1S2, allowing the system e.g. to raise understanding
questions regarding the user’s input (e.g. “To Paris, is that correct?””). This is a case of explicitly
raising the understanding-question which results in this question being under discussion.

The system could also produce positive explicit feedback (e.g. “To Paris”); this kind of feedback
does not explicitly raise the understanding question, and there is no obligation on the user to
respond to it before the dialogue can proceed. However, it can be argued that even positive
feedback raises grounding-related issues, although not explicitly. This is given some support
from the fact that it is possible for the user to protest against the system’s feedback in case the
system got something wrong.

According to Ginzburg, an assertion can be followed by any utterance addressing the acceptance
of this question as a fact, e.g. by saying “no!”. This is then regarded as a short answer to the ac-
ceptance question; in effect, a rejection. In the case of an assertion addressing understanding (i.e.
positive understanding feedback), the acceptance question can be paraphrased “Is it correct that
you meant ’to Paris’?”. That is, the acceptance-question regarding the system’s understanding is
exactly the same question which is raised explicitly by an interrogative feedback utterance.

In GoDIS, we have chosen not to represent acceptance-questions explicitly; however, in the
case of positive explicit grounding there are good reasons to do so. Positive feedback has the
advantage of increased efficiency compared to interrogative feedback, but the disadvantage is that
the user is not able to correct the system’s interpretation. However, if the positive feedback move
implicitly raises the question whether the system’s interpretation was correct, we can use this to
allow the user to reject faulty system interpretations. Besides, we already have mechanisms in
place for representing and dealing with answers to the understanding-question.

To model the fact that the acceptance question regarding understanding is implicit rather than
explicit, we push it onto the local QUD only. If the user addresses it (e.g. by saying “no”), the
implicit issue is “opened up”, i.e. it becomes an open issue; it is pushed on ISSUES.

(RULE 3.9) RULE: accommodateQUD2Issues

CLASS. accommodate
$/PRIVATE/NIM/ELEM/SND=answer(A)

in($/SHARED/QUD, Q)
$DOMAIN :: relevant(4, Q)
not in($/SHARED/ISSUES, Q)

EFF: { push(/SHARED/ISSUES, Q)

PRE:

The rule in (RULE 3.9) picks out a non-integrated answer-move which is relevant to a question
on QUD which is not currently an open issue, and pushes it on ISSUES.

136

To handle integration responses to positive understanding feedback, we also need to modify
the integrateNeglcmAnswer rule described in Section 2.6.6. A significant difference between
positive and interrogative feedback in GoDIS is that the former is associated with cautiously
optimistic grounding, while the latter is used in the pessimistic grounding strategy. This means
that a negative response to feedback on the understanding level must be handled differently
depending on whether the content in question has been added to the dialogue gameboard or not.
Specifically, if the positive feedback is rejected the optimistic grounding assumption must be
retracted.

(RULE 3.10) RULE: integrateNeglcmAnswer
CLASS:. integrate
($/PRIVATE/NIM/FST/SND=answer(A)
fst($/SHARED/ISSUES, Q)
$DOMAIN :: resolves(4, Q)
fst($/SHARED/QUD, Q)
$DOMAIN :: combine(Q, A, P)
| P=not(und(DP*C))
pop(/PRIVATE/NIM)
pop(/SHARED/ISSUES)
if_do(in($/sHARED/coMm, C) or
C=issue(Q'") and in($/SHARED/ISSUES, @’), [
/SHARED/QUD := $/PRIVATE/TMP/DP/QUD
/SHARED/ISSUES := $/PRIVATE/TMP/D P/ISSUES
/SHARED/COM := $/PRIVATE/TMP/DP/COM
/PRIVATE/AGENDA := $/PRIVATE/TMP/D P/AGENDA
[PRIVATE/PLAN := $/PRIVATE/TMP/DP/PLAN |)
push(/PRIVATE/AGENDA, icm:und*pos: D P*not(C))
clear(/PRIVATE/NIM)
init_shift(/PRIVATE/NIM)

PRE: <

EFF. <

\

The rule in (RULE 3.10) is similar to those for integrating “normal’” user answers (see Section
2.6.6), because of the special nature of grounding issues, we include issue downdating in the rule
rather than adding a further rule for downdating 1SSUES for this special case. This means the rule
has to check that the answer resolves the grounding issue, rather than merely checking that it is
relevant; this is done in the third condition. The content resulting from combining the issue on
QUD and the answer is computed in the fifth condition. Finally, the sixth condition checks that
the content is not(und(DP*C)) where DP is a DP and C is the content that is being grounded
(or in this case, not grounded).

The second update removes the grounding question from I1SSUES. The third update first checks if
C has been optimistically grounded. In this case, the optimistic grounding assumption regarding
the grounding of C' is retracted. This is where the new TMP/USR field, containing relevant parts

137

of the information state as they were before the latest user utterance was optimistically assumed
to be grounded, is used. If C has not been optimistically assumed to be grounded, nothing in
particular needs to be done.

The fourth update adds positive feedback that the system has understood that C' was false. Note
that not(C) is not added to /SHARED/CcOM. The reason for this is that the negated proposition is
not something that the user intended to add to the DGB - it was simply a result of a misunder-
standing by the system.

Note also that this feedback will not raise a grounding issue according to the definition of
question-raising ICM in Section 2.7.1. Since the content not(C) has not been added to the
information state, there is no point in dealing with grounding.

The final two updates clear the NIM queue, which means that the system will disregard any moves
which have not yet been integrated. One motivation for this is that if the system has misheard
some part of the user’s utterance, it is likely that it also misheard the rest. Clearing the NiM stack
is also useful in dialogues such as that in (DIALOGUE 3.9).

(DIALOGUE 3.9)

S>Wel cone to the travel agency!
U>flight to paris

$S>flight. to paris. | dont quite understand. You want to
know about price, is that correct?
U>no

S>You did not ask about price.

When integrating the user’s “no” (a negative response to system ICM), the answer-moves real-
ized in the utterance “flight to paris” are discarded;. The system has tried to make sense of it but
the user rejected this attempt. At this point, the system simply cannot deal with them and rather
than getting stuck in trying to figure out what the user meant, the moves are thrown out.

Note that the rule as implemented is actually more general than what is needed for (or used in)
GoDIS3. Since the part of TMP that it backtracks to depends on the D P variable, in principle
it could be used for cases where the user gives positive feedback and the system rejects this as
mistaken.

A sample dialogue with a negative response to an implicit grounding question is shown in
(DIALOGUE 3.10).

(DIALOGUE 3.10)

138

S>Wel cone to the travel agency!
U>visa informati on pl ease (0.78) (user actually said something else)

getLatestMoves
backupSharedUsr
integrateUsrAsk

findPlan
downdateQUD
backupSharedSys
selectlcmOther
selectlcmOther

S>Ckay. You want to know about price.
getLatestMoves

integrateOtherICM
integrateUndPosICM

[AGENDA = ({ icm:loadplan)) W
findout(? A.how(A))
findout(? B.dest_city(B))
findout(?C.dept_city(C))
PLAN = <find0ut(?D.m0nth(D)) >
findout(? E.dept_day(E))
findout(?F'.class(F))
PRIVATE = consultDB(?G.price(G))
BEL = {}
COM = {}
wo =
TMP = USR = Issues =)
AGENDA = {{})
PLAN =)
=) J
COoM = {}
ISSUES = (?H.price(H))
QuUD = (und(usrtissue(?I.price(I))))
SHARED = PM = { ask(?H.price(H)) }
SPEAKER = sys
LU = l MOVES = { !cm:und:pos:usr*lssue(?l.prlce(I)) }]
icm:acc*pos
U>no

139

getLatestMoves
accommodateQUD2Issues
{ push(/SHARED/ISSUES, und(usr*issue(?A.price(4))))

integrateNeglcmAnswer
(pop(/PRIVATE/NIM)
pop(/SHARED/ISSUES)
if_do(in($/SHARED/COM, issue(? A.price(4))) or
issue(?A.price(A4))=issue(D) and in($/SHARED/ISSUES, D),
/SHARED/QUD := $/PRIVATE/TMP/USR/QUD
/SHARED/ISSUES := $/PRIVATE/TMP/USR/ISSUES
/SHARED/COM := $/PRIVATE/TMP/USR/COM
/PRIVATE/AGENDA := $/PRIVATE/TMP/USR/AGENDA
/PRIVATE/PLAN := $/PRIVATE/TMP/USR/PLAN])
push(/PRIVATE/AGENDA, icm:und*pos:usr*not(issue(? A.price(4))))
clear(/PRIVATE/NIM)
init_shift(/PRIVATE/NIM)

downdateQUD
[[AGENDA = icm:loadplan 1]
- icm:und*pos:usr*not(issue(? A.price(4)))
PLAN =)
BEL = {}
PRIVATE = gﬁ'\t’)' : g
TMP = USR = ISSUES =)
AGENDA = {{))
PLAN =
[NIM = (M 1
COM = {}
ISSUES =)
SHARED = QUD = 0
PM = { icm:und*pos:usr*issue(? A.price(4)), icm:acc*pos }
. SPEAKER = usr
| | v MOVES = {answer(not(und(usr*issue(?A.price(A)))))}
backupSharedSys

selectlcmOther

S>You did not ask about price.

Feedback for utterances realizing several moves

In the case where a user utterance provides answers to several questions (and perhaps also asks
a question), the strategy we have chosen is to produce feedback for each move individually to
give the user a chance to correct mishearings or misunderstandings. If positive feedback regard-

140

ing one piece of information is rejected, the optimistic assumption is retracted by modifying
the information state according to the /PRIVATE/TMP/USR saved state. If feedback regarding
one piece of information is accepted, this information should not disappear if a later feedback
utterance from the system should be rejected.

(DIALOGUE 3.11)

S>Wel cone to the travel agency!

U>price information pl ease

S>Okay. | need sone information. How do you want to travel ?
U>a flight to ferris[0.78]

S>Ckay. by flight.

U>yes

S>to paris.

U>no

S>not to paris. So, what city do you want to go to?

For example, in the dialogue in (DIALOGUE 3.11), the user accepts the system’s feedback “by
flight”, but rejects “to paris”; however, the information that the user wants to travel by flight is
retained.

To handle this, each time positive feedback is accepted, the parts of the /PRIVATE/TMP/USR

structure corresponding to the SHARED field are modified. A further modification is thus needed
for the integratePoslcmAnswer rule previously defined in Section 2.6.6.

141

(RULE 3.11) RULE: integratePoslcmAnswer
CLASS: integrate
($/PRIVATE/NIM/FST/SND=answer(A)
fst($/SHARED/ISSUES, Q)
$DOMAIN :: resolves(4, Q)
fst($/SHARED/QUD, Q)
$DOMAIN :: combine(Q, A, P)
| P=und(DP*Content)
(pOp(/PRIVATE/NIM)
pop(/SHARED/ISSUES)
if_then_else(Content=issue(Q’), [
push(/PRIVATE/TMP/DPI/QUD, Q')
push(/PRIVATE/TMP/D P/ISSUES, Q')
push(/PRIVATE/TMP/D P/AGENDA, respond(Q")) |,
add(/PRIVATE/TMP/DP/com, Content))
if_do(not (in($/SHARED/coMm, Content) or
Content=issue(Q') and in($/SHARED/ISSUES, Q")),
if_then_else(Content=issue(Q'), |
push(/SHARED/QUD, Q')
push(/SHARED/ISSUES, Q')
push(/PRIVATE/AGENDA, respond(@")) |,
| add(/sHARED/coM, Content)))

PRE: <

EFF:

The conditions are similar to those of the previous version of the rule, except for inspecting
ISSUES instead of QuD. The first two updates are also the same. The third update adds the
content Content which is being grounded to TMP/USR (in case DP is usr, which it always is in
GoDIS3). This means that if future feedback (concerning the same utterance) from the system is
rejected, the system will backtrack to a state where Content is integrated. The conditionals in the
third and fourth updates reflect the fact that questions are integrated differently from propositions.
The fourth update is similar to the third update in the previous version of the rule.

Implicit acceptance

Before we move on there is one more thing to consider. If the user does not reject the system’s
positive feedback concerning a piece of information, this is regarded as an implicit acceptance.
Therefore, we also need to add a noFollowup rule, for cases where positive system feedback is
not responded to at all (i.e. the user does not take the turn offered).

142

(RULE 3.12) RULE: noFollowup
CLASS: (none)
oRE: { $iNPUT, 'TIMED_OUT’
"1 in($/sHARED/PM, icm:und*pos:usr*Content)
if_then_else(Content=issue(Q), |
push(/PRIVATE/TMP/USR/QUD, Q)
EFF: push(/PRIVATE/TMP/USR/ISSUES, Q)
push(/PRIVATE/TMP/USR/AGENDA, respond(Q)) |,
add(/PRIVATE/TMP/USR/COM, Content))

The first condition is true only if the user did not produce any utterance (that the system heard)
during her latest turn'?. The second condition checks that the moves performed in the previous
utterance includes positive understanding feedback regarding Content. The first updates are
identical to the third update in the integratePoslcmAnswer rule in Section 3.6.7.

Below is a dialogue example involving positive, implicit positive, and negative followups to
system feedback.

(DIALOGUE 3.12)

S>Wel conme to the travel agency!

U>price information pl ease

S>Okay. Lets see. How do you want to travel?
U>a flight to paris in april

S>Ckay. by flight.

U>yes

S>to paris.

U>

S>in april.

U>no

S>not in april. What city do you want to go to?

Implicit questions and elliptical answers

In the case of implicit acceptance questions in English (and Swedish) it appears that they can be
addressed by short answers; however, we cannot assume that all implicit issues can be addressed
elliptically. The use of QUD for storing implicit issues relies on the fact that questions on QUD
have not necessarily been raised explicitly; however, questions on QUD are also by definition

12See Section 2.6.6 for an explanation of ' TIMED_OUT".

143

available for resolution of short answers. To represent implicit questions which cannot be ad-
dressed elliptically, a further local data structure for implicit questions under discussion would
be needed.

3.7 Further implementation issues

In this section we describe parts of the implementation of GoD1S3 which have not been dis-
cussed earlier in this chapter, and which are not directly reused from GoD1S2.

3.7.1 Dialogue moves

For GoDIS3, only one dialogue move has been added: ICM indicating accommodation of a
dependent issue. In English, we have chosen “alright, you want to know about . ..” to indicate
that some inference has been performed, and that it has been successful. This choice is based on
the intuition that this indicates some process inference which has concluded successfully; this
should be regarded as a preliminary and temporary solution awaiting further corpus and usability
studies.

e icm:accommodate:@ : Move if : Question

3.7.2 GoDI1S3 update module
Update rules

The main additions to the update rule collection needed to handle accommodation and reaccom-
modation were described above in Section 3.6.

In this section, we describe changes applied to other rules from GoDiS2 to fit with the modified
information state used by GoDIS3.

144

Backing up TMP/USR

The TMP/USR field contains copies of parts of the information state as they were before the
latest user utterance was integrated. If the optimistic assumption should turn out to be wrong,
the TMP/USR field is used to undo the optimistic grounding assumption without the need for
complex revision processing (see Section 3.6.7).

The backupSharedUsr in (8) is called each time an utterance is to be integrated and stores the
current QUD, ISSUES, COM, PLAN and AGENDA fields; these are all potentially affected by the
integration of the moves in the latest utterance, and are also important for determining what to
do next.

This backtracking mechanism only applies to domain-level communication; user ICM moves
are always optimistically assumed to be correctly understood and integration always succeeds.
Since ICM *“subdialogues”, such as that in (DIALOGUE 3.13) are used to establish the fact that
a previous user utterance was misunderstood by the system, it is important that TMP/USR is not
overwritten during the subdialogue. For example, the backupSharedUsr rule should not trigger
before integrating the user’s “pardon” or the user’s answer “no” to the system ICM “by boat .

(DIALOGUE 3.13)

S>(kay. Lets see. How do you want to travel?
U> by boat [0.76] (user actually said something else)

S> Okay. by boat.

U> pardon ?

S> kay. by boat.

U>no

S>not by boat. So, how do you want to travel ?

145

(RULE 3.13) RULE: backupSharedUsr
CLASS: (none)
[$LATEST_SPEAKER=USI
$LATEST_MOVES=Moves
not in(Moves, icm:X)
PRE: ¢ notin(Moves, no_move)
not (fst($/SHARED/QuUD, und(usr*C)) and
in(A, answer(D)) and
$DOMAIN :: relevant(D, und(usr*C)))
[PRIVATE/TMP/USR/QUD = $/SHARED/QUD
/PRIVATE/TMP/USR/ISSUES := $/SHARED/ISSUES
EFF: { /PRIVATE/TMP/USR/COM := $/SHARED/COM
/PRIVATE/TMP/USR/AGENDA := $/PRIVATE/AGENDA
/PRIVATE/TMP/USR/PLAN := $/PRIVATE/PLAN

The first condition checks that the latest speaker was indeed the user; if not, the rule should
of course not trigger. The next four conditions are used to prevent triggering in case of an
ICM subdialog, i.e. if the user produced an ICM move or responded to one from the system.
(Note that no_move may count as implicit ICM if the user does not respond to ICM from the
system; see Section 3.6.7). The fifth condition checks if the user utterance contains an answer
relevant to a grounding-question on QUD. The effects simply copy the contents of TMP/USR to
the corresponding paths in the information state.

Integration rules and NIm

In GoDIS2, the integration rules inspect NIM using the condition in(/PRIVATE/NIM, Mowes).
Since TRINDIKIT uses backtracking to find instantiations of variables in conditions (see SIRIDUS
(2002)), this results in each integration rule looking through the whole queue of non-integrated
moves. Thus, in GoDIS2 the ordering of the integration rules determines which move is inte-
grated first. This is okay for dialogues with a very simple structure, but when dialogues become
more complex (e.g. because of accommodation), the ordering of the moves becomes more im-
portant.

Therefore, in GoODIS3 all integration rules inspect only the first move on the NIM queue, using
the condition fst(/PRIVATE/NIM, Move) or similar. In combination with the queue-shifting tech-
nique described in Section 3.7.2, this means that the algorithm tries to integrate moves in the
order they were performed.

146

Update algorithm

Because of the more complex dialogues handled by GoD1S3, the update algorithm is a bit more
complex than that for GoD1S2.

(8) 1if not (SLATEST_MOVES == failed)
2 then (getLatestMoves,

3 try backupSharedUsr,

4 try irrelevantFollowup,

5 repeat (

6 repeat((integrate,

7 try downdate_issues,

8 try removeFindout,

9 try load_plan),

10 orelse apply shift(/PRIVATE/NIM))
11 until fully_shifted($/PRIVATE/NIM),
12 apply shift(/PRIVATE/NIM),

13 try select_action

14 accommodate),

15 apply cancel_shift(/PRIVATE/NIM),

16 repeat exec_plan,

17 try downdate_qud)
18 else (failedFollowup orelse unclearFollowup)

Line 1 checks that the interpretation of the latest utterance was successful (of course, in the
case of system utterances this is always true). If not, the failedFollowup and unclearFollowup
rules in line 18, described in Section 2.6.8, are tried. If interpretation was successful, the latest
moves are incorporated in the information state proper by the getLatestMoves rule (see Section
2.6.7). After this the backupSharedUsr rule is tried; its conditions are satisfied, the rule will
trigger and store a copy of relevant parts of the information state in case the system makes an
optimistic grounding assumption which turns out to be mistaken (see Section 3.7.2). Also, before
integration starts, the irrelevantFollowup rule described in Section 2.6.8 is tried to catch cases
where a system question has been ignored by the user.

After this, a loop involving integration and accommodation is executed until nothing more can
be integrated (i.e. until the loop can no longer be executed). The basic idea is this: first try to
integrate as many moves as possible by cycling through the NIM queue; then, if accommodation
can be applied, do the same thing again. Repeat this until nothing can be integrated and no
accommodation is possible.

147

The first part of this loop starts in line 6 and is itself a loop for cycling through all non-integrated
moves and trying to integrate them. If integration succeeds, the algorithm tries to remove any
resolved issues from I1SSUES and PLAN, and if necessary load a new plan (e.g. if an ask move
from the user was integrated). Then it tries integration again. If integration fails, the NIM queue
is shifted one step, i.e. the topmost element is removed from the top and pushed to the end of
the queue. Then, integration is tried again. This continues until the queue has been completely
cycled through once, and all moves have had a shot at being integrated.

After this loop is finished, accommodation will attempt to adjust the /SHARED field so that any
moves still not integrated may be understood on the pragmatic level, and integrated. However,
we need to avoid a problem that arises as a consequence of having the integration rules handle
pragmatic understanding, acceptance, and integration in a single step. The problem arises if
some move is regarded as relevant (i.e. understood on the pragmatic level) but not acceptable, or
if a relevant move has low reliability and should be verified before being integrated. In this case,
accommaodation should not be tried since the purpose of accommodation is to understand some
utterance on the pragmatic level, and this has already been achieved. To solve this problem, some
action selection rules (of class select_action) have been moved from the selection module to the
update module Before trying accommodation, line 13 of the update algorithm thus tries to select
rejection moves and interrogative feedback moves to catch any moves which have already been
understood.

Line 14 calls the accommodation rule class. If this succeeds, there is a chance that some moves
that could not be integrated before can now be integrated, so the loop starting in line 6 is restarted.
When nothing can be integrated and nothing can be accommodated, the sequence starting at line
6 and ending at line 14 cannot be executed, and consequently the loop started in line 5 will be
finished. Line 15 cancels shifting of the NIm queue (see SIRIDUS (2002)).

Any loaded plan is executed in line 16 by repeatedly applying the exec_plan rule class until no
more execution is possible at the current stage of the dialogue. Finally, QUD is downdated.

As an example of how integration and accommodation interact, in the dialogue in
(DIALOGUE 3.14), “to paris” is integrated before accommodation is tried, so the only question
available for ellipsis resolution of “paris” is the one concerning departure city.

(DIALOGUE 3.14)

S>Wel cone to the travel agency!
U>price | ondon to paris[0.78]

S>Okay. You want to know about pri ce.
S>1 need sone information. to paris.
S>from | ondon.

S> How do you want to travel ?

148

Accommodation rule ordering For the accommodate rule class, the ordering in which the
various accommaodation rules are tried may be important in some cases. The ordering used in
GoDiS3 is shown in (9).

(99 accommodate
1. accommodatelssues2QUD
2. accommodateQUD2Issues
accommodatePlan2lssues

accommodateCom2lssues

accommodateCom2IssuesDependent

o o >~ w

accommodateDependentlssue

This order in which to try the accommodation rules has been chosen based on intuitions about
how accessible questions are depending on where they are retrieved. By experimenting with the
ordering, different behaviours can be obtained. The current ordering should be regarded as pro-
visional, and finding the “best” ordering is an object for future research. It may also sometimes
be necessary to do clarification if an answer matches several questions whose accommaodation
rules have the same or nearly the same priority; this has not been implemented in GoDIS3.

Possible criteria for judging whether one ordering is better than another are (1) how reasonable
the resulting behaviours are, (2) how efficient the overall processing becomes, and (3) how sim-
ilar to human cognitive processes corresponding to accommodation the processing is (assuming
question accommaodation is cognitively plausible).

First, accommodation involving only ISSUES and QuUD is tried, since these are the central struc-
tures for dealing with questions. If this fails, accommodation from the dialogue plan is tried;
if this fails, reaccommodation from cowm is attempted. First “normal” reaccommodation, then
dependent reaccommodation. Finally, dependent issue accommodation is tried; this is tried last
since it finds the question in the domain resource rather than the information state proper.

3.7.3 Selection module

The selection module is almost unchanged from GoDi1S2. Some minor adjustments have been
made to adapt the rules to the changes in the information state type: that objects in NIM are pairs
of DPs and moves, and that TMP is divided into two substructures.

149

3.8 Discussion

In this section we discuss some variations on GoDIS3, show some additional “emergent” fea-
tures, and discuss various aspects of question accommaodation.

3.8.1 Phrase spotting and syntax in flexible dialogue

As it turns out, GODI1S3 sometimes runs into trouble if the interpreter recognizes several answers
to the same question in an utterance. Whereas GoDI1S2 would simply integrate the first answer
and ignore the second, GoDI1S3 will try to make sense of all the moves in an utterance, which
may lead to problems if the accommodation rules are not designed to cover the case at hand.

For example, if the system recognizes “paris to london” as a first utterance in a dialogue, the sys-
tem will try dependent issue accommodation (see Section 3.6.4) and note that the set of answers
(answer(paris) and answer(dest_city(london))) is (indirectly) relevant to both the price issue
and the visa issue. It might seem that this is wrong, since the two answers are in fact relevant
to the same question (regarding destination city) in the “visa” plan, whereas it is relevant to two
separate questions (destination and departure city) in the “price” plan, so it should be indirectly
relevant only to the “price” issue. But in general, one cannot require that the two answers must
be answers to different questions, since the second answer may be a correction of the first. This
may of course be signalled more clearly, as in “to paris uh no to london”, but the correction
signals may be left out, inaudible, or not recognized.

One way to solve this problem is to sometimes look for constructions which realize more than
one move, and do some “cleaning up” in the interpretation phase so that the DME will not get
into trouble. For example, we can add a lexical entry looking for phrases of the form “X to Y”
and interpret this as “from X to Y, i.e. answer(dept_city(X)) andanswer(dest_city(Y")).

A related problem occurs if the user first chooses Gothenburg as departure city and then says
“not from got henburg | ondon”. Since plan-to-issues accommodation has precedence
over com-to-issues, “london” will be integrated first by accommodating the destination city ques-
tion, which is wrong. One solution is of course to give com-to-issues accommodation prece-

dence, but then for “pari s from | ondon”, “from | ondon” will first be integrated and
then “par i s” will be seen as a revision of the departure city, which is also wrong.

As mentioned before in Section 3.7.2, the exact precedence ordering between accommodation
rules is a topic for future research, and it may sometimes be necessary to do clarification if an
answer matches several questions whose accommodation rules have the same or nearly the same
priority. However, an easier solution is to add a further interpretation rule saying that “not P X,
Y should be interpreted as a paraphrase of “not P X, P Y.

150

A slightly irritating but not very serious “bug” in GODIS occurs if a user utterance contains two
answers to the same question (e.g. “to kuala lumpur to london™), and the first of these is an invalid
database parameter. The first answer will be rejected, and appropriate feedback will be put on the
agenda. The second answer will then (correctly) replace the first answer using retraction, but the
rejection feedback concerning the now replaced first answer remains on the agenda. This means
that the system will give some irrelevant information, namely that the first answer was rejected.
This can be fixed to some extent by interpreting phrases of the form “PXPY” as “PY”, i.e. the
second part is regarded as a correction of the first part. Similarly, phrases of the form “PX no
(P)Y™”, where “no” is regarded as a correction indicator and the second P is optional, can also
be interpreted as “PY™. In general, it is useful to detect corrections in the interpretation phase to
avoid potentially expensive revisions in the integration phase.

Of course, these simple fixes will only get us so far, since they only capture the very simplest
cases. For example, we would not be able to notice that an utterance contains two answers to
the same question unless they are adjacent. What is really needed here is a proper parser (e.g. a
HPSG-based parser) and grammar.

What this shows us, then, is that taking syntax into account in interpretation becomes increas-
ingly important when the dialogue management becomes more flexible. This might not be very
surprising, but by starting out with very simple keyword spotting and keeping it as long as possi-
ble, we find out exactly where it becomes insufficient. Had we used a sophisticated parser from
the outset, we would not have had this insight.

3.8.2 Relaxing constraints using denial and dependent reaccommodation

In inquiry-oriented dialogue it is often useful to be able to relax constraints on the database
search, especially in cases where no result is returned from the database. As it turns out, exist-
ing accommodation mechanisms in GoDIS3 in combination with the slightly more complex
database result format which was introduced as an extension of GODIS (see Larsson et al.
(2002)) provides a way of doing exactly this.

The idea is this: if the system returns an empty or otherwise unsatisfactory database result, the
user can modify the information given to the system by denying some part of it. This triggers
reaccommodation of the dependent issue that the database search tried to find an answer to, and
the corresponding plan is reloaded. Since some information is now missing, the system will
again ask for it; the rest of the actions in the plan will be removed since the questions have
already been answered. By rejecting the repeated question (e.g. by saying “It doesn’t matter” or
“I don’t know”), the user makes the system search the database again, but this time with relaxed
constraints.

151

(DIALOGUE 3.15)

S>Wel cone to the travel agency!

U>a flight to paris from gothenburg in april

S>Alright. You want to know about price.

S>Llets see. kay. Wiat day do you want to | eave?
U>the fifth

S>Okay. Wiat class did you have in m nd?

U> busi ness cl ass

$S> Ckay. Sorry, there is nothing matching your request about
price.

U> okay, not business class then

S>You want to know about price.

$S> Lets see. Ckay. So, Wiat class did you have in mind?
U>it doesnt matter

S>The price is 7654 crowns. econony cl ass.

The example in (DIALOGUE 3.15) illustrates the principle. To make this feature more useful,
one would need to be able to give disjunctive answers (“l want to leave on the twenty-first or
the twenty-second”), specify a range of allowable “parameter values” (I want to leave between
the twenty-first and the twenty-fifth”), and give answers which are unspecific in relation to the
question (“I want to go to France” in response to “What city do you want to go to”). Of course,
this is a useful feature also when providing answers in the initial database query specification
stage. This is an area for further implementation.

The nice thing about this approach to relaxing constraints is that it requires no special machinery,
but it emerges as a possibility given mechanisms which are independently motivated.

3.8.3 “Smart” interpretation

The dialogues in (DIALOGUE 3.16) and (DIALOGUE 3.17) show how the integration strategy in
GoDIS2 is able to use all the information provided in an utterance as clues for how to inter-
pret underspecified information. The interpretation of “par i s” as destination or departure city
depends on what other information is given in the utterance, specifically whether destination or
departure city is specified elsewhere in the utterance.

(DIALOGUE 3.16)

U>price information pl ease
S>Okay. Lets see. How do you want to travel?

152

U>paris froml ondon [0.78]
S>Okay. from | ondon.
S>to paris.

(DIALOGUE 3.17)

U>price information pl ease

S>Okay. Lets see. How do you want to travel?
U>paris to | ondon[0.78]

S>Okay. to |ondon.

S>from paris.

The sample dialogue in (DIALOGUE 3.18) shows how the system can integrate successive hints
from the user about what she wants to do.

(DIALOGUE 3.18)

S>Wel cone to the travel agency!

U>umi would like to go to paris

S>to paris. | dont quite understand. Do you nmean to ask about
visa or to ask about price?

U>umi want to go by flight

S>Alright. You want to know about price.

3.8.4 Separating understanding, acceptance, and integration

The integration rules in GoDIS3 perform several tasks: contextual interpretation (e.g. for un-
derspecified answers), deciding whether to accept or reject a move and their contents, and (if
acceptance is decided on) integration of the full effects of the move. While this was a good ap-
proach in GoDIS1 and GoDI1S2, in GoDIS3 this approach sometimes obscures the workings of
the system and make rules rather complex.

An alternative approach would be to implement contextual interpretation, the acceptance/rejection
decision, and integration as separate rule classes. The contextual interpretation rules would take
moves off a queue of moves provided by the interpretation module (corresponding to the cur-
rent NIm field); we could call this queue of possibly underspecified moves SUM (Semantically
Understood Moves). The resulting fully specified moves could then be added to a PUM (Prag-
matically Understood Moves) queue, which would serve as input for the acceptance/rejection
decision rules. Rejected moves would be put on a RM (Rejected Moves) queue, which would

153

later be inspected in the selection phase to produce suitable feedback. Accepted moves would
be added to an AM (Accepted Moves) stack, which in turn would serve as input to the integra-
tion rules. While this would probably require a larger number of rules and also some additional
data structures in the information state, the complexity of the individual rules could be greatly
reduced and the clarity of the overall processing would improve. It is also likely that this would
lead to a less bug-prone and theoretically more satisfying implementation.

3.8.5 Accommodation and the speaker’s own utterances

In this chapter we have been mainly concerned with issue accommodation as a way of interpret-
ing utterances from the other DP (for a dialogue system, the user). But how does accommodation
relate to the generation and integration of one’s own utterances? This issues does not come up
in GoDIS since the system never produces utterances that can be expected to require accommo-
dation on the part of the user (e.g. ending a long dialogue with “$100” rather than “The price is
$1007).

Ginzburg allows the speaker to update QUD with a question and then address it. This will
(probably) require accommodation on the part of the hearer. The sequence of events here is
roughly the following (S is the speaker, H the hearer):

e S pushes @ on QUD, then addresses @
e S integrates A

e H accommodates @, integrates A

However, we have noted above in Section 2.3.4 that this seems inconsistent with the view of
QUD as something that is assumed to be shared. Possibly, one could have a “fuzzier” concept of
QUD (and perhaps the DGB in general) that leaves some freedom of modifying it privately, as
long as the hearer can be expected to accommodate these modifications.

The other alternative is to allow the speaker to generate utterances that do not exactly match the
current information state, and then perform accommodation to integrate her own utterance. In
this case, the sequence of events is instead:

e S addresses @, believing that the information state can be adjusted (using accommodation)
so as to make this utterance felicitous

e S and H accommodate @ and integrate A

154

Whether the choice between these two approaches make any real difference to the internal pro-
cessing and/or external behaviour of the system remains a future research issue. For example,
if QUD is updated with @ before A is produced, and the utterance realizing A is interrupted,
should 2 be removed from QUD?

3.8.6 Accommodation vs. normal integration

As we have seen, question accommodation allows a generalized account for how answers are
integrated into the information state, regardless of the status of the corresponding question. The
accommodation procedure may also have side-effects (e.g. loading a new dialogue plan) which
serve to drive the dialogue forward.

Instead of giving rules for accommodation and integration separately, one could deny the exis-
tence of accommodation and just give more complex integration rules. The integration rule for
short answers requires that there is a question on the QUD to which the latest move is an ap-
propriate answer, and the accommodation rules are used if no such question can be found. The
alternative is to skip the QUD requirement, thus incorporating the accommodation mechanisms
into the integration rule, which would then split into several rules. For example, there would be
one rule for integrating answers by matching them to questions in the plan directly.

Apart from the theoretical argument that question accommodation provides a generalization of
the way answers are integrated, there are also practical motivations. In particular, the fact that
several steps of accommodation may be necessary to integrate a single answer means that the
total number of rules for integrating answers would be higher if accommodation was not used
- one would need at least one integration rule for each possible combination of accommodation
rules.

A further argument which is not explored in this thesis (but see Engdahl et al., 1999) is that
question presupposition and accommodation interact with intra-sentential information structure
in interesting and useful ways.

3.8.7 Dependent issue accommodation in Voice XML?

On a close reading of the VoiceXML specification (McGlashan et al., 2001), it may appear that
VoiceXML offers a mechanism similar to dependent issue accommodation®®, In VoiceXML, a
grammar can have scope over a single slot, over a form, or over a whole document (containing

13This discussion is based on the VoiceXML specifi cation rather than hands-on experience of VoiceXML. This
means that some unclarity remains about the capabilities of VoiceXML in general, and individual implementations
of VoiceXML serversin particular. For both these reasons, the discussion should be regarded as tentative and open

155

several forms). Given a grammar with document scope (defining a set of sentences which the
\VoiceXML interpreter will listen for during the whole dialogue), if the user gives information
which does not match the currently active form, Voice XML will jump to a form matching the
input'4. This corresponds roughly to the dependent issue accommodation mechanism in GoDIS
. However, if input matches more than one task (e.g. “raise the volume” could match a task
related to the TV or one related to the CD player), Voice XML will not ask which of these tasks
the user wants to perform but instead go to the one it finds first, regardless of what the user
intended. Generally, it is hard to see how clarification questions could be handled in a general
way in VoiceXML, since they do not belong to a particular form.

3.9 Summary

To enable more flexible dialogue behaviour, we made a distinction between a local and a global
QUD (referring to the latter as “open issues”, or just “issues”). The notions of question and
issue accommodation were then introduced to allow the system to be more flexible in the way
utterances are interpreted relative to the dialogue context. Question accommodation allows the
system to understand answers addressing issues which have not yet been raised. In cases of
ambiguity, where an answer matches several possible questions, clarification dialogues may be
needed.

for revision. However, it should also be pointed out that it isfairly clear what is supported in VoiceXML ; most of the
unclarities refer to what is possible, but not explicitly supported, in VoiceXML. In generdl, it is more important to
know what is supported by a standard than what is possible, since almost anything is possible in any programming
environment (given a suffi cient number of hacks).

14 Although the VoiceX ML documentation does not provide any examples of this kind of behaviour, it appearsto
be possible, at least in principle.

156

Chapter 4

Action-oriented and negotiative dialogue

4.1 Introduction

In this chapter, we extend the issue-based approach to simple action-oriented and negotiative
dialogue!. First, we deal with action-oriented dialogue (AOD), which involves DPs performing
non-communicative actions such as e.g. adding a program to a VCR or reserving tickets in a
travel agency. We extend the GoDIS system to handle a simple kind of AOD. In addition to
issues and questions under discussion, this system also has to keep track of actions. Usually, it is
useful for an AOD system to also handle 10D.

The concept of issue accommodation is extended to action accommodation. We also show how
multiple simultaneous plans may be used to enable more complex dialogue structures, and how
multiple plans interact with actions and issues. We show how dialogue plans may be constructed
from menus, and illustrate menu-based AOD with examples from an implementation of a menu-
based VCR interface.

Next, we turn to negotiative dialogue, and describe an issue-based account of a simple kind of
collaborative negotiative dialogue. We also sketch a formalization of this account and discuss its
implementation in GoDIS.

1This chapter isadightly altered version of Chapter 5 in Larsson (2002a).

157

4.2 Issues and actions in action-oriented dialogue

In GODIS3, each dialogue plan was aimed at resolving a specific issue. In general, of course, not
all dialogue is aimed at resolving issues; often it is aimed towards the performance of some (non-
communicative) action. For example, turning on or off the lights in a room, adding a program to a
VCR, calling somebody up, or making a reservation in a travel agency. Action oriented dialogue
in general places obligations on DPs to perform actions, either during the dialogue or after. For
example, booking a ticket involves an obligation on the clerk to send a ticket to the customer,
and on the customer to pay for the ticket. Requesting a VCR manager to add a program puts an
obligation on the manager to add the program to the VCR timer recording memory bank.

We will be dealing with a simple kind of AOD, where each action can only be performed by one
of the DPs, similar to our assumptions regarding issues. This allows a simple representation of
actions that does not take into account who has the obligation to perform each action. Since we
are giving examples from a device control domain (VCR control), we will in fact only deal with
the case where all actions are performed by the system?.

Previous work with GoDiS, the predecessor of GODIS, has also addressed the case where the
user performs all the actions (Larsson, 2000, Larsson and Zaenen, 2000).

4.3 Extending GoD1S to handle action oriented dialogue

In this section, we describe additions to the information state, semantics, and dialogue moves.
Update rules will be discussed in Section 4.6.

4.3.1 Enhancing the information state

In this section, we show how the GoDIS information state needs to be modified to handle Action
Oriented Dialogue. The new information state type is shown in Figure 4.1.

The only addition is the ACTIONS field which has been added to /SHARED and /PRIVATE/TMP.
We assume the actions stack is an open stack, which is the same structure that we use for ISSUES.

20f course, even in this simple domain it cannot really be assumed generally that the system performs all the
actions; one could well imagine a VCR control dialogue system which, for example, requests the user to insert a
tapeinto the VCR.

158

PRIVATE

SHARED

Tmp=

[AGENDA
PLAN
BEL

TMP

| NIm

COM
ISSUES
ACTIONS
QUD

PM

LU

COM

ISSUES
ACTIONS
QUD
AGENDA
PLAN

OpenQueue(Action)
OpenStack(PlanConstruct)

Set(Prop)
USR Tmp
SYs Tmp

OpenQueue(Pair(DP, Move))
Set(Prop)
OpensStack(Question)
OpenStack(Action)
OpenStack(Question)
OpenQueue(Move)
SPEAKER Participant
MOVES Set(Move)
Set(Prop) 1
OpenStack(Question)
OpensStack(Action)
OpenStack(Question)
OpenQueue(Action)
OpenStack(PlanConstruct) |

Figure 4.1: GoD1S4 Information State type

Semantics

To handle action-oriented dialogue we need to extend our semantics. Given that « : Action, we

have

e action(«) : Proposition

e done(a) : Proposition

Rough paraphrases of these propositions are “action « should be performed (by any DP who can

perform «)”, and “action « has been successfully performed”, respectively.

Actions and postconditions

The set of actions that can be requested depends on the domain; for example, in the travel booking
domain one action would be make_reservation, and an example from the VCR control domain

159

W

I

i

is ver_add_program. For dialogues where the the user requests actions to be performed by the
system, each such action (which we may refer to as a goal-action) is associated with a dialogue
plan.

In device control dialogue, there is also an additional kind of actions, namely those that are
specified by the device itself; we refer to these as device actions. We will also generalize over
device actions using the UPnP protocol (“Universal Plug’n’Play”, Microsoft, 2000, Boye et al.,
2001, Lewin et al., 2001); this requires a further type of upnp action whose arguments are a
device and a device action. This allows us to access multiple devices defined using a common
interface. This will be further clarified in Section 4.4.1.

Device actions and UPnP actions can be thought of as atomic actions, whereas goal actions are
more complex; specifically, the execution of a single goal action (e.g. turning off all the lights
in a room) may involve the execution of several device actions (e.g. turning off each individual
light).

In addition to domain-specific goal actions and device actions, we still have the issue-related
actions findout, raise and respond introduced in Larsson et al. (2002), and the set of dialogue
moves.

For issues, the resolves relation provided a way to decide when an issue has been successfully
performed and should be popped off the /SHARED/ISSUES stack. For actions, we instead need
to define postconditions which are defined as relations between actions and propositions in the
domain resource; these can then be used when to determine when an action can be removed from
/SHARED/ACTIONS.

4.3.2 Dialogue moves

In addition to the dialogue moves introduced in Larsson et al. (2002)and Chapter 2, GoDi1S4
uses the following two moves:

e request(a), where « : Action

e confirm(a), where « : Action

These two moves are sufficient for activities where actions are performed instantly or near-
instantly, and always succeed. If these requirements are not fulfilled, the confirm move can
be replaced by or complemented with a more general report(c, Status) move which reports on
the status of action «. Possible values of Status could be done, failed, pending, initiated etc.;
report(c;, done) would correspond to confirm(c).

160

4.4 Interacting with menu-based devices

As a sample subtype of action oriented dialogue we will explore menu-based AOD. While menu
interfaces are ubiquitous in modern technology they are often tedious and frustrating. The mech-
anisms of accommodation introduced in Chapter 3 offers the possibility of allowing the user to
present several pieces of relevant information at one time or to present information in the order
in which the user finds most natural. This means that users can use their own conception of the
knowledge space and not be locked to that of the designer of the menu system.

First, we describe a general method for connecting devices to GoDIS, and then we show how
menu interfaces can be converted into dialogue plans using a simple conversion schema.

4.4.1 Connecting devices to GoDIS

<_control —
‘ input ‘inter— - gene- ‘output -
nuance pret rate nuance j—
T . e
. " device

Information State " alert N

LEXICON DOMAIN pevices | S~~~ \

— = PP

Figure 4.2: Connecting devices to GoDIS

In this section we describe briefly how GoDIS can interact with devices using the UPnP protocol.
In Figure 4.2, we see an impression of how various devices can be connected to GoDIS. We

161

will mainly be dealing with devices that can be modelled as resources, i.e. that are passive (or
reactive) in the sense that they cannot send out information unless queried by some other module.
Of course, many devices are not passive in this sense but rather active (or pro-active), e.g. burglar
alarms or robots. To handle active devices, we would need to build a TRINDIKIT module which
could write information to a designated part of the information state based on signals from the
device; this information could then trigger various processes in other modules. Still, even for
an active device the solution we present here would be very useful; minimally, we would only
need to add a module which sets a flag in the information state whenever the device indicates that
something needs to be taken care of, triggering other modules to query the device about exactly
what has happened.

To be able to hook up passive UPnP devices to GODIS, we need the following:

1. device handler resources which communicate directly with the device itself; the device
handlers can be said to represent the device in GODIS;

2. aresource type for UPnP devices, specifying how devices may be accessed as objects of
this type;

3. aresource interface variable to the TIS whose values are of the UPnP resource type; this
variable hooks up devices to the TIS;

4. plan constructs for interacting with devices, and update rules for executing these plan con-
structs;

5. dialogue plans for interacting with devices.

UPnNP device handlers

The device handler mediates communication between GoDIS and the device itself, and can be
said to represent the device for GoDIS. We assume that each specific device has a unique ID, and
is accessed via a separate device handler process. A device handler is built for a certain device
type (e.g. the Panasonic NV-SD200 VCR), and each device of that type needs to be connected to
a process running the device handler, in order to be accessed by GoDIS.

For UPNnP devices, the device handler contains a specification partly derivable from the UPnP
specifications, but made readable for GoDIS (i.e. converted from XML to prolog).

The device handler does the following:

e specifies a set of actions and associated arguments

162

e specifies a set of variables, their range of allowed values, and (optionally) their default
value

e routines for setting and reading variables (dev_set and dev_get), for performing queries
(dev_query), and for executing actions (dev_do)

e accesses the devicesimulation

The UPNP resource interface

In order to hook up a device to GODIS one needs to define an abstract datatype for devices and
declare a set of conditions and operations on that datatype. For GoDIS, we implement a generic
resource interface in the form of an abstract datatype for UPnP devices.

In UPnP, a device is defined in terms of

e a set of variables

e a set of actions with optional arguments

In addition to getting the value of a variable, setting a variable to a new value, and issuing a
command, we also add the option of defining queries to the device. These queries allow more
complex conditions to be checked, e.g. whether two variables have the same value.

Based on this we define the datatype upnp_dev as in (1); here, Var is a device variable; Val is
the value of a device variable, Query is a question, Answer IS a proposition, age, is a device
action, and PropSet is a set of propositions.

(1) TYPE: upnp_dev
REL- { dev_get(Var,Val)
" | dev_query(Query, Answer)
| devset(Var, Val)
" | dev_do(agey,, PropSet)

Device actions may have one or more parameters; for example, in the VCR control domain there
is an action AddProgram which takes parameters specifying date, program number, start time,
and end time. The PropSet argument of dev_do is a set of propositions, some of which may
serve as arguments to age,. In the resource interface definition, this set is searched by the device
interface for arguments. This means that PropSet is not the exact set of arguments needed for
Ol4ey; ather, it is a repository of potential arguments.

163

The relation between UPnP actions, device actions, and device operations is exemplified below:

e dev_do(my_vcr, AddProgram) is a UPnP action, which may appear in a plan
e AddProgram is a device action

e dev_do(AddProgram, {channel_to_store(1), start_time_to_store(13:45), ... }) is a device
update operation

In addition to the datatype definition, one can define objects to be of that datatype. For each
device that the system should recognize, the device ID should be declared to be of type upnp_dev.

4.4.2 From menu to dialogue plan

Having describe a general method for connecting devices to GoDIS, we will now show how
menu interfaces can be converted into dialogue plans using a simple conversion schema. We
assume menu interfaces consist of (at least) the following elements:

e multi-choice lists, where the user specifies one of several choices
e dialogue windows, where the user enters requested information using the keyboard
e tick-box, which the user can select or de-select

e pop-up messages confirming actions performed system

The correspondence between menu elements and plan constructs is shown in Table 4.1.

Menu construct Plan construct

multi-choice list action to resolve alternative question about action
(o, 00,y 0m) findout({ ?action(ay), ..., ?action(ay,) })
tick-box or equivalent action to resolve y/n-question

+/- P findout(?P)

dialogue window action to resolve wh-question

parameter=_ findout(?z.parameter(x))

pop-up message confirming « | confirm(c)

Table 4.1: Conversion of menus into dialogue plans

Regarding confirmations, we provide a general solution for confirming actions in Section 4.6.3.
Confirmations thus do not need to be included in the plan.

164

4.4.3 Extending the resolves relation for menu-based AOD

In menu-based AOD, the system may ask an alternative-question about which action the user
wants the system to perform. The user may then answer by choosing one of the listed alternatives.
However, if the user selects an action which is not in the listed alternatives but further down in
the hierarchy of actions, this should also be regarded as as an answer that resolves the system’s
question. To handle this, we need to extend the definition of the resolves relation (see Larsson
et al. (2002)).

(2) action() resolves {?action(a), ..., ?action(ay,)} if
e «—=q;0r

e o;dominatesa (1 <i<n)

The dominates relation is defined recursively as in (3).

(3) «adominates o' if

e there is a plan P for « such that P includes
findout(AltQ) and ?action(a)e AltQ, or

e o dominates some action " and " dominates o'

The idea is, then, that domination reflects the menu structure so that an action dominates any
actions below it in the menu.

4.5 Implementation of the VCR control domain

A VCR menu section

We start from a section of the menu structure for a VCR as shown in (4).

165

4) e toplevel: { change-play-status, change-channel, timer-
recording, ...)

— change play status: { play, stop, ...)
— change channel

* new-channel = _
* confirm new channel

— timer recording: (add-program, delete-program
)

x add program
channel-to-store = _
date-to-store = _
start-time-to-store = _
end-time-to-store = _
confirm program added

x delete program
display existing programs
program-to-delete: _
confirm program deleted

— change-settings: (set-clock, ...)

Dialogue plans for VCR control

Using the conversion schema in Table 4.1 we can convert the menu structures in (4) into dialogue
plans as those shown in (5).

166

(5) a

b.

C.

ACTION : vcr_top

PLAN: {

raise(?z.action(z))
?action(vcr_change_play _status)
?action(vcr_new_channel)
?action(vcr_timer_recording)
?action(vcr_settings)

findout(

)

POST © -

ACTION : vcr_timer_recording

e ?action(vcr_add_program),
PLAN. fmeUt({ ?action(vcr_delete_program))
done(vcr_add_program) or

POST - done(vcr_delete_program)

ACTION : vcr_add_program

PLAN: {
findout(?z.channel_to_store(z))
findout(?z.date_to_store(z))
findout(?z.start_time_to_store(z))
findout(?z.stop_time_to_store(z))
dev_do(vcr, 'AddProgram’)

)

POST : done(’AddProgram?’)

4.6 Update rules and dialogue examples

In this section we show how update rules for action oriented dialogue have been implemented in
GoDiS4, and give examples of dialogues from the VCR control domain.

Integrating and rejecting requests

First, we introduce update rules for integrating request moves. Since we are limiting this im-
plementation to domains where the system performs all the actions, we will not provide rules
for integrating requests from the system to the user; however, these could be straightforwardly
implemented since the relation between system requests and user requests is very similar to the
relation between system and user ask moves.

167

The rule for integrating user requests is shown in (RULE 4.1).

(RULE 4.1) RULE: integrateUsrRequest
CLASS: integrate
[$/PRIVATE/NIM/FST/SND=request(A)

$/SHARED/LU/SPEAK ER==USI

PRE: { $SCORE=Score

Score > 0.7

$DOMAIN :: plan(A, Plan)

pop(/PRIVATE/NIM)

add(/SsHARED/LU/MOVES, request(A4))

push(/PRIVATE/AGENDA, iCm:acc*pos)

EFF: < if_do(Score < 0.9,
push(/PRIVATE/AGENDA, icm:und*pos:usr*action(A)))

push(/SHARED/ACTIONS, A)

push(/PRIVATE/AGENDA, A)

This rule is similar to that for integrating user ask moves (see Section 2.6.6); instead of pushing
an issue @ on ISSUES and QUD, and pushing respond(Q) on the agenda, this rule pushes the
requested action A on /SHARED/ACTIONS and /PRIVATE/AGENDA.

As for user ask moves we also need to deal with the case where the system must reject an action
since it does not have a plan for dealing with it. This rule is shown in (RULE 4.2).

(RULE 4.2) RULE: rejectAction

CLASS: select_action
{ in($/PRIVATE/NIM, request(A))
PRE:

$/SHARED/LU/SPEAKER=USI
not SDOMAIN :: plan(A, Plan)
del(/PRIVATE/NIM, request(A))
EFF: { push(/PRIVATE/AGENDA, icm:und*pos:usr*action(4))
push(/PRIVATE/AGENDA, icm:acc*neg:action(A4))

4.6.2 Executing device actions

The update rule for executing the dev_do device action is shown in (RULE 4.3).

168

(RULE 4.3) RULE: exec_dev_do
CLASS: exec_plan

PRE: { fst($/PRIVATE/PLAN, dev_do(Dev, Age,))

pop(/PRIVATE/PLAN)

| $/SHARED/COM=PropSet
DEVICES/Dev :: dev_do(PropSet, Agey)
add(/PRIVATE/BEL, done(Agey))

EFF.

The condition looks for a dev_do upnp action in the plan, with arguments Dew, the device
path name, and Ag.,, the device action. The updates pop the action off the plan, and applies
the corresponding update dev_do(PropSet, Age,) t0 the device Dev. Finally, the proposition
done(Ag4ey) is added the the private beliefs.

In addition, we have implemented rules for executing the dev_get, dev_set and dev_query
actions.

4.6.3 Selecting and integrating confirm-moves
The selection rule for the confirm action is shown in (RULE 4.4).

(RULE 4.4) RULE: selectConfirmAction

CLASS: select_action
fst($/SHARED/ACTIONS, A)

$DOMAIN :: postcond(A, PC)
in($/PRIVATE/BEL, PC)
not in($/sHARED/coM, PC)

EFF: { push(/PRIVATE/AGENDA, confirm(A))

PRE:

The conditions in this rule check that the there is an action in /SHARED/ACTIONS whose post-
condition is believed by the system to be true, however, this is not yet shared information. If
this is true, a confirm action is pushed on the agenda. Eventually, this action (which also is a
dialogue move) is moved to NEXT_MOVES by (RULE 4.5).

(RULE 4.5) RULE: selectConfirm
CLASS: select_move
PRE: { fst($/PRIVATE/AGENDA, confirm(A))

| push(NEXT_MOVES, confirm(A))
EFF:
pop(/PRIVATE/AGENDA)

169

When the confirmation move has been made, it is integrated by the rule in (RULE 4.6).

(RULE 4.6) RULE: integrateConfirm
CLASS:. integrate
PRE: { $/PRIVATE/NIM/FST/SND=confirm(A)

ErE- pop(/PRIVATE/NIM)
" | add(/sHARED/com, done(A))

This rule adds the proposition done(A) to the shared commitments which enables the downdate-
Actions rule in (RULE 4.7) to trigger.

(RULE 4.7) RULE: downdateActions

CLASS: downdate_issues
fst($/SHARED/ACTIONS, A)

PRE: ' $DOMAIN :: postcond(A, PC)
in($/sHARED/coM, PC')

eFF: { POp(/SHARED/ACTIONS)

This rule removes an action A whose postcondition is jointly believed to be true from ACTIONS3,

4.6.4 Dialogue example: menu traversal and multiple threads

In (DIALOGUE 4.1) we show a sample dialogue interaction with the menu-based VCR applica-
tion. It shows both menu traversal and accommodation, as well as dealing with multiple tasks
(issues and actions).

(DIALOGUE 4.1)

S>Wel cone to the VCR manager!
S>Lets see. Wiat can | do for you?
u>

$S> Do you want to change play status , change channel , go to
timer recording or go to settings?

3Note that done(a) istrivially a postcondition for any action a.

170

U>go to tinmer recording

$S> Ckay. Lets see. Do you want to add a programor delete a
pr ogr anf?

U>add a program today
S> Okay. Lets see. \What channel do you want?

U>what channel is on now

AGENDA = ((icm:acc*pos))
PLAN =)
PRIVATE = BEL = { current_channel(1) }
TMP = ...
| Nim = ()
[com = { date_to_store(today) }]
vcr_add_program
ACTIONS = < vcr_timer_recording >
vcr_top
SHARED = ISSUES = (?E.current.channel(E))
o =)
PM = { ask(?A.channel_to_store(4)), icm:loadplan, icm:acc*pos }
_ SPEAKER = usr
| | LY - [MOVES = { ask(?E.current_channel(E)) } |

S>Okay. The current channel is 1

n

S>Returning to add a program What channel do you want?
U> one

S>Okay. Wiat tinme do you want to start recordi ng?
U>stop the vcr

device resource issues command to device: [UPnP] Stop

S>Okay. The VCR i s now st opped.

S>Returning to add a program Wat tine do you want to start
recordi ng?

U>twelve thirty

171

S>Okay. Wiat tinme do you want to stop recordi ng?

U>two fifteen

device resource issues command to device: [UPnP] AddProgram(1,today,1230,215)

S> Okay. The program has been added.

S>Returning to tinmer recording. Do you want to add a program or
delete a

pr ogr anf

N.B.: In this dialogue, the user’s question “What channel is on now” is regarded as an irrelevant

followup to “What channel do you want?”. To change this one could add a dependency between
these questions to the domain resource (see Larsson et al. (2002)), as in (6).

(6) depends(?z.channel_to_add(z), ?z.current_channel(z)))

4.6.5 Action accommodation and clarification

We also implement an action-related counterpart to the rule accommodateDependentlssue pre-
sented in Section 3.6.4. This allows the user to provide parameters for some action without
making an explicit request.

172

(RULE 4.8) RULE: accommodateAction

CLASS. accommodate
(setof(A, $/PRIVATE/NIM/ELEM/SND=answer(A), AnsSet)

Sarity(AnsSet) > 0

$DOMAIN :: plan(Action, Plan)

$DOMAIN :: action(Action)

forall(in(AnsSet, A), in(Plan, findout(Q)) and
$DOMAIN :: relevant(A, Q))

not $DOMAIN :: plan(Action’, Plan') and Action'# Action and
forall(in(AnsSet, A), in(Plan’, findout(Q)) and
$DOMAIN :: relevant(4, Q))

not in($/PRIVATE/AGENDA, icm:und*int:usr*action(Action))

push(/SHARED/ACTIONS, Action)

push(/PRIVATE/AGENDA, icm:accommodate: Action)

EFF: < push(/PRIVATE/AGENDA, icm:und*pos:usr*action(action))

set(/PRIVATE/PLAN, Plan)

push(/PRIVATE/AGENDA, icm:loadplan)

PRE: <

This rule is very similar to the accommodateDependentlssue (see Section 3.6.4), except that it
accommodates a dependent action rather than a dependent issue.

If the system finds several actions matching the information given by the user, a clarification
question is raised. This is again similar to the behaviour for issues described in Section 3.6.5; in
fact, the rule below replaces the previous clarifyDependentlissue rule.

(RULE 4.9) RULE: clarifylssueAction

CLASS; select_action _
in($/PRIVATE/NIM, pair(usr, answer(A)))

setof(Action, SDOMAIN :: depends(a, Q) and
PRE: $DOMAIN :: relevant(A4, Q), ActionSet)
remove_unifiables(Actions, Actions’)

$$arity(Actions’) > 1

(1 setof(?IssueProp, in(Actions’, Issue') and
not $DOMAIN :: action(Issue’) and
IssueProp=issue(Issue'), I ssueQuestions)

I setof(? ActionProp, in(Actions', Action’) and
$DOMAIN :: action(Action') and
ActionProp=action(Action), ActionQuestions)

I union(Z ssueQuestions, ActionQuestions, AltQ)

| push(/PRIVATE/AGENDA, findout(AitQ))

EFF.

173

The preconditions check that there is more than one plan (for performing actions or resolving
issues) to which all answers in /PRIVATE/NIM are relevant. The first update creates an alternative
question regarding all issues which the non-integrated answers are relevant to, and the second
update does the same for actions. The third update joins these two alternative-questions (sets of
y/n-questions) into a single y/n-question, which is added to the agenda by the final update.

4.6.6 Dialogue examples: action accommodation and clarification

The dialogue in (DIALOGUE 4.2) demonstrates action accommodation, and the dialogue in
(DIALOGUE 4.3) demonstrates a clarification question by the system.

(DIALOGUE 4.2)

S>Wel cone to the VCR manager!

S>LlLets see. Wat can | do for you?

U>today fromfive thirty on channel one

S>Alright. add a program

S>Llets see. GCkay. What time do you want to stop recordi ng?

(DIALOGUE 4.3)

S>Wel cone to the VCR manager!

S>Llets see. Wat can | do for you?

U>six thirty

$S>six thirty. | dont quite understand. Do you want to add a
program or set the clock?

U>add a program

$S> Ckay. Lets see. Do you want to record fromsix thirty or
until six thirty?

U>fromsix thirty

S> kay. Wat channel do you want?

4.7 Issues under negotiation in negotiative dialogue

We will now turn to negotiative dialogue, and describe an issue-based account of a simple kind
of collaborative negotiative dialogue. We also sketch a formalization of this account and discuss
its implementation in GODIS.

174

We start from a previous formal account of negotiative dialogue (Sidner, 1994a) and argue for a
slightly different idea of what negotiative dialogue is. We want to make a distinction between the
process of accepting an utterance and its content, which applies to all utterances, and a concept
of negotiation defined, roughly, as a discussion of several alternative solutions to some problem.
This latter account is formulated in terms of Issues Under Negotiation (IUN), representing the
question or problem to be resolved, and a set of alternative answers, representing the proposed
solutions.

First, we will give a brief review of Sidner’s theory and discuss its merits and drawbacks®. We
then provide an alternative account based on the concept of Issues Under Negotiation. We explain
how IUN can be added to GoD1S, and give an information state analysis of a simple negotiative
dialogue.

4.7.1 Sidner’s theory of negotiative dialogue

As the title of the paper says, Sidner’s (1994a) theory is formulated as “an artificial discourse
language for collaborative negotiation”. This language consists of a set of messages (or message
types) with propositional contents (“beliefs”). The effects of an agent transmitting these mes-
sages to another agent is formulated in terms of the “state of communication” after the message
has been received. The state of communication includes individual beliefs and intentions, mutual
beliefs, and two stacks for Open Beliefs and Rejected Beliefs. Some of the central messages are

e ProposeForAccept (PFA agt1l bel i ef agt?2):agtlexpressesbelief toagt?2.

e Reject (RJ agtl belief agt?2): agtl doesnotbelieve bel i ef , which has been
offered as a proposal

e AcceptProposal (AP agt1 belief agt?2):agtlandagt?2nowholdbelief asa
mutual belief

e Counter(CO agtl1l beliefl agt2 belief2): Withoutrejectingbel i ef 1,agt 1
offers bel i ef 2 to agt 2

In addition, there are three kinds of acknowledgement messages, the most important being Ac-
know edgeRecei pt (AR agtl belief agt2),whichmayoccurafteraProposeFor -
Accept message and results in bel i ef being pushed on the stack for Open Beliefs. Acknowl-
edgement indicates that a previous message from agt 2 about bel i ef has been heard; the
agents will not hold bel i ef as a mutual belief until an AcceptProposal message has been sent.

4An in-depth description of Sidner’s account and its relation to the GoDiS system, including a reformulation of
Sidner’s artifi cial negotiation language in terms of GoDi S information state updates, can be found in Cooper et al.
(2001).

175

While we will not give a detailed analysis of the effects of each of these messages, some obser-
vations are important for the purposes of this paper. Specifically, a counter-proposal (CO agt 1
beliefl agt2 belief2) isanalyzed as a composite message consisting of two PFA mes-
sages with propositional contents. The first proposed proposition is bel i ef 2 (the “new” pro-
posal), and the second is (Supports (Not beliefl) belief2),ie. thatbelief2
supports the negation of bel i ef 1 (the “old” proposal). Exactly what is meant by “supports”
here is left unspecified, but perhaps logical entailment is at least a simple kind of support.

e (PFA agtl belief2 agt?2)
e (PFA agtl (Supports (Not beliefl) belief2) agt?2)

Sidner’s analysis of proposals is only concerned with propositional contents. A Request for
action is modelled as a proposal whose content is of the form (Shoul d- Do Agt Acti on).
A question is a proposal for the action to provide certain information. This brings us to our first
problem with Sidner’s account.

Problem 1: Negotiation vs. utterance acceptance

In Sidner’s theory, all dialogue is negotiative in the sense that all utterances (except acceptances,
rejections, and acknowledgements) are seen as proposals. This is correct if we consider negoti-
ation as possibly concerning meta-aspects of the dialogue. Since any utterance (content) can be
rejected, all utterances can indeed be seen as proposals.

So in one sense of “negotiative”, all dialogue is negotiative since assertions (and questions, in-
structions etc.) can be rejected or accepted as part of the grounding process. But some dialogues
are negotiative in another sense, in that they contain explicitly discussions about different solu-
tions to a problem. Negotiation, on this view, is distinct from grounding.

There is thus a stronger sense of negotiation which is not present in all dialogue. A minimum
requirement on negotiation in this stronger sense could be that several alternative solutions (an-
swers) to a problem (question or issue) can be discussed and compared before a solution is finally
settled on. Sidner is aware of this aspect of negotiation, and notes that “maintaining more than
one open proposal is a common feature of human discourses and negotiations.” What we want
to do is to find a way of capturing this property independently of grounding and of other aspects
of negotiation, and use it as a minimal requirement on any dialogue that is to be regarded as
negotiative.

On our view, proposal-moves are moves on the same level as other dialogue moves: greetings,
questions, answers etc., and can thus be accepted or rejected on the grounding level. Accepting

176

a proposal-move on the grounding level merely means accepting the content of the move as a
proposal, i.e. as a potential answer to a question. This is different from accepting the proposed
alternative as the actual solution to a problem (answer to a question).

To give a concrete example of these different concepts of negotiativity, we can compare the
dialogues in Examples (5) and (6).

(7) A Today is January 6th.
propose proposition
B(alt. 1) : Uhuh
accept proposition
B(alt. 2) : No, it’s not!
reject proposition

(8) S :where do you want to go?
ask question
U : flights to paris on september 13 please
answer question
S : there is one flight at 07:45 and one at 12:00
propose alternatives, give information about alternatives
U : what airline is the 12:00 one
ask question
S : the 12:00 flight is an SAS flight
answer question
U : I’ll take the 7:45 flight please
accept alternative, answer question ““which flight?”

The type negotiation in (7) concerns acceptance-level grounding of the utterance and its content.
By contrast, the type of negotiation in (8) concerns domain-level issues rather than some aspect
of grounding.

Problem 2: Alternatives and counterproposals

When analyzing a travel agency dialogue (Sidner, 1994b), the travel agent’s successive proposals
of flights are seen as counterproposals to his own previous proposals, each modelled as a propo-
sition. The difference between proposals and counterproposals is that the latter not only make a
new proposal but also proposes the proposition that the new proposal conflicts with the previous
proposal (by supporting the negation of the previous proposal). This can be seen as an attempt by

177

Sidner to establish the connection between the two proposals as somehow concerning the same
issue.

This analysis is problematic in that it excludes cases where alternatives are not mutually exclu-
sive, which is natural when e.g. booking a flight (since the user presumably only want one flight)
but not e.g. when buying a CD (since the user may want to buy more than one). Also, it seems
odd to make counterproposals to your own previous proposals, especially since making a pro-
posal commits you to intending the addressee to accept that proposal rather than your previous
ones. In many cases (including the travel agency domain) it seems that the agent may often be
quite indifferent to which flight the user selects. Travel agents may often make several proposals
in one utterance, e.g. “There is one flight at 7:45 and another one at 12:00”, in which case it does
not make sense to see “one at 12:00” as a counterproposal as Sidner defines them.

We do not want to use the term *“counterproposal” in these cases; what we need is some way
of proposing alternatives without seeing them as counterproposals. The basic problem seems to
be that when several proposals are “on the table” at once, one needs some way of representing
the fact that they are not independent of each other. Sidner does this by adding propositions
of the form (Supports (Not beliefl) belief?2) toshow that beliefl and belief2 are
not independent; however, this proposition not only claims that the propositions are somehow
dependent, but also that they are (logically or rhetorically) mutually exclusive. In our view, this
indicates a need for a theory of negotiation which makes it possible to represent several alter-
natives as somehow concerning the same issue, independently of rhetorical or logical relations
between the alternatives. Negotiation, in our view, should not in general be seen in terms of
proposals and counterproposals, but in terms of proposing and choosing between several alter-
natives.

4.7.2 Negotiation as discussing alternatives

In this section, we will attempt to provide a more detailed description of negotiative dialogue.
Clearly, negotiation is a type of problem-solving (Di Eugenio et al., 1998). We define negotiative
dialogue more specifically to be dialogue where DPs discuss several alternative solutions to a
problem (issue) before choosing one (or several) of them. In line with our issue-based approach
to dialogue management, we propose to model negotiable problems (issues) semantically as
questions and alternative solutions as alternative answers to a question.

We also propose to keep track of issues under negotiation and the answers being considered as
potential solutions to each issue in the /SHARED/ISSUES field, represented as questions associ-
ated with sets of answers.

178

Degrees of negotiativity

Starting from this definition, we can distinguish between fully negotiative dialogue and semi-
negotiative dialogue In non-negotiative dialogue, only one alternative can be discussed. In semi-
negotiative dialogue, a new alternative can be introduced by revising parameters of the previous
alternative; however, previous alternatives are not retained. Finally, in negotiative dialogue:
several alternatives can be introduced, and old alternatives are retained and can be returned to.

Semi-negotiative information-oriented dialogue does not require keeping track of several alter-
natives. All that is required is that information is revisable, and that new database queries can be
formed from old ones by replacing some piece of information. This property is implemented in
a limited way for example in the Swedish railway information system (a variant of the Philips
system described in Aust et al., 1994), which after providing information about a trip will ask
the user “Do you want an earlier or later train?”. This allows the user to modify the previous
query (although in a very limited way) and get information about further alternatives. However,
it is not possible to compare the alternatives by asking questions about them; indeed, there is no
sign that information about previous alternatives is retained in the system. The implementation
of reaccommodation in GoDI1S3 (Section 3.6.6) also allowed semi-negotiative dialogue in this
sense.

Factors influencing negotiation

There are a number of aspects of the dialogue situation which affect the complexity of negotiative
dialogues, and allows further sub-classification of them. This sub-classification allows us to pick
out a subspecies of negotiative dialogue to implement.

On our definition, negotiation does not require conflicting goals or interests, and for this reason
it may not correspond perfectly to the everyday use of the word “negotiation”. However, we
feel it is useful to keep collaborativity (i.e. lack of conflicting goals) as a separate dimension
from negotiation. Also, it is common practice in other fields dealing with negotiation (e.g. game
theory, economy) to include collaborative negotiation (cf. Lewin et al., 2000).

A second factor influencing negotiation is the distribution of information between DPs. In some
activities, information may be symmetrically distributed, i.e. DPs have roughly the same kind
of information, and also the same kind of information needs (questions they want answered).
This is the case e.g. in the Coconut (Di Eugenio et al., 1998) dialogues where DPs each have
an amount of money and they have to decide jointly on a number of furniture items to purchase.
In other activities, such as a travel agency, the information and information needs of the DPs
is asymmetrically distributed. The customer has access to information about her destination,
approximate time of travel etc., and wants to know e.g. exact flight times and prices. The travel

179

agent has access to a database of flight information, but needs to know when the customer wants
to leave, where she wants to travel, etc.

A third variable is whether DPs must commit jointly (as in e.g. the Coconut dialogues) or one DP
can make the commitment by herself (as e.g. in flight booking). In the latter case, the acceptance
of one of the alternatives can be modelled as an answer to an IUN by the DP responsible for the
commitment, without the need for an explicit agreement from the other DP. In the former case,
a similar analysis is possible, but here it is more likely that an explicit expression of agreement
is needed from both DPs. This variable may perhaps be referred to as “distribution of decision
rights”. In some dialogues (such as ticket booking) one DP has the decision rights for all nego-
tiable issues; in this case there is no need for explicitly representing decision rights. However, if
decision rights are distributed differently for different issues, an explicit representation of rights
IS needed.

Ticket booking dialogue, and dialogue in other domains with clear differences in information
and decision-right distribution between roles, has the advantage of making dialogue move inter-
pretation easier since the presence of a certain bits of information in an utterance together with
knowledge about the role of the speaker and the role-related information distribution often can
be used to determine dialogue move type. For example, an utterance containing the phrase “to
Paris” spoken by a customer in a travel agency is likely to be intended to provide information
about the customer’s desired destination.

4.7.3 Issues Under Negotiation (IUN)

In this section we discuss the notion of Issues Under Negotiation represented by questions, and
how proposals relate to such issues. We also discuss how this approach differs from Sidner’s.

Negotiable issues and activity

Which issues are negotiable depends on the activity. For example, it is usually not the case
that the name of a DP is a negotiable issue; this is why it would perhaps seem counterintuitive
to view an introduction (“Hi, my name is NN”) as a proposal (as is done in Sidner, 1994b).
However, it cannot be ruled out that there is some activity where even this may become a matter
of negotiation. Also, it is usually possible in principle to make any issue into a negotiable issue,
e.g. by raising doubts about a previous answer (see Section 4.8.2) .

180

Alternatives as answers to Issues Under Negotiation

Given that we analyze Issues Under Negotiation as questions, it is natural to analyze the alterna-
tive solutions to this issue as potential answers. On this view, a proposal has the effect of adding
an alternative answer to the set of alternative answers to an IUN. For a DP with decision rights
over an IUN, giving an answer to this IUN is equivalent to accepting one of the potential answers
as the actual answer. That is, an IUN is resolved when an alternative answer is accepted.

Here we see how our concept of acceptance differs from Sidner. On our view a proposed alterna-
tive can be accepted in two different ways: as a proposal, or as the answer to an IUN. Accepting
a proposal move as adding an alternative corresponds to meta-level acceptance. However, ac-
cepting an alternative as the answer to an IUN is different from accepting an utterance. Given
the optimistic approach to acceptance, all proposals will be assumed to be accepted as proposals;
however, it takes an answer-move to get the proposed alternative accepted as the solution to a
problem.

Semantics

To represent issues under negotiation, we will use pairs of questions (usually wh-questions but
possibly also y/n-questions) and sets of proposed answers. This is in fact an alternative represen-
tation of alternative-questions to that which we have used previously. The additional semantic
representation is shown in (9).

(9) Qe AnsSet: AltQ if Q : WHQ (or @ : YNQ) and AnsSet
. Set(ShortAns)

4.7.4 Anexample

In the (invented) example in Figure 4.3, the question on ISSUES is ?z.desired flight(x), i.e.
“Which flight does the user want?”. The user supplies information about her desired destination
and departure date; this utterance is interpreted as a set of answer-moves by the system since
it provides answers to questions that the system has asked or was going to ask. As a response
to this, the system performs a database search which returns two flights f1 and f2 matching the
specification, and stores the database results in /PRIVATE/BEL. The system then proposes these
flights as answers to the current IUN. The system also supplies some information about them.
As a result, the ITUN is now associated with two alternative answers, f1 and f2. Finally, the user
provides an answer to the current IUN, thereby accepting one of these alternatives as the flight
she wants to take.

181

A>flights to paris, june 13
answer(desired_dest_city(paris))
answer(desired_dept_date(13/5))

B>OK, there’'s one flight |eaving at 07:45 and one at 12:00
propose(fl)

propose(f2)

inform(dept_time(f1,07:45))

inform(dept_time(f2,12:00))

[AGENDA = (findout(?z.desired fight(z)))
BLAN (findout(?z.credit-card-no(z)))
PRIVATE = updateDB(add_reservation)
fight(f1)
BEL = { dept_time(f1,0745)
dept_time(f1,0745) |
com dept_time(f2,1200)
desired_dest_city(paris)
desired_dept_date(13/5)
ISSUES = (?z.dedred_fight(z)e { 1,2 })
SHARED = ACTIONS = { book_ticket)
XS QUD =)
SPEAKER = SysS
N - { propose(f1) }
MOVES = propose(f2)
A>1"11 take the 07:45 one

answer(desired_flight(X)&dept_time(X, 07:45))
(after contextual interpretation: answer(desired_flight(f1)))

[AGENDA = { findout(?z.credit-card-no(z)))
PLAN = {(updateDB(add_reservation))
PRIVATE = fight(f1)
BEL = { dept_time(f1,0745)
desired_fight(f1) 1
dept_time(f1,0745)
CoM = dept_time(f2,1200)
desired_dest_city(paris)
desired_dept_date(13/5)
SHARED = ISSUES =)
ACTIONS = { book_ticket)
QuD =
SPEAKER = SyS
LU = [_ { answer(desired_fight(f1) }]
MOVES =

Figure 4.3: Example dialogue
182

This dialogue does not include any discussion or comparison of alternatives, but it could easily
be extended to cover e.g. the dialogue in (5.8).

4.8 Discussion

4.8.1 Negotiation in inquiry-oriented dialogue

The model presented here is not committed to the view that negotiation only takes place in the
context of collaborative planning, or even action-oriented dialogue. In the sense of negotiative
dialogue used here, i.e. dialogue involving several alternative solutions to some problem, nego-
tiation may also concern matters of fact. This can be useful e.g. in tutorial dialogue where a
tutor asks a question, gives some alternative answers, and the student’s task is to reason about
the different alternatives and decide on one of them. In the travel agency domain, it is often not
necessary to explicitly represent e.g. that deciding on a flight is a precondition of a general plan
for travelling; instead, we can represent it simply as a fact concerning which flight the user wants
to take.

A related point is that collaborative planning dialogue is not necessarily action-oriented dialogue,
since the activity of planning may be directed at coming up with an abstract plan regardless of
who actually performs the actions in the plan. Only when some DP becomes obliged to carry out
some part of the plan does the dialogue become what we refer to as an action-oriented dialogue.

4.8.2 Rejection, negotiation and downshifting

In the context of discussing referent identification in instructional assembly dialogues, Cohen
(1981) makes an analogy between shifts in dialogue strategy and shifting gears when driving a
car. In adialogue in high gear, the speaker introduces several subgoals in each utterance, whereas
fewer goals are introduced in low-gear dialogue. The type of subgoals discussed by Cohen are
mainly identifying a referent, requests to pick up objects, and requesting an assembly action.
As long as the dialogue proceeds smoothly and the hearer is able to correctly identify referents
and carry out actions, the speaker requests assembly actions and expects the hearer to be able to
identify and pick up the objects referred to without explicit requests for this. However, when this
fails and the hearer fails to identify a referent, the speaker may shift into a lower gear (downshift)
and make explicit requests for identification of referents. At a later stage, the speaker may shift
to a higher gear and request the hearer to pick up an object and then to perform an assembly
action. Finally, the speaker may return to the initial gear and only make requests for assembly
actions.

183

Severinsson (1983) views to the process of downshifting as making latent subgames into explicit
subgames. In the case mentioned above, the goals of the latent subgames are (1) to get the hearer
to identify a referent, and (2) for the hearer to pick up the object referred to. In high gear, these
subgames are latent in the sense that they do not give rise to any utterances (dialogue moves).
When the latent subgames become explicit, the process that was previously carried out silently
is instead carried out using utterances.

This view fits well with the concept of tacit moves introduced in Section 3.4.2. Updates for
latent referent identification and utterance acceptance can be regarded as tacit moves (or games)
corresponding to explicit referent identification or negotiation subdialogues, similar to the way
that question accommodation updates are tacit moves corresponding to the ask dialogue moves.

Both these notions, shifting gears in dialogue and latent subgames, are useful for shedding light
on the relation between negotiative dialogue and utterance acceptance. Firstly, the notions of
optimism and pessimism regarding grounding strategies seem intimately related to the notion of
gears, both metaphorically and factually. Metaphorically, we may say that an optimistic driver
will use a higher gear than a pessimistic one; only when she encounters a bumpy road will
she shift into lower gear (thus taking a more pessimistic approach). Later, when the road be-
comes smoother, she may again resume her optimistic strategy and use a higher gear. Similarly,
speakers can be expected to switch between higher and lower gears, and between optimistic and
pessimistic grounding strategies regarding the grounding of their utterances. Thus we claim that
the notion of shifting gears is applicable not only to referent identification, but also to other
grounding related games, including utterance acceptance.

In Chapter 2, we talked about optimism and pessimism in regard to grounding on the acceptance
level; we now add that DPs may shift gears regarding grounding on the acceptance level. In
a dialogue in high gear, the speaker optimistically assumes the hearer to accept her utterances.
However, should the speaker reject some utterance, the dialogue is downshifted and the latent
uptake subgame becomes explicit. We would claim (contrary to Sidner) that it is only when
the dialogue is downshifted in this sense that moves such as questions and assertions should be
regarded as proposals. At this stage, DPs may introduce alternatives to the proposal, and they
may argue for or against proposals.

The concept of downshift is related to Ginzburg’s case where a proposition p is rejected as a fact
but ?p is accepted as a question for discussion. This appears to be a potential case of downshifting
which could be modelled by regarding ?pe{yes, no} as an issue under negotiation. In addition,
alterations of p may be proposed, roughly corresponding to Clark’s “cooperative alterations”. It
appears this can be modelled as an issue under negotiation ?z.p, e {a,b, ...} (where p, is the
proposition p with some argument a replaced by z, and thus p = p,.(a)). The alterations are then
represented as alternatives b, . .. to a.

Thus, if a question ¢ has been raised in a dialogue and if an answer a relevant to q is rejected
(on the grounding level), ¢ may become negotiable (depending on the activity). If so, the DP

184

who rejected a may propose an alternative answer a’ to q. It is then possible for the DPs to start a
(probably argumentative) negotiation regarding which of a and a’, or perhaps some other answer,
should be accepted as the answer to g. We thus believe that downshifting of dialogue from
optimistic acceptance to negotiation can shed light on various grounding-related phenomena,
e.g. alterations (see Section 2.2.1), and the relation between grounding and negotiation.

4.8.3 Dialogue structure and issue-based dialogue management

In this section we discuss the implications of issue-based dialogue management on the structure
of dialogue. We discuss the dialogue model of Grosz and Sidner (1986), elaborated in Grosz and
Sidner (1987), and relate it to the issue-based model. The authors present a theory of discourse
structure based on three structural components:

e linguistic structure: utterances, phrases, clauses etc.
e intentional structure: intentions, related by dominance and satisfaction-precedence

e attentional state: salient objects, properties, relations and discourse intentions

The intentional structure is related to dialogue structure through Discourse Segment Purposes
(DSPs). A dialogue can be divided into segments where each segment is engaged in for the pur-
pose of satisfying a particular intention, designated as the DSP of that segment. This relation is
used to explain the close correspondence between task structure and dialogue structure observed
in collaborative planning dialogue. With regard to dialogue management, it is claimed that “a
conversational participant needs to recognize the DSPs and the dominance relationships between
them in order to process subsequent utterances of the discourse” (Grosz and Sidner, 1987, p.
418). The authors also sketch a process model based on the concept of a SharedPlan, formalized
in terms of individual intentions and mutual beliefs.

There are some interesting but rough correspondences between this model and the issue-based
model, and the latter can perhaps be seen (at least to some extent) as an alternative (or comple-
ment) to the SharedPlans formalization.

The simplest correspondence is that between the linguistic structure and the LU field (and perhaps
also the INPUT variable) in the issue-based model, although our model of linguistic structure is
extremely impoverished.

In the issue-based model, DSPs roughly correspond to the 1ISSUES and (in AOD) ACTIONS fields,
and should thus be useful for segmenting dialogue in a manner similar to Grosz and Sidner’s.

185

Sequencing ICM, which (among other things) reflect changes in 1SSUES can thus be regarded as
indicating dialogue segment shifts.

The local focus of attention is partially modelled by QUD, although so far our attentional model
lacks e.g. a representation of “objects under discussion”. Discourse intentions seem to corre-
spond roughly to the AGENDA field, and possibly also the PLAN field although the latter is more
global in nature. Of course, our representation of dialogue plans is quite different from that of
Grosz and Sidner, who use a modal logic with operators for intentions.

It should be noted that the intentional structure, modelled as SharedPlans, is part of the shared
knowledge. Grosz and Sidner are primarily interested in dialogues aimed at the collaborative
creation and execution of these SharedPlans, which means that their model does not trivially
extend to other kinds of dialogue, e.g. simple inquiry-oriented dialogue or tutorial dialogue. For
the kinds of dialogue we have dealt with so far, the kind of complex representations needed for
modelling SharedPlans appear not to be needed. The closest correspondence to SharedPlans in
our model is the ACTIONS field which contains domain actions to be performed by one of the
DPs. It can be expected that when the issue-based model is extended to handle collaborative
planning dialogue, the structure of the ACTIONS field will become more complex and more
similar to SharedPlans.

49 Summary

Firstly, we extended the issue-based approach to action-oriented dialogue, and implemented a
dialogue interface to a VCR where dialogue plans were based on an existing menu interface. We
modified the information state by adding a field /SHARED/ACTIONS, and also added two new
dialogue moves specific to AOD request and confirm. We also implemented update rules in
GoDiS to handle integration and selection of these moves, as well as interaction with a device,
and also provided an additional accommodation rule for actions.

Secondly, we proposed a view of negotiation as discussing several alternative solutions to an
issue under negotiation. On our approach, an issue under negotiation is represented as a question,
e.g. what flight the user wants. In general, this means viewing problems as issues and solutions
as answers. This approach has several advantages. Firstly, it provides a straightforward an
intuitively sound way of capturing the idea that negotiative dialogue involves several alternative
solutions to some issue or problem, and that proposals introduce such alternatives. Secondly, it
distinguishes two types of negotiation (grounding-related negotiation and negotiation of issues)
and clarifies the relation between them.

186

Chapter 5

Conditional responses

5.1 Introduction

A flexible and natural dialogue is characterized by different ways of responding to questions. For
instance, typical responses in an information-seeking dialogue (ISD) are the short answers de-
scribed in Larsson et al. (2002). Short answers which contain just the response particles yes, no
or ok only affirm or negate the propositional content of the question without conveying any ad-
ditional information. However, there are situations in which such answers may be insufficiently
collaborative with respect to the task. For instance, in the travel domain, the task is to determine
a set of parameters of a possible journey with respect to a database to which only the system has
access. In a typical application like GoDIS, the system collects from the user a set of param-
eters constraining a journey by asking questions. It then performs a database search with these
constraints. If the search succeeds, GODIS returns the price of the journey (10e). Otherwise, it
indicates the search has failed (10f).

(10) a. S:Welcome to the travel agency!

b. U: The price for a flight from Malmo to Paris on the first
of April please.

c. S:What class did you have in mind?
d. U: Economy.
e. S: The price is 7654 crowns.

f. S’: Sorry, there is nothing matching your request about
price.

187

However, a dialogue like (10) often does not stop at the result of the database search, be it nega-
tive or positive. The user may revise or refine some parameter(s) and initiate a new search. For
example, after (10f), the user may continue by changing the departure day as in (11a). Then, after
(11b), the user may continue by trying to further constrain the search by specifying an additional
parameter, for example the airline as in (11c). However, such continuations can become dull as
the user is trying to find out which combinations of parameters succeed, as in (11c)-(11f).

(11) a. U:Can I fly on the second?
b. S: Yes.

o

U: Can | fly with Ryanair?

o

S: Sorry, there is nothing matching your request.

e. U: What about Lufthansa?

—h

S: Sorry, there is nothing matching your request.

It has been argued that task-oriented dialogues are natural and efficient when they are collab-
orative (Chu-Carroll and Brown, 1997; Rich et al., 2000). Collaboration means that both the
system and the user are contributing to solving the task at hand. ISDs are a particular kind of
task-oriented dialogues. A typical 1ISD system however does not enable any collaboration in the
process of determining the journey parameters: The system does not provide the user with any
indications of what journeys are (still) available in the database. The user has to “blindly” specify
her desires, and equally blindly revise them, refining (if they are under-constraining) or relaxing
them (if they are over-constraining). One reason for that in the travel domain may be that it is not
a viable option for the system to guide the user in the initial specification of journey parameters.
It is impossible to enumerate all available options for individual parameters since the number of
potential journeys in the database is typically large. On the other hand, once the search space
is restricted by setting some initial set of parameters, the system could be collaborative in the
subsequent phases. This is what we are trying to achieve.

A way to model a collaborative system behavior in ISDs is to enable the system help the user in
finding a satisfiable set of parameters by providing responses that help the user to revise or refine
the initial parameters. This involves the system being able to indicate a parameter to relax upon
failed database search, or to indicate a parameter to keep in cases where some hits are found but
they are too many to enumerate, and thus the search criteria need to be refined.

One useful way of accomplishing collaboration in the parameter revision and refinement phase
is by providing a conditional response (CR): a positive or negative response clarifying the con-
dition(s) under which this response holds. It is the making of the condition explicit that makes
the response collaborative. For example, a negative CR can be collaborative by mentioning such

188

parameter(s) in the condition, whose relaxation could result in a positive response instead (econ-
omy class in (12b)). A positive CR can be collaborative by mentioning such parameter(s) that
are necessary for preserving the positive response (business class in (12c)).

(12) a. U:Canl fly on the second?
b. S: Not if you want to fly economy class.

c. S’:Yes, if you can fly business class.

In (12a) (as a continuation of (10f)), the user changes the departure day to April 2™¢. In (12b) the
system not only gives a negative answer, but also indicates that the failure of the database search
with the changed parameter is conditional on the parameter economy class which the user has
specified earlier. In an alternative response (12c) in this context, the system suggests business
class as an alternative for which the database query would be successful.

The result of the database search, and therefore the answer to a user’s question, can also be
contingent on a parameter the user has not specified. In this case, too, it makes sense to indicate
this contingency to the user: in (13b) the system gives a positive answer to the question and also
indicates that the database search is successful (and thus the answer to the question is positive)
as long as an additional parameter, namely the SAS airline, is assumed.

(13) a. U:Can | fly on the second?

b. S: Yes, if you can fly with SAS.

Another example is (14) where the response of the system is contingent on the citizenship of the
user.

(14) a. U: Dol need avisato enter the U.S.?

b. S: Not if you are a EU citizen.

There are various ways to realize this collaborative system behavior other than by using CRs. For
instance, a response like (15b) also proposes an alternative after a failed database search with the
user specified parameters. However, it does not indicate the reason why the database search has
failed as in the case of (12b).

(15) a. U:Can | fly on the second?

b. S: No, but you can fly on the third.

189

This chapter is organized as follows. In the next section we describe the nature of CRs. Section
5.2.1 focuses on the meaning of CRs in terms of their semantic content and some implicatures
they give rise to. In section 5.2.2, we describe the dialogue behavior of CRs in terms of the condi-
tions of their use and the dialogue moves they realize. Section 5.3 describes the implementation
of CRs in GoDIS. Issues of further research are discussed in 5.4.

5.2 The nature of conditional responses

In this section we present our analysis of CRs. This analysis is supported by the results of a
small corpus study we conducted using the SRI’s American Express (AMEX) travel agency data
(AMEX (1989)) and the Verbmobil appointment-scheduling corpus (Verbmobil-Corpus (1995)).

In the corpora, we looked at conditional expressions like English if, unless, as long asand Ger-
man wenn, es sei denn, solange in combination with response particles like yes, no, ok and the
negation not. Apart from explicitly conditional utterances like the ones in (16) (AMEX (1989))
and (17) (Verbmobil-Corpus (1995)), we also found implicitly conditional ones where an adver-
bial is in the scope of the negation (18) (AMEX (1989)), (19) (Verbmobil-Corpus (1995)).

(16) a. A:and penalty plus we pay for the going rate

b. B: Yes, if itis going to be a higher rate.

(17) a. A:how does that sound to you
B: okay unless you want to try to squeeze it in on
Thursday

b. A:have youtime in the afternoon | have a date but before
B: only if we meet early in the morning

(18) a. A: Any other flights?
b. B: Not from Oakland.

(19) B: Not on Mondays.

The positive CRs can be implicitly positive (without a yes) (20a) (AMEX (1989)), (20b) (
Verbmobil-Corpus (1995)).

190

(20) a. A: can | make the reservation and and change it by to-
morrow?
B: if it’s still available, right

b. A: what should be Thursday the twentieth?
B: but only in the afternoon

We also observed that such responses are typically elliptical. For instance, the CR in (16b) can
intuitively be expanded to the complete propositions as illustrated in (21).

(21) No, there are no other flights if you want to fly from Oakland.

Similarly, the positive CR in (18b) can be expanded to (22).

(22) Yes, you pay for the going rate, if it is going to be a higher
rate.

CRs can be however also non-elliptical sentences.

We observed that all these expressions have similar semantic properties and exhibit a similar
behavior in dialogue. We will describe those in turn in what follows and give corpus examples
to illustrate them.

5.2.1 Meaning

The prototypical CRs we currently consider have the form Not if ¢ / Yes if c. They are elliptical
utterances. The material for resolving the ellipsis comes from the immediately preceding context.
In the ISU approach we work with, ellipsis is resolved with respect to the current question under
discussion QUD (see Section 3.3). CRs are typically used as answers to yes/no-questions. How-
ever, they can be also used as answers to wh-questions as in (23b)-(23c) (from Verbmobil-Corpus
(1995)).

(23) a. A:Ithink we should definitely meet this month
b. B: okay what date would be good

c. A:almost any day as long as it is not the weekend or
Wednesday

o

B: okay then how about a Thursday

e. A: Thursday evening would that be fine

191

The latter example suggests also that the condition introduced by a CR may be complex, e.g. a
disjunction.

On the other hand, CRs can be also used as acknowledgments to preceding assertions like in (24)
(from AMEX (1989), A and C refer to Agent and Customer respectively) where the CR (24h) is
acknowledging/accepting the assertion in (24g)).

(24) a. C:now she said that if we don’t ticket if we do ticket the
eleven twenty four today and that Lufthansa flight comes
up you know la-

b. A:mmm hmmm

c. C: later and the- then we have to cancel that first fare
d. A:uhhuh

e. C:there’s a hundred dollar fine

f. A:okay

g. C:and p- penalty plus ahh we pay for the going rate
h. A:yeah if ther- if it’s going to be a higher rate

i. C:it’s going to be a higher rate, ok now if we wait and
the Lufthansa flight does come up what rate do we get
that eleven twenty four or something close to that

In the ISU approach, QUD models a conversation as the process of setting up possible questions
to discuss and the subsequent resolving of some of these questions. A discourse participant (DP)
can choose at any time to add something to the QUD or to address one of the questions on QUD.
This view treats an assertion like | want to travel economy class as an answer to the question
on QUD What class did you have in mind?. Similarly, (24g) will be treated as addressing some
possible question under discussion, e.g. What happens if we cancel that fi rst fare. The CR in
(24h) would be then treated as an answer to the question on QUD Is there a penalty and do we
pay for the going rate?.

Assertion vs implicature

A CR does not address a QUD by providing an answer simpliciter: It provides an answer that is
contingent on the value of some attribute. Consider again (25).

192

(25) a. U:Can I fly on the second?
b. S: Not if you want to fly economy class.

c. S’: Yes, if you can fly business class.

The system’s reply (25b) provides an answer that is contingent on the value of the class attribute.
If the value is (or implies) economy, the answer is negative: If the user flies economy, she cannot
fly on the second. This CR also seems to suggest the contrapositive that if the value is “non-
economy”, i.e. a contextual alternative to the user specified parameter which in this context
happens to be “business class”, the answer is positive. (25c) illustrates this case. Thus, CRs
suggest that the respective polarity of the answer concerns only the case where the parameter
specified in the condition is set to the respective value, whereas for a different value of this
parameter the answer may have the opposite polarity. We propose to consider this additional
suggestion as an implicature, rather than part of the assertion that CRs express. An argument in
favor of this treatment is the fact that this suggestion seems to be cancellable. Thus in (26), the
suggestion in (26i) that there might be flights from the other airport discussed earlier, namely
San Francisco, is cancelled in the next utterance (26j) (this example is from AMEX (1989)).

(26) a. A: uh, let’s see what would get you there then leaving
probabl- the seventh. from San Jose or San Francisco?

b. C: San Francisco. actually Oakland would be good too
on that

c. A:ldon’t know if there are any red eyes from there let’s
see

d. C:ok

e. A: there is one on United that leaves Oakland at eleven
thirty p.m. and arrives Chicago five twenty five a.m.

f. C: sothat’s a two hour hold there

g. A:iyes

h. C: waiting for that flight ok any others?
i. A:uh not from Oakland.

J- A:departing from San Francisco it’s about the same

Thus, as an answer to a question ?p, a CR not only answers it (positively or negatively), but it
also implicates that if the condition ¢ does not hold, the answer would have the opposite polarity.

193

Table 5.1: Patterns of conditional responses

Negative CR Positive CR
QUD p ™
Response Notifc Yesifc
Assertion If ¢, then —p If ¢, thenp
Implicature Ifc/,thenp If ¢, then —p

Table 5.1 summarizes the patterns of CRs. A negative answer means that the propositional
context of the question is negated. On the other hand, the alternative to the condition ¢ suggested
in the implicature is not simply a negation of ¢ but a contextual alternative ¢’ of it.

Other conditional expressions like unlessalso seem to restrict the validity of the response and to
propose an alternative as a condition which, when it applies, would reverse the polarity of the
response. Consider (27b). B’s answer to A’s question is negative with respect to the (alternative)
parameters “on Monday Tuesday and Wednesday in the morning” and proposes an alternative as
a condition which, when it applies, would reverse the polarity of the response.

(27) a. A: 1 have my mornings completely free do you have any
time then

b. B: No it does not look like it unless you might be able to
squeeze it in on Tuesday afternoon

A similar case is (28) where the response to the QUD (28a) is positive if the condition introduced
by unless does not apply and negative otherwise. (Both examples are from Verbmobil-Corpus
(1995)).

(28) a. A:how does that sound to you?

b. B: okay unless you want to try to squeeze it in on Thurs-
day the 13th from anywhere

Translated into the patterns in Table 5.1, a CR of the form Yes, unless ¢ which resolves to p,
unlessc (where ?p is a question on QUD), asserts if ¢/, thenp and implicates if ¢, then —p. Here,
¢’ is what currently holds.

194

5.2.2 Dialogue behavior

We describe the dialogue behavior of CRs in terms of conditions of use and dialogue moves. In
this section we present two different types of CRs depending on whether the condition expresses
a parameter already established in the context or not, and discuss in what contexts they are
appropriate. The dialogues moves CRs initiate are also discussed, as well as the question when
to use a negative and when a positive CR.

Conditions of use

As our corpus study revealed, CRs can be used in two types of context: (a) when the parameter
on which the CR is contingent has not yet been determined in the preceding context (or cannot
be assumed), or (b) when it has been determined. CRs are discussed in Green and Carberry
(1999)and characterized in terms of the speaker’s motivation to provide information *“about con-
ditions that could affect the veracity of the response”. However, only case (a) is considered where
the speaker does not know whether the condition holds, while utterances in which the condition
is already specified are left unnoticed.

We have found examples in the Verbmobil appointment-scheduling corpus (Verbmobil-Corpus
(1995)) and the SRI American Express (AMEX) travel agency data (AMEX (1989)) supporting
our distinction. An instance of the former case is (24), for the latter (26).

Consequently, we distinguish between two types of CRs with respect to the contextual status of
the parameter in the condition on which the CR is contingent:

(i) CRs contingent on a contextually-determined parameter (CDCRS)

(if) CRs contingent on a contextually non-determined parameter (NDCRS)

We discuss each of the cases below.

CRs with not-determined parameter. The parameter on which a CR is contingent can be
one that has not yet been determined in the preceding context. We call this type of CR a non-
determined parameter CR, or NDCR for short. Besides the assertion and the implicature that
answer the question on QUD as specified in Table 5.1, the CR amounts to indirectly giving rise
to the implicit question “whether ¢ holds”. Support to this intuition is given in (24i) where the
customer answers positively the implicit question in (24h).

The example shows also that the implicitly raised question is such that cannot be answered just
by “yes” or “no”. Rather, it requires some content that matches with the condition ¢. Consider

195

the user’s utterances in (29d)-(29f).

(29) a. U: Dol need avisa to enter the U.S.?
b. S: Not if you are an EU citizen.
c. S’: Yes, if you are not an EU citizen.
d. U: Yes. | No.
e. U’:Yes, lam. | No, | am not.

f. U”: Yes, | have German citizenship. | No, | have Czech
citizenship.

The responses in (29d) could be interpreted as acknowledgments, but certainly not as answers
to whether the user is an EU citizen. One way to model this in the ISU approach is that the
implicit question does not become the top-most QUD instead of the explicit question whether a
visa is needed, i.e., the latter question is still “pending”. This is corroborated by the following
continuation of (29e) where the system does answer the pending question.

(30) a. S:Thenyou do (not) need one.

b. S’: Then you do (not) need a visa.

(30a) is elliptical for (30b). Correct resolution of the ellipsis is possible only if the question
whether the user needs a visa is still the top-most QUD.

On the other hand, the need to answer the implicitly raised question is dependent on what goals
the participants try to achieve. For example, the question “Do | need a visa?” in (29a) is sat-
isfactorily dealt with when either a yes or no answer is given, or when enough information is
provided such that the asker can find out the answer herself. On the other hand, consider (31).

(31) a. U:Canl fly to Paris tomorrow?

b. S: Not if you want to fly economy class.

In (31) the response is contingent on whether the user wants to fly economy class. Before flight
selection can proceed further, the question whether ¢ holds must be answered. The difference
between (31) and (29) is that in order to satisfy its goal of selecting a flight which satisfies
the user requirements, the system does need to know whether ¢ holds, because it needs to find
out whether p holds (in (31)). In (29), the goal is merely to answer the user question. This is

196

modeled straightforwardly in the ISU approach, because raised questions need not be answered,
in contrast to findout actions, see Larsson et al. (2002)).

CRs with contextually determined parameter. Another context in which a CR is appropriate
is when an answer to a question is contingent on a parameter that has already been established
in the preceding context. We call this type of CR contextually determined CR or CDCR for
short. What does a CDCR communicate besides the assertion and implicature that answer the
question as specified in Table 5.1? We suggest that it initiates a negotiation about the already
established parameter. However, this cannot happen by simply raising the question whether ¢
holds, because c has already been established. We suggest that a CDCR implicitly proposes to
the user to consider changing the parameter: It reraises the question whether ¢ holds (see Section
2.6.9 on question reraising). Thus, a negotiation phase is opened in which either the conflicting
parameter is revised, or is confirmed. In the latter case, a different solution to the overall goal
needs to be sought.

Reraising c differs from raising a “new” question at least in two aspects: ¢ must be negotiable,
and reraising ¢ means it cannot be answered simply by providing a sufficiently discriminative
positive or negative response. To see the difference, consider (32).

(32) a. U:Canl flyon the second?
b. S: Not if you want to fly economy class.
c. U:Yes. | No.
d. U’:Yes, Ido. | No,Idon’t.

e. U”: Yes, | want business class. | No, | don’t want busi-
ness class.

Similarly to the case with a non-determined c in (29), the responses in (32c)-(32e) cannot be
interpreted as an answer to whether the user wants to change her mind from business to economy
class. They seem hard to interpret even as acknowledgments. But then we observe a number of
differences from the non-determined case: The responses in (32d) and (32e) are not appropriate
as answers to the implicitly reraised ¢, because a revision of a parameter is involved. Hence,
some kind of acknowledgment of the revision is needed in addition to the answering whether or
not the parameter is to be revised (and how). Such acknowledgments are present in (33).

(33) a. U:OK,Icanfly ECONOMY.
b. U’: But | DO want business class.

197

In (33a), OK can be seen as acknowledging the revision from business to economy class. In
(33b), but acknowledges the contrast between the proposed revision and the actual preservation
of the parameter (here, business class). The continuation in (34) on the other hand refuses the
proposed revision only implicitly, but proposes instead to check the flight possibilities on another
day.

(34) U: How about Tuesday?

Another observation concerning the appropriateness of a CDCR is that a CR cannot immediately
follow after an utterance in which the value is established, as the inappropriateness of (35b) and
(35¢) illustrates.

(35) a. U:Can I fly business class from Saarbriicken to Paris on
Sunday?

b. S: Not if you want BUSINESS class.

c. S’ Yesif youwant ECONOMY class.

Intuitively, the reason for this is that there needs to be some degree of uncertainty (in the sense
of being assumed but not known to be shared) about the parameter in order for a conditional
to be felicitous. For example, in (12) on p. 189, the business class requirement is assumed to
be maintained when the day is revised. The inappropriateness of (35b) and (35c) can also be
explained on purely semantic grounds. When both the assertion and the implicature as specified
in Table 5.1 are taken into account, a contradiction arises: Given that the elliptical answer is
resolved to the previous utterance, (35b) asserts If user wants business class, then a business
flight from Saarbriicken to Paris on Sunday is not available, and implicates If user does not want
business class, then a business flight from Saarbriicken to Paris on Sunday is available. Similarly
for (35c). (For the contradiction, the modalities need to be ignored.)

The implicit question

Sometimes, the question that is implicitly raised by a NDCR and reraised by a CDCR can be
made explicit. As a matter of fact, there are cases in which making this question explicit in-
creases the informativity and cooperativity of the response. Thus, a bare CR like (36b) may be
not sufficiently informative compared to a response like (36¢) where the CR is followed by a
verification question.

198

(36) a. U:Can I fly on the second?
b. S: Not if you fly economy class.

c. S’: Not if you fly economy class. Do you want to fly
business class instead?

This response seems to be more efficient with respect to the overall task of finding an appropriate
flight since it indicates that it is important that the user answers it. As noted earlier, there are cases
in which the implicit question needs not be answered. Thus in (14) on p. 189, the answer of the
user does not influence the overall task. A criterion for deciding when it is reasonable to make
the implicit question (re)raised by CRs explicit can be thus the question whether the progress of
solving the task depends on the answer of the user, that is in the ISU approach, whether it is on
the domain plan or on the agenda.

Negative or positive CR

Another issue concerning the conditions of use of CRs is the question about the choice between
producing the negative or the positive version of the respective type of CR. It seems that the
choice is made along two dimensions. First, the form of the user question may indicate certain
preferences of the user towards the answer. For instance, questions like (37) indicate intuitively
a positive answer preference, whereas (38) a negative one. This is irrespective of being a CDCR
or NDCR.

(37) Can I/Is it possible to fly on Monday?

(38) Do I need to/ls it necessary to fly on Monday?

On the other hand, a positive CDCR like the one in (39d) seems to be marked in the context of
a failed search. On the second thought the problem seems to be not the positive form but the
fact that the speaker suddenly introduces a contextual alternative of the parameter which was
discussed earlier. This is supported by the intuition that a more appropriate positive response
is (39e) where the contrastive conjunction but indicates that the speaker is aware of this change
from the parameter that has been discussed so far to its contextual alternative.

199

(39) a. U: Il wantto fly economy class.
b. S: What day do you want to travel?
c. U: Can I travel on the first?
d. S: Yes, if you fly business class.

e. S’:Yes, but only if you fly business class.

Furthermore, in some cases a negative NDCR evokes a presupposition that the condition ¢ holds:

(40) a. Dol need a visato go to the US?
b. Not if you are an EU-citizen. =- | suppose you are an
EU-citizen.

Similarly in the positive case, cf. (41).

(41) Yes, if you are a non EU citizen. =- | suppose you are a
non-EU citizen.

More neutral seems to be (42a) or even more so (42D).

(42) a. S:Only ifyou are anonEU citizen.

b. S’: Notif one is a EU-citizen.

This presupposition effect is however context dependent. Another dimension along which the
system can choose between a negative or positive NDCR seems to be the economy of expression.
That is, in cases in which more than one alternative to a parameter is found, the polarity of the
response can be varied depending on which way of presenting the results would be more efficient.
Thus, given the situation in (43a), a positive CR should be preferred.

(43) a. U:Canl fly with SAS?
database contains fights on Monday and Tuesday

b. S: Not if you fly on Wednesday, Thursday, Friday, Satur-
day or Sunday.

c. S’: Yes, if you fly on Monday or Tuesday.

200

Dialogue moves

As we have seen, the two different kinds of CRs provide a response contingent on a parameter
where a CDCR makes a proposal for revising the contextually determined parameter, and a
NDCR raises the question whether the parameter holds. This suggests that CDCR and NDCR
perform different dialogue moves. A CDCR makes a proposal for revising the contextually
determined parameter, and a NDCR raises the question whether the parameter holds.

In the Verbmobil corpus, the affirmative or rejecting part of a CR is annotated either as an AC-
CEPT or REJECT act which are sub-concepts of the acts FEEDBACK _POSITIVE and
FEEDBACK _NEGATIVE. These subconcepts are specified as a move by which the speaker ex-
plicitly accepts or rejects a proposal respectively. The conditional part of a CR is labeled as a
SUGGEST act defined as an act with which the speaker proposes an explicit instance or aspect
of the negotiated topic (Alexandersson and et al. (1998)).

We believe that the Verbmobil annotation scheme does not allow to account for the complex-siri
role of CRs in dialogue. CRs perform multiple dialogue acts: they are a response (backward-
looking function) and a question or a proposal (forward-looking function) at the same time.
Neither does this annotation scheme allow a distinction between CDCRs and NDCRs.

No dialogue act annotation is available for the AMEX-SIRI corpus.

We propose to characterize CRs in terms of the DAMSL standard for dialogue annotation (Allen
and Core (1997)) in the following way:

Forward looking function. We propose to assign CDCRs the forward looking function of open
option (an open option move suggests a course of action but puts no obligation), and NDCRs the
one of assert (since the other dialogue participant is not always obliged to provide an answer to
the implicit question).

Backward looking function. We propose to assign CRs multiple backward looking functions.
Both CDCRs and NDCRs are assigned the function answer (if preceded by a question) or non-
answer,! otherwise. In addition, CDCRs can be assigned the function partial reject/accept (de-
pending on polarity), and NDCRs the function hold (a hold move leaves the decision open pend-
ing further discussion). This proposal is presented in Table 5.2.

5.3 Implementation

Implementing CRs in GoDIS involves both production and interpretation of this kind of re-
sponses on the part of the system. We consider currently only the case where CRs are responses

E.g. confirm.

201

Table 5.2: Dialogue moves for CRs

Contextually Contextually
determined ¢ (CDCR) non-determined ¢ (NDCR)
Function:
backward-looking answer / confirmation answer / confirmation
reject / accept part hold
forward-looking open option assert
Effect on context: ~ “Should ¢ be kept?” “Does ¢ hold?”

of a DP to a yes/no-question of the other DP.

As already argued, the interpretation of a CDCR as an answer to a question ?p is that (i) it is
determined whether p or —p holds, because (ii) the answer is contingent on a condition c and c is
established. Moreover, (iii) the CDCR indicates the reason for the answer. By reminding of the
parameter on which the response is contingent, a CDCR (iv) proposes to reconsider the earlier
made decision by implicitly reraising the question whether ¢ should hold. The interpretation of
a NDCR as a response to a question ?p is that (i) it is still not determined whether p, because (ii)
the answer is contingent on ¢, and thus (iii) the question whether ¢ holds is implicitly raised.

From the production point of view, we observed that it is appropriate to produce a CDCR when
(i) responding to a question ?p, where (ii) the response is either p or —p, depending on a parameter
c which has been established in the preceding context and is negotiable. An NDCR is appropriate
to produce when (i) responding to a QUD ?p, where (ii) the response is either p or —p, depending
on some additional parameter ¢ which has not yet been established in the context.

We also argued that for both NDCR and CDCR, the choice between a positive or a negative one
depends on the question which one is more efficient and more cooperative in the context. The
latter in turn depends on what the preferred answer to the question whether p is assumed to be.

Both the interpretation and the production of CRs requires various extensions and modifications
of the update and selection rules as well as the analysis, generation and search components in
GoDiS. That is, the GoDIS functionality needs to be extended in several ways. First of all,
we need the system to be able to treat questions about availability of a particular parameter of a
flight like the ones in (44).

(44) a. Can | fly on the second?
b. Do I have to fly business class?

c. Isitpossible to fly on Monday?

202

Such questions involve searching the database with respect to the parameter specified in the ques-
tion. Providing a CR to such a question requires in turn an extended database search involving the
identification of parameters responsible for a failure as well as of such guaranteeing successful
search. We focus on these issues in what follows.

5.3.1 User questions

As already indicated, implementing CRs requires to enable them under certain circumstances
as answers to user questions about the availability of flights. Currently, GoDIS deals with user
questions with respect to parameters like flight prices and visa requirements for destination coun-
tries. In GoODIS, any user question is dealt with by providing a domain plan for dealing with it (
Larsson et al. (2002)). Thus, GoDIS provides currently domain plans for dealing with questions
about price and visa information. These plans specify inter alia the database search with respect
to the two parameters.

To deal with user questions concerning other parameters, we need to extend the treatment of
user questions in the GoDIS system for the travel agency domain. To this end, we implement a
domain plan for answering such questions. This plan is specified below.

PLAN: (exists(X),
(45) [findout(? X 1.dept_city(X1)))
consultDB(X)]).

One condition that has to be ensured to hold before consulting the database is whether the system
has enough flight parameters to search the database with. For instance, in the TA domain, at least
the departure city should be known. Otherwise, the system should not start a database search,
since the set of search results would be too big to be presented in a sensible way. This is dealt with
by the first action in the plan which leads to a system question concerning the departure city. The
case where the departure city is already known is taken care of by the rule removeFindout which
pops an element of the private plan of the system if this element is already in /SHARED/COM (
Larsson et al. (2002)). The plan for answering user question about the availability of particular
parameters of a flight (other than the price) is embedded into the more global plan for finding out
the price of a flight.

The user question is then integrated in the IS by the existing integration rule integrateUsrAsk
(see Section 2.6.6). Below, we include for illustration a special rule integrateUsrAskEXxists for
the case where the user question has the form ask(exists(X)). The rule integrateUsrAskEXxists
fires whenever there is a nonintegrated ask-move of the form ask(exists(X)) which represents a
user question about availability of some parameter X of a flight.

203

(RULE 5.10) RULE: integrateUsrAskEXxists
CLASS: integrate
$/PRIVATE/NIM/FST=A
A/FST==USI
PRE: ¢ A/sND=ask(exists(B))
exists(B)=C
$DOMAIN :: plan(C, D)
(pop(/PRIVATE/NIM)
push(/PRIVATE/AGENDA, icm:acc*pos)
| $SCORE=F
if_then_else(E < 0.7,
push(/PRIVATE/AGENDA, icm:und*int:usr*issue(C)),
[add(/SHARED/LU/MOVES, ask(C))
if_do(E < 0.9, push(/PRIVATE/AGENDA,
icm:und*pos: usr*issue(C)))
if_do(in($/SHARED/ISSUES, C) and
not fst($/SHARED/ISSUES, C),
EFF: ¢ push(/PRIVATE/AGENDA, icm:reraise:C'))
if_do(in($/sHARED/CcOM, F') and $DOMAIN :: resolves(F', C),
[del(/sHARED/COM, F)
if_do(in($/PRIVATE/BEL, F'), del(/PRIVATE/BEL, F))
push(/PRIVATE/AGENDA, icm:reraise:(')
)
push(/SHARED/ISSUES, C)
push(/SHARED/QUD, C)
push(/PRIVATE/AGENDA, respond(C))
add(/sHARED/LU/MOVES, ask(C))

)

In principle, the propositional content of the question is not put onto SHARED/coM. If the
question revises a parameter that has already been specified earlier, the parameters provided in
the question itself take precedence in the search; for example in answering (46e) the search needs
to be for a flight on April 2 even though the user earlier specified the departure day as April
1%t. The parameters specified in a follow-up question should not replace the earlier specified
parameters. (46f) is an example where the immediate revision could lead to trouble.

204

(46) a. S:Welcome to the travel agency!

b. U: The price for an economy flight from Frankfurt to
Paris on April first please.

c. S: Sorry, there is nothing matching your request about
price.

d. S': The price is 200 Euro.

®

U: Can I fly on the second?
f. S: Not if you want to fly economy class.

U: Can I fly from Luxembourg?

«

Intutively, what the user is asking about in (46g) are economy flights from Luxembourg to Paris
on April 1¢¢. However, the immediate revision strategy would lead to a search for economy flights
from Luxembourg to Paris on April 2. This arises as follows: In (46b), the user specifies the
parameters as dept_city(frank furt) & dest_city(paris) & month(april) & dept_day(first).
No matter whether the search result is negative (46¢) or positive (46d), the user may want to
explore other possibilities by asking (46e). If the system uses the immediate revision strategy,
the departure day parameter will now be set to dept_day(first), and remain that also when (46g)
is being interpreted, which is wrong. The revision should therefore be at least conditioned upon
success of the database search and possibly also upon the user’s subsequent acknowledgment.
This solution also allows the system to make inference about parameters in case the user accepts
the system’s suggestion as will be proposed in section 5.3.3.

After the plan for answering user guestions about availability of flight parameters is executed,
the global price plan is recovered.

Alternatively, user questions about availability of flights could be dealt with by the integration
rule for user questions itself. We find this second possiblilty more intuitive in the sense that while
it is sensible to treat questions about visa requirements as a separate plan largely independent
from the task of specifying parameters of a flight (other than the destination city), asking for
the availability of parameters specifying a flight is a natural component of this task. This is
alternatively implemented by modifying the update rule integrateUsrAskEXxists for dealing with
user questions in such a way that the database search with respect to the parameter specified in
the user question is triggered directly:

RULE: integrateUsrAskEXxists
CLASS: integrate

205

$/PRIVATE/NIM/FST=A

A/FST==USI

A/snD=ask(exists(B))

exists(B)=C

pop(/PRIVATE/NIM)

push(/PRIVATE/AGENDA, iCm:acc*pos)

I $SCORE=D

if_then_else(D < 0.7,

push(/PRIVATE/AGENDA, icm:und*int:usr*issue(C)),

[add(/SHARED/LU/MOVES, ask(C))

if_do(D < 0.9, push(/PRIVATE/AGENDA, icm:und*pos:usr*issue(C)))

if_do(in($/SHARED/I1SSUES, C) and not fst($/SHARED/ISSUES, C),
push(/PRIVATE/AGENDA, icm:reraise:C))

EFF: { if_do(in($/sHARED/coMm, E) and $DOMAIN :: resolves(E, C), [del(/SHARED/COM, E)

if_do(in($/PRIVATE/BEL, F), del(/PRIVATE/BEL, E))

push(/PRIVATE/AGENDA, icm:reraise:C)

)

push(/SHARED/ISSUES, C)

push(/SHARED/QUD, C)

push(/PRIVATE/PLAN, consultDB(B))

push(/PRIVATE/AGENDA, respond(C'))

add(/sHARED/LU/MOVES, ask(C))

W)

PRE:

The crucial difference is that the rule above gives rise to an immediate database search with
respect to the parameter in the user question by pushing the action consultDB(X) onto the plan-
stack of the system. This is however a deviation from the notion of a domain plan as a fixed set
of actions (see Larsson et al. (2002)).

A question that needs to be answered here is what happens when the user starts the information-
seeking dialogue by asking a question about availability as in (47).

(47) a. S:Welcome to the travel agency!

b. U: Can I fly on the second of march?

Although this is not likely that this case would happen, the system should be able to deal with it.
As already mentioned, it would be wrong to start a database search, if at least the departure city
is not known yet, since the set of search results would be too big to be presented in a sensible
way. Both in the case where database search is triggered via a domain plan and as a direct effect
of the user question, the system is not able to deal with the situation described in (47). In the case
where a plan deals with the user question, the system loads the respective plan for dealing with

206

this user question. This plan however does not provide for the case in (47) (neither does the plan
for answering user questions about visa requirements implemented as part of GoDI1S1 (Larsson
et al. (2002))). The reason for that is that the rule for integrating user questions puts a respond
action on the private agenda of the system. The system tries then to respond to the user question.
What it should do however in the case of (47) is to ask the user about the departure day. This
action is however part of a domain plan which cannot be accessed unless the private agenda is
empty. If the agenda is empty, the rule selectFromPlan fires which moves the first item of the
plan to the agenda. One possible way to solve this problem is to use additional plan constructs as
described in Larsson et al. (2002)which would ensure that certain conditions hold prior to trying
to answer the user question.

In the case where no domain plan is used for dealing with user questions, the system has not
loaded any plan yet and thus does not know how to interpret the question of the user. To remedy
this, a condition like the one in (48) can be added to the effects of the rule integrateUsr AskEXists
which then would trigger database search only after it has been checked whether the departure
city is already established, and if not, would push the respective findout action on the agenda
(provided that this is the only item on the agenda).

if.do (not(in($/SHARED/ISSUES, dept_city(A)))),

(48) push(/PRIVATE/AGENDA, ? A.dept_city(A))

5.3.2 The search

Another extension of GODIS needed in order to enable it to produce CRs concerns the process
of consulting the database. This is necessary since producing a particular kind of response (at
least in information-seeking dialogues) is driven by the database search results.

In GoDIS, the database search is triggered by the database consultation action consultDB(q)
where g is a question. The database search looks up the answer to the question in the database.
When consulting the database, the values of some parameters are known, and the values of
others are requested from the database. In GODIS, a single parameter is requested, namely the
one specified in the question gq. The parameters used for the search consist of the parameters
provided earlier (if any), retrieved from the shared-commitments part of the information state
(see Larsson et al. (2002)).

In GoDI1S, the result of a database search is either (i) a proposition specifying a unique value of
the requested parameter (realized as in The priceis 7654 crowns),? (ii) a proposition fail(g) indi-
cating that no answer to the question was found (realized as in Sorry, there is nothing matching
your request about price) or (iii) a set of alternative answers (realized as in (49d)).

2In case more than one result is found, the system enumerates them one by one.

207

(49) a. U:Ilwantto fly from Malmd to Paris on the first of April
b. S: What class did you have in mind?
c. U: It doesn’t matter.

d. S: The price is 7654 crowns. business class. The price is
456 crowns. economy class.

The resulting proposition(s) are the answer to the question q. The result of a successful database
search is a set of propositions of the form db_entry(set(SpecProps), set(UnspecProps), Answer).
This set is stored in PRIVATE/BEL.

Producing CRs requires a certain processing of the search results. On the one hand, we want to
produce a negative CR instead of plain No after failed DB search to suggest a parameter the user
might consider relaxing to get successful search. Similarly, a positive CR can also be generated
instead of plain Noafter failed database search in order to suggest an alternative parameter lead-
ing to successful search. This involves the identification of a parameter responsible for the failure
and new search with this parameter relaxed. On the other hand, we want to produce positive CR
instead of plain Yes after successful search to indicate that search success depends on some as
yet unspecified parameter, to avoid future failed search and to constrain the space of possibilities.
This involves comparison of database records in the case that more than one record satisfies the
query and identifying a parameter that all records share.

For instance, given the database in figure 5.1, if the search fails with the parameters specified by
the user but succeeds with one parameter relaxed, then it is possible for the system to suggest
this parameter to the user to consider relaxing. In this case the system can produce a CR like the
CDCR in (50d). Alternatively, it can suggest directly the alternative for a parameter and produce
the respective positive CR in (50e).

208

(50) a. U:Ilwantto fly from London to Hongkong on the second
of March, cheap
Search parameters:
{dept_city(london), dest_city(hongkong), dept_day(second),
month(march), class(economy)}
Search fails:

b. S: Sorry, there is nothing matching your request.

c. U:Can travel on the first?
Modified search parameters:
{dept_city(london), dest_city(hongkong), dept_day(first),
month(march), class(economy)}
Search fails with class(economy) but succeeds with
class(business):

d. S:Not if you want economy class.

e. S’:Yes, if you fly business class.

On the other hand, if the database returns many hits, and all of them share some as yet unspecified
parameter(s) on which the potential search is contingent, a positive NDCR can be produced to
indicate this parameter to the user (51d). Alternatively, a negative NDCR may be produced to
indicate potential failure with the contextual alternative of this parameter (51e).3

3This negative CR is however rather marked and suggests that the system has a model of the user preferences.

209

Figure 5.1: A toy database

dep dest month dep_day class price airline
London Hongkong March 1%t busness 1555 BA
London Hongkong April ond economy 654 BA
London Hongkong April 2nd economy 654 BA
London Hongkong March 374 business 1555 BA
London Hongkong March 379 economy 654 BA
London Hongkong March 34 economy 854 SAS
London Hongkong March 374 economy 854 SAS

(51) a. U:lwantto fly from London to Hongkong on the first of
April, cheap
Search parameters:
{dept_city(london), dest_city(hongkong), dept_day(first),
month(april), class(economy))}
Search fails:

b. S: Sorry, there is nothing matching your request.

c. U: Can I travel on the second?
Modified search parameters:
{dept_city(london), dest_city(hongkong), dept_day(second),
month(april), class(economy))}
Search succeeds with two hits, additional parameter
shared by all DB records: airline(ba)
Potential success indicated:

d. S: Yes, if you fly with British Airways.
Potential failure indicated:

e. S’: ?Not if you want to fly with SAS.

Thus, in order to produce CRs, additional processing of the search results is needed. The database
is looked up with a set of parameters retrieved form /SHARED/COM. This set is matched onto
the database. The parameter specified in the user question is the one that is looked for. If the
matching succeeds, the standard procedure described above provides that the result in the form of
a proposition or a set of alternative answers is written to PRIVATE/BEL of the system as already
described above.

If no matching database record is found, the set of parameters is compared with the database
records and the difference list is obtained. The difference list contains the elements of the set

210

of user specified parameter that could not be matched in the DB. For instance, in the case de-
scribed in (50), the difference list after lookup with a modified parameter set would contain the
parameters class(economy), class(business).

Then, this difference list is checked for relaxable parameters. If it does not contain relaxable
parameters, then there is no solution to the user query and the system generates an utterance
like Sorry, there is nothing matching your request about X where X is the requested param-
eter that was looked up. Alternatively, the system could say just No. If it does contain re-
laxable parameters, they are collected in a list. The first element of this list is taken and its
counterpart (contextual alternative) is deleted from the original set of user specified parame-
ters. The so obtained relaxed set of parameters provides the parameters for a new search. For
instance, in (50), the set of parameters for the new search will consist of the following ele-
ments: {dept_city(london), dest_city(hongkong), dept_day(first), mont(march)}. Search-
ing with this set of parameters may again succeed or fail. In case it succeeds, a list is obtained
which contains the possible alternatives to the relaxed parameter, as well as some parameters
not contained in the user query, that is, some unspecified parameters. Finally, from the list of
alternatives the element(s) is selected which can be identified as the counterpart(s) (contextual
alternative(s)) of the relaxed parameter. In case the new search fails, another parameter is relaxed
and a new search with a relaxed set of parameters is conducted. If no parameter can be relaxed,
the system answers with a non-conditional negative response.

The result of the successful modified search with parameter relaxation has the form
db_entry(set(SpecProps),relaxable(Relaxable), alternative(Alternative), set(UnspecProps), An-
swer) where relaxable(Relaxable) is the set of parameters identified as responsible for the failure
and alternative(Alternative) is the set of its contextual alternative and Answer is the parameter
requested in the user question. This set is stored in PRIVATE/BEL.

The parameter relaxation procedure we described is simplified in several respects. First of all,
the guestion which parameters are relaxable and which not is dealt with by just declaring certain
parameters for being relaxable. Currently, these are the parameters class and departure day. Also,
the relaxation strategy is to relax these parameters one after another in some arbitrary order until
a solution is found. Moreover, we currently only model the relaxation of one parameter p;, but
it is conceivable to look for a combination of parameters. A more sophisticated way to deal with
this issue is by choosing some fixed ordering of parameters for relaxation, possibly using the
user’s preferences provided that the system had a user model.

Some of the problems we are dealing with in providing alternative suggestions to the user in
information-seeking dialogues in over-constrained situations, have been addressed in work con-
cerned with conflict resolution (Qu and Beale, 1999; Chu-Carroll and Carberry, 1994) (see Qu
and Beale (1999)for further references). The general issue of negotiation strategies after failed
database search is presently being addressed by various teams developing commercial dialogue
systems, e.g., the Soliloquy system. Another such system we have recently seen demonstrated
is developed at IBM (Hochberg et al. (2002)). Qu and Beale (1999)for instance propose a

211

constraint-based model for cooperative response generation aiming at detecting and resolving
situations in which the user’s information needs have been over-constrained. In contrast to ear-
lier work using heuristics for identifying relaxation candidates (e.g., based on constraint weights
-Abella et al., 1996; Pieraccini et al., 1997), Qu and Beale (1999)employ Al techniques like
constraint satisfaction, solution synthesis and constraint hierarchy. There is work on detecting
invalid beliefs or plans and suggesting alternative solutions by relaxing over-constrained queries
and proposing relaxation modification (Chu-Carroll and Carberry (1994)) which is also related
to the issues presented above.

In contrast to the works cited above, we also deal with under-constrained situations where a
positive CR indicates additional parameters in order to prevent failed future search. The only
other work addressing also this issue we are aware of (Hochberg, p.c.) is described in Hochberg
et al. (2002)but does not provide details in this respect.

Employing more sophisticated parameter identification and relaxation techniques is however be-
yond the scope of our present work.

When the user query succeeds and the user question about availability can be answered pos-
itively, the database may contain additional parameters which the user has left unspecified or
which the system has not asked about (for instance, airline). Our system can be collaborative
especially in the case where there are more results than can be sensibly conveyed to the user at
once. A CRs is appropriate in this case to indicate when the success of the search depends on any
as yet unspecified by the user. This helps to avoid future failed search. This relies on the database
search returning all the records that satisfy the search criteria. We implement a simple subsequent
processing which compares the records and determines whether they all have any other param-
eter(s) in common. When this is the case, a positive NDCR with this parameter as a condition
can be generated. Currently, we only cover the case where there is only one such parameter.
The case where there are more than one additional parameters to suggest we leave for future
work. The database search result after this processing has the format db_entry(set(SpecProps),
additional(Additional), set(UnspecProps), Answer) where additional(Additional) is the set of
parameters that all successful records share.

A negative NDCR can be alternatively produced by using the contextual alternative of the addi-
tional parameter. This requires however to define contextual alternatives in the domain knowl-
edge of the system (see the discussion about that in 5.3.3).

An alternative (but much simpler) way to deal with the case of providing additional parame-
ters after successful search is already provided by the standard database consultation procedure
without additional processing of the search results. A positive NDCR is produced then after a
question about availability when only one database record is retrieved which contains unspec-
ified parameters. One (or two) of them can be picked up an realized as the condition of the
positive NDCR. For instance, given the database in figure 5.1, a positive NDCR as (52d) can be

212

produced.*

(52) a. U:lwantto fly from London to Hongkong on the first of
April.
Search parameters:
{dept_city(london), dest_city(hongkong), dept_day(first), month(april)}
Search fails:

b. S: Sorry, there is nothing matching your request.

c. U: Can I travel on the second?
Modified search parameters:
{dept_city(london), dest_city(hongkong), dept_day(second), month(march)}
Search succeeds, unspecified parameters found:
class(economy), airline(ba)
Potential success indicated:

d. S:Yes, if you want to fly economy class with British Air-
ways.
Potential failure indicated:

e. S’ ?Not if you want to fly business class with SAS.

The modified database consultation procedure we described makes sure that a contextual alter-
native to the condition asserted in a CDCR is found prior to producing the response. Since we
argued that for a system it is desirable to be cooperative, we suggest that the system should
produce a (negative or positive) CDCR after failed search only if it has found an alternative satis-
fying also the implicature that arises from the CDCR. In comparison, a human agent can behave
differently in this respect. In (26) on p. 193, the human travel agent produces a negative CR upon
discovering that the answer is negative for Oakland. However, it seems that she does this prior to
checking whether the answer is positive for the contextual alternative San Francisco. Eventually,
no solution is found for the alternative departure city either, and asserting this in (26j) cancels
the implicature of (26i).

For NDCRs, the database consultation procedure makes sure that the additional parameter sug-
gested has no alternative in the database for which the answer would be positive, which satisfies
the implicature arising from positive NDCRs. Similar considerations hold for the negative ND-
CRs where the procedure makes sure that the implicature is satisfied by identifying a parameter
which is shared by all database records matching the user query.

After having set the stage for the implementation of CRs, in what follows we describe the actual
implementation of CRs starting with their production.

4Again, the negative NDCR is marked and requires a user model.

213

5.3.3 Production of CRs

In this section we describe the production of CRs by the system. The dialogues we want the
system to produce are presented in (53) (CDCR) and (54) (NDCR) below.

(53) a. S:Welcome to the travel agency!
b. U: Aflight from London to Hongkong, cheap.
c. S: Alright. You want to know about price.
d. U: Yes.
e. S: What month do you want to leave?
f. U: In March.
g. S: What day do you want to leave?
h. U: Can I travel on the first?

i. S: Not if you want to travel economy class . /Yes, if you
travel business class.

J. S: So, Do you want business class ?
K. U: Yes

I. S: Okay. The price is 1555 crowns.

214

(54) a. S:Welcome to the travel agency!
b. U: Aflight from London to Hongkong
c. S: Alright. You want to know about price.
d. U: Yes.
e. S: What month do you want to leave?
f. U: In March.
g. S: What day do you want to leave?
h. U: Can I travel on the first

I. S: Yes, if you want to travel business class . / Not if you
travel economy class.

J. S: Do you want business class ?
k. U: Yes.
I. S: The price is 1555.

In the information state update approach to dialogue, dialogue moves are modeled in two steps.
First, a selection rule specifies the conditions under which this move should be realized, and
second, an integration rule specifies the effects of the move on the information state. We argued
that in away CDCRs and NDCRs realize different moves. This distinction is however determined
by the context and not by the response itself. Therefore we treat both kinds of CRs as answer
or response moves with different preconditions for their selection and different effects of the
IS. In the previous section we argued that in their forward-looking function, CRs are special
kinds of responses to a question on QUD. This question concerns in the TA domain typically
the availability of a particular parameter of a flight. Consequently, in the selection rule for CRs
we need to specify that a CR must be selected as a response to a question on QUD about the
availability of a parameter. Questions about availability trigger in our application a database
search with respect to this parameter. The kind of CR that needs to be selected depends on what
the database search result looks like. As already said, we want to generate a negative CR instead
of plain No after failed DB search to suggest a parameter the user might consider relaxing to
get successful search. Similarly, a positive CR can also be generated instead of plain No after
failed database search in order to suggest an alternative parameter leading to successful search.
On the other hand, we want to generate positive CR instead of plain Yesafter successful search
to indicate that search success depends on some as yet unspecified parameter, to avoid future
failed search. The effect of a CR on the IS is defined in terms of its semantics, that is, both what
it asserts and implicates is added to the dialogue history, as well as in terms of the succeeding
move of the system.

215

In what follows, we concentrate on producing negative CDCRs and positive NDCRs. One reason
for neglecting negative NDCRs like the one in (51e) on p. 210 which was mentioned in section
5.2.2 is that negative NDCRs seem to be rather marked by giving the impression that the speaker
has some beliefs about the preferences of the other DP. Integrating the case of positive CDCR into
the implementation is simple as shown in the next section. However, in order to have a version of
the system which can produce all of these alternatives, we would need to implement a decision
procedure for choosing the one or the other. This would require in turn additional extensions of
the system including user modeling with respect to user preferences or additional processing of
the database search results in order the system to be able to find the most economical way of
presenting the search results as suggested at the end of section 5.2.2.

Selection of CRs

We said that we consider four cases of CRs according to their polarity and contextual givenness:
positive and negative CDCR and positive and negative NDCR. We also illustrated the conditions
upon which these different kinds of CRs should be produced, that is, CDCRs as a collaborative
recovery from a failed DB search and NDCRs as a collaborative continuation after a successful
database search

We argued that CDCRs and NDCRs can be assigned different dialogue moves. However, in the
implementation we treat them uniformly as answer moves and account for the differences be-
tween them in terms of different contexts of use and different effects on the IS. These differences
are accounted for in the integration rules for CRs provided in the next section.

The conditions relevant for selecting a CR are specified in the selection algorithm in figure 5.2.
We discuss the respective portions of the selection algorithm below.

CDCR. When the database search with a set of user-specified parameters fails, the system
attempts to collaborate by suggesting which (if any) parameter the user might relax to get a
successful search instead. To find out, the system performs additional database searches with the
parameters relaxed one at a time. If the relaxation of some parameter leads to a successful search
the system produces a negative CDCR contingent on this parameter.

For illustration, consider (55) and the database records in figure 5.1.

216

Figure 5.2: CR selection algorithm
Given a set of search parameters P = {py,...,p,}, Where each p; = «;(v;) is a proposition
specifying the value v; of an attribute o;. Given a (possibly empty) set of database search solu-
tions soL = {S1,...,Sn} s.t.VS; € soL : P C §S,.
If responding to a yes/no question ¢ which specifies search parameters @ = {q1,...,q}

if soL = () (database search failed)
then

if 3p; € P/Q s.t. 3soL” = {Si,...,Sk} s.t. VS; € soL’ : P/p; C S;} (some
parameter identified as responsible for search failure; if this parameter is relaxed,
search succeeds)

then answer g with a conditional negative response with condition p;
else answer g with an unconditional negative response

else (database search succeeded)

if VS; € soL : S;/P # 0 (there are other user-unspecified parameters in search
result)
then
if the size of soL is less than Max (the results are enumerable)
then answer g by enumerating soL
else (the results cannot be enumerated)
if 3p; s.t. VS; € soL : p; € S;/P (all results share some parameter p;)
then answer ¢ with a conditional positive response with condition p;

else answer g with a positive response

217

(55) a. U:lwantto fly from London to Hongkong on the second
of March, cheap

b. S: Sorry, there is nothing matching your request.
c. U: Can I travel on the first?
d. S: Not if you want economy class.
A search with the parameter set (56) fails. However, a search with the modified parameter set

(57), where the class parameter is relaxed, succeeds, so (55d) can be generated, indicating that
the negative answer depends on class.

(56) {dept_city(london), dest_city(hongkong), dept_day(second), mont(march),
class(economy)}

(57) {dept_city(london), dest_city(hongkong), dept_day(first), mont(march)}

As already pointed out in section 5.2, we do not allow a CDCR contingent on parameters men-
tioned in the question, because of the oddity of answering a question such as (58a) with (58Db).

(58) a. S:Can |l fly from Malmo to Paris on April 15?

b. U: Not if you want to fly on April 1%,

NDCR. Our system is collaborative also when the database search with the user-specified param-
eters succeeds, but there are more results than can be sensibly conveyed to the user at once. In
this case, the system attempts to use a CR to indicate when the success of the search depends on
any parameter as yet unspecified by the user. This helps to avoid future failed search. This part
of the algorithm relies on the database search returning all the records that satisfy the search cri-
teria and identifying some parameter(s) that all records have in common. When this is the case,
a positive NDCR can be generated. (A simplified version of this we described in the previous
section is the case where there is only one record satisfying the search criteria.) For illustration,
consider (59).

(59) a. U:lwantto fly from London to Hongkong on the first of
April, cheap.

b. S: Sorry, there is nothing matching your request.
c. U: Can I travel on the second?
d. S: Yes, if you fly with British airways.

218

Given the database in figure 5.1, a search with the parameter set (60) returns more than one hit.
They all share the parameter airline(ba), so (59d) can be generated, indicating this parameter as
one on which the positive answer is contingent.

(60) {dept_city(london), dest_city(hongkong), mont(april), dept_day(second)}

As already mentioned, the conditions for selecting particular dialogue moves by the system are
specified in the selection rules for these moves. We specify those for selecting a CDCR as
a special kind of answer move, namely selectCondResp. The rule implements the selection
algorithm in figure 5.2. The particular CR is selected on the basis of the form of the database
search result. The rule only specifies the cases where negative CDCRs and positive NDCRs
are selected. The selection algorithm in figure 5.2 specifies that if the search results cannot be
additionally processed, that is, if no negative CDCR or positive NDCR can be selected, the
system generates a non-conditional negative or positive answer. A non-conditional negative
answer the system generates is plain No or alternatively Sorry, there is nothing matching your
request about X. A non-conditional positive answer is a plain Yes.

(RULE 5.11) RULE: selectCondResp

CLASS: select_move
fst($/PRIVATE/AGENDA, respond(A))

in($/PRIVATE/BEL, B)

PRE“Y ot in($/sHARED/CcOM, B)
A=exists(C)
[forall_do(in($/PRIVATE/BEL, D),
[if then_else(D=db_entry(E, relaxable(F), alternative(G), H, I),
push(NEXT_MOVES, answer(implies(F', not(C)))),
if_do(D=unknown(C),
push(NEXT_MOVES, answer(unknown(C)))))
— if_then_else(D=db_entry(F, additional(.(J, K)), H, I),

push(NEXT_MOVES, answer(implies(J, C))),
if_do(D=db_entry(F, L, M),
push(NEXT_MOVES, answer(possible(M)))))
)

pop(/PRIVATE/AGENDA)

POpP(NEXT_MOVES)

The rule specifies that CRs are relevant answers since they resolve the question under discussion
(see Larsson et al. (2002)on relations between questions and answers). According to the defi-
nition provided there, CRs are relevant answers since they are resolving answers, although the
resolution does not occur as a direct consequence of the CR as will be argued below.

219

For selecting positive CDCRs, a slight modification of the rule is needed ensuring that not the
relaxable but the alternative of the relaxable parameter is selected. The alternative is obtained in
this case during the relaxation procedure. For selecting negative NDCRs, the contextual alterna-
tive is not obtained from the search result. In the implementation, we represent contextual alter-
natives the same way we treat negation, i.e. by using the atom not. However, an improvement
would be if the system is able to interpret this negation in some cases as a contextual alternative
of the negated parameter. It may be necessary to define contextual alternatives in the domain
knowledge of the system such that for instance alt(class(business)) is defined as class(economy)
and vice versa. This will ensure that the alternative of the additional parameter found in the
database will be selected as an answer. We give a separate rule for these cases below. For select-
ing one or the other version of the rule selectCondResp, we need additional preconditions that
have to be specified for each of them. However, as already pointed out, we leave this for future
work.

RULE: selectCondResp

CLASS: select.move
(fst($/PRIVATE/AGENDA, respond(A))

in($/PRIVATE/BEL, B)

not in($/SHARED/COM, B)
$DOMAIN :: resolves(B, A)
A=exists(C)

PRE: <

(forall_do(in($/PRIVATE/BEL, D), | if then_else(D=db_entry(E, relaxable(F), alternative(G), H, I,
push(NEXT_MOVES, answer(implies(G, C))),
if_do(D=unknown(C), push(NEXT_MOVES, answer(unknown(C)))))
if_then_else(D=db_entry(F, additional(.(J, K)), H, I),
EFF: < push(NEXT_MOVES, answer(implies(not(K), not(C)))),
if_do(D=db_entry(F, L, M), push(NEXT_MOVES, answer(possible(M)))))
)
pop(/PRIVATE/AGENDA)
[POP(NEXT_MOVES)

The so selected move is sent to the generation module and the actual CR is generated.

Integration of CRs

After the system has produced an utterance, it has to be integrated in the resulting new 1S. As
already mentioned, the integration rules for dialogue moves specify the effects of the particular
dialogue moves on the IS. The effects of CRs on context are more complex-siri than the ones of
short answers or non-conditional answers. Also, NDCRs and CDCR have different effects on the
context which makes them look like different moves as was argued in section 5.2.2. The way we

220

Table 5.3: Effect of CRs on information state

neg CDCR | pos CDCR | neg NDCR | pos NDCR

Not if ¢ Yesifc Not if ¢ Yesifc
IS before:
QUD p p p p
Shared c c
IS after:
Shared
Assertion c— —p, c—p, c— —p, c—p,
Implicature | ¢ — p cd —-p d—p d— -p
QUD ?c ?c ?c ?c

model the various effects of a CR on the information state is shown schematically in Table 5.3.°
As already pointed out, the question ?p that a CR addresses is represented in GODIS as the ques-
tion under discussion (QUD). The answer provided by a CR is added to the shared commitments.
The semantics of a CR is represented as a conditional using the format implies(X,Y). Next to the
asserted conditional, a CR implicates that the answer is opposite for the respective contextual
alternative as argued in section 5.2.1. The implicature is also represented as a conditional, using
the format implicates(implies(X,Y)).

In addition to answering the question ?p, the effect of a CR is that it puts a question on QUD
corresponding to the condition. The effects of CDCRs and NDCRs on the IS differ, because they
occur in different contexts: A NDCR contingent upon ¢ has the effect of raising the question
whether this condition ¢, which had not been previously mentioned, should hold. In contrast,
asserting a CDCR contingent upon ¢ cannot simply raise the question whether the condition ¢
should hold, because ¢ has been already determined and is part of the shared commitments. A
CDCR therefore has the effect of reraising the question whether ¢ should hold.

For reasons that we discussed in section 5.2, we decided to treat the implicit question that a CR
(re)raises as a separate subsequent move by the system, namely a verification yes/no-question.
After a CR, the system pushes a raise-action on the private agenda which leads to the realization
of an ask move. Since we argued that the implicit question need not be answered by the hearer,
we model the effect of asking a verification question as a raise action and not as a findout action
(see Larsson et al. (2002)for the difference between raise and findout). In the case of a negative
CDCR, we chose to produce the verification question with respect not to the already established
parameter ¢ but with respect to its contextual alternative ¢’ (see (61c)). This way of presenting
the information to the user seems to be more informative compared to (61d).

Swhere ¢ and ¢’ denote contextual alternatives.

221

(61) a. U:Can I travel on the first?
b. S: Not if you want to travel economy class .
c. S: So, Do you want to fly business class?

d. S’: So, Do you want to fly economy class?

Alternatively, one could utter instead of (61c) something like (62) which indicates the decision
process that the user has to make.

(62) Do you still want to fly economy class?

In the case of the positive CDCRs, it is more natural to produce something like (63c) rather
than (63d). We therefore produce the verification question with the condition ¢ and not with its
contextual alternative c'.

(63) a. U:Canl travel on the first?
b. S: Yes, if you want to travel economy class .
c. S: So, Do you want to fly economy class?

d. S’: So, Do you want to fly business class?

After the verification question is (re)raised by the system, it is put onto the QUD. It may be
reasonable to have a decision when to put the verification question and when not. However, this
should be based on an extended analysis of dialogue corpora and is therefore left for future work.

The difference between CDCRs and NDCRs is also accounted for in terms of the preconditions
of the integration rule, that is, by checking whether the condition ¢ is part of the shared commit-
ments, and if yes, the effect of reraising the question is modeled by using the respective positive
feedback grounding feature of GoODIS described in Section 2.6. The act of reraising is signaled
by the system by the cue phrase So, ... (see (61c)).

The respective rules for negative CDCRs and positive NDCRs integrateSysNegCDCR and in-
tegrateSysPosNDCR are given below.

222

(RULE 5.12) RULE: integrateSysNegCDCR

CLASS:

PRE: <

EFF. <

integrate

$/PRIVATE/NIM/FST=A

AIFST==8Yys

AlsND=answer(B)

B=implies(C, not(D))

E=db_entry(F, relaxable(C), alternative([G | H]), I, J)
$/sHARED/PM=set([ask(exists(D))])
in($/sHARED/coM, C)

pop(/PRIVATE/NIM)

add(/sSHARED/LU/MOVES, answer(B))
add(/sHARED/coM, implies(C, not(D)))
add(/sHARED/cowm, implicates(implies(G, D)))
if_do(in($/sHARED/coMm, C'), push(/PRIVATE/AGENDA,
icm:reraise))

push(/PRIVATE/AGENDA, raise(G))
pop(/SHARED/ISSUES)

del(/PRIVATE/BEL, E)

(RULE 5.13) RULE: integrateSysPosNDCR

CLASS:.
(

PRE: <

EFF. <

integrate

$/PRIVATE/NIM/FST=A

A/FST==8Yys

A/sND=answer(B)

B=implies(C, D)

E=db_entry(F, G, D, H)
G=additional([C' | I1)
$/sHARED/PM=set([ask(exists(H))])
pop(/PRIVATE/NIM)
add(/sHARED/LU/MOVES, answer(B))
add(/sHARED/cowm, implies(C, H))
add(/sHARED/coM, implicates(implies(not C, not(H))))
push(/PRIVATE/AGENDA, raise(C))
pop(/SHARED/ISSUES)
clear(/PRIVATE/BEL)

Since CRs are resolving answers, they are also relevant answers.

For positive CDCRs and negative NDCRs, the rules have to be modified such that they ensure
that the responses have the respective semantic form.

223

(RULE 5.14) RULE: integrateSysPosCDCR

CLASS: integrate
[$/PRIVATE/NIM/FST=A
AIFST==8Yys
AlsND=answer(B)
PRE: ¢ B=implies(C, not(D))
E=db_entry(F, relaxable(C), alternative([G | H]), I, J)
$/sHARED/PM=set([ask(exists(D))])
in($/sHARED/coM, C)
(pop(/PRIVATE/NIM)
add(/sSHARED/LU/MOVES, answer(B))
add(/sHARED/coM, implies(G, D))
add(/sHARED/cowm, implicates(implies(C, not(D))))
EFF: ¢ if_do(in($/sHARED/CcOM, C), push(/PRIVATE/AGENDA,
icm:reraise))
push(/PRIVATE/AGENDA, raise(G))
pop(/SHARED/ISSUES)
del(/PRIVATE/BEL, E)

(RULE 5.15) RULE: integrateSysNegNDCR

CLASS: integrate
[$/PRIVATE/NIM/FST=A
A/FST==8Yys
A/sND=answer(B)
PRE: ¢ B=implies(C, D)
E=db_entry(F, G, D, H)
G=additional([C' | I1)
$/sHARED/PM=set([ask(exists(H))])
pop(/PRIVATE/NIM)
add(/SHARED/LU/MOVES, answer(B))
add(/sHARED/cowm, implies(not (C), not(H)))
EFF: ¢ add(/SsHARED/coMm, implicates(implies(C, H)))
push(/PRIVATE/AGENDA, raise(C'))
pop(/SHARED/ISSUES)
clear(/PRIVATE/BEL)

One issue that needs to be considered in relation to this is whether a CDCR involves removing
the previously established proposition ¢ (downdate). As already argued, the examples (64c)
and (64d) as alternative continuations of (64b) show that the previously established proposition
should not be downdated as a direct result of the CR, because the proposed revision can still be
either accepted or rejected by the user.

224

(64) a. U:Canlfly on the second?
b. S: Not if you want to fly economy class.
c. U: Ok, I’ll fly business class.
d. U’: What about the third?

In (64a), the user asks about economy flights from London to Hongkong on March 2™4, and the
system gives a negative CDCR suggesting the parameter class(economy) as responsible for the
failed database search. In (64c), the user accepts the alternative of flying in business class. In
this case, the proposition class(economy) can be deleted from the shared commitments, and re-
placed by class(business) as a result of (64c). (64d), on the other hand, should be interpreted as
asking about economy flights from London to Hongkong on March 37¢, indicating (in an indirect
way) that the user does not want to revise the parameter class(economy) to class(business),
but rather tries the parameter dept_day(third) instead of dept_day(second). In this case it would
have been wrong to remove the proposition class(economy) from the shared commitments as a
result of the CDCR. Therefore the established proposition ¢ should be kept in the shared com-
mitments, while the alternative ¢’ proposed in the CDCR is being considered.

We do not downdate the previously established proposition as a direct consequence of the CDCR.
Instead, the system waits for the user to accept or reject the system’s proposal. The conditional
form of the CR and the contextual presence of the antecedent of the conditional in the case of a
CDCR allow the system to make inference with respect to the parameter in the question about
availability of flights:

(65) a. U:Canlfly on the first?

b. S: Not if you fly economy. Do you want to fly business
class?

c. U: Yes, (I’ll fly business).
class(business) put on /SHARED/COM
On /sHARED/cOM is also: implicates(implies
(class(business), dept_day(first)))
System infers: departure_day(first), i.e. puts it on
/SHARED/COM

Similarly with the positive CR:

225

(66) a. U: Can I fly on the first?

b. S: Yes, if you fly business. Do you want to fly business
class?

c. U:Yes/Ok, (I’ll fly business)
class(business) put on /SHARED/COM
On /sHARED/coM is also: implies (class(business),
dept_day(first))
System infers: departure_day(first), i.e. puts it on
/SHARED/COM

Thus, if the user answers the system verification question positively, the user question (66a) is
resolved positively.

If the user answers negatively, the negated proposition is added to /SHARED/coOM, for instance,
not class(business) after (67d).

(67) a. U:Can I travel on the first?
b. S: Not if you want to travel economy class .
c. S: So, Do you want to fly business class?

d. U: No.

Here, the rule for integrating user answers should also ensure that the system makes an in-
ference to the effect that the user question in (67a) is answered negatively: the inference not
dept_day(first) is added to /SHARED/COM.

Without making this inference, the system would ask the question about the departure day (What
day would you like to travel?) again. The rule for integrating the answer of the user is therefore
modified to provide for this special case. This is done in the last two effects of the answer move.
The content of the answer move and the content of the implicature of a negative CDCR represent
the premises, and the proposition to be added to /SHARED/COM is the conclusion of an argument
derived via Modus Ponens. The rule integrateUsrAnswer is given below.

226

(RULE 5.16) RULE: integrateUsrAnswer
CLASS: integrate

(fst($/PRIVATE/NIM, A)
A/FST==USI
A/sND=answer(B)
fst($/SHARED/ISSUES, C)
PRE: ¢ $DOMAIN :: relevant(B, C)

not not SDOMAIN :: proposition(B) and

not in($/SsHARED/QuUD, C)

$DOMAIN :: combine(C, B, D)
| $DATABASE :: validDBparameter(D) or D=not(F)
pop(/PRIVATE/NIM)
if_then_else(in(3LATEST_MOVES, answer(B)),
| $SCORE=F,
I F=0.6)
if_then_else(F < 0.7,
push(/PRIVATE/AGENDA, icm:und*int:usr*D),
[add(/sHARED/comMm, D)
add(/SHARED/LU/MOVES, answer(D))
if_do(not in($/PRIVATE/AGENDA,
icm:acc*pos), push(/PRIVATE/AGENDA, icm:acc*pos))
if do(FF <0.9and B
=yes and B
=no, push(/PRIVATE/AGENDA, icm:und*pos:usr*D))
)
if_do(in($/sHARED/coM, implicates(implies(B, G))),
[add(/SHARED/coM, G)
push(/PRIVATE/AGENDA, iCm:acc*pos)
)
if_do(in($/sHARED/coM, implies(B, G)),
add(/SHARED/com, G))

EFF:

\

Alternatively, one may want to take on a more cautious strategy and put the parameter onto
/SHARED/coM only after the user has confirmed the system’s inference by a verification asser-
tion as in (68a) where after the positive answer of the user (68b) the departure day will be set on
first and put onto /SHARED/COM.

(68) a. S:Soyouwantto fly on the first.

b. U: Yes.

As a matter of fact, a question like Can I X suggests by its form that the user is not committing
to the parameter specified in it. Such a question should be interpreted as (69a) and not as (69b).

227

(69) a. I wantto know the price on the first.

b. 1 want to fly on the first.

If the user answers the verification question positively by saying just Yes, he may be still just
exploring the possibility. This is supported by the intuition that the user may answer (68a) by
saying (70).

(70) U: No, I am just checking.

In this case it might be better to ask (71) instead of (68a) (provided that we are in the price plan).
Then if the user answers positively, he would be making a commitment towards flying on the
first.

(71) S: So you want to know the price on the first.

These are however subtle distinctions which cannot be accounted for with the simple semantics
used in GoDIS but require ways of representing modality.

Another issue that needs mention here is the question about the resolvedness of CRs. CDCRs
and NDCR behave differently in this respect. A CDCR resolves a question under discussion ?p
negatively or positively because of the inference that can be made from the conditional form of
the CR and the contextually determined condition. NDCRs on the other hand, do not resolve the
question ?p before the condition c or its alternative becomes part of the shared commitments.

After the user answers the verification question of the system, the original global plan (e.g. the
price plan) is recovered and the next question on the global plan is uttered by the system.

Discussion

One further issue that we want to pursue here is related to the possibility of using inference to
enable the system to make further suggestions to the user given the database search results.

If the user answers negatively to the verification question following a positive or negative CDCR
in our implementation or does not answer at all, the already established parameter is not changed.
In this case, instead of asking the same question for the second time as in (72I), the system could
ask (72m) or suggest (72n).

228

(72) a.

S: Welcome to the travel agency !

U: A flight from London to Hongkong, cheap
S: Alright. You want to know about price.

U: Yes.

S: What month do you want to leave?

U: March

S: What day do you want to leave?

U: Can I travel on the first?

S: Not if you want to travel economy class .
S: So, Do you want business class ?

U: No/ -

S: What day do you want to leave?

S’: On which other day do you want to leave?
S”: You have to choose another day then.

S”: You can fly economy on the second.

Another possibility would be that the system proposes an alternative departure day as in (720)
provided that it has found such in the database. In this case, the system proposes a contextual
alternative p’ (which can be defined as —p for a set of contextual alternatives) of the rejected
parameter. This is also done via inference as shown in (73) and (74).

229

(73) a. U:Can I travel on the first?
QUD: 7p

b. S: Not if you want to travel economy class .
Asserts: ¢ — —p
Implicates: ¢ — p

c. S: Do you want to fly business class ?
¢’ proposed

d. U:No.
not class(business) on /SHARED/COM, i.e. =¢' = ¢
From cand ¢ — —p infer —p; if there is such a flight with
a contextual alternative p’, propose it

e. You can fly economy on the second.

U: Can | travel on the first?
QUD: 7p

(74)

o

b. S: Yes, if you want to travel business class .
Asserts: ¢ — p
Implicates: ¢ — —p

c. S: Do you want business class ?
¢’ proposed

d. U: No.
not class(business) on /SHARED/COM, i.e. =¢' = ¢
From c and ¢ — —p infer —p;
if there is such a flight with a contextual alternative p',
propose it

e. You can fly economy on the second.

If the parameter turns out to be not relaxable, a different parameter should be tried for relaxation.
The system can be cooperative also in this phase of the task-solving by suggesting another relax-
able parameter provided that the search procedure has taken care of this case. This is however an
issue of future work.

One problem related to the implementation of this proposal also concerns the representation of
contextual alternatives. Thus in the case of the negative CDCR in (73), the system’s inference
is disabled because of the lack of knowledge that not class(business) and class(economy) are
basically the same thing, and it cannot derive from

230

implicates(implies(class(economy),dept_day(first))) and not class(business) the answer to the
user question dept_day(first).

5.3.4 Interpretation of CRs

It might be also useful for a system to be able to interpret CRs uttered by the user as responses to
the system’s questions. Such responses may be conditional on information that the system still
needs to provide. Consider (75b).

(75) a. S: Do you want to fly business?
b. U: Not ifitisa Lufthansa flight.
c. U’ Yes, ifitisa SAS flight.
d. S:lItisa Lufthansa flight.
e. S’:lItisa SAS flight.

If the airline is not known yet, the system should interpret this utterance as a question Is it a
Lufthansa fight? and respond either by performing database search search or by using interme-

diate search results if any. Then, if it finds that it is a Lufthansa flight (75d), the system should
be able to infer that the user does not want to fly business class and thus resolve the question in
(75a) negatively. If it finds that it is not a Lufthansa flight (75¢), the system should infer that the
user may want to fly business class and resolve the question in (75a) positively.

The interpretation of CRs by the system is not implemented yet. However, the implementation
can be based on work we have described on the production of CRs. In what follows, we propose
a specification of the update rules for CRs as responses of the user to a question ?p asked by the
system.

For integrating negative user NDCRs like (b), we propose the following. After (75a), a ques-
tion 7P asked by the system is topmost on QUD. The semantics of the negative user NDCR
is represented as usual, i.e. the assertion as implies(C, not P) and the implicature as impli-
cates(implies(not C, P)). Both the assertion and the implicature are put onto /SHARED/COM. For
NDCRs, a condition must hold that C' is not in /SHARED/COM. As already argued, NDCRs have
the effect of asking an implicit question whether the condition C holds. This implicit question
can be interpreted as a request for searching the database with respect to the parameter C. This
can be handled by interpreting the user CRs as a user question about availability and applying
the rule integrateUsrAskEXxists which triggers the domain plan for answering user questions
about availability. The plan will trigger database search with respect to C'. The subsequent

231

moves of the system depend on the search result. If the system finds a database record which
answers the implicit user question positively, it presents the result to the user and puts them onto
/SHARED/coM. Additionally, it is also able to resolve the question 7P topmost on QUD by
using inference: If the search finds a record containing C', then C' is added to /SHARED/COM.
From this and from the semantics of the CRs which is also part of /SHARED/COM, the system
can infer not P, i.e., the question ?P can be resolved negatively. In the case of a failed database
search, the proposition not C will be added to /SHARED/coM, and from this and the content of
the implicature that the CR gives rise to which is also on /SHARED/COM, the system can infer P,
i.e., the question ? P can be resolved positively. Positive NDCRs can be treated in a similar way.

For CDCRs, the condition C' is already on /SHARED/COM. After (75a), a question ?P asked by
the system is topmost on QUD. The integration of the user negative CR as answer to this question
will result in adding to /SHARED/cowm the inference not P (from C' and implies(C, not P)) which
resolves the system question negatively. In the case of a positive CR, the inference will be P
and the question will be resolved positively. Thus, no implicit question whether C and no need
to look up the database are involved in interpreting CDCRs. Although this gives the impression
that CDCRs as user answers are redundant, they may have a grounding function. Exploring the
function of user CDCRs is however an issue of future work.

5.4 Summary and future work

In this chapter, we described the analysis of CRs and their implementation in the GODIS system
which is based on the ISU approach to dialogue. We argued that CRs are collaborative responses
which help the user to determine a set of parameters of a possible journey (in the TA domain).
We described in detail the production of negative CDCRs as collaborative responses after failed
database search and of positive NDCRs as collaborative responses after successful search in
GoDIS. We also provided detailed proposals for the production of positive CDCRs and negative
NDCRs as well as for the interpretation of user CRs by the system. Implementing these proposals
is left for future work.

There are several further issues which can be considered for future work. One issue for future
research mentioned in the previous sections was the implementation of contextual alternatives
(section 5.3.3). We proposed to define contextual alternatives in the domain knowledge of the
system. For instance, the contextual alternative of business class is economy class. Other con-
textual alternatives can be defined concerning parameters like airport (e.g., Frankfurt vs Hahn)
and departure day. In the latter case, the parameter has more than one contextual alternatives,
e.g. the alternative of departure day second is a set of all dates other than the second. In such
cases it is more sensible to restrict these alternatives, e.g. to define the contextual alternatives of
a departure day to be the day before and the day after the one specified of the user.

232

QUD CR-form Polarity Assertion Implicature
Not if - c— p cd—p
(Yes,) if + c—p c— p
No, only if - p—cs d—p?
P —c — —p
(Yes,) butonly if + p—>cde Jd—p?
—c — —p
Only if + p—d& d—p?
-c — —p
Yes, unless + —-c—p c— P
No, unless - - —=-p d—p

Other issues for future work mentioned in the previous sections were the identification of condi-
tions allowing to choose between negative vs. positive CDCRs and negative vs. NDCRs (section
5.3.3), the question about the function of user CDCRs (section 5.3.4), the decision when to utter
a verification question after a system CDCR and when not (section 5.3.3) and the extension of
the database consultation procedure to cover the cases where there are more than one relaxable
or additional parameters to suggest (section 5.3.2).

Another extension concerns the integration rule for CDCRs. Currently, we are implementing the
effect of a CDCR on the IS as reraising a question. However, reraising the question whether
a proposition should hold can be seen as opening a negotiation whether the already specified
answer to that question should be preserved or revised (because it has already once been deter-
mined). It would therefore be natural to provide an account of CDCRs as proposals opening
negotiation. This can be done by using the issue-based account of collaborative negotiative di-
alogues proposed in Chapter 4. Thus, the effect of CDCR can be represented as a set of two
alternative proposals: To keep c or to revise c.

A further extension of our work is the implementation of CRs as answers to wh-questions as in
(76), as well as as responses to assertions as in (24) on p. 192.

(76) a. A:What class did you have in mind?

b. B: Business, if it costs less than 800 euro.

Another issue of future work is the integration of other forms with which CRs can be realized like
unless, not/only before/after, provided that, as long as. A preliminary analysis of the semantics
of some of them is shown in Table 5.4.

A further issue of future interest is the realization of CRs. We have observed that CDCRs and
NDCRs differ as for what kind of prosodic patterns are appropriate in English, i.e. the NDCR

233

in (77) is appropriate with a neutral/unmarked pattern (just the nuclear stress realizing a default
intonation pattern), whereas the CDCR in (78) is marked prosodically using a contrastive pitch
accent.

(77) a. U: Aflight from Koln to Paris on Sunday.

b. S: I’m sorry, there are no flights from Koln to Paris on
Sunday.

c. U:Can I fly on Monday?
d. S: Not if you want BUSINESS class.

e. S': Yes, if you want ECONOMY class.

(78)

o

U: I want a business class flight from Koln to Paris on
Sunday.

b. S: I’m sorry, there are no flights from Koln to Paris on
Sunday.

c. U:Can | fly on Monday?
d. S:Not if you want business class.

e. S’ Yes, if you want economy class.

We believe that this different realization is due to distinct information structure (Steedman (2000)).
The contingent parameter is realized as part of the Rheme (possibly Rheme-focus) in a NDCR
and as part of the Theme (Theme-focus ot contrastive topic) in a CDCR. More research on these
correlations is needed though, as well as on the relation to Steedman’s discussion of the “respon-
sibility” of the hearer or the speaker for a particular Theme.

234

Chapter 6

Tutorial Dialogues

6.1 Introduction

An attempt will be made in this section to assess the possibility of developing a tutorial dialogue
system using the TRINDIKIT toolkit. As part of this goal, we will consider the use of GODIS as
an example of a system that was built with TRINDIKIT. In particular, we are considering the ver-
sion of GoDIS for action oriented dialogues (Larsson et al. (2000a)), and within that the IMDiS
expiremental implementation for instructional dialogues (Larsson and Zaenen (2000))First, an
overview of the characteristics of tutorial dialogues will be given in 6.2. In Section 6.3 we
suggest a framework for characterising the discourse behaviour in tutorial dialogues. The assess-
ment in 6.4 will be based on how well GoDIS/IMDIiS and TRINDIKIT itself can cater for the
characteristics and the behaviour looked at.

6.2 Characteristics of Tutorial Dialogues

In this analysis, we are going to be looking both at the characteristics that hold for the genre of tu-
torial dialogues, independently of the tutoring method employed, as well as those characteristics
that are dependent on the method.

We begin by giving an example (79) from the BE&E corpus (Rose et al. (August 2001)) to
illustrate some of the points that will be discussed below. In the example, the tutor gives a few
hints trying to make the student follow her reasoning (in T[2], T[4], T[6], and T[7]). Having
done that, she realises that the student does not remember the lesson well, because he is so bad
at interpreting her hints that she is forced to give explanations about basic concepts (T[9]). In

235

the end, she asks him to read the lesson again (T[11]), not wanting to just give the answers away.
The overall teaching strategy followed here will be discussed in 6.2.1 and 6.2.2.

Notice that in T[2] the student asks a question. It is obvious that the tutor knows the answer to
it, but she does not provide it. It is also interesting that in T[4] the tutor says “OK” which does
not mean that she accepts the student’s answer as correct. Quite on the contrary, it turns out that
the student is not capable of answering the question in T[2] at all. We will have a closer look at
phenomena of this kind in 6.2.5.

This dialogue example is additionally interesting because of the embedded dialogue about the
strategy followed, a kind of meta-dialogue move in S[8] and T[9].

(79) 9[1]: | have no ideawhat asinewave is. Was this covered in the

tutorial?

T[2]: Yes, remember the wave that represented alternating cur-
rent in the lesson?

S3: | think i remember it being represented as a ~ on the am-
meter control panel

T[4]: OK, that's true about the multimeter’s function dial. But
do you remember

S Bk Nope

T[6]: agraph of awavein the lesson that represented alternating
current?
(20 sec later)

T[7]: Do you remember reading about frequency and amplitude
and al that?

SEIE I’'m not sure. Is this atrick question to see if you can get

me to invent a memory?

T[9]: No, thisisnot a psychology experiment. :) I’'m just trying
to see how much you remember. A sinewave starts out at
0 and increases to the maximum amplitude then decreases
past 0 in the negative direction and then returnsto 0 again.
Does any of thisring abell?

S[10]: It realy doesn't. But | think I'm following your explana
tion.

T[11]: Go ahead and reread the lesson.

6.2.1 Guided Problem Solving

In tutorial dialogues, the tutor needs to guide the student through the problem at hand. The
major characteristic of tutorial dialogues is the fact that they are dialogues between an expert,
the tutor, and an amateur, the student. The two dialogue participants do not collaborate towards

236

the completion of the problem solving task in equal terms. The tutor is an expert in the domain
taught. The student is supposed to have only partial knowledge of it. However, it is the dialogue
participant with the least knowledge, i.e., the student, that is expected to complete the task. Due
to that, the roles of the two participants are different and the expert needs to guide the amateur.
That has a number of repercussions.

First of all, the tutor has to be able to follow the student’s reasoning, recognise mistakes and
correct them in an appropriate way. The way of correcting has to be both pedagogically and
cognitively justified. The former will concern us in Section 6.2.5, where we consider the dis-
course level of tutorial dialogues in more detail. The latter refers to the teaching tactic that is
best, regarding the possibility of the student assimilating the knowledge provided.

The tutor must be in a position to evaluate the student’s answer and give positive or negative
feedback in order to achieve learning, independently of any specific tutoring method. In the case
of negative feedback, some correction is also necessary. Correction might take the uncontrover-
sial form of letting the student know that they are mistaken and giving away the right answer.
A more demanding way of correction is to at least give explanations or general guidance that is
relevant to the student’s reasoning, so that the student can follow it more easily. That means that
in addition to evaluating the correctness or falsity of an answer, the tutor also has to recognise
the source of mistakes. Only then is she able to give the appropriate explanation, based on what
it is that the student does not understand.

To model guided problem solving adequately, mixed initiative is necessary at all levels. Having
the possibility to evaluate the student’s performance and provide tutoring, corrections and expla-
nations, presupposes that the student can take both task and dialogue initiative. The student, for
example, should take task initiative in order to be allowed to suggest solutions to problems and
dialogue initiative to ask for guidance. However, since the tutor has to intervene whenever the
student does something wrong and correct it, the task initiative cannot stay only with the student.
In addition, the tutor needs to take the dialogue initiative when she wants to align the student’s
replies or actions with what she has expected or understood, or in order to follow the student’s
reasoning and give an explanation based on that etc. (Chu-Carroll and Brown (1998)).

In summary, in order for a system to simulate the characteristics of tutorial dialogues, it has to be
able to guide the student. It must follow the student’s reasoning from the input that the student
gives. That amounts to recognising the plan for addressing the problem at hand, that the student
has in mind. It also has to give feedback on the student’s progress, which means that it has to
recognise mistakes and the reason behind them as well, before it can provide explanations. To
make all the above possible, mixed initiative on both task and dialogue level is necessary (see
example 79).

237

6.2.2 Tutoring Methods

This section looks at the issue of teaching methods and the choice between the didactic and the
socratic method. It also proposes the socratic method as the desired one for tutorial dialogues
and gives an account of its characteristics. Thesocratic method is the method that aims at getting
the student to do as much as possible in order to encourage active learning. Explanations are
kept to the lowest possible minimum and are provided only when absolutely necessary in order
to prevent frustration.

The didactic method is the traditional method where the teacher provides the student with long
explanations. The answer is given away as soon as he has a problem understanding a concept
or performing a task. The reasoning behind it is also explained extensively. After that, the tutor
checks if the student has understood (Rose et al. (August 2001)).

There are, of course, variations of the two methods. We have only tried to capture in the above
definitions their defining characteristics.

We will now concentrate on the socratic tutoring method. The reason we are choosing to do that
is twofold; On the one hand, it has been shown that the socratic method is more efficient in terms
of learning (Rose et al. (August 2001)) and is thus the required method that a tutoring system
should be able to simulate. Another reason for the purposes of this exposition is that the major
rival of the socratic method, the didactic method, can be seen as a special case that is evoked
within the socratic method anyway. In that case, when a system can manage the socratic method,
it will by definition be able to simulate the didactic one, as well.

6.2.3 Hinting

The major characteristic of the socratic method is the use of hints. A hint can be seen as an
instrument of active learning. Hints prompt the student for self-explanations as an alternative to
explanations being provided to him by the tutor (example 79 T[2], T[4], T[6] and T[7]). They
can take the form of eliciting information that the student is unable to access without prompting,
or information which he can access but whose relevance he is unaware of with respect to the
problem at hand. Alternatively, a hint points to an inference that the student is expected to make
based on knowledge available to him, which helps the general reasoning needed to deal with a
problem (Hume (1995); Hume et al. (1996)).

The effects of self-explanation have been the subject of study of cognitive psychology experi-
ments (Chi et al. (1989); Chi et al. (1994)). The results of those experiments show that self-
explanation in the study of example-exercises refine the steps of the example and through that
help the students generalise about the conditions of the example. They are, thus, able to apply

238

what they’ve learned in other cases. They also integrate the new knowledge with the knowledge
they already possess. In doing that, students build a coherent body of knowledge that can be used
productively.

Let us now consider the characteristics of tutorial dialogues in the socratic method and the addi-
tional issues that this brings up.

The tutor has to be able to come up with hints that closely relate to the student’s answer as well as
the topic at hand, instead of just following the student’s reasoning passively. That in turn makes
the need of having a multi-level abstraction ability clear. The tutor must provide hints at the level
where they are necessary and most helpful. A hint is no use if the student already understands
what is being hinted at, or if the level of abstraction is way above his reach (example 79, T[4]).
From that it follows that the content of hints must use information that the student is supposed to
have either from the study material or because of previous mention in the course of the lesson.
Hints have to be tailored to the student and the current purpose.

Moreover, hints have to be adjusted to the overall performance of the student both for cognitive
and pedagogical reasons . It is pointless to carry on hinting when a student just cannot follow
any of the hints (example 79, T[11]). To mention the opposite extreme, if the tutor provides more
information than what the student needs, it can be frustrating for the student. Most importantly
it defeats the general purpose of hinting, which is to elicit as much information as possible from
the student towards the completion of the task.

Another level at which hints have to be tailored to the student answer is the surface realisation,
which is important for making the relevance of the hint obvious in the given context. That can
be done, for example, by making use of discourse markers that obviate relationships between
different pieces of information given (Moore (1993)), (example 79, T[4]). At the same level, a
hint can be realised as a question or as a statement based on the dialogue context and what form
better fits in with the preceding dialogue act.

On the whole, the use of the socratic method presupposes that the system can produce hints. It
needs to reason at multiple levels according to the respective level of the student’s reasoning and
performance. It also must make the connection of the hints obvious at the surface level, that is,
in the realisation of the hint.

6.2.4 Explanations

One can observe that tutors avoids helping out the student by sharing their knowledge, e.g., by
giving direct instructions as to what has to be done. That behaviour holds for both the socratic as
well as the didactic method. The difference between them is the degree to which this is followed.
The former is more hint based, whereas the latter is more explanation based. If the tutor realises

239

that the student has insufficient knowledge on how to perform the task, she gradually reveals
information to guide the student. Even then, the information is not given openhandedly and
clearly, as one would normally expect in information seeking and even in other kinds of task
oriented dialogues. In effect, tutorial dialogues might appear non-collaborative.

One might argue that the overall goal of tutorial dialogues is to enable the student’s active think-
ing, or to activate the knowledge necessary to complete the task and not to provide information.
Hence, even tutorial dialogues are collaborative. That, however, has no explanatory power with
regard to certain phenomena common in tutorial dialogues. In the next section we look into
this kind of phenomena, as any analysis of the behaviour in tutorial dialogues has to account for
them.

6.2.5 Collaborative Responses in Tutorial Dialogues

In this section we take a closer look at the discourse behaviour in tutorial dialogues. Together
with the teaching method employed, they constitute the pedagogical knowledge that a tutor must
have and apply. However, discourse behaviour is domain independent. It is the part of the
pedagogical knowledge that deals with dialogue moves and their interrelation in the dialogue
rather than the content of the tutoring, which depends on the teaching method. Of course, it can
always be argued that one cannot separate the two, but the distinction is useful for descriptive
and implementation reasons.

It is characteristic of the tutorial dialogue genre that the tutor only gives partial answers to the
student’s questions. These answers take the form of hints. It is often not clear that those partial
answers address the student’s questions at all. However, they seem to be interpreted indeed as if
they did address the questions. The tutor does not feel that she has to do anything more than that.
The student does not expect anything more (example 79, T[2], T[4], T[6], T[7]). Interestingly,
whenever and as soon as the dialogue switches to everyday conversation, that phenomenon is
lifted and questions are answered as expected outside the genre (example 79, T[9]).

Looking at collaborative responses at a more detailed level, there are two distinct responses that
the tutor gives: acknowledgement and accept. The former can be realised as “Yes”, “OK” etc and
indicate that the tutor has understood the propositional content of what the student said (example
79, T[4]). The latter take the form of “Good”, “Very good”, “You did well” and are a means
of encouragement for the student. The tutor seems to be using the acknowledgement dialogue
act in almost every turn, and in any case, with a frequency that is totally uncommon outside the
genre. In different genres encouragement of that kind and with the same frequency would be
very condescending and possibly annoying.

In contrast with the continuous acknowledgments from the tutor there is a striking lack of overt
signals from the student that he intends to cooperate. It is common practice that the student

240

will just go silent after the tutor has asked him a question or has requested that he performs an
action. This silence would normally provoke a request for an overt signal of the kind that is
missing in tutorial dialogues. Such signals are central to collaboration in other genres, since the
two dialogue participants need to be aware of each others intentions in order for collaboration to
succeed.

In the next section we propose a framework for analysing the phenomena that we just mentioned.

6.3 Obligations-based Modeling of Tutorial Dialogues

In this section, we are going to characterise the discourse behaviour in terms of the obligation
theory (Traum and Allen, 1994a; Poesio and Traum, 1998a; Matheson et al., 2000) and argue for
the advantages of doing that. The theory of obligations introduces the notion of discourse and
social obligation as a way of analysing some of the social aspects of interactions and provides an
explanation for behaviour that other theories do not predict. It is an augmentation to the intentions
of the dialogue participants that is intended to capture the natural flow of conversation. Intentions
are still necessary but they are not the only driving force behind an utterance. Treating tutorial
dialogues in terms of obligations is an intuitive way of analysing and predicting some specific
kinds of dialogue behaviour that do not seem to follow the rules of everyday discourse.

On the other hand, applying a non-obligation based approach to tutorial dialogues, such as Shared
Plans theory (Rich and Sidner (1998)), would soon prove problematic. A prerequisite for achiev-
ing goals, according to Shared Plans, is that the dialogue participants should be as clear as they
can about their beliefs and plans. In tutorial dialogues, though, the tutor avoids doing that as
much as possible. She does not reveal her plan of addressing the problem at hand. In fact, she
hardly answers the student’s questions about the way the problem should be addressed. This
behaviour is even more obvious in the socratic method where the use of hints is predominant. It
seems as if the tutor does not follow the principle of co-operativity which is central to the theory
of Shared Plans. Once that is taken away the theory looses the basis of its explanatory power.
For example, Shared Plans do not explain why the tutor in T[2] example 79 does not just tell the
student what a sine-wave is, which she definitely has the knowledge to do.

We are now going to consider how the behaviour observed in tutorial dialogues can be better
analysed by use of the obligation theory.

An effect of the tutor’s authoritative role in solving the task is the obligation to give explicit
grounding feedback as well as positive responses to every correct answer the student gives. That
explains the behaviour that we saw in Section 6.2.5 as follows.

As we have seen, the tutor hardly ever answers questions directly, contrary to the norm outside

241

the genre. Because of the lack of direct answers, the tutor has to let the student know that she
has taken their last move into account. So, she is obliged to give explicit acknowledgments when
it is not obvious from the content of the partial answer that the tutor has taken the student’s last
move into account.

If we keep the previous point in mind then, exactly because of the frequency with which the
tutor produces those acknowledgments in the form of “Yes” and “OK?”, these particles are only
enough for grounding at the understanding level. The propositional content of what is being
acknowledged remains to be assessed after the acknowledgement. It can then be accepted, or
rejected (e.g., via a hint). The tutor has the obligation to perform an explicit accept move when
the decision on that level is positive for the reasons we just mentioned. Without an explicit accept
act by the tutor following them, “Yes” and “OK” will never be interpreted as accept.

The lack of overt signals by the student that he intends to cooperate can also be explained and
modeled in the obligation framework. One can consider it the student’s obligation to address
the tutor’s questions and follow her directives. Indeed, questions of the type “Do you know...?”
and suggestions like “Why don’t you...” are interpreted as action directives. The student is
obliged to respond to the propositional content of the former and act upon the latter’s suggestion.
Therefore, the student attempts to perform what is expected of him, even when in different genres
the dialogue participant would have just given a negative answer “I don’t know”, or tried to
negotiate over the suggestion.

This perspective also explains the fact that the tutor interprets the lack of signals correctly. In the
context of obligations, the tutor knows what the student’s intentions are since these are formed
based on the obligations of the genre. Both tutor and student are aware of the obligations. With
regard to the specific obligation of the student to answer questions and follow directives, the tutor
knows that the student is obliged to do so. Therefore, she assumes that the student is going to
answer her questions and follow her directives and is not concerned with the lack of signals.

Finally, it is convenient to use the obligations framework to analyse the tutor’s reluctance to
answer questions and give direction towards the completion of the task. The nature of tutoring
makes it the tutor’s obligation to not provide all the information that they can immediately, or
answer questions to the best of their ability. Instead, she gives partial answers that always with-
hold some information. Characterising that phenomenon in terms of obligations explains why
the student does not get frustrated by it. He is aware of the obligations in the genre and the
reasons that these obligations hold. Therefore, the short answers that the tutor gives are seen as
discharging the obligation to address student utterances by both dialogue participants.

242

6.4 Reconfigurability of TRINDIKIT, GODIS and IMDIS for
Tutorial Dialogues

In this section we are considering the characteristics of tutorial dialogues with regard to the
possibility of using software that has been developed within the Siridus project in order to cater
for them. More specifically we examine TRINDIKIT through the version of GoDIS that was
intended for Action Oriented Dialogues (Larsson et al. (2000b)), and the IMDiS expiremental
implementation for instructional dialogues (Larsson and Zaenen (2000)).

6.4.1 Dialogue Moves and Dialogue Context

We will now look into the use of dialogue moves and dialogue context in the available software.
In GoDIS and IMDIS the content of moves is, in a way, interpreted based on dialogue context.
When, for example, short answers are integrated, questions in qud, which is the structure that
represents questions under discussion® are used. Move selection takes context into account as
well, to a certain extend and in an indirect way, by consulting the different fields. For tutorial
dialogues we need to represent dialogue context explicitly and encode all information by use of
dialogue moves that will make it easy to manipulate that information. As we have seen, there is
a lot of knowledge about dialogue moves that derives from the context. Both the tutor and the
student have to keep in mind what the previous moves have been, so that they can determine the
current dialogue move and also decide about the following move that they should perform. In
order to support that point, let us consider the following example, which is characteristic of the
genre.

The tutor must be wary of frustrating the student by asking too many things that the student
cannot answer. A way of testing that is by keeping track of what moves, in terms of tutoring, the
tutor has performed so far, and what was the evaluation of the responses by the student. If the
tutor has already explained a step enough times and the student still does not reply satisfactorily,
the tutor can use that knowledge to decide to stop explaining, seeing that it is no use and that
carrying on like that would only frustrate the student. She will then choose a more appropriate
way to continue the tutoring, if at all. As decisions like this are dependent on context, the inter-
pretation and generation of moves should also be strictly dependent on the explicit representation
of dialogue context.

The existing dialogue move taxonomy should also be sufficiently extended. It must be possible
for the tutor to tailor her answers to the knowledge and the level of understanding of the student,
as it is revealed through the tutoring session. For that, we need a move taxonomy that is more
extensive and more fine-grained than the basic necessary moves provided by GoDIS or even

LFor the way questions are handled in qud see (Larsson et al. (2000b)).

243

IMDIS at the moment. We would also need to capture the inter-relation of moves. Examples, of
some moves that are necessary for tutorial dialogues include hint, t-elicit, inform (Tsovaltzi and
Matheson (2002)).

When we have a full dialogue move taxonomy, we can include it in the dialogue context repre-
sentation and make use of it to dynamically select the right dialogue moves to be produced. That
is required in order for the tutor to relate guidance to what has been said already. She can, then,
speak to the student’s answers and manipulate their utterances in a way that leads the student to
the right direction. For example, sometimes it is more appropriate to realise a hint as a question
and sometimes as an affirmative sentence. T-elicit can be used in the first case and inform in the
latter. The core move, however, would still be hint.

Once the system can provide tailored answers at the dialogue move levels, we can start to think
about the best way to realise the moves themselves at the utterance level. For example, we
can use discourse markers to make the relationships between different pieces of information
obvious and provide structure. This structure helps the students understand explanations (Moore
(1993)). Some discourse markers are already available in GoDIS in the form of sequencing
ICM (Interactive Communication Management). Enriching this gamut is required for tutorial
dialogues.

Some of the above properties are either not currently provided in GoDIS, or are only partly
supplied. Providing the possibility to add or augment them is part of the main philosophy behind
GoDiS. It has an interpretation and a generation module. It is up to the user to develop those
modules with the necessary requirements specified here, either by using additional tools off the
shelf, or by creating them from scratch to treat their needs.

Furthermore, the idea of representing the information state itself by fields foresaw the need to
add new fields or modify the existing ones depending on the needs of every genre. Hence,
the prerequisite of dialogue context can be handled by adding a dialogue history field to the
information state to keep dialogue acts that have been performed so far. This has been done
before, for example, in (Bos et al. (1999)). We could also use the dialogue history to maintain a
student model for the current tutorial session, that is, how well the student is doing in this session.

Let us see now, via a couple of specific examples, how moves already used by IMDIS for in-
structional dialogues can be reused for tutorial dialogues. findout, for instance, is used in IMDIS
to find out if conditions hold. In tutorial dialogues it can be used for hinting. The content will
be informed by the choice of the hinting strategy (whether that is decided dynamically or based
on structured plans (see Section 6.4.3). Instruct is used in IMDIS to tell the user of the system
what to do next. In tutorial dialogues it can be used for explanations, where the tutor tells the
student how to proceed. Confirm allows the user to confirm what actions he has performed. It
can possibly be used in place of a more appropriate way of following the steps the student takes?.

2See a0 Section 6.4.3.

244

Ask can model the move information request, necessary for tutorial dialogues as both dialogue
participants request information from each other quite often. However, the integration of the
move should be augmented to allow the tutor to respond by a rephrasing, an explanation or what-
ever is necessary at the right level, in other words an appropriate hint. IMDiS does model that
to a certain extent. By having well structured plans more detailed information can be given on
demand. In Section (6.4.3) we will talk about this aspect of planning in more detail.

6.4.2 Semantic Representation and Lexicon

The current state of semantics defined in the domain resources and the resource interface, which
GoDIS makes use of, is very simple. For example, the utterance ‘I want to go to Paris’ would
be represented as destination(paris) in the travel domain. For tutorial dialogues that is not suffi-
cient. The way words are used is important for the reasoning behind the utterances to be worked
out. The system has to tell interrogatives from affirmatives and negatives. It also needs to deal
with quantification as a common aspect that can obscure the meaning of what the student says.
Modality is also often used since different possibilities of addressing goals are discussed during
tutorial sessions, and, thus, needs to be deciphered by the system. In addition, the lack of ref-
erence resolution can prove detrimental. The concepts taught have to be related to each other,
therefore are often referred to in different ways.

The above list is not, of course, exhaustive. It is just indicative of some semantical aspects that
need to be covered for tutorial dialogues. However, there is nothing in this list that is particular
to tutorial dialogues. Any kind of more complex dialogues than the ones that have been imple-
mented in GoDIS would require more refined semantics. It is, indeed, possible to define any
kind of semantics desired in the domain resources. It is the implementor’s choice to have simple
or more sophisticated semantics that would suit their purposes. For example, in the EDIS system
that was built with TRINDIKIT, DRT was used (Traum et al. (1999)).

Another thing that has to be added for every GoDIS application to fit the specific needs is the
Lexicon. The Lexicon is independent of GODIS itself and can be anything required for each
application. For toy implementations, a simple move-utterance connection can serve to test at
least the things that are specific to tutorial dialogues as a genre of dialogue, and how these can
be handled by TRINDIKIT.

Since both the Lexicon and the Semantics are independent of the dialogue manager they are only
mentioned here for the sake of completeness of the things that an implementor must be aware of.

245

6.4.3 Planning

This section deals with the way the planning in the system must be adapted. Plans are domain
specific in TRINDIKIT, so changing them does not affect the rest of the system. We will be
concerned with the planning in IMDIS, which implements the planning that is closer to the needs
of tutorial dialogue. However, plans in IMDIS are still not very flexible. They are an ordered list
of goals to be achieved. Another drawback of the present status is that there is no clear distinction
between dialogue and task goals. The existing discourse plans in IMDIS only instruct the user
to perform actions which are in the task plan, or inquire about whether the actions have been
performed.

Guiding the student

As we have already mentioned in Section 6.4.1, the implementation in IMDIS allows the system
to give more detailed guidance on demand and at different levels (Larsson and Zaenen (2000)).
If the user does not know how to perform a substep, he can ask the system for more detailed
instructions. For tutorial dialogues that is a crucial quality. It is more than likely that the student
will need more information than what has already been provided. The system can also withhold
information that it has when explanation is not necessary, that is, when the user understands it.
That is also a useful property. It can help avoid frustrating the student by providing information
he possesses, when there is so much information that he does not possess.

The structuring just mentioned is exactly what we need for tutorial dialogues. For the purposes
of tutoring, a bit more depth would have to be added to capture the level of reasoning, as opposed
to just the performable steps. That is to say, we need more levels of abstraction with which to
represent the plan of addressing a task. From the student performance and assumed knowledge,
as well as the information already provided in the course of the current tutoring, the kind of hint
to be given next will be formulated.

Multilevel plans can be used so that the tutor can pinpoint the problem behind a mistake by
the student, as well. The problem might be obvious from the performed actions towards the
completion of the task by the student. It might also be a problem in the reasoning. Thus, the
Tutor needs to be able to follow the different levels of the student’s reasoning and also guide
him. The plans must represent these levels.

Manual creation of structured plans with steps and substeps is possible in TRINDIKIT. We can
have a database of plans instead of dynamically generating them?. From the database the relevant
plan would be down-loaded to the appropriate field, as discussed below. The substeps will be

3Even when some other form of plan recognition is possible, e.g. a theorem prover, the dynamically generated
output would still haveto be stored in a structured mode.

246

modeling the different levels mentioned above. The plan followed by the student can be accom-
modated each time. That is easy to be done in TRINDIKIT as it provides a way of separating
procedural and declarative knowledge through modules called resources. All declarative domain
knowledge can be stored there and called by update rules and algorithms as desired.

That, of course, presupposes that the system itself can reason about when more detailed guidance
is required and what level is appropriate. That is not provided as such. There are ways, though,
to easily achieve it. To start with, a combination of context accommodation and the structured
plans can deliver the desired effect. The system accommodates a plan for completing the current
task. The student’s actions must be matched with one of the steps in that plan. Steps that are part
of the plan but appear later on can be accommodated, provided there are no ordering restrictions.
When the last step of the plan has been matched, the task can be considered completed. The
notion of accommodation has already been implemented extensively using TRINDIKIT (Larsson
(2002a)).

Plan recognition and partially ordered steps

In the same context, an aspect of tutorial dialogues is that students may choose different ways of
dealing with the same task. To use a straight-forward example from the domain of mathematics,
proving the same theorem can be done equally well by completely different proving strategies.
For that reason, different plans for performing the same task can be available and the one that
the student chooses can be accommodated. A technic for doing that based on the present step is
available in GoDIS. It looks up the step in all the plans and accommodates the plan that includes
it (Larsson et al. (2000b)). Making use of the different plans in the database and that technic,
covers to a satisfactory extent the need for freedom in task initiative. It does, of course, by no
means solve the general problem of the incommensurability of plan recognition.

Another issue to consider is allowing as much freedom as the domain and the task themselves
allow in terms of the order in which steps in the task plan are performed. A possibility for
dealing with this exists in IMDIS as well. In the context of instructional dialogues, IMDiS
models postconditions for the plan that the system has to find out whether they hold or not, in
order to determine what the following instruction will be. For tutorial dialogues, the system needs
to be able to disallow the performing of certain steps when these are bound by preconditions not
yet satisfied. If we have that, we can achieve a partial order in the performance of steps in the
plans. Every time a step is attempted, and there is a precondition associated with it, the system
will check if the precondition holds. Based on the result of that check, it will allow or disallow
the performing of the step. If the student attempts to carry out a step the preconditions for which
are not satisfied, the system can restrict him. If the performance of steps is discussed and not
attempted, the same will be applied to hinting. The system can judge whether to accept an answer
by the student or not.

247

Planning of hints

Regarding the planning of hints, for every step that exists in the plans there can be a hinting
strategy related to it that can be invoked if needed. That can be used instead of an automated
way for dynamically choosing the right hint to generate each time. On the other hand, dynamic
realisation of hints might prove more important than their dynamic planning, not least because
it has to take into account dialogue aspects as well. IMDIiS can handle reasoning about the
production of dialogue moves based on context via the introduction of a dialogue history field,
as we suggested in Section 6.4.1. However, it needs to be changed further for the realisation of
hints. More issues have to be taken into account that pertain to the discourse structure, such as
discourse markers, repeating words and phrases used by the student and using useful referring
expressions. Not including those issues in the implementation might make the solution of hint-
step association less optimal.

Both a taxonomy of hints and an algorithm are necessary even if the generation takes place via
the static plan construction and hint-step association. Without those, we cannot model the hinting
process at all. The taxonomy will consist of hints that are used in tutorial dialogues. These should
capture the way tutors prompt students to do the right thing. This can be thought of as prompting
to follow the particular plan that the tutor has in mind (or has accommodated for handling the
task at hand). It is the implementor’s job to define the specific form of each hint in the taxonomy
for a particular domain.

In order to use the taxonomy for a dynamic generation of hints, an algorithm for choosing the
right hint to be produced is also needed. This should be based on data from existing tutorial
dialogues and the theory of the teaching strategy that is to be modeled. It should take into
account the student model (how well or badly the student is doing), and the latest move by the
student. Update rules in the resource interface of TRINDIKIT could model the algorithm.

Student answer evaluation

Another important aspect of tutorial dialogues is that we need to have a way of evaluating the
content of the student’s answer, i.e., whether it is correct, wrong, near miss e.t.c. (Glass (2001)).
We need a sophisticated answer evaluation in order to be able to categorise the student answer
and to produce relevant, useful and pedagogically legitimised feedback.

This is a complex issue on its own. There is currently not much in GoDIS/ IMDIS that can
be reused towards this direction. Student answer evaluation is, however, very domain spe-
cific. It cannot be modeled without strict reference to domain knowledge, at best organised
in a comprehensive ontological order. Even if one was to try some shallow parsing instead of
a fully fleshed evaluation, that would still have to take into account the expected correct an-

248

swer. Hence, it is again domain specific. For some relevant work see (Aleven et al. (2001);
Glass (2001)).

Towards this direction, there could also be a set of expected wrong answers. If they are linked to
some misconception that gives rise to them, then the right hint to produce will depend on that (
Core et al. (2000)). Core et al. have done this by combining a problem solver (matches students
steps to plans), dialogue context, an expectations module and a curriculum module (what the
student is supposed to know) (Core et al. (June 2001)).

Task vs. discourse planning

The issue of separating discourse and task planning is relevant for a number of things in planning.
One can immediately see that this two level approach is necessary even in order to have a fine-
grained and multi-level move classification. DAMSL (Core and Allen (November 1993)) is an
example of a move classification of that sort. According to DAMSL, one has to allow for being
able to acknowledge at one level and reject at another. There has been very detailed work done in
GoDIS regarding the different levels of understanding (Larsson (2002a)). For tutorial dialogues
we also need to allow for this behaviour between discourse level and task level. In other words,
we must be able to show understanding at the discourse level, where we can make use of the
different levels of understanding already implemented. We also need to reject an answer, even
though we understand it, and indeed only if we understand it, at all discourse levels. This issue
is further discussed in Section 6.4.4.

There are additional reasons for the separation of discourse and task planning. For instance,
it is difficult to improve one level because all the information from the other level obscures
their separate functions that makes it difficult to check what level is not doing well. Incremental
parsing is difficult as well, as all input goes through the Dialogue Manager module. For example,
that makes it difficult to deal with an acknowledgement (“OK”), separately from the rest of the
sentence that contains information about the task, which is irrelevant to it (Allen et al. (2001)).
By maintaining different dialogue and task plans, the task plan remains the same even when the
dialogue plan, which models the interaction rather than the performance of the task, needs to
change. For a genre that demands such complicated task planning as tutorial dialogues, these
issues become very important.

In the following section we will argue the point of the separation from the perspective of manip-
ulating the discourse information effectively, through specific suggestions of how to achieve that
in IMDIS.

249

Making use of IMDiS

There are things in IMDIS that can be slightly altered and then reused to adjust the planning for
tutorial dialogues further. There is a field plan in the information state which represents the list
of dialogue acts that need to be performed. This is not a totally static plan. Actions in it can be
skipped based on the task plan. That means, for example, that an instruction on how to perform
a step can be skipped if the user knows how to perform it. However, actions in plan are either
instructions to perform a step, or requests for confirmation on whether a step has been performed.
For tutorial dialogues we need to proceed to a further step in order to facilitate the manipulation
of task and discourse planning.

We can introduce a new field in the information state as it stands in IMDIS to represent the task
plan separately. plan will now only be used for reasoning on which dialogue acts to perform. For
tutorial dialogues the task plan field can hold the actions that the student is expected to perform.
In other words, the structured plan that represents the different levels of abstraction with steps and
substeps. The topmost step in the new task plan field will be the one expected to be performed
next. Accommodation of plans or steps, in one of the ways already described in this section, will
take place within this new field.

If we choose to associate each of these steps with a hint, being, if we are, unable to produce hints
in a more automated fashion, we can send the hint chosen every time to the generation module.
That means that we already have a place-holder for hint in the short term dialogue plan, i.e., in
the agenda. agenda in turn, can be informed by plan, now responsible only for the discourse
planning.

As we saw in Sections 6.2.5 and 6.3, there are a lot of pedagogical issues at the discourse level
that need to be handled independently of any domain knowledge, such as aknowledging and
issues of collaboration. Representing the task plan in the information state and using it to manip-
ulate all the knowledge related to the domain, will allow clearer manipulation of the pedagogical
knowledge, as there will be no interference of any information about the domain. Notice, also, if
we represent discourse and task plans separately, there need not be any changes in the manipu-
lation of the discourse plan, which controls the pedagogical knowledge, for the implementation
of a different domain. Pedagogical knowledge is common across domains within the tutorial
dialogue genre. Only the task plan will have to be adapted for different domains.

As far as following the student’s plan is concerned, we already suggested in Section 6.4.1 a
somewhat non-intuitive but easy way of producing this effect. That is, involving the confirm
move and asking the student to report on what actions they have taken. We can maintain that
only to the level of performable steps, or extend it to the reasoning behind those. The latter is
more intuitive than the former. It is very common in tutorial dialogues that the tutor asks the
student to explain their reasoning. It is a form of aligning. Confirm may cause the topmost
element of the shared.actions field to be popped, if it matches it. The shared.actions field is

250

used in IMDIS. It is a stack that holds the actions the user has been instructed to perform by the
system and have not yet been confirmed. When the topmost element in shared.actions is popped
it will, in turn, cause the topmost element of the task plan field to be popped. Alternatively, if the
student’s answer is not correct and the confirmed action does not match with anything in the task
plan, the topmost element, i.e., the expected step, will not be popped and a hint, an explanation,
or whatever is necessary based on the state of tutoring will be produced.

6.4.4 Collaborative Responses and Planning

This section investigates ways to handle the seemingly non-collaborative behaviour that was
introduced in Section 6.2.5. In GoDIS the relevance of the propositional content of an utterance
which is meant to resolve a question in qud is judged before an answer by the user can be
integrated. Only answers whose propositional content is judged to be relevant to the issue raised
will be integrated. After integration, the system judges if the answer resolves the issue raised. If
it does resolve it, the issue in qud that the answer was supposed to be resolving will be popped.
Otherwise the issue might be raised anew.

In tutorial dialogues any answer within the domain will be integrated irrespectively of its rel-
evance, due to the unequal roles and knowledge the dialogue participants have. The answer
should be accepted as an attempt to answer the question and integrated without any relevance
conditions. After integration, the propositional content of the answer should be assessed for its
degree of relevance, based on whether and to what extent the content matches a step in the plan.
The first acceptance occurs at the discourse level, the second occurs at the task level. Only when
the propositional content of an answer matches a step in the plan can it be accepted. The tutor
will produce and explicit accept move to let the student know that the propositional content of
the answer was correct with regard to the task plan.

Furthermore, system utterances in GODIS are integrated automatically when there is no negative
feedback. This is motivated by the simplicity of the genre of instructional dialogues and the belief
that the human user does not run into problems interpreting given utterances in the given simple
context. Itis also in accordance with the expectations in the genre, as there is no reason to assume
that the user does not understand.

In tutorial dialogues, on the contrary, because of the participants’ unequal roles, any optimistic
grounding is not allowed on either side. The tutor cannot assume that the student understands her
hints. That kind of optimistic behaviour is not legitimate since the main aim of the task is exactly
making sure that understanding and correct answers are achieved. Before integration, the system
would have to make sure that the student understands and if not, provide more guidance. As far
as user utterances are concerned, GoDIS provides both optimistic and pessimistic grounding.
We can easily just run the system under pessimistic mode. In addition, since all answers are
accepted before their propositional content is assessed, the student cannot assume acceptance at

251

the task level unless explicitly stated.

The difference between GoDIS and tutorial dialogues can be seen in terms of the levels of
acknowledgement that Brandle and Evens identify (Brandle and Evens (1997)). When there is
an “OK” or a “yes” in GODIS, they are taken as accept moves that simultaneously signal that the
answer is taken into account, i.e., as an acknowledge, by virtue of the parent/child relationship
that holds between the latter and the former. The system shows understanding and accepts the
answer for relevance, based on its propositional content. In tutorial dialogues, however, these
markers will only be integrated as an acknowledge by the tutor. Then, if the answer matches a
step in the plan, the tutor is under the obligation to perform an explicit accept to let the student
know that the propositional content of the answer has been accepted. If not, a hint will be
provided.

The demand to clearly distinguish between acknowledge at the understanding level and accepting
the propositional content makes obvious the need for plan recognition in tutorial dialogues to
take place independently of grounding at the discourse level. Grounding takes place, as long as
the student’s answer is understood at the discourse level. Then, the answer is assessed based
on domain knowledge about the task. We saw in Section 6.4.3 how we can use the IMDIiS
implementation as a starting point for the separation of task and discourse planning and we
suggested additional modifications towards that aim. After the separation, the issues we just saw
in this section will be easy to deal with.

6.4.5 Mixed Initiative

IMDIS has full task initiative and the dialogue initiative only changes to the user in order for
them to point out that the current plan is over-detailed for their needs. This does not satisfy the
need to have mixed task initiative that was argued for in Section 6.2.1. Likewise, the dialogue
initiative needs to be entirely mixed, as it has been already pointed out. Chu-Carroll and Brown
(1998)argue that the dialogue initiative necessarily switches to the dialogue participant that has
the task initiative as well. In the case of tutorial dialogues, we have seen additional indicative
reasons to allow for mixed initiative (Section 6.2.1). Before any reasonable tutoring method can
be implemented, the initiative has to be adapted. We need to allow the student to take the task
initiative, which currently lies only with the system.

GoDIS caters for mixed dialogue initiative but needs to be modified before it can simulate mixed
task initiative. More specifically, we need to modify the domain reasoner. For one, as we saw
in Section 6.4.3, we have to introduce a more sophisticated plan recognition method that would
include the possibility to evaluate the student’s answer. Ideally, the system should also be able to
dynamically produce hints relevant to the current state in the task planning, so that it can make
useful suggestions.

252

6.4.6 Obligation Modeling in TRINDIKIT

Regarding the analysis of obligations in Section 6.3, there are a number of consequences for
implementation. Because of their causal relation to intentions, they have a bearing on interpret-
ing dialogue moves and deciding what dialogue act must be performed. They may be used to
create protocols of behaviour. Taking advantage of that in the implementation involves having a
taxonomy of moves. This way the system can be adjusted to the needs of every different genre.
Only the relevant rules would have to be adapted, that is the ones that manipulate the field of
obligations. Currently all the information about the moves is hard coded.

A move recognition algorithm which allows for a more sophisticated approach than the simple
qud would further enhance the performance of the system. Kreutel and Matheson (2000)have
implemented a similar system that operates based on scenarios and inference rules in the context
of obligations. That also allows for easily deriving a move generation algorithm based on context,
i.e., previously performed dialogue acts. As we have already seen, that would be very useful for
the genre of tutorial dialogues, both because of the clear obligations observed and because of the
necessity to work with as much context as possible. Obligations have also been implemented in
the Trindi project, the predecessor of Siridus (Bos et al. (1999)).

The current system can be modified to provide the above possibilities. In order to allow for that,
the obligations of the genre have to be formalised. Since obligations differ between genres, that
cannot really be seen as a drawback of the particular system. The realisation of obligations also
have to be specified in the semantics of the system. That is again genre dependent. To give
an example, we already saw how different surface level forms cannot be interpreted uniformly
between genres;For example, question forms in tutorial dialogues are really directives for the
student and are interpreted as directives.

Having a field for obligations in the information state means that they can be manipulated sepa-
rately in the update rules for different genres. Only the specifications regarding obligations in a
particular genre would have to be changed/adapted and not the whole system. The latter would
be the case if obligations were not modeled explicitly in the system, that is, if they are hard
coded. The update rules relevant to that manipulation have to be genre dependent in order to
manipulate fields in a different way for different genres.

6.4.7 Miscellaneous

A couple of minor things that are already provided by GoDIS/IMDIS are worth mentioning.

When the user asks an elliptical *how’ question, the system interprets it as applying to the top-
most element in the shared.actions. That is an important feature for a natural dialogue in the

253

context of tutoring, as the elliptical “how’ question form is commonly used. Moreover, all kinds
of short answers, which are also particularly common, can be dealt with by GoDIS. qud and
accommodation is used for that purpose in order to accommodate a question in the plan to which
the short answer is relevant (Larsson et al. (2000b)).

Another interesting feature that has been implemented is that the system saves the state before
integration every time in the tmp field. This is used for backtracking to the previous state in
cases of over-optimistic grounding. As a lot of misunderstanding can be expected in the tutorial
dialogue genre, recovering a previous information state could prove necessary.

6.5 Conclusion

In this chapter we looked into the possibility of using TRINDIKIT in order to implement tutorial
dialogues. We first examined the different aspects of tutorial dialogues that need to be addressed
and then gave an account of how those aspects can be dealt with using TRINDIKIT. As a starting
point for the evaluation of the reconfigurability of TRINDIKIT for tutorial dialogues, we looked
into the implementations of GoDIS and IMDiS for action oriented and instructional dialogues,
respectively. We concluded that there are a number of changes that need to take place in the
above implementations.

To begin with, in order to implement tutorial dialogues we need to separate the discourse and
the task planning. That will facilitate better dialogue management at both levels. Full mixed
initiative is also instructed by the nature of the genre both at the discourse and task level.

For the discourse planning a full classification of dialogue acts is needed for fine-grained manip-
ulation of discourse behaviour in tutorial dialogues. A formal analysis of obligations in the genre
and additional fields in the information state for easier manipulation of obligations, will further
assist accomplishing the behaviour characteristic in tutorial dialogues.

The task planning level requires more extensive augmentation. A way of following the student’s
steps and reasoning as well as evaluating students’ answers are necessary for the tutor to tailor
their guidance. For production, we need a general hint taxonomy. We also need further refined
specifications of the form of every category of hint for each domain. A generic algorithm for
the genre stipulating conditions of the appropriate hint production in a given context is also
necessary, as well.

TRINDIKIT can serve as a basis for more or less sophisticated ways to achieve these properties.
For example, various degrees of change in the way planning is handled are possible. We can use
a large database of manually created plans. Alternatively, we can use other resources available,
like theorem provers to aid the tutor’s reasoning and planning at the task initiative level. Besides

254

planning, we have seen suggestions for effecting other properties of tutorial dialogues. It is up
to the implementor to decide upon a particular implementation according to the exact effect they
want and the time they are willing to invest.

255

256

Part ||

|ssuesin Flexible Dialogue

257

Chapter 7

Flexibility and Cooper ative Behaviour In
Natural Command L anguage Dialogues

7.1 Introduction

Work package 1 of Siridus is concerned with Dialogue Moves: extensions and specifications. In
particular, it aims at expanding the range of types of dialogue to which the Information State Up-
date approach is applicable. One of the new types of dialogue considered is Natural Command
Language dialogues (NCLD). Natural command languages and Natural Command Language di-
alogues have been defined and theoretically motivated in a previous deliverable within this Work
Package Amores and Quesada (2000). Deliverable 1.4 is concerned with Flexible Dialogue, with
a goal to show how the information state update approach covers a wide range of flexible dia-
logue phenomena.

Accordingly, this chapter discusses flexibility in NCLDs. We first introduce Natural Command
Languages and Natural Command Language Dialogues. Section 3 compares NCLDs to other
types of dialogue. Next, section 4 discusses how the nature of the dialogue itself, in conjunction
with other dialogue modules allow the incorporation of new commands which may improve the
overall performance, naturalness and flexibility of the system. Section 5 describes how dialogue
flexibility may be achieved by ensuring a complex level of linguistic coverage in the system.
Section 6 concentrates on cooperative and collaborative behaviour in NCLDs. Next, a typology
of conflicts in NCLDs is proposed in section 7. Section 8 proposes some advanced cooperative
behaviour in NCLDs. Finally, section 9 discusses whether DISC guidelines on cooperative be-
haviour are applicable to NCLD systems. Sample dialogues are taken from research carried out
under the Siridus and D’Homme European projects.

259

7.2 Natural Command Language Dialogues

A Natural Command Language (NCL) is a command language expressed through the medium
of natural language. We take NCLs as the set of input and output natural language expressions
which are acceptable in a given application domain. This domain is semantically defined by the
functions (commands) supported by the system, and the natural language vocabulary which may
be used to express those commands. In addition, NCLs should contain expressions typical of
human-like interaction. Consequently, a Natural Command Language Dialogue is a dialogue
(usually between a human and a computer) using a natural command language. This conceptu-
alization of NCLs has been applied to two sample domains under the Siridus! and D’Homme?
Projects.

7.2.1 Siridus

In Siridus, we are building a Spanish demonstrator jointly with Telefonica I+D, as specified in
Work Package 3 Implementing a ““Natural Command Language Dialogue System. The sys-
tem consists of an Automatic Telephone Operator System (ATOS). The user should be able to
naturally issue the commands which perform the following tasks Torre and others (2001):

e Call an extension by name or office

e Redial

e Transfer calls to extension or office

e Cancel transference

e Set up a conference call

e Look up an office in the company’s directory

e Look up an e-mail address in the company’s directory

7.2.2 D’Homme

In the D’Homme project DHomme (2001), the implemented system was able to perform the
following functions in a home environment:

http://ww. | i ng. gu. se/ proj ekt/siridus
2htt p://ww. | i ng. gu. se/ proj ekt / dhonme

260

e Switch on/off a device/set of devices
e Dim/Bright a device/set of devices

e Consult the State/Location of a device/set of devices

7.3 Comparing NCLDs with other types of dialogue

Before we analyze flexibility and cooperative behaviour, it is worth pointing out some character-
istics of NCLDs.

As a consequence of their own nature, NCLDs involve just two participants: the user and the ma-
chine. One of the first decisions to be made concerns whether we should model the participants’
internal beliefs, or more external aspects of the dialogue. Since the goal of this type of dialogues
is that the user have control over the execution of one or more commands by the machine, most
dialogues exhibit a marked functional or operational tendency. So, it seems reasonable to focus
our model on the external aspects of dialogue. That is, it should be based more on what was said
than what was in the minds of the participants when their interactions were produced.

NCLDs are different from other types of dialogue such as Information Seeking and Negotiative
Dialogues. In Information Seeking dialogues, one participant requests information from the
other. In Negotiative Dialogues, the goal of both participants is to come to an agreement about
some conflict of interests. Another aspect which differentiates NCLDs from Information Seeking
Dialogues is the dynamic nature of the knowledge bases involved. In an information seeking
dialogue, in which the system as a whole is viewed by the user as a repository of knowledge,
knowledge bases have a clear static character from the point of view of the user. That is, the data
in these resources may be updated, but not by the user during its interaction with the system.
On the contrary, one of the main features of NCLDs is the presence of a command execution
module, which is capable of dynamically modifying the contents and state of resources external
to the dialogue, such as the knowledge bases associated to the domain.

7.3.1 Functional Embedding

An important aspect of NCLDs is that they usually exhibit functional embedding Walton and
Krabbe (1995); Reed and Long (1997). Functional embeddings occur when the goal of a subdi-
alogue shifts to another dialogue type.

As pointed out above, task identification subdialogues are possible in NCLDs. As opposed to
other dialogue types in which the overall task of the dialogue is predefined (seeking information

261

about flights in a travel agency, etc.), the system in a NCLD does not know a priori which
function the user desires to perform. The first task, therefore, involves identifying the speaker’s
intentions. Once the task has been identified, the corresponding plan may be unfolded. Task
identification may be considered a sort of deliberation subdialogue in the sense of Walton &
Krabbe Walton and Krabbe (1995). In deliberation dialogues, the participants jointly aim to reach
a decision or form a plan of action. Deliberation is goal—-directed, in contrast to the more abstract
reasoning characteristic of negotiation. Clarification subdialogues are also common in NCLDs,
when the name of the destination of a call or some other parameter required for the successful
completion of a command was misunderstood or missing. If some portion of the desired action
was understood, it will be used as indirect feedback to the user:

e U(1): Please, transfer my calls to BAD-RECOGNITION-CHUNK
(function was understood, but not the destination)

e S(1): Could you repeat where I should transfer your calls?

Clarifications may be viewed as negotiation stages within the overall dialogue. Another instance
of negotiation in NCLDs occurs when the system proposes alternatives in cases of conflict. This
will be discussed in more detail below.

Information seeking subdialogues are common in NCLDs when the user wishes to know the state
of specific devices, or consult some information (e—mail, office number) stored in the system, as
pointed out above.

Figure 7.1 below shows a possible cascade of functional embedding in NCLDs.

As has become apparent in this section, NCLDs exhibit much more complexity than one could
originally envisage given the apparent simplicity of the task at hand.

7.4 Adding flexibility through dialogue commands

This section discusses some ways in which NCLDs may exhibit a more flexible behaviour than
that expected from the basic functionality of the system. A first level of flexibility may be
achieved through the combination of domain—specific and interaction—oriented dialogue moves.
As outlined in Amores and Quesada (2000), Dialogue Moves in NCLs were classified as follows:

262

TASK IDENTIFICATION
(deliberation dialogue)

COMMAND EXECUTION CONSULTATION
(action-oriented dialogue) (information-seeking
dialogue)

CLARIFICATION
(negotiative dialogue)

Figure 7.1: Cascade of functional embeddings in NCLDs

Dialogue Moves (DM) in NCL
Command-oriented DMs | askCommand
specifyCommand
informExecution
Parameter-oriented DMs | askParameter
specifyParameter
Interaction-oriented DMs | askConfirmation
answerYN
askContinuation
askRepeat
askHelp
answerHelp
errorRecovery
greet

quit

Both from an operational and a functional point of view, one of the main consequences of the
model outlined is the generation of new commands at the dialogue level.

That is, the nature of the dialogue itself may allow the incorporation of new commands, improv-

263

ing the overall performance, naturalness, and flexibility of the system.

A very simple example will illustrate the idea. Let us consider a telephone system that allows
only the following set of commands:

e call(number)
e transfer(number)

e cancel-current-transfer
The combined use of a dialogue manager, a dialogue history and a personnel directory (which
stores the number, name and office of a person) makes some new dialogue commands possible.

First, the use of the directory may allow the user to call or transfer the calls using the name or
the office number that identifies the intended telephone number:

call(name)

call(office)

transfer(name)

transfer(office)

But, if the system doesn’t only consult the directory but is also able to store the last commands
executed by the user, a new block of dialogue commands will appear at the dialogue level:

retry-call

retry-transfer

consult-transfer-status

consult-transfer-destination

The relevant issue is that from the point of view of the user, these functions are seen as real
commands, both from a functional and an operational perspective, when they are actually built
up compositionally from more primitive basic functions.

264

7.5 Adding flexibility by expanding the linguistic coverage of
the system

Another way in which more flexibility and naturalness in the dialogue system may be achieved
is by expanding the linguistic coverage of the Natural Language Understanding module. That
is, if this module is capable of handling complex—but natural- ways in which humans usually
interact with machines, and which go beyond the expected basic functionality, the resulting sys-
tem will be more natural and flexible. The following linguistic phenomena illustrate the kind of
complexity which NCLDs should be able to cover. Most of the examples are taken from real
accomplished interactions in the D’Homme project.

e Coordination of parameters
Switch on the kitchen light and the radio

e Issuing multiple commands
Switch the bathroom light on and the kitchen light off

e Quantification over a set of devices
Switch on all the indoor lights

e Anaphora resolution
Switch on the kitchen light and the radio
Switch them off

e Handling of exceptions
Switch on all indoor lights except for the bathroom

e Error repairs
Switch on the kitchen light ... No, the one in the living room

7.6 Cooperative behaviour in NCLDs

Let us now turn to the question of cooperative behaviour. The linguistic definition of coopera-
tion was first proposed by Grice Grice (1975). Reed & Long Reed and Long (1997)propose a
notion of cooperation which is similar to that of Grice, but acts at a higher level. Gricean co-
operation is speaker—centered, whereas in Reed & Long’s view, cooperation is more objectively
discourse—centered. In their opinion all dialogue is inherently cooperative since any instance of
true dialogue involves the participants accepting a common goal and working towards that goal
within a given set of rules. This concept is also similar to the Conversational Contract of Fraser
Fraser (1990).

265

Another relevant aspect regarding cooperation is that proposed by Allwood (1976). According to
Allwood, two or more parties interact cooperatively to the extent that they:

1. take each other into cognitive consideration,
2. have a joint purpose,
3. take each other into ethical consideration,

4. trust each other to act in accordance with 1-3.

Of these, the most relevant requirement as regards NCLDs is 4 since, in fact, one of the agents
in NCLDs is just pretending to act according to the principles. This idea reinforces our previous
analysis of NCLDs as an inherently cooperative activity since, as long as the agents trust each
other to act according to a set of principles, communication will be cooperative.

However, there is a simple fact about NCLDs which may change our perspective. Namely, that
the system in NCLD applications is usually dispensable. Its role is to make our lives easier. If it
fails to achieve that goal, the user may just ignore it and proceed to perform the desired function
in the ordinary way (by pressing a sequence of digits in the telephone pad, light switches, etc.).

In this kind of scenario the system should be as cooperative as possible, trying to avoid a situation
of frustration on the other participant which would indeed lead to interrupting any communica-
tion between them. So, what is usually modelled in NCLD systems is a collaborative behaviour
in which the participants are in some sense working together to reach the desired outcome. The
presence or absence of conflict will determine the level of collaboration in a dialogue. The next
section describes the types of conflict which may arise in NCLDs and the expected level of
collaboration which should be incorporated.

7.7 Sources of conflict in NCLDs

Conflict arises from different sources in NCLDs.

1. First, the user may just not know exactly what functionality is available, or the parameters
which they require. Providing help is one way of solving this conflict. The corresponding
Dialogue Moves (askHelp and answerHelp, both for generic and specific help) have been
incorporated in our systems.

266

2. Second, given the dynamic nature of the domains in which we are working, one of the
agents (the user) may just ignore the exact state of the world at that precise moment.
Requesting information is then a collaborative activity which the system should model.
Several dialogue moves have also been incorporated to take care of this kind of interaction.

3. A third type of conflict arises when one of the agents wrongly believes that a specific goal
is possible, but the state of the world does not permit its accomplishment. Solving this
conflict involves proposing alternatives, as the following dialogue illustrates:

e U(1): Call Mr Fernandez

e S(1): This extension does not respond. Do you want to leave a message or shall I try
his mobile?

A more cooperative scenario is proposed in the following example:

e U(1): Call Mr Ferniandez at extension 311
(Extension and name do not match in the database)

e S(1a): Mr Fernandez does not have this extension; shall | put you through his current
extension?

(or)

e S(1b): Extension 311 belongs to Mr Gonzalez; do you want him instead?

In some other contexts, the alternatives proposed by the system may be based on what the
user usually does, that is, her most frequent destinations or actions in the past. Behaving
cooperatively in this context occurs, for example, when the user underspecifies a destina-
tion of a call by a last name, and that last name turns to be ambiguous in the telephone
directory. In such an event, the system may consult the most common destinations (chosen
in the past by the user) and propose one who matches the last name provided.

e U(1): Call Fernandez
(after spotting a frequent Pedro Fernandez in the user’s profile)

e S(1): Do you mean Pedro Fernandez?
e U(2): Yes, please

This form of user adaptation is related to advanced modes of cooperation to be discussed
in section 8 below.

4. Reaccommodation may be seen as a kind of cooperative behaviour as well since it involves
solving an elliptical utterance. Question/Issue Reaccommaodation is defined by Larsson
(2002a)as “adjustments of common ground required to understand an utterance addressing
an issue which has been resolved and does not influence any other resolved issue, influ-
ences another resolved issue or concerns grounding of a previous utterance.” Two instances
of reaccommaodation have been implemented in our system. The first example exemplifies

267

a case in which there is a previous history in the dialogue, and the user issues an incomplete
command.

e U(1): Switch on the light in the kitchen
(the light in the kitchen goes on)
e U(2): Now the one in the living room

A more complex type of reaccommodation occurs when, after a function has been exe-
cuted, the user retracts and wishes to undo the previous action:

e U(1): Switch on all indoor lights
(all indoor lights go on)

e U(2): No, the one in the garage
(the system must undo the previous action first)

. The last (and more productive) source of conflict arises from misunderstandings stemming
from misrecognition. In our systems, some degree of cooperative behaviour has been im-
plemented, depending on the consequences of adopting an aggressive attitude or whether
explicit confirmation was seen as necessary.

e U(1): I want to call 12 15 collect

S(1): Do you really want to call 12 50 collect?
U(2): no, 12 15.

S(2): OK, shall I call 12 15 collect?

U(3): yes, please.

Table 7.1 below summarizes the types of conflict which may arise in NCLDs, the relevant Di-
alogue Moves (either from the point of view of the user or the system’s) and the associated
cooperative/collaborative action proposed for each case.

7.8 Advanced Cooperation

This section outlines some modes of advanced cooperation in NCLDs. Some of them may be
considered cases of advanced flexibility or even robustness, which, in some sense, may be viewed
as other aspects of cooperative behaviour. This functionality has not been fully implemented in
our systems yet, partly because it relies on the technical limitations of the specific hardware being

268

Type of Conflict | Related Dialogue Move | Proposed Action
user ignores provide
overall functionality askHelp general help
user ignores provide
how to carry out askHelp specific help
a specific command
user ignores specifyCommand provide
current state (TYPE=Request) requested
of the world information
desired command informExecution propose
cannot be askCommand alternatives
accomplished (proposedAction)
elliptical command specifyCommand try
specifyParameter reaccommodation
Command and/or askRepeat clarification
parameter askConfirmation subdialogue
misunderstanding

Table 7.1: Types of conflict in NCLDs and cooperative action proposed

e User profiling: In the automatic telephone domain, the command Call my wife at her
mobile is only possible if a personal directory for each person making use of the system is
made available, in addition to the general one in which all the personnel is stored.

In addition, the system might allow the user to set modes of behaviour. For example, in the
home domain, it could be possible to issue the command set night mode, and automatically
the system would perform a series of tasks such as setting some external lights on, all
indoor lights off, switching the alarm on, etc.

Similarly, in the telephone domain, the user might want to set a non—disturb mode, and the
system should transfer all incoming calls to the answering machine or to the secretary.

e Default reasoning may be considered a form of cooperative behaviour, at least in the tele-
phone scenario. In our system a default action has been specified, whereby if no other
action has been recorded in the dialogue history, a PhoneCall action will be executed.
This is useful in the (frequent) cases in which the user just picks up the telephone and
utters,

— U(2): Carlos Garcia, please

e Proactive Behaviour is the most extreme case of cooperativeness. In the home environ-
ment, proactive behaviour has already been proposed for cases of fire, gas or water alarm,
but they rely more on the technical capabilities of the specific setting than on dialogue
capabilities.

269

In the telephone scenario, however, a proactive cooperative behaviour stemming from the
dialogue occurs when the destination is busy, and the system proposes to trigger a call-
back when she is done:

— S(1): Calling Juan Fernandez ...
— S(2): Mr. Fernandez is busy. Shall I have him call you back when he is done?
— U(2): Yes, please.

7.9 DISC Guidelines

Finally, let us briefly examine to what extent our systems comply with the DISC guidelines for
cooperative dialogue Consortium (1999). In particular, we will focus on the specific guidelines
proposed.

e SG1 Summarising feedback is achieved through direct or indirect confirmation Shall 1
transfer your callsto 0 1 2 3?7 or You want to transfer your calls; to which number, please?

e SG2 Provide immediate feedback: in some tasks, such as conference calls, it is better to
confirm one destination party at a time, given the ambiguities that would result from the
combinations of first names, last names, second last names, etc.

e SG3 Ensure uniformity. In the telephone scenario this is achieved through ‘canned expres-
sions’ in the natural language generator.

e S(G4 State your capabilities: is achieved through general help. A non recognized command
will only turn into I cannot do that or that’s beyond my current capabilities if the expression
was understood as a command, and this command is not in the set of those supported by
the current system. Otherwise, misinterpretation will arise.

e SGb5 State how to interact: is achieved through specific help.

e SG6 Be aware of user inferences. In the domains under consideration, this recommenda-
tion is applicable to those cases in which an inconsistency takes place between the model
represented in the system and the beliefs of the user with regard to that state. The sys-
tem detects these inconsistencies when, for example, the user tries to execute a command
which makes no sense in the current situation. Or else, when the user assumes a specific
behaviour for a command, different from the one actually implemented in the system. For
example, if the user wrongly believes that when activating a call transfer and there is a pre-
vious transfer active, the system should automatically cancel the active one at that point,
the system informs the user about this interpretation and asks her confirmation.

270

e SG7 Adapt to target group, novice/expert users: This kind of cooperative behaviour is left
for future work. In order to separate the novice from the expert user, the system might
ask at the beginning if the user knows the functionality of the system, suggesting that
she asks for specific help in case of a negative answer. If the user requests this initial
help, the system may enter in novel user mode, which will affect the subsequent messages
generated; otherwise, a more agile behaviour is followed for expert users.

e SGB8 Cover the domain: some degree of flexibility is achieved through advanced coopera-
tive functions such as user profiling.

e SG9 Enable system repair: is achieved through a specific Er r or | nput strategy which
generates ‘misunderstanding’ messages, and even orders these messages depending on
whether it is the first, second, etc. time the input wasn’t understood. In addition, a special
DI ALOGUE RECOVERY state may be activated in case of repeated misunderstanding.

e SG10 Enable inconsistency clarifications: is achieved by checking the consistency of the
arguments with respect to their commands. For example, calls can only be transferred to
extensions, so that if a transfer to an external number is tried, the system triggers a clarifica-
tion subdialogue. In the home domain, might violate restrictions regarding recurity, infras-
tructure (maximum level of power consumption) which would require the corresponding
inconsistency clarification subdialogues. Although this functionality was not addressed in
D’Homme, the design of the system would certainly permit its incorporation.

e SG11 Enable ambiguity clarification. Different ambiguity clarification strategies have
been implemented. In the D’Homme domain, this phenomenon shows up when the user
utters an expression which may affect several devices without an explicit use of universal
quantification (Switch on the light in the living—room and there are several lights in the
living—room). In Siridus, this phenomenon is especially critical since possible call desti-
nations are identified by names or surnames. Specific strategies have been implemented in
order to clarify the ambiguous expression.

7.10 Conclusion

This chapter has analyzed the complexity of NCLDs, and the different perspectives from which
such dialogues may be cooperative and collaborative. In particular, several types of conflict have
been identified, for which an adequate solution has been implemented in two spoken dialogue
prototype systems under the D’Homme and Siridus projects. As we have shown, the systems
comply with most of the DISC guidelines for cooperative dialogue.

271

272

Chapter 8

Over Informative answer s and clarifi cation
guestions

In menu driven dialogue systems the user is guided to make a choice from a given set of alter-
natives. This ensures that they pick a suitable value which is at the correct level of granularity.
However, without guidance, users may well supply more or less information than required. Con-
sider the following examples where a user supplies more information than expected:

(80) S: Where do you want to leave from?
U: Boston at 8am.

(81) S: What service do you require?
U: Credit card payment

The first example has become a standard one to illustrate the need for one particular kind of
“mixed initiative” where the user supplies more information than expected. This is handled, in
\VoiceXML forms by allowing more than one form value to be supplied at once, and in Godis via
guestion accommodation. The second example is perhaps more interesting. Here the expected
answer was banking, insurance or travel. However, the user has supplied more information, and
will not be pleased if the reply is ignored. Moreover, once in the banking service dialogue,
the user will not expect to answer a question about whether they want to make a withdrawal or
payment.

The next example illustrates a user supplying less information than required.

(82) S: Which account do you want to transfer into
U: My bank account

273

In this case the system expected a particular account e.g. deposit, or current. Again, although
“bank account” was not a fully acceptable answer to the question, the system should not repeat
the original question. The answer supplied some information, and the system needs to acknowl-
edge this and give an indication of the granularity it requires e.g.

(83) S: Do youmean your current account or your deposit account

So far, we have looked at cases which can be handled in terms of an “is-a” hierachy or correspond
to supplying extra parameters. However, clarification questions are also required in other cases
where the reply is under specified. Consider the following (constructed) example:

(84) S: Where should the new light go?
U: Upstairs
S: Which room upstairs: the front bedroom, the back bed-
room or the bathroom?

Here, the rooms are part-of upstairs rather than being in an is-a relationship with upstairs.

In ontologically rich domains such as medicine, granularity issues are much harder to ignore. For
example, in the medical domain, Martin Beveridge and David Milward (Ceusters et al. (2002))
discuss examples such as the following:

(85) S: Were does it hurt?
U: Inmy arm
S: Where in your arm?
U: My elbow

In this exchange, the necessary level of granularity is determined by the decision support system
underlying the dialogue. For certain decisions, the system may require location = arm, but for
others it may require specific_location = forearm.

How can we build this kind of flexibility into a spoken dialogue system without hard coding
these kinds of interactions? In the Linguamatics home control demonstrator, the information
state contains ontological knowledge. This encodes, for example, that a light is a kind of device,
a kitchen is a kind of room, and a kitchen is part-of the downstairs. Dialogue interactions are not
defined directly, but derived more indirectly using the ontological knowledge as well as the rest
of the information state. The main need for clarification questions in the home control domain
come from underspecified definite descriptions. The system handles cases such as:

(86) U: Turn on the bedroom light
S: Do you mean the back bedroom light or the front bedroom
light?

274

These cases are treated as part of a generic strategy for treating under specified responses which
tries to match up the required level of specificity with what the user provided.

275

276

Part |||

Summary and conclusions

277

Chapter 9

Summary and conclusions

9.1 Overall summary and conclusions

This deliverable has presented various strains of work on flexible dialogue management con-
ducted in SIRIDUS?. The first part collected contributions dealing with flexible issue-based di-
alogue management in GoDiS, and the second collected work based on other approaches to
dialogue management. Dialogue phenomena covered with include grounding and feedback, ad-
dressing unraised issues, flexible menu-based dialogue, negotiative dialogue, tutorial dialogue,
conditional responses, clarification subdialogues, and cooperation and collaboration.

In Chapter 2 we discussed general types and features of feedback as it appears in human-human
dialogue. Next, we discussed the concept of grounding from an information state update point of
view, and introduced the concepts of optimistic, cautious and pessimistic grounding strategies.
We then related grounding and feedback to dialogue systems, and discussed the implementation
of a partial-coverage model of feedback related to grounding in GoD1S2. This allows the system
to produce and respond to feedback concerning issues dealing with the grounding of utterances.

In Chapter 3, we made a distinction between a local and a global QUD (referring to the latter
as “open issues”, or just “issues”). The notions of question and issue accommodation were then
introduced to allow the system to be more flexible in the way utterances are interpreted relative
to the dialogue context. Question accommodation allows the system to understand answers ad-
dressing issues which have not yet been raised. In cases of ambiguity, where an answer matches
several possible questions, clarification dialogues may be needed.

In Chapter 4, we first extended the issue-based approach to action-oriented dialogue, and im-

1This chapter contains material from Chapter 6 of Larsson (20024).

279

plemented a dialogue interface to a VCR where dialogue plans were based on an existing menu
interface. We then proposed a view of negotiation as discussing several alternative solutions
to an issue under negotiation. On our approach, an issue under negotiation is represented as a
question, e.g. what flight the user wants. In general, this means viewing problems as issues and
solutions as answers.

In Chapter 5, we described the analysis of CRs and their implementation in the GoDiS system.
We argued that CRs are collaborative responses which help the user to determine a set of param-
eters of a possible journey (in the TA domain). We described in detail the production of negative
CDCRs as collaborative responses after failed database search and of positive NDCRs as collab-
orative responses after successful search in GoDiS. We also provided detailed proposals for the
production of positive CDCRs and negative NDCRs as well as for the interpretation of user CRs
by the system. Implementing these proposals is left for future work.

In Chapter 6 we evaluated the TrindiKit toolkit and the GoDiS system by assessing the possibil-
ity of developing a tutorial dialogue system on their basis. The motivation to consider tutorial
dialogues was twofold: they demand complex dialogue phenomena to be cared for and they
represent a genre that has not been aimed at in any of the existing implementations within the
TrindiKit/GoDiS.

There are several phenomena that justify the choice of tutorial dialogue as an evaluation mea-
sure. In particular, tutorial dialogues present a challenge for dialogue management, because they
exhibit more complex patterns of mixed dialogue- and task-initiative. This is necessary, for the
tutor to both allow the student to suggest ways of resolving the problem at hand (to achieve ac-
tive learning), and to carefully guide the student through the task without giving answers away.
We concluded that there is already sufficiently mixed dialogue initiative in GoDiS, but that task
initiative needs to be augmented.

We also explored the seemingly uncooperative behaviour of a tutor, which is manifested when she
avoids to reveal a solution to the task directly and does not answer student’s questions to the best
of her ability, thus withholding information. We suggested a way of simulating this behaviour
by making use of the modularity of the structure of the information state. More specifically,
we suggested implementing a field for obligations, as it has been done before in TrindiKit, to
capture the particular behaviour. We also suggested to representat discourse- and domain-plans
separately, in order to facilitate the implementation of the desired dialogue behavior, and the
possibility of changing or augmenting it for different genres.

We also unraveled the challenge of meeting the needs of plan recognition and reasoning in tuto-
rial dialogues, in order to provide effective feedback for the student’s answers. We recommended
using the idea of accommodation that has been implemented before in GoDiS and enables the tu-
tor to follow the student’s reasoning rather than force her own preconceptions on the student. We
also saw that having achieved that, we can further explore the possibilities in GoDiS to produce
suitable hints.

280

For the generation of hints and the tailoring of the tutor’s responses to the given context and
the student model, we pointed to the need to extend the dialogue move taxonomy and make
use of the dialogue history, as a means of enhancing the decisions about the information to be
communicated and the way it should be structured.

The overall conclusion we draw from this assessment is that the modularity of the TrindiKit
architecture and the philosophy of the information state update form a sufficient environment for
modeling tutorial dialogues.

Chapter 7 analyzed the complexity of NCLDs, and the different perspectives from which such
dialogues may be cooperative and collaborative. In particular, several types of conflict have
been identified, for which an adequate solution has been implemented in two spoken dialogue
prototype systems under the D’Homme and Siridus projects. Future work will concentrate on
advanced modes of cooperation suggested in the DISC guidelines. In particular, we plan to cover
issues regarding user adaptation.

Finally, Chapter 8 briefly explored the use of domain ontologies for dealing with over informative
answers and clarification questions.

9.2 Dialogue genres

In this section, we will use some distinctions made in previous chapters as a basis for a partial and
preliminary classification of dialogues and dialogue segments along various dimensions?. This
classification is primarily based on issue-based dialogue management as implemented in GoDiS.
While these dimensions can to some extent be used to classify dialogue systems according to
the kinds of dialogues they can handle, they are not intended as a classification of human-human
dialogues. Rather, they should be regarded as describing properties of dialogue segments.

As we have previously stated, we make a distinction between Inquiry-oriented and Action-
oriented dialogue according to whether the dialogue concerns non-communicative actions to be
performed by a DP. Usually, but not necessarily, Action-Oriented Dialogue (AOD), a.k.a. Natu-
ral Command Lanaguage Dialogue (NCLD), subsumes Inquiry-Oriented Dialogue (10D), a.k.a.
Information-Seeking Dialogue (ISD). One example of “pure” action oriented dialogue, where
no questions are asked, is Wittgenstein’s simple “slab” game in Wittgenstein (1953). Another
example is simple voice command systems. AOD and 10D are shown with their corresponding
GoDiS dialogue moves and information state components in Table 9.1.

We can also classify dialogues according to the presence or absence of general dialogue features

2This section contains material from Chapter 6 of in Larsson (2002a).

281

Dialogue type | Moves | IS components
10D ask QUD
answer | ISSUES
AOD request | ACTIONS
confirm

Table 9.1: Dialogue types

such as grounding, question accommodation, and negotiation. This is done in Table 9.2. While
grounding and accommaodation is probably present in all human-human dialogue, negotiation
may be less frequent.

Feature Moves IS component
Grounding icm TMP, grounding issues
Accommodation | accommodateX | -

(tacit)
Negotiation propose QuestioneSet(Answer)

Table 9.2: Dialogue features

Finally, we can also classify activities according to various aspects of dialogue, as in Table 9.3.
Note that this classification is independent of that in Table 9.2. We believe that dialogue in all
these activities may be negotiative or non-negotiative, and negotiation may be argumentative or
non-argumentative.

Activity Dialogue Result External | Decision

type type type process rights

Database search IOD simple: price etc. passive user

complex: itinerary

Ticket booking AOD simple: book ticket passive user

Simple device control AOD simple: action passive or | user
active shared

Offline planning, incl. AOD complex: plan passive shared

itinerary planning,
complex device control

Online planning, incl. AOD complex: plan active shared
rescue planning (TRIPS)

Explanation IOD complex: explanation | passive shared
Tutorial IOD or AOD | complex ? tutor

Table 9.3: Activities

We will now relate the taxonomy above to the taxonomies in Dahlbdck (1997) and Allen et al.
(2001). It should be stressed that neither Allen not Dahlbédck have the same goals with their

282

classifications as we do here, and though some formulations may appear critical they are mainly
intended to clarify the relation between these classifications and ours.

9.2.1 Relation to Dahlback’s dialogue taxonomy

Dahlbéck (1997) taxonomizes dialogue according to seven criteria:

modality: spoken or written

kinds of agents: human or computer

interaction: dialogue or monologue

context: spatial, temporal

number and type of possible/simultaneous tasks

dialogue-task distance: long or short

kinds of shared knowledge used: perceptual, linguistic, cultural

Our typology appears to be on a different level and is independent of many of Dahlbdck’s cri-
teria, and both cover important (but for the most part distinct) dimensions of classification. In
general, the interaction between the dimensions covered by Dahlbédck and the ones covered in
our typology is an interesting area for future research.

Modality is not included in our typology; however, GODIS is able to use both written and spo-
ken language. Regarding kinds of agents, we have of course been dealing mainly with human-
computer interaction; however, we have based both theory and implementation on observations
of human-human dialogue.

Our dialogue typology should be regarded as primarily concerning dialogue interaction; however,
a version of GoDiS (the predecessor of GoDIS) has been used to produce monologue output
from a domain plan specification which was also used for generating dialogue plans (see Larsson
and Zaenen, 2000).

We have not included aspects of spatial and temporal context in our typology; for our theory and
system we have not explored the impact of any other kind of context than (pre-stored information
about) the domain (activity) and the dialogue itself.

Regarding the number and type of possible and/or simultaneous tasks, the use of the 1SSUES and
ACTIONS stacks allows, at least in principle, an arbitrary number of simultaneous tasks. Since the

283

simplest version of our theory and system can handle this, we have not used this as a dimension
of classification.

The dialogue-task distance dimension is perhaps less obvious than the others. This is based on
the observation that some kinds of dialogue have a structure closely corresponding to the task
structure (e.g. planning or advisory dialogue), while some have a “longer distance” between
these two structures (e.g. information retrieval dialogue). Dahlbdck argues that for dialogues
with a short dialogue-task distance, intention-based methods for dialogue act recognition is both
more useful and easier than for dialogues with a long dialogue-task distance. For the latter,
surface-based act interpretation is easier and more appropriate, whereas intention-based methods
are less useful and more difficult. Regarding this dimension, we have been mostly concerned
with dialogues with a long dialogue-task distance, and if Dahlbdck is right an intention-based
and context-dependent interpretation module will be needed when extending the issue-based
approach to e.g. collaborative planning dialogue. While this may affect how dialogue moves
are defined, we believe (although we cannot be sure) that the set of dialogue moves we have
proposed in our taxonomy can still be maintained.

Finally, regarding the kinds of shared knowledge that are used, our taxonomy does not say much.
We have not been concerned with the perceptual and cultural context, except to the extent that
these are encoded in the static domain knowledge resources. The use of domain-specific lexicons
can perhaps be regarded as a simplistic form of linguistic context.

9.2.2 Relation to Allen et. al.’s dialogue classification

The classification by Allen et al. (2001) appears to be closer in spirit to the one proposed here.
Dialogues are classified according to the dialogue management technique (minimally) required
by a dialogue system capable of handling the respective kinds of dialogue. Each class is further
specified by example tasks, a degree of task complexity (ranging from least to most complex),
and a set of dialogue phenomena handled.

e finite-state script

— example task: long-distance calling
— dialogue phenomena: user answers questions

e frame-based

— example tasks: getting train timetable information
— dialogue phenomena: user answers questions, simple clarifications by system

e sets of contexts

284

— example tasks: travel booking agent

— dialogue phenomena: shifts between predetermined topics
e plan-based models

— example tasks: kitchen design consultant

— dialogue phenomena: dynamically generated topic structures, collaborative negotia-
tion subdialogues

e agent-based models

— example tasks: disaster relief management

— dialogue phenomena: different modalities (e.g. planned world and actual world)

The first thing to note about this classification is that it does not distinguish separate dimensions
of classification, but rather reduce several dimensions to one; this kind of simplification and
generalization does of course have its merits, but may also be confusing.

Regarding the taxonomy of technologies used in this classification, it appears that the closest
corresponding dimensions in our typology is the different kinds of information states and di-
alogue moves used for various dialogue types, dialogue phenomena, and activities. However,
the classifications are also quite different; for one thing, the finite-state-based and form-based
techniques usually do not even use dialogue moves. By contrast, our classification relies on
specifying dialogue moves even for very simple dialogues. We will not go into a discussion of
the relative merits of these grounds of classification; suffice to say that a theory-dependent clas-
sification (which ours to some extent is) allows a greater level of detail in the classification, but
its usefulness is of course dependent on the acceptance of the basic theoretical assumptions that
are made.

The first two technologies listed by Allen et. al. were discussed in Larsson et al. (2002), and the
distinction between them are pretty much standard. However, the classification of the remaining
three technologies is more problematic.

Regarding the “sets of contexts” technology, further specified as the use of several forms, it
can be regarded as ambiguous between the use of several forms of the same type and the use
of several forms of different types. The example task provided is “travel booking agent”, or
more specifically, itinerary booking. This seems to indicate that the intended meaning of “sets
of contexts” is the use of several forms of the same type (e.g. one for each leg of the itinerary).
In our typology of activities in Table 9.3, this would correspond to a dialogue with a complex
result. However, the use of several forms of different types seems rather to the possibility of
several simultaneous tasks (e.g. asking about which channel is on while programming the VCR).

285

The level of plan-based technology is further specified as “interactively constructing a plan with
the user” (Allen et al., 2001, p.30). This specification thus says something about the result of the
dialogue (a plan) and how this result is constructed (interactively). Note that this is not exactly
what we referred to as the plan-based approach in Larsson et al. (2002); at least in principle (and
perhaps also in practice; this is an empirical issue related to Dahlb&ck’s concept of dialogue-task
distance) it appears to be possible for a dialogue system to engage in this kind of dialogue even
if the system itself does not use complex planning and plan recognition (e.g. for dialogue act
recognition). Relating this to our classification of activities, it appears that the plan-based level
corresponds roughly to dialogues with complex results (plans) and distributed decision rights
(interactivity). As is indicated by Table 9.3, the techniques needed to handle the “plan-based”
level would also be needed for e.g. explanatory and tutorial dialogue.

Finally, regarding the level of agent-based technology, further specified as possibly involving
execution and monitoring of operations in a dynamically changing world, it appears that the
main difference to the plan-based model is what we refer to as (pro)activeness of the external
process.

To conclude, it appears from the point of view of our typology that the classification by Allen et
al. (2001) is based on a mix of criteria, including information state components (e.g. forms) but
also activity type, result type, pro-activeness of external process, decision rights, and dialogue
features such as grounding (“simple clarifications”) and negotiation (“collaborative negotiation
subdialogues”). The AOD/IOD distinction appears not to be included at all.

9.3 Future research areas in flexible issue-based dialogue man-
agement

In this section, we briefly mention some additional future areas for research using the issue-based
approach to dialogue management. We also mention some desirable improvements to GoDIS.

9.3.1 Developing the issue-based approach to grounding

Representation of utterances Starting from Ginzburg’s grounding protocols, we have formal-
ized and implemented a basic version of issue-based grounding and feedback. However, some
aspects of the current solution are not completely satisfactory, and it appears that a better solution
could be obtained by explicitly representing utterances in various stages of grounding to a larger
extent than in the current system.

286

Grounding issues Also, to increase the coverage of the theory and the abilities of the system it
would be useful to represent grounding issues explicitly on several levels of grounding to a larger
extent than is currently done. Some of the possible grounding issues that could be represented
are the following (S is the speaker, A is the addressee, « is an utterance by S).

e Contact level
— S and A: Do | have contact with other DP?
e Perception level

— S: Did A perceive u correctly? If not, what did A perceive?
— A: What did S say? Did S say X? Which of X;,..., X, did S say?

— Sand A: Is u grounded on the perception level?
e Semantic understanding level
— S: Did A understand the literal meaning of «? If not, what does A think I meant

(literally)?

— A: What does » mean (literally)? Does » mean X? Which of X4,..., X,, does u
mean?

— Sand A: Is u grounded on the semantic understanding level?
e Pragmatic understanding level

— S: Did A understand the pragmatic meaning of »? If not, what does A think | meant
(pragmatically)?

— A: What did S mean by » mean, given the current context? How is « relevant in the
current context? Did S mean X? Which of X, ..., X,, did S mean?

— Sand A: Is u grounded on the pragmatic understanding level?
e Reaction level

— S: Will A accept (the content of) u?

— A: Should I accept (the content of) u? If u is an assertion, should | accept u as a
fact or only as a topic for discussion? If | don’t accept u, how should I indicate this?
Should I accept an altered version of ? Should | accept only a part of »?

287

Increased coverage Our account of grounding and ICM is so far only partial in coverage;
phenomena that remain to be accounted for and/or implemented include clarification ellipsis,
semantic ambiguity resolution, collaborative completions and repair, and turntaking ICM. While
we have included some rudimentary sequencing ICM, further investigations of the appropriate-
ness and usefulness of these utterances are needed; here, research on discourse markers (e.g.
Schiffrin, 1987) and cue phrases (e.g. Grosz and Sidner, 1986, Polanyi and Scha, 1983, and
Reichman-Adar, 1984) can be of great use. We also want to explore turntaking in asynchronous
dialogue management, and how this relates to turntaking ICM.

Own Communication Management has so far not been handled at all, and this is clearly an area
where the system could be improved both on the interpretation and generation side. We hope
that the issue-based approach could help clarify the relation between ICM and OCM aspects of
grounding-related utterances.

Methods for choosing grounding and ICM strategies We have used a very basic method
for choosing grounding and ICM strategies; this could be developed to include context-related
aspects of the utterance to be grounded. This also goes for the strategies for choosing between
several competing interpretation hypotheses on the perception and understanding levels.

Implicit issues We believe that the modelling of implicit issues, both grounding-related and
others, can be very useful for accounting for the relevance of many utterances. We therefore need
to develop a general way of dealing with implicit questions and the accommodation of these. We
believe that such an account should be based on dynamic generation and accommodation of
implicit issues when they are needed, rather than calculating all possible implicit issues available
at any stage of the dialogue.

9.3.2 Other dialogue and activity types

Of course, an obvious continuation of the work presented here is to continue extending the cov-
erage of issue-based dialogue management to other kinds of dialogues. In this section we will
discuss some possibilities.

Pro-active devices To handle dialogue with pro-active devices, it is not sufficient to model the
device only as a resource, since the latter are by definition passive. What is needed is a module
which is connected to the active device; we can call such a module an action manager. Dialogue
with pro-active devices will also require asynchronous dialogue processing, at least on some
level. The simplest solution is to check for messages from the device when the system has the

288

turn. To handle this, it is probably sufficient to have the whole system except the action manager
running as a single process. However, it may also be necessary for the system to interrupt the
user (or indeed itself) in mid-turn, to give a report on the state of some action or plan being
executed. This is likely to require a more advanced asynchronous setup, where several processes
are needed.

Complex results We have so far only been dealing with dialogues where the “result” (answer,
action) is not very complex. In e.g. itinerary information dialogue, the result may be a more
complex structure. In collaborative planning dialogue the result is a potentially complex plan
with several actions related in various ways. Similarly, explanatory dialogue may require rep-
resentation of complex explanations or proofs. To deal with dialogue with complex results, we
need to be able to represent these complex structures, and perhaps also to incrementally construct
them by successive additions and modifications. However, we believe that the essential features
of inquiry-oriented, action-oriented, and negotiative dialogue are the same regardless of whether
the results are complex or simple.

Argumentation To handle argumentation, which is most likely to appear in negotiative dia-
logue, we hope to be able to exploit previous work in this area, e.g. Mann and Thompson (1983)
and Asher and Lascarides (1998), and relate it to the issue-based approach.

Use of obligations Traum and Allen (1994b) propose obligations as a central social attitude
driving dialogue. For example, if DP A asks a question @ to DP B, B will have an obligation to
address @; typically, this obligation will then give rise to an intention to address Q. In GoDIS,
we instead add @ to QUD (global and local), and if the system can answer a question on QUD it
will do so. It has been noted that the job done by obligations and QUD overlap to a large extent
(Kreutel and Matheson, 1999), and in many kinds of dialogue the choice between QUD and
obligations will not result in any differences in behaviour. However, there are also differences
between QUD and obligations.

For one thing, QUD does not represent who raised the question, or who should respond to it. An
interesting question then becomes: given that we include a global QUD in our information state,
when does it become necessary to also include obligations? It appears that one type of dialogue
where QUD on its own is insufficient is tutorial dialogue, where the tutor asks the student a so-
called “exam question” to which the tutor already knows the correct answer. Given the strategy
used by GoDI1S, the system would raise the question and then immediately answer it, which is
probably not a very good teaching strategy. However, in many other kinds of dialogues it appears
that the strategy of answering a question regardless of who answered it is a useful strategy. For
example, if a DP A (a human or perhaps a robot equipped with vision) asks another DP B where
some object is located and then finds the object, it appears more felicitous for A to answer the

289

question (“Ah, there it is!”) than to wait for B to do so. More importantly, we have in the
preceding chapters demonstrated several uses of a global QUD (modelling grounding issues,
handling issue accommodation, representing issues under negotiation) which it may or may not
be possible to handle using obligations. For these reasons, we are interested in further exploring
the similarities, differences, and interaction between QUD and obligations, and possibly extend
the issue-based dialogue model by adding obligations, at least for modelling some complex kinds
of dialogue.

General planning A similar case applies to generalized planning. We have so far only used
pre-scripted dialogue plans which are used in a flexible way by the dialogue manager to enable
some degree of rudimentary replanning, but it can be expected that for sufficiently complex
dialogues the number of dialogue plans that are needed will become so large that pre-scripting is
no longer feasible. At this point, dynamic planning will be needed. We are interested in finding
out for which kinds of dialogues dynamic general-purpose planning is needed, and in integrating
dynamic planning in the issue-based approach to dialogue management.

9.3.3 Semantics

The semantics currently used in GODIS is obviously very simple, and integrating the issue-based
approach to dialogue management with a more powerful semantics is likely to improve both the
theoretical depth of analysis, especially regarding the semantics of questions, and the perfor-
mance of the system. A relevant issue in this context is the connection between dialogue features
and requirements on the semantic representation used - when does more complex semantics be-
come necessary?

Specifically, we would like to explore and implement semantics using dependent record types (
Cooper, 1998), and integrate this with issue-based dialogue management. One reason for this is
that dependent record types appears to provide a computationally sound framework for imple-
menting ideas from situation semantics; the latter has been used by Ginzburg in formulating the
semantics of questions on which the issue-based approach to dialogue management is based.

It should be noted that the system itself is independent of which semantics is used; this is rather
a feature of the domain-specific resources and (to some extent) the resource interfaces. Adding a
more powerful semantics will therefore not require any significant modifications of update rules
etc.

290

9.3.4 General inference

While update rules can be regarded as specialized (forward-chaining) inference rules, we have
so far not dealt with general inference and backward-chaining inference. Inference could be
useful even in database search dialogue to reason about the best way of dealing with search
results in the form of conditionals (see Chapter 5). One idea here is to introduce a private issue-
structure representing questions that the system is interested in resolving; this could be regarded
as modelling the “wonder” attitude. A findout(@) action on the agenda could then result in @
being added to a field /PRIVATE/WONDER, which can either lead to a database search, backward-
chaining reasoning from available information, or asking the user for an answer. As an example
of backward-chaining reasoning using the “wonder” attitude, if the system believes p — r and
wonders about ?r, a rule could add ?p to the WONDER field; this rule would then implement
backward-chaining modus ponens.

9.3.5 Natural language input and output

Parsing and generation In GoDIS we have so far concentrated on dialogue management
and used very rudimentary modules for interpretation and generation of natural language. We
need to explore the possible use of robust parsing techniques (see e.g. Milward, 2000) and
“real” grammars. It would also be useful to be able to automatically generate speech recognition
grammars (which are usually finite-state) from the parsing grammar. Using the same grammar
for parsing and generation would further decrease the amount of work needed for porting the
system to a new domain or language.

Dialogue move interpretation Since we have been dealing with simple dialogue in toy do-
mains, we have so far been able to get away with doing dialogue move interpretation indepen-
dently of the dynamic context. Instead, context dependent interpretation is performed by the
dialogue move engine as a subtask of integrating moves. While we believe that this is a good
strategy to use as long as it works well, it may eventually become necessary to be able to recog-
nize indirect speech acts (in our case, indirect dialogue moves), which probably requires some
form of context-dependent intention recognition to decide what move has been performed.

Focus intonation One area of research that we have not mentioned so far, but where the issue-
based approach shows great promise, is the generation and interpretation of focus intonation with
respect to the information state. Some work was done on this in the TRINDI project (Engdahl et
al., 1999), and is currently being developed further in the followup SIRIDUS project.

291

Speech recognition for flexible dialogue One problem for any dialogue system allowing for
user initiative and flexibility is that a larger speech recognition lexicon is needed, which nega-
tively affects the quality of speech recognition. We want to explore the use of the information
state, and especially QUD, for improving recognition, e.g. by running a “global” recognizer lis-
tening for anything that the system can understand, and a “local” recognizer, listening e.g. for
answers to questions on QUD, in parallel.

9.3.6 Applications and evaluation

To properly test the issue-based approach to dialogue management, we believe it is necessary to
build full-scale prototype applications and evaluate these based on interactions with naive users.
One possible such application is VCR control; another is local travel information.

Although we have not said much about it here, we have previously explored various ways of
acquiring dialogue plans appropriate for a given domain or application. Among the options we
have used is dialogue distillation (see Larsson et al., 2000c), conversion of domain plans to
dialogue plans (see Larsson, 2000), and conversion of menu interfaces to dialogue plans.

A further option we want to explore is the use of VoiceXML (McGlashan et al., 2001) dia-
logue specifications as a basis for dialogue plans. We hope to be able to automatically or semi-
automatically convert VoiceXML scripts into complete domain and lexicon specifications for
GoDiS, which we hope would allow the use of general dialogue mechanisms (e.g. grounding,
accommodation, negotiation) to enable flexible dialogue given fairly simple Voice XML scripts.
This would decrease the amount of work on the part of the dialogue designer, and thus enable
rapid prototyping.

292

Bibliography

Abella, A.; Brown, M.K.; and Buntschuh, B. 1996. Development principles for dialogue-based
interfaces. In Proceedings of ECAI’96 Workshop on Dialogue Processing in Spoken Language
Systems. 1-7.

Aleven, Vicent; Popescu, Ocav; and Koendinger, Kenneth R. 2001. A tutorial dialogue system
with knowledge-based understanding and classification of student explanations. In Working
Notes of 2nd 1JCAI Workshop on Knowledge and Reasoning in Practical Dialogue Systems.,
Seattle, USA.

Alexandersson, Jan and Becker, Tilman 2000. Overlay as the basic operation for discourse pro-
cessing in a multimodal dialogue system. In Proceedings of the IJCAI Workshop on Knowledge
and Reasoning in Practical Dialogue Systems. 8-14.

Alexandersson, Jan and al., et 1998. Dialogue acts in Verbmobil-2. Technical report,
Verbmobil-Report.

Allen, James and Core, Mark 1997. Draft of damsl: Dialogue Act Markup in Several Layers.
http://www.cs.rochester.edu/research/cisd/resources/damsl.

Allen, James F.; Byron, Donna K.; Dzikovska, Myroslava; Ferguson, George; Galescu, Lucian;
and Stent, Amanda 2001. Toward conversational human-computer interaction. Al Magazine
22(4):27-37.

Allwood, Jens; Nivre, Joakim; and Ahlsen, Elisabeth 1992. On the semantics and pragmatics
of linguistic feedback. Journal of Semantics 9:1-26.

Allwood, Jens 1976. Linguistic Communication as Action and Cooperation. Ph.D. Dissertation,
Goteborg University, Department of Linguistics.

Allwood, Jens 1995. An activity based approach to pragmatics. Technical Report (GPTL) 75,
Gothenburg Papers in Theoretical Linguistics, University of Goteborg.

AMEX, 1989. SRI’'s Amex Travel Agent Data. http://www.ai.sri.com/ commu-
nic/amex/amex.html.

293

Amores, J. G. and Quesada, J. F. 2000. Dialogue moves in natural command languages. Deliv-
erable 1.1, Siridus Project.

Asher, N. and Lascarides, A. 1998. The semantics and pragmatics of presupposition. Journal
of Semantics 15(3):239-299.

Aust, H.; Oerder, M.; Seide, F.; and Steinbiss, V. 1994. Experience with the Philips automatic
train table information system. In Proc. of the 2nd Workshop on Interactive Voice Technology
for Telecommunications Applications (IVTTA), Kyoto, Japan. 67-72.

Barwise, J. and Perry, J. 1983. Situations and Attitudes. The MIT Press.
Berman, Alexander 2001. Asynchronous feedback and turn-taking. ms.

Bohlin, Peter; Bos, Johan; Larsson, Staffan; Lewin, lan; Matheson, Colin; and Milward, David
1999. Survey of existing interactive systems. Technical Report Deliverable D1.3, Trindi.

Bos, Johan; Bohlin, Peter; Larsson, Staffan; Lewin, lan; and Matheson, Colin 1999. Dialogue
dynamics in restricted dialogue systems. Technical Report Deliverable D3.2, Trindi.

Boye, J.; Larsson, S.; Lewin, I; Matheson, C.; Thomas, J.; and Bos, J. 2001. Standards in home
automation and language processing. Technical Report Deliverable D1.1, D’Homme.

Brandle, Stefan and Evens, Martha 1997. Acknowledgements in tutorial dialogues. Technical
report, AAAI CF-97-01, p.p.13-17. AAAI Press.

Béuerle, Rainer; Reyle, Uwe; and Zimmermann, Thomas Ede, editors 2002. Presuppositions
and Discourse. Current Research in the Semantics/Pragmatics Interface. Amsterdam (Elsevier).

Ceusters, Werner; Beveridge, Martin; Milward, David; and Falavigna, Daniele 2002. Specifi-
cation for semantic dictionary integration. Technical report, HOMEY Deliverable D9.

Chi, Michelene T. H.; Lewis, Matthew W.; Riemann, Peter; and Glaser, Robert 1989. Self-
explanations: How students study and use examples in learning to solve problems. Cognitive
Science 13:145-182.

Chi, Michelene T. H.; Nicholas, de Leeuw; Mei-Hung, Chiu; and Christian, Lavancher 1994.
Eliciting self-explanation improves understanding. Cognitive Science 18:439-477.

Chu-Carroll, Jennifer and Brown, Michael K. 1997. An evidential model for tracking initiative
in collaborative dialogue interactions. Meeting of the Association for Computational Linguistics
262-270.

Chu-Carroll, Jennifer and Brown, Michael K. 1998. An evidential model for tracking initiative
in collaborative dialogue interactions. User Modelling and User-Adapted interaction, special
issue on Computational Models of Mixed Initiative Interactions (3+4)(8):215-253.

294

Chu-Carroll, Jennifer and Carberry, Sandra 1994. A plan-based model for response generation
in collaborative task-oriented dialogues. In Proceedings of AAAI-94. 799-805.

Chu-Carroll, Jennifer 2000. Mimic: An adaptive mixed initiative spoken dialogue system for
information queries. In Proceedings of the 6th Conference on Applied Natural Language Pro-
cessing. 97-104.

Clark, H. H. and Schaefer, E. F. 1989a. Contributing to discourse. Cognitive Science 13:259 —
94.

Clark, Herbert H. and Schaefer, Edward F. 1989b. Contributing to discourse. Cognitive Science
13:259-294. Also appears as Chapter 5 in Clark (1992).

Clark, Herbert H. 1992. Arenas of Language Use. University of Chicago Press.
Clark, H. H. 1996. Using Language. Cambridge University Press, Cambridge.

Cohen, P. 1981. The need for referent identification as a planned action. In Proceedings of the
7th International Joint Conference of Artificial Intelligence, Toronto. 31-36.

Consortium, The DISC 1999. Disc dialogue engineering model. Technical report, DISC,
http://www.disc2.dk/slds/.

Cooper, Robin and Ginzburg, Jonathan 2001. Resolving ellipsis in clarification. In Proceedings
of the 39th meeting of the Assocation for Computational Linguistics, Toulouse. 236-243.

Cooper, Robin and Larsson, Staffan 2002. Accommodation and reaccommaodation in dialogue.
In Bauerle et al. 2002.

Cooper, Robin; Engdahl, Elisabet; Larsson, Staffan; and Ericsson, Stina 2000. Accommaodating
questions and the nature of qud. In Poesio and Traum 2000. 57-61.

Cooper, Robin; Ericsson, Stina; Larsson, Staffan; and Lewin, lan 2001. An information state
update approach to collaborative negotiation. In Kihnlein, Peter; Rieser, Hannes; and Zeevat,
Henk, editors 2001, BI-DIALOG 2001—Proceedings of the 5th Workshop on Formal Semantics
and Pragmatics of Dialogue, ht t p: / / www. uni - bi el ef el d. de/ Bl DI ALOG. ZiF, Univ.
Bielefeld. 270-9.

Cooper, R. 1998. Information states, attitudes and dependent record types. In Proceedings of
ITALLC-98.

Core, Mark G. and Allen, James F. 1993. Coding dialogues with damsl annotation scheme.
In AAAI Fall Symposium on Communicative Action in Humans and Machines, Boston, MA.
28-35.

Core, Mark G.; Moore, Johanna; and Zinn, Claus 2000. Supporting constructive learning with
a feedback planner. Technical report, Human Communication Research Center, University of
Edinburgh, 445 Burgess Drive, Menlo Park CA 94025.

295

Core, Mark G.; Moore, Johanna; Zinn, Claus; and Wiemer-Hastings, Peter 2001. Modelling
human teaching tactics in a computer tutor. In Proceedings of the NAACL-2001 Workshop on
Adaptation in Dialogue Systems, Pittsburgh, PA.

Dahlbdck, Nils 1997. Towards a dialogue taxonomy. In Maier, Elisabeth; Mast, Marion; and
LuperFoy, Susann, editors 1997, Dialogue Processing in Spoken Language Systems, number
1236 in Springer Verlag Series LNAI-Lecture Notes in Artificial Intelligence. Springer Verlag.

DHomme, 2001. http://www.ling.gu.se/ projekt/dhomme/.

Di Eugenio, B.; Jordan, P.W.; Thomason, R.H.; and Moore, J.D. 1998. An empirical investiga-
tion of proposals in collaborative dialogues. In Proceedings of ACL-COLING 98: 36th Annual
Meeting of the Association of Computational Linguistics and 17th International Conference on
Computational Linguistics. 325-329.

Engdahl, Elisabet; Larsson, Staffan; and Bos, Johan 1999. Focus-ground articulation and par-
allelism in a dynamic model of dialogue. Technical Report Deliverable D4.1, Trindi.

Fraser, Bruce 1990. Perspectives on politeness. Journal of Pragmatics 14(2):219-236.

Gdrdenfors, P. 1988. Knowledge in Flux: Modeling the Dynamic of Epistemic States. The MIT
Press, Cambridge, MA.

Ginzburg, J. 1997. Structural mismatch in dialogue. In Jaeger, G. and Benz, A, editors 1997,
Proceedings of MunDial 97, Technical Report 97-106. Universitaet Muenchen Centrum fuer
Informations- und Sprachverarbeitung, Muenchen. 59-80.

Ginzburg, J. forth. Questions and the semantics of dialogue. Forthcoming book, partly available
fromhttp://ww. dcs. kcl . ac. uk/ st af f/ gi nzbur g/ papers. htm .

Glass, Michael 2001. Processing language input in the circsim-tutor intelligent tutoring system.
Inal., J. D.Moore et., editor 2001, Artificial Intelligence in Education. 10S Press.

Goffman, E. 1976. Replies and responses. Language in Society 5:257-313.

Green, Nancy and Carberry, Sandra 1999. A Computational Mechanism for Initiative in Answer
Generation. User Modeling and User-Adapted Interaction 9(1/2):93-132.

Grice, Herbert Paul 1975. Logic and conversation. In Cole, P. and Morgan, J. L., editors 1975,
Speech Acts, volume 3 of Syntax and Semantics. Seminar Press, New York. 41-58.

Grosz, B. J. and Sidner, C. L. 1986. Attention, intention, and the structure of discourse. Com-
putational Linguistics 12(3):175-204.

Grosz, B. J. and Sidner, C. L. 1987. Plans for discourse. In Symposium on Intentions and Plans
in Communication and Discourse.

296

Hochberg, Judith; Kambhatla, Nanda; and Roukos, Salim 2002. A flexible framework for
developing mixed-initiative dialogue systems. In Proceedings of the Third SIGdial Workshop
on Discourse and Dialogue, Philadelphia, PA, USA. Universtity of Pennsylvania.

Hume, Gregory D.; Joel, Michael A.; Allen, Rovick A.; and Evens, Martha W. 1996. Journal
of the learning sciences. Hinting as a Tactic in One-On-One Tutoring 5(1):23-47.

Hume, Gregory D. 1995. Using Student Modelling to Determine When and How to Hint in an
Intelligent Tutoring System. Ph.D. Dissertation, Illinois Institute of Technology. 150 pp.

Jennings, N. and Lesperance, Y, editors 2000. Proceedings of the 6th International Workshop
on Agent Theories, Architectures, and Languages (ATAL’1999), Springer Lecture Notes in Al
1757. Springer Verlag, Berlin.

Kaplan, D. 1979. Dthat. In Cole, P., editor 1979, Syntax and Semantics v. 9, Pragmatics.
Academic Press, New York. 221-243.

Kreutel, Jorn and Matheson, Colin 1999. Modelling questions and assertions in dialogue using
obligations. In Van Kuppevelt et al. 1999.

Kreutel, Joern and Matheson, Colin 2000. Incremental information state updates in an
obligation-driven dialogue model. Language and Computation 0(0):1-32. To appear.

Larsson, Staffan and Zaenen, Annie 2000. Document transformations and information states.
In Proceeding of the 1st SigDial Workshop, Hong Kong. ACL. 112-120.

Larsson, Staffan; Cooper, Robin; Engdahl, Elisabet; and Ljungloef, Peter 2000a. Information
states and dialogue move engines. Electronic Articles in Computer and Information Science
3(7).

Larsson, Staffan; Cooper, Robin; Engdahl, Elisabet; and Ljungloef, Peter 2000b. Information
states and dialogue move engines. Electronic Articles in Computer and Information Science
3(7).

Larsson, Staffan; Santamarta, Lena; and Jonsson, Arne 2000c. Using the process of distilling
dialogues to understand dialogue systems. In Proceedings of 6th International Conference on
Spoken Language Processing (ICSLP2000/INTERSPEECH2000), Volume 111, 374-377.

Larsson, Staffan; Amores, Gabriel; Jonson, Rebecca; and Qesada, Jose 2002. Siridus system
architecture and interface report (enhanced version). Project deliverable 6.3, SIRIDUS.

Larsson, Staffan 1998. Questions under discussion and dialogue moves. In Proceedings of the
Twente Workshop on Language Technology. 163-171.

Larsson, Staffan 2000. From manual text to instructional dialogue: an information state ap-
proach. In Poesio and Traum 2000. 203-206.

297

Larsson, Staffan 2002a. Issue-based Dialogue Management. Ph.D. Dissertation, Goteborg
University.

Larsson, Staffan 2002b. Issues under negotiation. In Kristinna, Jokinen; and McRoy, Susan,
editors 2002b, Proceedings of the Third SIGdial Workshop on Discourse and Dialogue. 103—
112.

Lewin, lan; Cooper, Robin; Ericsson, Stina; and Rupp, C.J. 2000. Dialogue moves in negotia-
tive dialogues. Project deliverable 1.2, SIRIDUS.

Lewin, I.; Larsson, S.; Ericsson, S.; and Thomas, J. 2001. The d’homme device selection.
Technical Report Deliverable D5.1, D’Homme.

Lewis, D. K. 1979. Scorekeeping in a language game. Journal of Philosophical Logic 8:339-
359.

Mann, W. C. and Thompson, S. A. 1983. Relational propositions in discourse. Technical Report
ISI/RR-83-115, USC, Information Sciences Institute.

Matheson, Colin; Poesio, Massimo; and Traum, David 2000. Modelling grounding and dis-
course obligations using update rules. In Proceedings NAACL 2000, Seattle.

McGlashan, S.; Burnett, D; Danielsen, P.; Ferrans, J.; Hunt, A.; Karam, G; Ladd, D.; Lucas,
B.; Porter, B.; and Rehor, K. 2001. Voice extensible markup language (voicexml) version 2.0.
Technical report, W3C. W3C Working Draft, 23 October 2001.

Microsoft, 2000. Universal Plug and Play Device ArchitectureVersion 1.0. URL:
http://www.upnp.org/download/UPnPDA10_20000613.htm.

Milward, D. 2000. Distributing representation for robust interpretation of dialogue utterances.
In Proceedings of the 38th Annual Meeting of the Association of Computational Linguistics,
ACL-2000. 133-141.

Moore, Johanna 1993. What makes human explanations effective? In Proceedings of the
Fifteenth Annual Meeting of the Cognitive Science Society, Hillsdale, NJ.

Pieraccini, R.; Levin, E.; and Eckert, W. 1997. AMICA: The AT&T mixed initiative conversa-
tional arcitecture. In Proceedings of EUROSPEECH.

Poesio, Massimo and Traum, David 1998a. Towards an axiomatisation of dialogue acts. In Hul-
stij, J. and Nijholt, A., editors 1998a, Proceedings Twentieth Workshop on the Formal Semantics
and Pragmatics of Dialogues, Enschede. 207-222.

Poesio, Massimo and Traum, David R. 1998b. Towards an axiomatization of dialogue acts. In
Proceedings of Twendial’98, 13th Twente Workshop on Language Technology: Formal Seman-
tics and Pragmatics of Dialogue. 207-222.

298

Poesio, Massimo and Traum, David, editors 2000. Proceedings of Gétalog 2000, number 00-5
in GPCL (Gothenburg Papers Computational Linguistics).

Polanyi, L. and Scha, R. 1983. On the recursive structure of discourse. In Ehlich, K. and Riems-
dijk, H.van, editors 1983, Connectedness in Sentence, Discourse and Text. Tilburg University.
141-178.

Qu, Yan and Beale, Steve 1999. A constraint-based model for cooperative response generation
in information dialogues. In Proceedings of AAAI-99, Orlando, FL.

Reed, Chris A. and Long, Derek P. 1997. Collaboration, cooperation and dialogue classifica-
tion. In Jokinen, K., editor 1997, Working Notes of the 1JCAI97 Workshop on Collaboration,
Cooperation and Conflict in Dialogue Systems, IJCAI 97, Nagoya, Japan. 73-78.

Reichman-Adar, R. 1984. Extended man-machine interface. Artificial Intelligence 22(2):157-
218.

Rich, Charles and Sidner, Candace L. 1998. Collagen: A collaboration manager for software
interface agents. User Modeling and User-Adapted Interaction 8(3/4):315-350.

Rich, Charles; Sidner, Candance L.; and Lesh, Neal 2000. COLLAGEN: Applying collabora-
tive discourse theory to human-computer interaction. Technical Report TR-2000-38, Mitsubishi
Electric Research Laboratories.

Rose, Carolyn Perstein; Moore, Johanna D.; VanLehn, Kurt; and Allbritton, David 2001. A
comparative evaluation of socratic versus didactic tutoring. In Proceedings 23rd Annual Con-
ference of the Cognitive Science Society, Edinburgh, Scotland, UK.

San-Segundo, Ruben; Montero, Juan M.; Guitierrez, Juana M.; Gallardo, Ascension; Romeral,
Jose D.; and Pardo, Jose M. 2001. A telephone-based railway information system for spanish:
Development of a methodology for spoken dialogue design. In Proceedings of the 2nd SIGdial
Workshop on Discourse and Dialogue. 140-148.

Schiffrin, D. 1987. Discourse Markers. Cambridge University Press, Cambridge.

Severinson Eklundh, Kerstin 1983. The notion of language game — a natural unit of dialogue
and discourse. Technical Report SIC 5, University of Linkdping, Studies in Communication.

Sidner, Candace L. 1994a. An artificial discourse language for collaborative negotiation. In
Proceedings of the forteenth National Conference of the American Association for Artificial
Intelligence (AAAI-94). 814-8109.

Sidner, Candace. L. 1994b. Negotiation in collaborative activity: A discourse analysis.
Knowledge-Based Systems 7(4):265-267.

SIRIDUS, 2002. Implemented siridus system architecture (enhanced). Project deliverable 6.4,
SIRIDUS.

299

Steedman, Mark 2000. The Syntactic Process. MIT, Cambridge, Massachusetts.

Stenstrom, Anna-Brita 1984. Questions and Responses. Lund Studies in English: Number 68.
Lund : CWK Gleerup.

The DISC consortium, 1999. Disc dialogue engineering model. Technical report, DISC,
http://www.disc2.dk/slds/.

Torre, Doroteo and others, 2001. User requirements on a natural command language dialogue
system. Deliverable 3.1, Siridus Project.

Traum, D. R. and Allen, J. F. 1994a. Discourse obligations in dialogue processing. In Pro-
ceedings 32nd Annual meeting of the Association for Computational Linguistics (ICSLP92).
1-8.

Traum, D. R. and Allen, J. F. 1994b. Discourse obligations in dialogue processing. In Proc. of
the 32nd Annual Meeting of the Association for Computational Linguistics, New Mexico. 1-8.

Traum, David; Bos, Johan; Cooper, Robin; Larsson, Staffan; Lewin, lan; Matheson, Colin; and
Poesio, Massimo 1999. A model of dialogue moves and information state revision. Technical
Report Deliverable D2.1, Trindi.

Traum, D. R. 1994. A Computational Theory of Grounding in Natural Language Conversation.
Ph.D. Dissertation, University of Rochester, Department of Computer Science, Rochester, NY.

Tsovaltzi, Dimitra and Matheson, Colin 2002. Formalising hinting in tutorial dialogues. In
EDILOG: 6th workshop on the semantics and pragmatics of dialogue, Edinburgh, Scotland.

Van Der Sandt, R. A. 1992. Presupposition projection as anaphora resolution. Journal of
Semantics 9(4):333-377.

Van Kuppevelt, Jan; Van Leusen, Noor; Van Rooy, Robert; and Zeevat, Henk, editors 1999.
Proceedings of Amstelogue’99 Workshop on the Semantics and Pragmatics of Dialogue.

Verbmobil-Corpus, 1995. Data collection for a speech to speech translation system - scheduling
domain. Institut fir Phonetik, Minchen.

Walton, Douglas N. and Krabbe, Erik C. W. 1995. Commitment in Dialogue. State University
of New York, New York.

Wittgenstein, Ludwig 1953. Philosophical Investigations. Basil Blackwell Ltd.

300

