
ADOBE® ILLUSTRATOR® CS4

ADOBE DIALOG MANAGER
PROGRAMMER’S GUIDE

© 2008 Adobe Systems Incorporated. All rights reserved.

Adobe Dialog Manager Programmer’s Guide

If this guide is distributed with software that includes an end user agreement, this guide, as well as the software
described in it, is furnished under license and may be used or copied only in accordance with the terms of such license.
Except as permitted by any such license, no part of this guide may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written
permission of Adobe Systems Incorporated. Please note that the content in this guide is protected under copyright law
even if it is not distributed with software that includes an end user license agreement.

The content of this guide is furnished for informational use only, is subject to change without notice, and should not be
construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or
liability for any errors or inaccuracies that may appear in the informational content contained in this guide.

Please remember that existing artwork or images that you may want to include in your project may be protected under
copyright law. The unauthorized incorporation of such material into your new work could be a violation of the rights of
the copyright owner. Please be sure to obtain any permission required from the copyright owner.

Any references to company names in sample templates are for demonstration purposes only and are not intended to
refer to any actual organization.

Adobe, the Adobe logo, Illustrator, and Photoshop are either registered trademarks or trademarks of Adobe Systems
Incorporated in the United States and/or other countries. Microsoft and Windows are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries. Mac OS is a trademark of Apple
Computer, Incorporated, registered in the United States and other countries. All other trademarks are the property of
their respective owners.

Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA. Notice to U.S. Government End Users.
The Software and Documentation are “Commercial Items,” as that term is defined at 48 C.F.R. §2.101, consisting of
“Commercial Computer Software” and “Commercial Computer Software Documentation,” as such terms are used in 48
C.F.R. §12.212 or 48 C.F.R. §227.7202, as applicable. Consistent with 48 C.F.R. §12.212 or 48 C.F.R. §§227.7202-1 through
227.7202-4, as applicable, the Commercial Computer Software and Commercial Computer Software Documentation are
being licensed to U.S. Government end users (a) only as Commercial Items and (b) with only those rights as are granted
to all other end users pursuant to the terms and conditions herein. Unpublished-rights reserved under the copyright
laws of the United States. Adobe Systems Incorporated, 345 Park Avenue, San Jose, CA 95110-2704, USA. For U.S.
Government End Users, Adobe agrees to comply with all applicable equal opportunity laws including, if appropriate, the
provisions of Executive Order 11246, as amended, Section 402 of the Vietnam Era Veterans Readjustment Assistance Act
of 1974 (38 USC 4212), and Section 503 of the Rehabilitation Act of 1973, as amended, and the regulations at 41 CFR
Parts 60-1 through 60-60, 60-250, and 60-741. The affirmative action clause and regulations contained in the preceding
sentence shall be incorporated by reference.

 3

Contents

Preface . 7
What is in this guide . 7

Intended audience . 7

Typographic conventions . 7

Related documentation . 7

1 ADM Overview . 8
Conventions . 8

Accessing suites . 9

Architecture . 9
PICA plug-ins . 9
ADM objects . 10
Quick summary of using ADM . 12
Types . 13
Events . 15
Properties . 15
Resources . 17

Suites . 17

ADM object specifics . 18
ADM Dialog objects . 18
Item objects . 21
Composite items . 31
ADM item groups . 32
ADM item numeric properties . 32
ADM List and ADM Entry objects . 33
ADM Hierarchy List and ADM List Entry objects . 34
Windows and Mac OS ADM item-resource lists . 35

Using event callbacks . 42
Init functions . 43
Drawer functions . 43
Notifier functions . 44
Tracker functions . 45
Destroy functions . 46
Resizable windows . 46

Adding custom item types . 46

Using timer procedures . 48

Using the C++ interfaces . 48
Getting started with ADM plug-in development . 49
General development process . 50

Contents 4

2 Using ADM with Adobe Illustrator . 52
ADMNonModalDialog plug-in . 52

Platform-specific resources . 52

Dialog creation . 53

Dialog initialization . 53
Pop-up menu item . 55
Pop-up list item . 56
Spin-edit Item . 57
Radio-button and check-box items . 57
Button items . 58
Dialog positioning and docking . 58
Panel icons . 59

Notification procedures . 59
Handling modifier keys . 60

For more information . 61

3 ADM Suites . 62
Basic suite . 62

Accessing the suite . 63
For more information . 63

Dialog suite . 63
Accessing the suite . 63
Dialog styles . 63
Standard dialog-item IDs . 64
Callbacks . 64
ADM help support . 64
For more information . 64

Dialog Group suite . 64
Accessing the suite . 64
Position code and group name . 65
For more information . 65

Drawer suite . 65
Accessing the suite . 65
Drawer functions . 65
Using drawer functions . 66
Fonts and colors . 67
Drawer coordinate space . 67
Drawing modes . 67
For more information . 68

Entry suite . 68
Accessing the suite . 69
Initializing an entry . 69
Help support . 69
For more information . 69

Contents 5

Hierarchy List suite . 69
Accessing the suite . 70
Hierarchy lists and list entries . 70
Using the Hierarchy List suite . 70
Custom hierarchy lists . 71
For more information . 72

Icon suite . 72
Accessing the suite . 72
Icons . 72
For more information . 73

Image suite . 73
Accessing the suite . 73
For more information . 73

Item suite . 73
Accessing the suite . 73
Initializing ADM items . 73
FloatToText and TextToFloat functions . 76
Help support . 77
For more information . 78

List suite . 78
Accessing the suite . 78
Lists and entries . 79
Using the List suite . 79
Custom lists . 80
For more information . 80

List Entry suite . 80
Accessing the suite . 80
List objects and entries . 81
Help support . 81
For more information . 81

Notifier suite . 82
Accessing the suite . 82
Notifier functions . 82
Using notifier functions . 83
Notifier types . 83
For more information . 86

Tracker suite . 86
Accessing the suite . 86
Trackers . 86
For more information . 86

4 ADM Folders and Files . 87

5 ADM Error Codes . 88

Contents 6

6 Frequently Asked Questions . 89
Lists . 89

Text . 90

Color . 92

Panels . 93

Dialog-box behavior . 95

Popups . 97

Dialog-box elements . 98

Timers . 99

Operating-system-related queries . 99

Other . 101

Glossary . 105

 7

Preface

Adobe® Dialog Manager (ADM) is a collection of platform-independent APIs for displaying and controlling
dialog boxes.

What is in this guide
This document provides an overview of the window and control architecture, describes how to use Adobe
Dialog Manager with several Adobe products, and has individual chapters for each API suite. Each suite
chapter contains an introduction to the suite, discusses concepts and structures used by the suite, and
provides references for details about suite functions.

Intended audience
This guide is intended for experienced developers who are familiar with the architecture of the product for
which dialog boxes are to be added or modified.

Typographic conventions
The following typographic conventions are used in this document:

Related documentation
For detailed information about the ADM APIs, see Adobe Illustrator CS4 SDK API Reference.

Monospaced font Literal values and code, like JavaScript code, HTML code, filenames, and path
names.

Italicized

monospaced font
Variables or placeholders in code. For example, in name="myName", the text
myName represents a value you are expected to supply, such as name="Fred".
This also highlights the first occurrence of a new term.

Italics Items to be emphasized, such as the first occurrence of a new term.

Blue underlined text A hyperlink you can click to go to a related section in this book or a URL in your
Web browser.

> A shorthand notation for navigating to menu items; for example, Edit > Cut
refers to the Cut item in the Edit menu.

 8

1 ADM Overview

Adobe® Dialog Manager (ADM) is a cross-platform API for implementing dialog interfaces for Adobe
applications. This document describes ADM structures and how to access them. Before reading it, you
should already be familiar with the concept of dialogs and dialog items.

ADM enables developers to create and manage cross-platform dialogs. Two types of dialogs are
supported:

➤ Modal dialogs are displayed on user input and disappear on the conclusion of the user input. With a
modal dialog, a user cannot work elsewhere in the application until the dialog is closed.

➤ Modeless dialogs “float” over the host application windows.

In both cases, ADM supports many control types, including basic ones like buttons and text and more
complicated ones like lists and hierarchy lists. In addition to this wide array of custom and standard
user-interface elements, ADM provides behaviors like tab panels, docking panels, and automatically
tracking and displaying the correct selection in grouped radio buttons.

ADM is implemented as a PICA plug-in and uses the PICA suites to export its functionality. A plug-in is any
file containing a computer program and resources that extend the function of the host application. For
more information on PICA, see “PICA plug-ins” on page 9.

Basic ADM functionality is provided using three core function suites:

ADM Basic suite — Basic user interactions and utilities.

ADM Dialog suite — Creating and managing dialogs.

ADM Item suite — Creating and managing items in a dialog.

Several other suites provide other behaviors and allow ADM’s functionality to be extended to cover many
different custom interfaces. C or C++ interfaces can be used for each suite.

Conventions
In this guide, constants are denoted with a preceding lowercase k (e.g., kADMClippedTextStaticStyle). The
capital letters ADM in a suite name mean the suite is provided by ADM. For more information on terms, see
“Glossary.”

By convention, pointers to suites are named as follows:

CHAPTER 1: ADM Overview Accessing suites 9

ADMBasicSuite *sADMBasic;
ADMDialogSuite *sADMDialog;
ADMDialogGroupSuite *sADMDialogGroup;
ADMDrawerSuite *sADMDrawer;
ADMEntrySuite *sADMEntry;
ADMHierarchyListSuite *sADMHierarchyList;
ADMIconSuite *sADMIcon;
ADMImageSuite *sADMImage;
ADMItemSuite *sADMItem;
ADMListSuite *sADMList;
ADMListEntrySuite *sADMListEntry;
ADMNotifierSuite *sADMNotifier;
ADMTrackerSuite *sADMTracker;

Accessing suites
Suites can be accessed through the use of predefined constants for the suite and suite version and the
previously defined suite pointer. For example:

ADMDialogSuite *sADMDialog;
error = sSPBasic->AcquireSuite(kADMDialogSuite, kADMDialogSuiteVersion, &sADMDialog);
if (error) goto ... //handle error

In the code above, the sSPBasic variable is assigned a pointer when your plug-in loads. This pointer
enables access to a data structure that enables access to the suites. Some applications may provide other,
more transparent methods for obtaining suites through their own APIs.

Architecture

PICA plug-ins

PICA is an Adobe standard plug-in architecture used by several Adobe applications, including Photoshop
and Illustrator. PICA provides a common plug-in management core to the host application and a standard
interface for plug-ins. In Adobe documentation and header files, PICA often is referred to as Sweet Pea,
SuitePea, SweetPEA, SuiteP, etc.; all these terms are synonymous with PICA.

The ADM application programming interface (API) is exposed to the host and its plug-in’s via “suites.” A
suite is simply a pointer to a data structure that provides an interface to a common object, often a
collection of function pointers (e.g., a group of functions to access an ADM Dialog object). Plug-ins can
extend the host API by providing their own function suites.

Before they can be used, all suites must be “acquired”; when no longer needed, suites are “released.” This
mechanism guarantees the functions always are available to the plug-in.

An acquired suite actually is a pointer to a structure with the suite’s function pointers. To call one of the
suite functions, the syntax is as follows:

sSuite->function();

CHAPTER 1: ADM Overview Architecture 10

So, to use a suite function, you do something like this:

SPBasicSuite *sSPBasic = message->basic;
ADMBasicSuite11 *sADMBasic;

sSPBasic->AcquireSuite(kADMBasicSuite, kADMBasicSuiteVersion11, &sADMBasic);
sADMBasic->Beep();
sBasic->ReleaseSuite(kADMBasicSuite, kADMBasicSuiteVersion11);

The convention used by most SDKs is for suite variables to be global in scope and indicated by a lowercase
“s” followed by the suite name; e.g., sADMBasic, as shown above.

Typically, the version number parameter you pass to AcquireSuite should be the version that contains
the functions you need. All available suite versions are contained in the corresponding ADM header file
(for example, ADMBasic.h), so you can include this header in any project you are writing.

NOTE: Do not assume higher-numbered versions of the product are supersets of lower numbered
versions—they may not be.

PICA plug-ins are called by the application at certain times. A PICA event is received through the plug-in’s
main entry point, which is defined as follows:

ASAPI ASErr PluginMain(char *caller, char *selector, void *message);

The caller and selector indicate the type of event. The message is a pointer to a structure with any data
necessary to handle the event. The ADM message structure always contains the following data:

typedef struct SPMessageData {

long SPCheck; /* kSPValidSPMessageData if a valid SPMessage */
struct SPPlugin *self; /* SPPluginRef */
void *globals;
struct SPBasicSuite *basic;

} SPMessageData;

Plug-ins also might be called through callbacks they give to some host, like the application or ADM. In this
case, it is the caller’s responsibility to specify what information is available and provide enough
information for the plug-in to work.

PICA plug-ins are loaded into and unloaded from memory as needed. When a PICA plug-in adds an ADM
dialog, it remains in memory until the dialog is disposed of (for PICA version 2.4 and later; earlier versions
of PICA require the plug-in to acquire itself, to remain in memory).

Some SDKs, like the Acrobat SDK, provide special code that handles suite acquisition and release
automatically, so the programmer does not need to worry about these details.

CHAPTER 1: ADM Overview Architecture 11

ADM objects

ADM user interfaces are built out of ADM user-interface objects. These objects include the dialog windows
(dialog objects) and the dialog items (item objects) within the windows, as shown in the following figure:

A plug-in or application using ADM has access to standard ADM dialog types (modal and non-modal) and
items (buttons and other user-interface controls). The user interface can be built in code or by using
resource definitions. For instance, standard platform resources can be used to define the layout of
user-interface objects. All objects have properties and events that determine their default behavior and
allow them to be modified or extended. These also can be set in code or via a resource.

ADM has an object-oriented design, even though its interfaces are exported as procedural C functions.
This is important, since many of the properties, behaviors, and callback functions of the various types of
ADM user-interface objects (dialogs or dialog items) are the same. Understanding the fundamentals of
managing one type of ADM user-interface object results in understanding how to manipulate other ADM
objects as well.

For instance, ADM objects have associated text. For ADM windows, this is the window title; for a button,
the button title; for a text-edit item, the editable text entered by the user. To access any ADM user-interface
item’s text, use these two functions:

void ADMAPI (*SetText)(ADMItemRef inItem, const char* inText);
void ADMAPI (*GetText)(ADMItemRef inItem, char* outText, ADMInt32 inMaxLen);

Some ADM objects need additional support functions or properties. For instance, a window object has
functions to perform operations like setting the minimum and maximum window size. ADM text-edit
items have additional functions to support properties like justification and numeric precision.

The complete ADM object hierarchy is shown in the following figure.

An ADM
item object

An ADM
dialog object

CHAPTER 1: ADM Overview Architecture 12

ADM List objects are owned by List Box, Popup List, Popup Menu, Scrolling Pop List, Spin Edit Popup, Spin
Edit Scrolling Popup, Text Edit Popup, and Text Edit Scrolling Popup items. ADM Entry objects are
contained by an ADM List.

Quick summary of using ADM

To use ADM, first use a platform-specific resource editor to add a dialog resource to your plug-in project. At
an appropriate point in your plug-in code (likely responding to an application API event), create a new
ADM dialog with either sADMDialog->Modal (to create a modal dialog) or sADMDialog->Create (to create
a non-modal, or floating or tabbed, dialog). Pass this function an initialization function that is called after
ADM loads the resources and creates the dialog. Use this opportunity to set initial values or otherwise

ADM base class

ADM Dialog

ADM Dialog Group
(non-modal only)

ADM Hierarchy List
* Hierarchy List Box

ADM List
* List Box
* Popup List
* Popup Menu
* Scrolling Popup List

Non-list types
* Frame
* Picture Push Button
* Picture Radio Button

ADM Item

* Spin Edit Popup
* Spin Edit Scrolling

popup
* Text Edit Popup
* Text Edit Scrolling

popup

* Picture Static
* Picture Check Box
* Resize
* Scrollbar
* Slider
* Spin Edit
* Text Check Box
* Text Edit
* Text Edit Read-only
* Text Edit MultiLine
* Text Edit MultiLine

Read-only
* Text Push Button
* Text Radio Button
* Text Static
* Text Static MultiLine
* Progress Bar
* Chasing Arrows
* Dial
* Item Group
* Popup Control
* Popup Control Button
* Popup Spin Edit Control
* Password Text Edit

ADM List Entry

ADM Entry

CHAPTER 1: ADM Overview Architecture 13

customize the dialog’s behavior. ADM provides several suites of functions for accessing ADM objects, and
these are used to perform the initialization.

ADM then displays and handles the dialog for you, processing user events as needed. Your application is
called to handle certain standard events, like closing the dialog, and any other events requested in your
init function, like notification that a button was pressed. For non-modal dialogs, call the ADM Dialog suite
function sADMDialog->Destroy when the dialog is no longer needed. ADM destroys the dialog and frees
its resources.

Types

The data types used by ADM are defined in the ASTypes.h, ADMTypes.h, ADMCustomResource.h, and
ADMAGMTypes.h files.

NOTE: Data types with the AS prefix are used across Adobe products.

To ensure platform independence, ADM and other Adobe products use platform-independent type names
for some native data types. The following type definitions are from the ASTypes.h file:

Types defined the same across platforms

// Integer Types
typedef signed char ASInt8;
typedef signed short ASInt16;
typedef signed long ASInt32;

typedef unsigned char ASUInt8;
typedef unsigned short ASUInt16;
typedef unsigned long ASUInt32;

typedef long ASErr;

// Storage Types
typedef unsigned char ASByte;
typedef ASByte* ASBytePtr;

// Unicode Types
typedef ASUInt16 ASUnicode;

// Pointer Types
typedef void* ASPtr;
typedef void** ASHandle;

// Fixed Types
typedef long ASFixed;
typedef long ASFract;
typedef float ASReal;

typedef struct _t_ASFixedPoint {
ASFixed h, v;

} ASFixedPoint;

typedef struct _t_ASFixedRect {
ASFixed left, top, right, bottom;

} ASFixedRect;

CHAPTER 1: ADM Overview Architecture 14

typedef struct _t_ASFixedMatrix {
ASFixed a, b, c, d, tx, ty;

} ASFixedMatrix;

typedef struct _t_ASRealPoint {
ASReal h, v;

} ASRealPoint;

typedef struct _t_ASRealRect {
ASReal left, top, right, bottom;

} ASRealRect;

typedef struct _t_ASRealMatrix {
ASReal a, b, c, d, tx, ty;

} ASRealMatrix;

Types defined differently across platforms

// On Mac OS:

// ASBoolean is the same as a Mac OS boolean.
typedef unsigned char ASBoolean;

// ASPortRef is the same as a Mac OS CGrafPtr.
typedef CGrafPtr ASPortRef;

typedef WindowRef ASWindowRef;

// Rectangle value in Mac OS (same as Rect)
typedef struct Rect ADMRect;

// Point value in Mac OS (same as Point)
typedef struct Point ADMPoint;

On Windows:

// ASBoolean is the same as a Windows BOOL.
typedef int ASBoolean;

// ASPortRef is the same as a Windows HDC.
typedef void* ASPortRef;

// ASWindowRef is the same as a Windows HWND.
typedef void* ASWindowRef;

// Rectangle value in Windows (same as RECT)
typedef struct _t_ADMRect ADMRect{

long left, top, right, bottom;
} ADMRect;

// Point value in Windows (same as Point)
typedef struct _t_ADMPoint ADMPoint{

long h,v;
} ADMPoint;

CHAPTER 1: ADM Overview Architecture 15

Coordinates using ADMRect

The ADMRect data structure specifies a rectangle of coordinates; however, coordinates are between pixels.
For example, using coordinates, if you invalidate (see sADMDialog->InvalidateRect) columns 0 - 3 and
columns 4 - 6, the pixels in-between are not re-painted. Below, the periods represent coordinates, and the
P’s represent pixels. The bold pixels are not re-painted.

. P . P . P . P . P . P

. P . P . P . P . P . P

Events

There are five events received by all ADM user-interface objects, as described in the following table.

For most user-interface objects, you can rely on the default behavior for an event. For instance, when the
cursor moves over a text item, ADM changes it to the insert-text cursor.

If the behavior of an object at a given event is not what is desired, it can be changed by assigning a new
event handler. One event whose behavior you may modify often is Notify; it is used to check when an
object is hit. It is used, for instance, to assign an action to a button click or do special checking on a
text-entry item.

Properties

There are many properties common to all ADM user-interface objects. They are described in the following
table. (For more information, see “Glossary.”)

Event When received

Destroy When the object is disposed of

Draw When a screen is invalidated or updated

Init When an object is created

Notify When the object is hit

Track When the mouse is over the object

CHAPTER 1: ADM Overview Architecture 16

For both LocalRects and BoundsRects, the origin is at the top left of the rectangle, and coordinates
increase as they move down and to the right. The origin for tabbed dialogs is beneath the tab, not beneath
the window title bar.

Property Description

Properties that define the object’s function and appearance:

Type Defines the general function of the object. Type is the broad category for an object; for
example, modal and non-modal dialogs, pop-up menus, and edit-text items.

Style Determines the appearance and/or behavior of the object. The style property further
defines the type of object; for example, for dialog objects, it indicates whether a modeless
dialog is a tab panel or a standalone window. ADM user-interface objects can have one or
more styles.

ID Numeric reference to the object in its defining space (e.g., its resource number or item
number).

Text Depending on the item, usually the title, text value, or name of an item. The text
associated with an object can be constant, as in a button, or changeable by the user, as
with a menu item.

State values:

Visible Whether the object is visible.

Enabled Whether the object is enabled. If an object is enabled, it is usable by the user; if disabled, it
has a dimmed appearance and may be unusable.

Active Whether the object is the active item, meaning having keyboard focus. There is only one
active dialog item object in a given dialog. In Windows®, any item can be active, which for
non-text-edit items means it is the focus of the Enter key. In Mac OS®, only edit-text items
can be active.

Known Whether the object is known. An item is in a “known” state if it has a “good” or valid value.

Properties that allow ADM objects to access data without the need for global variables:

Plug-in A reference to the plug-in that created the object. This is used when the ADM dialog
needs to access a plug-in resource. In addition, when dialog elements are created, a
pointer to any custom data also is created. This can point to any type of data structure
your dialog needs.

UserData A pointer to any special data assigned to the object when it was created.

Properties that define the object’s size and location:

LocalRect The size of the object. This is the rectangle defining the size of an object in local,
(0,0)-based coordinates.

BoundsRect The rectangle of the object in its container’s space. A dialog item is located within a dialog,
which is located within the screen bounds. This is a rectangle of the same size as LocalRect
but in the object container’s coordinate space. The coordinates for BoundsRect are
measured in screen coordinates, which have the (0,0) origin at the upper left corner of the
screen.

CHAPTER 1: ADM Overview Suites 17

Resources

ADM is designed to simplify the task of creating cross-platform plug-in code for dialogs by largely
eliminating the need to support two or more code bases. At the same time, it is intended to support the
specific look and feel of its run-time platform. For this reason, dialog resources are created on their host
platform, while ADM handles how those dialog resources interact with the user. ADM loads and uses
platform-specific dialog resources correctly. The ADMResource.h file defines the constants needed when
writing ADM dialog resources. The negative IDs are reserved for ADM core implementation, so users
should select positive constants for any custom IDs.

In Windows, dialog items are window classes. Variations are controlled by class styles. The mapping of
Windows window classes and styles to ADM item types and styles is given in “Windows ADM items” on
page 36. Items that take a picture of some sort can use .bmp and icon resources. ADM scans for them in
that order and uses the first resource it finds with the searched for ID.

In Mac OS, dialogs are made up of normal 'DLOG' and 'DITL' resources. Normal dialog item types can be
used for standard controls like buttons and text items. Item types unique to ADM are implemented as
controls defined in “Mac OS ADM items” on page 39. Items that use pictures of some sort can use PICT and
icon family resources to define them. ADM scans for them in that order and uses the first resource it finds
with the searched for ID.

Set-up information for ADM objects on all platforms is given in the sections describing specific item types
and in “Initializing ADM items” on page 73.

Suites
The ADM provides a set of suites to implement ADM dialogs. The functions of these suites for the current
release of ADM are described in Chapter 3, “ADM Suites.”

The functions in the suites are standard C style functions. In addition to these, a set of C++ wrappers for
working with ADM dialogs as objects is provided in the SDKs for several Adobe products. These wrappers
can be found in the IADM (Interface to ADM) files in the SDK.

The functions for creating and manipulating ADM user-interface objects are found in several header files.
The core suites that make up ADM’s public API are shown in the following table.

Suite Purpose Associated header file

Basic Provides minimal dialog and resource functions, like alerts,
beeps, resource access, and string utilities.

ADMBasic.h

Dialog ADM property-access functions for dialog objects. ADMDialog.h

Dialog Group Functions for grouping dialogs into a docked panel. ADMDialogGroup.h

Drawer Functions for implementing custom-drawer callbacks. ADMDrawer.h

Entry Functions for working with ADM Entry objects. ADMEntry.h

Hierarchy List Functions for ADM Hierarchy List objects. ADMHierarchyList.h

Icon Provides a standard interface to cross-platform picture
resources.

ADMIcon.h

CHAPTER 1: ADM Overview ADM object specifics 18

Specific API information is provided in the chapters describing each suite.

ADM object specifics

ADM Dialog objects

ADM Dialog objects are of two types: modal or non-modal (floating). They are further defined by an ADM
dialog style. All ADM Dialog objects have a general appearance that complements the main application’s
user interface, as shown below.

Image Functions for creating off-screen images that can be
displayed and manipulated using ADM drawers.

ADMImage.h

Item ADM property-access functions for dialog-item objects. ADMItem.h

List Functions for ADM List objects. ADMList.h

List Entry Functions for ADM Hierarchy List Entry objects. ADMListEntry.h

Notifier Functions for implementing custom-notifier callbacks. ADMNotifier.h

Tracker Functions for implementing custom-tracker callbacks. ADMTracker.h

Suite Purpose Associated header file

CHAPTER 1: ADM Overview ADM object specifics 19

Modal dialogs require that the user dismiss the dialog before the host application can be directly used
again. Often they effect settings or the application’s data on being dismissed.

Non-modal dialogs, also called floating dialogs or panels, “float” over the main application window and
allow the user to switch between the application and the dialog. If a floating dialog is re-sizable, the user
can grab the platform-specific resize indicator and stretch or shrink the window area. A floating tabbed
dialog can be combined or “docked” with others, as shown below.

Examples of modal dialogs:

kADMModalDialogStyle kADMAlertDialogStyle

Examples of floating dialogs:

kADMTabbedFloatingDialogStyle kADMTabbedResizingFloatingDialogStyle

kADMFloatingDialogStyle kADMResizingFloatingDialogStyle

CHAPTER 1: ADM Overview ADM object specifics 20

For an example of coding a non-modal dialog, see Chapter 2, “Using ADM with Adobe Illustrator.

Behaviors like moving a window or combining several tabbed windows are handled automatically by
ADM. ADM handles basic window resizing, but the plug-in probably needs to respond to a resize
notification by moving its items or changing their size.

Initially, the size of the window is set by the size of the window resource. It also can be set via a function at
any time. In Windows, all ADM dialog windows are standard DIALOG resources. In Mac OS, ADM modeless
dialog windows are specified with 'DLOG' resources using a custom window definition of ID 1991
(WDEF-124 and variation 7). Modal-dialog windows are specified with 'DLOG' resources using standard
Mac OS dialog resources. The following code segments show ADM dialog resources for Windows and
Mac OS:

/* Windows */
16000 DIALOG 12, 9, 161, 67
STYLE WS_POPUP | WS_VISIBLE | WS_CAPTION | WS_SYSMENU | WS_MINIMIZEBOX |
WS_MAXIMIZEBOX
CAPTION "Align"
FONT 8, "MS Sans Serif"
{
}

/* Mac OS */
resource 'DLOG' (16128) {

{365, 171, 459, 376},
1991,
invisible,
goAway,
0x0,
16128,
"AlignADM Palette"

};

The ADM window’s style is set at runtime when it is created. These styles are found in ADMDialog.h and
are passed to the dialog creation function.

CHAPTER 1: ADM Overview ADM object specifics 21

ADM Dialog objects are created with a plug-in using three calls from the ADM Dialog suite. Two functions,
sADMDialog->Create and sADMDialog->Destroy, are for non-modal (floating) dialogs. To make a
non-modal dialog, the plug-in calls sADMDialog->Create. When the modeless dialog is no longer
needed, the plug-in calls sADMDialog->Destroy. For modal dialogs there is only one function,
sADMDialog->Modal, that is called to create the dialog. Modal dialogs are destroyed automatically when
the user dismisses them.

Both sADMDialog->Create and sADMDialog->Modal take the same arguments:

inPluginRef is for the plug-in creating the dialog.

inName is the name of the dialog window resource. This is an internal name, not the title of the dialog
window.

inDialogID is the resource number of the platform dialog resource.

inDialogStyle is one of the ADM dialog style constants in the header files and the examples shown
in the first figure in “ADM Dialog objects” on page 18.

inInitProc is a function pointer to a routine that does any initial setup of the dialog, such as
positioning it or setting dialog item values.

The inUserData user argument also is a pointer, but to a structure you define. It is used to access any
data needed by the dialog.

inOptions provides additional control on dialog creation.

Item objects

There are many types of ADM Item objects. Combined with style variations and custom callbacks for
drawing, tracking, and notification, you can create just about any dialog appearance and behavior needed.
Normally, ADM items associated with a dialog are created automatically with the dialog. You can manually
create and dispose of them in your plug-in. Resource types for all ADM items for each platform are given in
“Windows ADM items” on page 36 and “Mac OS ADM items” on page 39. “Initializing ADM items” on
page 73 explains how to initialize each item.

ADM items are defined in ADMItem.h, as is the function suite used to access them. Constants are used to
identify each item type. These constants are listed and described below, along with screen shots showing
examples of the different item types. In addition to the standard ADM object properties, all ADM items
have a parent dialog and a parent-window reference.

The following table lists ADM item types and the location of short sections that describe them.

Item type For more information, see page ...

kADMChasingArrowsType 30

kADMDialType 31

kADMFrameType 23

kADMHierarchyListBoxType 29

kADMItemGroupType 31

CHAPTER 1: ADM Overview ADM object specifics 22

kADMListBoxType 29

kADMPictureCheckBoxType 24

kADMPicturePushButtonType 23

kADMPictureRadioButtonType 24

kADMPictureStaticType 23

kADMPopupControlButtonType 26

kADMPopupControlType 26

kADMPopupListType 26

kADMPopupMenuType 26

kADMPopupSpinEditControlType 26

kADMProgressBarType 30

kADMResizeType 31

kADMScrollbarType 29

kADMScrollingPopupListType 26

kADMSliderType 29

kADMSpinEditPopupType 28

kADMSpinEditScrollingPopupType 26

kADMSpinEditType 28

kADMTextCheckBoxType 24

kADMTextEditMultilineReadOnlyType 25

kADMTextEditMultilineType 25

kADMTextEditPopupType 26

kADMTextEditReadOnlyType 25

kADMTextEditScrollingPopUpType 25

kADMTextEditType 25

kADMTextMultilineType 25

kADMTextPushButtonType 23

Item type For more information, see page ...

CHAPTER 1: ADM Overview ADM object specifics 23

kADMFrameType and kADMPictureStaticType

The two simplest ADM Item object types are frames and static pictures, both used primarily for visual
effects. ADM frames are used to visually group dialog items together. ADM static pictures are used to
provide unchanging visual information to the user, like information about the host program they are
using. The following figure shows ADM frames and static pictures.

The only information needed to define a frame are its bounding rectangle and style. These can be set in
the dialog resource or created at runtime. To define a frame in the dialog resource, you would create an
item with a specific type of frame style and include a bounds rectangle.

A static picture is defined by its bounding rectangle and a picture resource ID. To define a static picture in
the dialog resource, you would provide the resource ID and a bounds rectangle.

kADMPicturePushButtonType and kADMTextPushButtonType

Buttons are a common dialog control, and ADM offers two types:

Text buttons display the ADM item text within a rounded rectangle.

Picture buttons take three pictures, for their default state, their selected state, and a disabled state.

In addition, a button can be the default item, in which case it is enclosed in another rectangle. In the
following figure of ADM button types, kADMTextPushButtonType is a default button.

kADMTextRadioButtonType 24

kADMTextStaticType 25

kADMUserType 31

Item type For more information, see page ...

kADMEtchedFrameStylekADMBlackFrameStyle kADMSunkenFrameStyle

kADMPictureStaticTypekADMGrayFrameStyle kADMRaisedFrameStyle

CHAPTER 1: ADM Overview ADM object specifics 24

A text-push button is defined by its bounding rectangle and text. These can be set in the dialog resource
or created at runtime. A text-push button is easily defined using a standard platform button-item resource.

A picture-push button is defined by its bounding rectangle and the resource IDs for its three pictures. To
define a picture-push button in the dialog resource, use the values in the platform dialog-items chart.

The selected state and disabled state pictures are optional. If resources for these states are not provided,
ADM draws them correctly, offsetting the picture when selected and graying it when disabled.

kADMTextRadioButtonType, kADMPictureRadioButtonType,
kADMTextCheckBoxType, and kADMPictureCheckBoxType

Two other types of buttons are made available by ADM:

Radio buttons allow the user to choose one item from a group of options. As with push buttons, radio
buttons can be text buttons or picture buttons. They take the same information as push buttons—
either the object’s text or up to three pictures for the enabled, selected, and disabled states. Radio
buttons with consecutive ADM item IDs are automatically grouped together, so only one of the group
can be selected.

Check boxes allow the user to set an on/off condition. Check boxes can be of the text or picture type.
On Windows, you cannot create a picture check box from platform-specific resources.

Radio buttons and check boxes are illustrated below.

Both check-box and radio-button items have a state that indicates whether they are selected. This can be
set by specifying the boolean value of the dialog item:

item = sADMDialog->GetItem(parentDialog, kDisableCheckBox);
sADMItem->SetBooleanValue(item, false);

Once the value of an item is set, you do not have to set it again unless you choose to do so. ADM’s default
behavior checks and unchecks a check box or selects and deselects radio buttons in a group. When a radio

kADMPicturePushButtonType

kADMTextPushButtonType

Enabled Selected Disabled

kADMTextRadioButtonType

kADMPictureRadioButtonType

kADMTextCheckBoxType

Disabled Selected Enabled

EnabledDisabled Selected

CHAPTER 1: ADM Overview ADM object specifics 25

button in a group is selected, the others in the group are deselected automatically. Radio buttons with
consecutive IDs define a button group.

The value of a radio button or check box can be determined by its boolean value:

item = sADMDialog->GetItem(parentDialog, kDisableCheckBox);
if (sADMItem->GetBooleanValue(item))

// do something

Text-based check boxes and radio buttons can be created by supplying a bounds rectangle and the text to
be displayed. To define these text-based items in the dialog resource, use the values in the
platform-specific dialog-items chart.

Picture radio buttons are created by supplying a bounds rect and three picture resource IDs. To define a
picture push button in the dialog resource, use the values in the platform dialog-items chart. Since only
the default picture can be defined in the resource on Windows, the disabled and selected pictures should
be defined at runtime when the dialog is initialized.

kADMTextEditType, kADMTextEditReadOnlyType, kADMTextStaticType,
kADMTextEditMultilineType, kADMTextEditMultilineReadOnlyType, and
kADMTextEditScrollingPopUpType, kADMTextMultilineType

ADM provides several text items. Text-edit items let the user enter information. Static text items provide
information to the user, often as labels for other dialog items. In addition to the two types of text, ADM
provides several styles, including numeric items and items with multiple lines. ADM text types and styles
are shown below.

An ADM text-edit scrolling pop-up is shown below.

The style of a text field can be set in the dialog resource or at runtime using a constant like the following
(see ADMItem.h):

kADMTextEditType, left justified

kADMTextEditType,

kADMStaticTextType

multi-line style, right justified

Enabled Active Disabled

CHAPTER 1: ADM Overview ADM object specifics 26

kADMSingleLineTextEditStyle
kADMNumericTextEditStyle

Numeric text fields can have properties that further define the number they can accept, like valid range.
See “ADM item numeric properties” on page 32. Multi-line text-edit items display and scroll multiple lines
of text, allowing for carriage returns and automatic wrapping as needed.

All text-edit items have a selection range and a maximum length that can be read or set using functions in
the ADM Item suite. All text items can have justification set in the dialog resource or at runtime using one
of these constants:

kADMLeftJustify
kADMCenterJustify
kADMRightJustify

Numeric text items can have a units value automatically appended to the text. A text field can have one of
the following units:

kADMNoUnits
kADMPointUnits
kADMInchUnits
kADMMillimeterUnits
kADMCentimeterUnits
kADMPicaUnits
kADMPercentUnits
kADMDegreeUnits

No text is appended to a numeric text item if its units property is kADMNoUnits. The units to use can be set
at runtime using ADM text-item functions.

Static text items often are used as labels for items. A standard behavior for static text labels for text-edit
items is for the text item to become active when the label is selected. ADM automatically provides this
behavior if the static text label ID immediately precedes or follows the edit-text ID.

The text of any ADM item can be set and retrieved using two text-item functions:

char text[65];
item = sADMDialog->GetItem(parentDialog, kSomeTextItem);
sADMItem->GetText(item, text, 65);
updateText(text);
sADMItem->SetText(item, text);

Text items are defined by their bounds rectangle, style, justification, and some text. Their bounds and
justification can be set in the dialog resource, as indicated by the dialog-item resource tables. Other
properties of a text item are specified at runtime when the dialog is initialized.

NOTE: The read-only versions of text edit items do not have a platform-specific component.

kADMPopupListType, kADMPopupMenuType, kADMScrollingPopupListType,
kADMTextEditPopupType, kADMPopupControlType,
kADMPopupControlButtonType, kADMPopupSpinEditControlType, and
kADMSpinEditScrollingPopupType

Pop-up items are a common user-interface item in dialogs, and ADM provides several variations on the
basic pop-up. Pop-up menus and lists allow the user to choose one item from a list of options that

CHAPTER 1: ADM Overview ADM object specifics 27

becomes visible when the item is selected. Generally, pop-up menus and lists are text only, with a standard
platform menu resource defining the list of options for the user.

Pop-up list items display their current setting to the user. Pop-up menu items appear when the item is
selected and you would likely act immediately on the user’s selection or display it elsewhere. An ADM
text-edit pop-up menu is a combination of a text-edit field as described above and a pop-up menu. The
user’s pop-up menu selection is placed in the text edit field. ADM pop-up items are illustrated below.

An ADM pop-up menu can be one of 10 styles, 2 of which are shown below. The style variant determines
where the pop-up menu appears. ADM uses this item to create certain item types (e.g., the window menu
discussed below and text-edit pop-up items). While you can use pop-up menus, pop-up lists are more
common.

kADMRightPopupMenuStyle
kADMBottomPopupMenuStyle

A common use for pop-up menus within ADM is to place a menu to the right of tabs in a floating tabbed
window. It is made visible when entries are added to it. Because the origin for tabbed dialogs is beneath
the tab and not beneath the window title bar, menu items of this sort have a bounds rectangle with a
negative top and 0 for its bottom. You do not need to create this item; ADM creates it automatically for
tab-style windows. Its item ID is kADMMenuItemID.

A pop-up text-edit item can be one of the four styles listed below:

kADMSingleLineEditPopupStyle
kADMExclusiveEditPopupStyle
kADMNumericEditPopupStyle
kADMDummyTextEditPopupStyle

If you want to manipulate individual items in a menu, the ADM menu item is treated as an ADM List object.
The list reference for a menu item is obtained using the sADMItem->GetList function. There is a suite of
functions for performing list operations—the ADM List suite. The items in a menu actually are ADM
objects called ADM entries. ADM Entry objects can be enabled or active, like any other ADM object. They
also can be checked to indicate the current menu value. ADM List objects and ADM Entry objects are
discussed more later.

The value of a pop-up item (the position of its selected item) can be retrieved using the ADM List and ADM
Entry suites. You get the active entry in the list, then get the index of the entry. See below.

kADMPopupListType

kADMPopupMenuType

kADMTextEditPopupType

Enabled Disabled Popped

CHAPTER 1: ADM Overview ADM object specifics 28

ADMItemRef item = sADMDialog->GetItem(parentDialog, kSomeMenuItem);
ADMListRef list = sADMItem->GetList(item);
ADMEntryRef entry = sADMList->GetActiveEntry(list);
ASInt32 selection = sADMEntry->GetIndex(entry);

To get the name, use the sADMEntry->GetText function instead.

Menu items are defined by their bounds rectangle, a menu resource ID, and a style. The bounds rectangle
and style of pop-up items are defined in a resource, as indicated in the item-resource tables. The menu
resource ID of the pop-up menu’s list is specified at runtime when the dialog is initialized. In both Mac OS
and Windows, the menu resource type is 'MENU'.

kADMSpinEditType and kADMSpinEditPopupType

A variation of a text-edit item is a spin-edit item. Spin-edit items provide arrows to increase and decrease
their value without typing. A further variation is a spin-edit pop-up item, which adds a pop-up menu to
the spin-edit item. Spin-edit items have many of the same properties as text-edit items, like justification.
They are inherently numeric items and have those properties as well. ADM spin-edit items are illustrated
below.

Spin-edit items can have horizontal or vertical arrows, as specified by their style:

kADMVerticalSpinEditStyle
kADMHorizontalSpinEditStyle

Spin-edit pop-up items also may have a vertical or horizontal style:

kADMVerticalSpinEditPopupStyle
kADMHorizontalSpinEditPopupStyle

The rate at which a spin-edit control changes the number in its edit field is controlled by its
small-increment value.

The value of a spin-edit item can be retrieved in one of two ways: you can get its value or its text. To get the
text, use sADMDialog->GetText. To get the value, use the appropriate “get value” function on the spin
item. For instance, to get an integer value, you would use the following:

ASInt32 selection;
item = sADMDialog->GetItem(parentDialog, kSomeMenuItem);
selection = sADMItem->GetIntValue(item);

A spin-edit item is defined by a bounds rectangle and a style, which can be defined in the dialog-item
resource. When the dialog is initialized, the other properties of the item, like its value and justification, can
be defined.

kADMSpinEditType, vertical style

kADMSpinEditType, horizontal style

kADMSpinEditPopupType

Enabled Active Disabled

CHAPTER 1: ADM Overview ADM object specifics 29

kADMScrollbarType and kADMSliderType

Scrollbars and sliders allow the user to select from a range of values with a graphic interface. The relative
position of the current value within the range is indicated by the position of the item’s “thumb”— the
triangle on the slider and the rectangle within the scrollbar. The item’s value can be changed by dragging
the thumb. A scrollbar’s value also can be changed, using the arrows at its ends. Scrollbars and sliders are
illustrated below.

The rate at which a scrollbar item changes its value is controlled by its large- and small-increment values.
The small increment is used when the arrows are clicked; the large increment, when the user clicks inside
the scrollbar. The value of a slider or scrollbar item can be retrieved using the appropriate “get value”
function on the item. See “ADM item numeric properties” on page 32.

Scrollbar and slider items are defined by their bounds rectangle and a range. The bounds rectangle is
specified in the dialog-item resource. The other properties, including range and large and small
increments, are defined at runtime when the dialog is initialized.

kADMListBoxType and kADMHierarchyListBoxType

List boxes display a list of options and allow the user to select one or more of them. Their current selection
is indicated to the user by inverting the items. If more items are in the list than can be displayed, a scroll bar
allows the user to navigate the list. While lists often are text only, they may include graphical information
like a color preview or icon. The display of pictures is handled automatically. More complex lists are created
by overriding the list drawing routine. A list item with New and Delete buttons is shown below.

ADM provides several variations on the basic text-item list. A list box can allow only one item to be
selected or allow multiple items to be selected. A list also can be created with or without dividing lines
between objects. These options are expressed using flags that are ORed together:

/* List box styles */
#define kADMMultiSelectListBoxStyle (1L<<0)
#define kADMDividedListBoxStyle (1L<<2)
#define kADMEntryTextEditableListBoxStyle (1L<<3)

Some combinations of these ADMListBox style options are as follows:

kADMScrollbarType

kADMSliderType

Enabled Disabled

CHAPTER 1: ADM Overview ADM object specifics 30

#define kADMSingleSelectListBoxStyle 0
#define kADMMultiSelectListBoxStyle (kADMMultiSelectListBoxStyle)
#define kADMMultiSelectTileListBoxStyle

(kADMMultiSelectListBoxStyle|kADMTileListBoxStyle)
#define kADMSingleSelectDividedListBoxStyle (kADMDividedListBoxStyle)
#define kADMMultiSelectDividedListBoxStyle

(kADMMultiSelectListBoxStyle|kADMDividedListBoxStyle)
#define kADMMultiSelectTileDividedListBoxStyle

(kADMMultiSelectListBoxStyle|kADMTileListBoxStyle|kADMDividedListBoxStyle)

The list item actually is a container object for a list and its entries. Each item in a list is an ADM object called
an ADM Entry object. ADM Entry objects can be enabled or selected, like any other ADM object. They can
have special draw functions for custom displays. ADM entry items also are used by ADM pop-up items.
Also available is a suite of functions for performing list operations like controlling a list’s appearance and
indexing through its entries.

How you retrieve the list selection depends on the list style. In general, you get the selected entry
reference or references, then use the reference to obtain specific information. The following code shows
how you might get the selection values from a multi-selection list.

ASInt32 selectedCount = sADMList->NumberOfSelectedEntries(theList);
for (i = 0; i < selectedCount; i++) {

ADMEntryRef theEntry = sADMList->IndexSelectedEntry(theList, i);
// do something to the entry
ASInt32 index = sADMEntry->GetIndex(theEntry);
...

}

List-box items are defined by their bounds rectangle and a style. The bounds rectangle and style of pop-up
items are defined in a resource, as indicated in the item-resource tables. Lists can be filled automatically by
assigning a menu ID at runtime. Other initialization also is done at runtime when the dialog is initialized.

kADMProgressBarType

An ADM progress bar indicates a lengthy operation is occurring. This item uses a CNTL resource in Mac OS
and can be created programmatically in Windows. A progress bar is shown below.

kADMChasingArrowsType

ADM “chasing arrows” indicate through a simple animation that a background process is in progress. This
is available only in Mac OS and is shown below.

CHAPTER 1: ADM Overview ADM object specifics 31

kADMDialType

An ADM dial is used for calibration. To initialize, you must set its initial value, maximum value, and
minimum value. A dial is shown below.

kADMItemGroupType

An ADM item group is a collection of individual items. Item groups make it easier to write notification and
tracker callbacks, since multiple items are dealt with as though they are one. Item groups have no physical
representation; they are simply an organizational grouping, hence are not defined by any specific platform
resource. All items respond to single function calls to the group. See “ADM item groups” on page 32.

kADMUserType

ADM User and ADM Custom items are used indirectly together to extend ADM with completely new items.
A plug-in that provides a custom ADM item uses an item of type kADMUserType as a foundation and
customizes its behavior. Custom items are discussed further in “Adding custom item types” on page 46.

kADMResizeType

This item is created automatically by ADM when a resizable dialog is created and displays the platform’s
window resize item. Notification of a window being resized occurs if a notifier handler function is assigned
to this item. This function handles resizing or repositioning items in the dialog. For more information, see
“Resizable windows” on page 46.

Composite items

Some ADM items actually are two or more ADM items composited together. These are list items, spin-edit
items, spin-edit pop-up items, and text-edit pop-up items. The normal ADM item reference to such an item
is to the composite object. The components, or children, of the item can be accessed and then used like
any other ADM item; for instance, setting a custom-notifier callback function.

The children of a composite item are accessed using the sADMItem->GetChildItem function, which is
passed a ChildID argument. The ChildIDs for each composite item are defined in the ADMItem.h file. For
instance, a list item has these children:

CHAPTER 1: ADM Overview ADM object specifics 32

typedef enum
{

kADMListBoxScrollbarChildID = 1,
kADMListBoxListChildID = 2,
kADMListBoxTextEditBoxChildID = 3,
kADMListBoxPopupChildID = 4,
kADMListBoxDummyChildID = 0xFFFFFFFF

}
ADMListBoxChildID;

ADM item groups

If a composite item is not available, an ADM item group allows you to collect together several items that
need to respond to calls as a group. For example, you might have five items that need to be enabled or
disabled simultaneously. Once those items belong to a group, you need to enable/disable just the group.

This is not true of geometrical containment. Item groups really do not have any physical manifestation;
they are simply a way of logically grouping items.

ADM item numeric properties

ADM items often have a numeric value. Four properties can be used to control this value, providing
automatic bounds checking or feedback:

type — The numeric type refers to how the value is set and retrieved. The valid types are boolean,
integer, fixed, and float. Not all item types have these numeric types; for instance, a check box has only
a boolean value, while a slider can have any of them. Values are accessed using get and set functions
for the type of data desired; for instance, sADMItem->GetFixedValue or
sADMItem->GetMinIntValue. The data type of an item is typecast by the function used to access it.
For instance, if the boolean value of a check box is retrieved with sADMItem->GetFloatValue, it is
returned as 0.0 or 1.0.

precision — The precision property of an item refers to how many digits follow the decimal point.
Values of an item are automatically limited to the defined precision.

range — All items except boolean items can have an assigned range that sets upper and lower limits
on the values that can be assigned to it. ADM automatically confines the value to this specified range
in one of two ways. For text-edit and spin-edit items, a note alert appears, informing the user of the
valid range if an illegal value is entered. The value is then floored or ceilinged to bring it into range. For
sliders and scrollbars, the range is used to calibrate the dialog item. The minimum range value
corresponds to the item value when the thumb is in the leftmost position; the maximum when the
thumb is in the rightmost position. The range values are accessed using get and set functions for the
type of data desired; for instance, sADMItem->GetMinIntValue or sADMItem->SetMaxFloatValue.

increment — You can set the rates at which scrollbar and spinner item values change by setting their
increment properties. There are small and large increments. The small value is added to or subtracted
from the value when an arrow component of the item is clicked once. The large increment is used only
by scrollbar items and is added to or subtracted from the item value when the user clicks above or
below the thumb inside the scrollbar. The increment values are accessed using get and set functions
for the size of increment; for instance, sADMItem->SetSmallIncrement.

NOTE: Increments are floats and always are in the specified units for an item.

CHAPTER 1: ADM Overview ADM object specifics 33

For information on text-to-float and float-to-text conversions, see “FloatToText and TextToFloat functions”
on page 76.

ADM List and ADM Entry objects

ADM items based on a list of choices include list boxes, pop-up lists, pop-up menus, spin-edit popups, and
text-edit popups. All are accessed in the same way, as lists of entries. There are two suites of functions used
to access the list and entry objects, the ADM List suite and ADM Entry suite. The ADM List suite basically
lets you access ADM entries. With it, you can add and remove entries, iterate through the existing ones,
and control the list’s entries’ height and width. Once you have used the ADM List suite to access an
individual entry, you can use the ADM Entry suite to modify its properties. ADM entries are similar to other
ADM user-interface objects, having properties like ID and text and states like enabled and active.

Entries do not have these standard properties: plug-in, type, style, and visible state. They have these
additional properties:

The index is the position of the entry in the list.

The selected state indicates the user selected the item (others may be selected in the case of a
multi-select list).

The checked state indicates a check mark appears to the left of the entry.

The separator state indicates the item is a non-selectable item used to break a list into groups of
entries.

If an entry has an assigned picture, it is automatically drawn to the left of the text. In addition, an entry’s
event-handler routines cannot be overridden. Special event handling is done by the parent list.

ADM list and entry objects are illustrated below.

To get the list object for an item, use sADMItem->GetList. Once this is done you can use the ADM List and
ADM Entry suites’ functions to modify it.

An item’s list can be initialized by repeatedly creating entries with sADMList->InsertEntry and then
using sADMEntry->SetText to set the new entry’s text:

for (index = 0; index < kNumberEntries; index++) {
char menuText[255];
ADMEntryRef entry = sADMList->InsertEntry(theItemList, index);
sBasic->GetIndexString(thePlugin, 16000, index, menuText, 255);
sADMEntry->SetText(entry, menuText);

}

Some ADM entry properties:

ADM List

Checked == true
Enabled == false
Text “Gradients” at Index == 2
Separator == true
Entry with PictureID

ADM Entries

CHAPTER 1: ADM Overview ADM object specifics 34

or more quickly by assigning it a menu resource ID:

sADMList->SetMenuID(theItemsList, gPlugInRef, 16000, “Choices”);

In this case, the list items are set corresponding to the items already created in the resource.

Iterating through a list’s items is done in a similar fashion to the example given under the kADMListItem
description.

NOTE: List indices are 0-based.

ADM Hierarchy List and ADM List Entry objects

The ADM Hierarchy List suite allows you to access ADM Hierarchy List objects and ADM List Entry objects.
Since an ADM Hierarchy List object is an extended property of a standard ADM Item object, this suite lacks
many of the functions common to ADM objects; however, you can access the hierarchy list’s ADM item and
do common operations on it. Using functions in this suite, you can initialize the hierarchy list, and you can
create, destroy, customize, and iterate through the ADM list entries of a hierarchy list. The Hierarchy List
suite is used in conjunction with the ADM List Entry suite to further access list-related information.

NOTE: The relationship between ADM Hierarchy List objects and ADM List Entry objects is the same as that
between ADM List objects and ADM Entry objects; that is, list entries are the elements of a hierarchy list.
List entries themselves may be hierarchy lists with list entry children of their own.

ADM hierarchy list and list-entry objects are illustrated below.

NOTE: List indices are 0-based.

CHAPTER 1: ADM Overview ADM object specifics 35

Windows and Mac OS ADM item-resource lists

The tables in “Windows ADM items” on page 36 and “Mac OS ADM items” on page 39 list the resource
information needed to define ADM items in their native resource formats.

Windows ADM items are defined by the dialog-item window class and style which map to an ADM item
and style. The item values are set at runtime using the ADM Item suite functions.

NOTE: In the resource file, set the item name to the picture ID to use.

In Mac OS, ADM items are created using a dialog-item list resource (DITL). Simple text-based items like text
push buttons and text-edit, can be made using standard Mac OS dialog items. Others are indicated using
control items (CNTL) with the appropriate CDEF and variation (or ProcID, which CDEF * 16 + variation). The
variation and other values can also be set at runtime.

NOTES: (1) In Windows plug-ins, these values cannot be set in the resource but must be set at runtime.
Because of this, you may want to set them at runtime on both platforms.
(2) On Windows, this can be set in a resource only for single-line text-edit items.

CHAPTER 1: ADM Overview ADM object specifics 36

Windows ADM items

ADM item type ADM style Windows class name Window style

ADM Custom — custom item name ““

ADM Dial — “ADM Dial Type” 0

ADM Frame kADMSunkenFrameStyle “Button” BS_GROUPBOX

kADMBlackFrameStyle “Static” SS_BLACKRECT

kADMGrayFrameStyle “Static” SS_GRAYRECT

kADMRaisedFrameStyle “Static” SS_WHITERECT

kADMBlackFrameStyle “Static” SS_BLACKFRAME

kADMGrayFrameStyle “Static” SS_GRAYFRAME

kADMRaisedFrameStyle “Static” SS_WHITEFRAME

kADMSunkenFrameStyle “Static” SS_ETCHEDHORZ

kADMSunkenFrameStyle “Static” SS_ETCHEDVERT

kADMSunkenFrameStyle “Static” SS_ETCHEDFRAME

ADMFrameStyle “ADM Frame Type” —

ADM List Box — “Listbox” —

ADMListBoxStyle “ADM List Box Type” —

ADMListBoxStyle “ADM Hierarchy List Box Type” —

ADM Password
Text Edit

— “ADM Text Edit Type” ES_PASSWORD

ADM Picture
Push Button (0)

item name ==
MAKEINTRESOURCE(pictureID)

“ADM Picture Push Button Type” 0

ADM Picture
Radio Button (0)

item name ==
MAKEINTRESOURCE(pictureID)

“ADM Picture Radio Button Type” 0

ADM Picture
Static (0)

item name ==
MAKEINTRESOURCE(pictureID)

“Static” SS_BITMAP

item name ==
MAKEINTRESOURCE(pictureID)

“Static” SS_ICON

item name ==
MAKEINTRESOURCE(pictureID)

“Static” SS_ENHMETAFILE

item name ==
MAKEINTRESOURCE(pictureID)

“ADM Picture Static Type” 0

ADM Popup List — “Combobox” CBS_DROPDOWNLIST

— “ADM Popup List Type” 0

CHAPTER 1: ADM Overview ADM object specifics 37

ADM Popup
Control

— “ADM Popup Control Type” 0

ADM Popup
Control Button

— “ADM Popup Control Button Type” 0

ADM Popup
Spin Edit Control

— “ADM Popup Spin Edit Control
Type”

0

ADM Popup
Menu

ADMPopupMenuStyle “ADM Popup Menu Type” 0

ADM Resize — “ADM Resize Type” 0

ADM Scrollbar — “Scrollbar” 0

— “ADM Scrollbar Type” 0

ADM Scrolling
Popup List

— “Combobox” CBS_DROPDOWNLIST|
WS_VSCROLL

— “ADM Scrolling Popup List Type” 0

ADM Slider ADMSliderStyle “MSCtls_Trackbar32” 0

— “ADM Slider Type” 0

ADM Spin Edit ADMSpinEditStyle “ADM Spin Edit Type” —

ADM Spin Edit
Popup

kADMSingleLineEditPopupStyle “Combobox” CBS_DROPDOWN

ADMSpinEditPopupStyle “ADM Spin Edit Popup Type” —

ADM Spin Edit
Scrolling Popup

kADMSingleLineEditPopupStyle “Combobox” CBS_DROPDOWN|
WS_VSCROLL

ADMSpinEditPopupStyle “ADM Spin Edit Scrolling Popup
Type”

—

ADM Text Check
Box

— “Button” BS_CHECKBOX

— “Button” BS_AUTOCHECKBOX

— “Button” BS_3STATE

— “Button” BS_AUTO3STATE

— “ADM Text Check Box Type” 0

ADM item type ADM style Windows class name Window style

CHAPTER 1: ADM Overview ADM object specifics 38

ADM Text Edit kADMLeftJustify “Edit” ES_LEFT

kADMCenterJustify “Edit” ES_CENTER

kADMRightJustify “Edit” ES_RIGHT

kADMNumericTextEditStyle

(Auto sets if you call SetXValue)

“Edit” ES_NUMBER

ADMTextEditStyle “ADM Text Edit Type” —

kADMPasswordTextEditStyle “Edit” ES_PASSWORD

ADM Text Edit
Multi Line

kADMNumericTextEditStyle

(Auto sets if you call SetXValue)

“Edit” ES_MULTILINE

— “ADM Text Edit Multi Line Type” 0

ADM Text Edit
Popup

kADMSingleLineEditPopupStyle “Combobox” CBS_DROPDOWN

ADMTextEditPopupStyle “ADM Text Edit Popup Type”

ADM Text Edit
Scrolling Popup

kADMSingleLineEditPopupStyle “Combobox” CBS_DROPDOWN|
WS_VSCROLL

ADMTextEditPopupStyle “ADM Text Edit Scrolling Popup
Type”

—

ADM Text Push
Button

Default “Button” BS_DEFPUSHBUTTON

— “Button” BS_PUSHBUTTON

— “Button” BS_USERBUTTON

— “Button” BS_OWNERDRAW

— “ADM Text Push Button Type” 0

ADM Text Radio
Button

ADMRadioButtonStyle “Button” BS_RADIOBUTTON

— “Button” BS_AUTORADIOBUTT
ON

— “ADM Text Radio Button Type” 0

ADM Text Static kADMLeftJustify “Static” SS_LEFT

kADMCenterJustify “Static” SS_CENTER

kADMRightJustify “Static” SS_RIGHT

kADMLeftJustify “Static” SS_LEFTNOWORDWR
AP

kADMLeftJustify “Static” SS_SIMPLE

— “ADM Text Static Type” 0

ADM item type ADM style Windows class name Window style

CHAPTER 1: ADM Overview ADM object specifics 39

Mac OS ADM items

ADM Text Static
Multi Line

— “Edit” ES_READONLY

— “ADM Text Static Multi Line Type” 0

ADM User — “ADM User Type” 0

ADM item type ADM style Windows class name Window style

ADMItem
type

Mac dialog
item

Mac CNTL resource settings Additional fields

CDEF
res ID Variation Value Min Max Other

ADM
Chasing
Arrows

Control Item 7 0

ADM
Custom

Control Item 1090 CNTL Title = “Name
Registered Custom
Item Type”

ADM Dial Control Item 1045 0 IntValue
(1)

IntMin (1) IntMax (1)

ADM Frame User Item,
Control Item

1000 ADMFrameStyle Control title is
the group
name (1)

ADM
Hierarchical
List

Control Item 1011 0

ADM List
Box

Control Item 1010 ADMListBoxStyle MenuID=
MenuResID (1)

ADM
Picture
Check Box

Control Item 1023 ADMPictureButton
Style

PictureID Picture
SelectedID (1)

Picture
DisabledID
(1)

ADM
Picture Push
Button

Control Item 1020 ADMPictureButton
Style

PictureID Picture
SelectedID (1)

Picture
DisabledID
(1)

ADM
Picture
Radio
Button

Control Item 1021 ADMPictureButton
Style

PictureID Picture
SelectedID (1)

Picture
DisabledID
(1)

ADM
Picture
Static

Icon Item,
Picture Item,
Control Item

1022 0 PictureID Picture
SelectedID (1)

Picture
DisabledID
(1)

CHAPTER 1: ADM Overview ADM object specifics 40

ADM Popup
Control

Control Item 1055 0 ADM
Justify (1)

IntValue
(1)

IntMin (1) IntMax (1)

ADM Popup
Control
Button

Control Item 1056 0 ADM
Justify (1)

IntValue
(1)

IntMin (1) IntMax (1)

ADM Popup
List

Control Item 63 0 MenuID=
MenuResID (1)

ADM Popup
Menu

Control Item 1030 ADMPopupMenu
Style

MenuID=
MenuResID (1)

ADM Popup
Spin Edit
Control

Control Item 1057 0 ADM
Justify (1)

IntValue
(1)

IntMin (1) IntMax (1)

ADM
Progress Bar

Control Item 5 0 IntValue
(1)

IntMin (1) IntMax (1)

ADM Resize Control Item 1040 0

ADM
Scrollbar

Control Item 1 0 IntValue
(1)

IntMin (1) IntMax (1)

ADM
Scrolling
Popup List

Control Item 1031 0

ADM Slider Control Item 1050 0 IntValue
(1)

IntMin (1) IntMax (1)

ADM Spin
Edit

Control Item 1060 ADMSpinEditStyle ADM
Justify (1)

ADM Spin
Edit Popup

Control Item 1061 ADMSpinEditPopup
Style

ADM
Justify (1)

MenuID=
MenuResID (1)

ADM Spin
Edit
Scrolling
Popup

Control Item 1062 ADMSpinEditPopup
Style

ADM
Justify (1)

MenuID=
MenuResID (1)

ADM
Tabbed
Menu

Deprecated
—do not use

— — — — — —

ADMItem
type

Mac dialog
item

Mac CNTL resource settings Additional fields

CDEF
res ID Variation Value Min Max Other

CHAPTER 1: ADM Overview ADM object specifics 41

ADM Text
Edit

Text-edit
Item,
Control Item

1070 ADMTextEditStyle ADM
Justify (2)

ADM Text
Check Box

Check Box
Item

Control Item

0 1

ADM Text
Edit Multi
Line

Control Item 1073 0 ADM
Justify (1)

ADM Text
Edit Popup

Control Item 1071 ADMTextEditPopup
Style

ADM
Justify (1)

MenuID=
Menu
ResID (1)

ADM Text
Edit
Scrolling
Popup

Control Item 1075 ADMTextEditPopup
Style

ADM
Justify (1)

MenuID=
Menu
ResID (1)

ADM Text
Push Button

Push Button
Item,
Control Item

0 0

Control Item 0 4=Default itemID = 1 is
made default
automatically

ADM Text
Radio
Button

Radio Button
Item,
Control Item

0 2

ADM Text
Static

Static Text
Item,
Control Item

1072 0 ADM
Justify (1)

ADM Text
Static Multi
Line

Control Item 1074 0 ADM
Justify (1)

ADM User Control Item 1080 0

ADM
Unicode
Text Edit

Control item 1100 0

ADM
Password
Text Edit

Control item 1200 0

ADMItem
type

Mac dialog
item

Mac CNTL resource settings Additional fields

CDEF
res ID Variation Value Min Max Other

CHAPTER 1: ADM Overview Using event callbacks 42

Using event callbacks
In general, each ADM object has a default function for each event. If you need only the normal behavior of
an item, you can ignore its events and handler functions and rely on the defaults.

If you want a custom behavior for an item, its standard handler functions can be replaced by custom
handler functions. The new handler function will likely call the default function and supplement its
behavior. Custom handlers for draw, track, and notify events are called Drawers, Trackers, and Notifiers,
respectively. Custom init and destroy functions are implemented using standard C and API functions. ADM
Tracker, ADM Drawer, and ADM Notifier functions also can use their related suites. Events are received by
all objects in the object-container hierarchy. For instance, if the object is an ADM button item, the ADM
item receives the event followed by its containing ADM dialog.

Replacement of a dialog or item event handler function is done using definitions and functions in the ADM
suite for the object type. ADM Entry and ADM List Entry objects can have custom handler functions, but
these are set by their parent list. ADM List objects are handled by their parent dialog item.

If the handler can be changed, there is a SetEventProc function for the handler in the object suite. If the
default handler function can be called, there is a DefaultEvent function in the suite. For instance, to
override the default drawing behavior of an ADM Item object, use these definitions and functions:

typedef void ASAPI (*ADMItemDrawProc)(ADMItemRef inItem,
ADMDrawerRef inDrawer);

void ASAPI (*SetDrawProc)(ADMItemRef inItem, ADMItemDrawProc inDrawProc);
void ASAPI (*DefaultDraw)(ADMItemRef inItem, ADMDrawerRef inDrawer);

The new handler function must follow the correct function prototype, which is defined to have enough
information to handle the event. For instance, your custom draw-item function would receive the item to
draw and a drawer reference used to draw the item.

ADM objects and events that can have custom handlers are listed in the following table.

Event/customization ADM dialog ADM item ADM entry

Init
Customizable
Can Call Default

Y
Y

Y
Y

Y
N (see note below table)

Draw
Customizable
Can Call Default

Y
Y

Y
Y

Y
Y

Track
Customizable
Can Call Default

Y
Y

Y
Y

Y
Y

Notify
Customizable
Can Call Default

Y
Y

Y
Y

Y
Y

Destroy
Customizable
Can Call Default

Y
Y

Y
Y

Y
N (see note below table)

CHAPTER 1: ADM Overview Using event callbacks 43

NOTE: Custom ADM entry functions are set by the parent list.

NOTE: ADM entry item create and destroy functions are called from the parent list object, unlike the draw,
track and notify functions, which can be called by the item handler.

Init functions

ADM initialization functions for dialogs and items are passed in when the sADMDialog->Create function
is called. ADM lists do not have a unique init function but are treated as ADM items. The only ADM object
to which you assign a new init routine is an ADM entry, and this actually is assigned to the parent ADM List
object. Each time an entry is added to the list, the initialization function is called.

The general format of init functions is given below. When the init function is called for an object, a
reference to the new object is passed to it:

typedef ADMErr ADMAPI (*ADMObjectInitProc)(ADMObjectRef inObject);

The example below shows two init functions, for a dialog and an entry. The dialog init function actually
sets the entry init function and item-handler functions:

ADMErr myDialogInit(ADMDialogRef dialog) {
ADMItemRef initItem;
ADMListRef myList;

initItem = sADMDialog->GetItem(myDialog, kOKButton);
sADMItem->SetNotifyProc(initItem, myOKHandler);

initItem = sADMDialog->GetItem(myDialog, kList);
myList = sADMItem->GetList(initItem);
sADMList->SetInitProc(myList, myListEntryInit);

initItem = sADMDialog->GetItem(myDialog, kCustomItem);
sADMItem->SetDrawProc(initItem, mySquareDrawHandler);
sADMItem->SetTrackProc(initItem, mySquareTrackHandler);

}

ASErr myListEntryInit(ADMEntryRef entry) {
// init stuff such as setting a color or a pointer

}

The dialog init function is passed to the dialog when it is created with the sADMDialog->Create or
sADMDialog->Modal functions:

sADMList->SetMenuID(theItemsList, gPlugInRef, 16000, “Choices”);

The init function is called whenever an entry is created in the list to which the init function was assigned.
This function call in this example causes the myListEntryInit function to be called so the entry can be
initialized:

ADMEntryRef someEntry = sADMList->InsertEntry(myList, 0);

Drawer functions

ADM dialogs, ADM items, and ADM entries can have custom draw handlers, which draw an object on the
screen. Whenever an object needs to be updated, its ADM drawer is called. ADM drawers may enhance the
appearance of a standard object or perform all the drawing of an object. The draw function for an entry is
set for its parent list and affects all the list’s entries.

CHAPTER 1: ADM Overview Using event callbacks 44

An ADM drawer function is defined as follows:

typedef void ADMAPI (*ADMObjectDrawProc)(ADMObjectRef inObject,
ADMDrawerRef inDrawer);

The object reference is for the object to be drawn. The ADMDrawerRef is similar to a platform window
reference or port and is where drawing commands are performed.

Drawing is done using the ADM Drawer suite, which contains a set of platform-independent graphics
functions like sADMDrawer->SetADMColor and sADMDrawer->DrawLine. The ADMDrawerRef passed to the
draw function is passed to each of the graphics functions.

This example of an ADM drawer calls the default draw function for the item, then supplements it by
drawing a shadow rectangle around it:

void mySquareDrawHandler(ADMItemRef item, ADMDrawerRef drawer) {
ADMRect boundsRect;
sADMItem->DefaultDraw(item, drawer);

sADMDrawer->GetBoundsRect(drawer, &boundsRect);
boundsRect.top -= 2;
boundsRect.bottom += 2;
boundsRect.left -= 2;
boundsRect.right += 2;

sADMDrawer->SetADMColor(drawer, kADMShadowColor)
sADMDrawer->DrawRect(drawer, &boundsRect)

}

This drawer example is assigned to an item in the code example in “Init functions” on page 43.

Notifier functions

Notifiers probably are the event you will most often override. A notifier essentially is a notification that a
high-level system event has occurred. Notifier events occur when a user interacts with an ADM object. Two
common notifications are when a dialog is resized or an OK button is clicked. The latter often is how
settings are extracted from an ADM modal dialog before the dialog is disposed of. ADM notifiers are listed
and described in the table in “Notifier types” on page 83.

An ADM notifier function receives a reference to the object being notified and a notifier reference. The
notifier reference is to the event that triggered it. The signature for the callback looks like this:

typedef void ADMAPI (*ADMObjectNotifyProc)(ADMObjectRef inObject,
ADMNotifierRef inNotifier);

It would be used something like this:

void myOKHandler(ADMItemRef item, ADMNotifierRef notifier) {
sADMItem->DefaultNotify(item, notifier);
getDialogValues();

}

The sADMItem->DefaultNotify function call is made to provide the item’s standard behavior. The dialog
values would be extracted with other ADM Item suite functions. The above notify handler is assigned to a
button in the code example in “Init functions” on page 43.

Dialog items often interact with each other; for instance, a button might restore the default values of other
items. Here is an example of a notifier to accomplish this:

CHAPTER 1: ADM Overview Using event callbacks 45

void mySetDefaultsButtonHandler(ADMItemRef item, ADMNotifierRef notifier) {
ADMDialogRef thisDialog;
ADMItemRef mySlider;

sADMItem->DefaultNotify(item, notifier);

thisDialog = sADMItem->GetDialog(item);
mySlider = sADMDialog->GetItem(thisDialog, kMySliderItem);

sADMItem->SetIntValue(mySlider, kDefaultSliderValue);
}

Notice that the handler function for the item does not need to use global references to the item with
which it interacts. Instead, it gets its dialog, then uses this reference to obtain the other item.

The notifier reference passed to a notifier function can be used with the ADM Notifier suite to get more
information about the reason for the notifier. For instance, several types of actions trigger a notify event:

#define kADMUserChangedNotifier "ADM User Changed Notifier"
#define kADMBoundsChangedNotifier "ADM Bounds Changed Notifier"

The changed notifier type is the most common reason a notifier is called; it simply means the user
changed something in the dialog. The bounds changed notifier is received by an object when it is resized.
To determine which event a dialog notifier has received, use the sADMNotifier->IsNotifierType
function:

ASErr myResizeItemNotifyHandler(ADMItemRef item,
ADMNotifierRef notifier)

{
sADMItem->DefaultNotify(item, notifier);

if (sADMNotifier->IsNotifierType(notifier, kADMBoundsChangedNotifier))
{

ADMDialogRef dialog = sADMItem->GetDialog(item);
handleWindowResize(dialog);

}
}

Tracker functions

A tracker function is used by an ADM object to monitor low-level user events, like mouse movement and
keystrokes, while it is the current object. In most cases, a notifier is sufficient, but when this is not enough,
ADM dialogs, items, and entries can have trackers. List-entry trackers are set by the parent list and affect all
its entries.

An ADM event tracking function is defined as follows:

typedef ADMBoolean ADMAPI (*ADMObjectTrackProc)(ADMObjectRef inObject,
ADMTrackerRef inTracker);

The ADMTrackerRef basically is an identifier for the current event. The object reference is for the object
receiving the event. If the track function returns true, its item receives a notify event when the mouse is
released. For trackers on text items and key events, returning true means the key was handled. If it returns
false, a notify event is not received.

Information about the event is obtained using the ADM Tracker suite functions. The ADMTrackerRef
argument is passed to a function in the suite, and event information is returned.

CHAPTER 1: ADM Overview Adding custom item types 46

This example of an ADM tracker function checks for and handles a shift click. A normal click is handled by
the button’s notifier function:

ADMBoolean mySquareTrackHandler(ADMItemRef item, ADMTrackerRef tracker)
{

ADMBoolean shiftKeyDown, notify = true;
ADMAction thisAction;

shiftKeyDown = sADMTracker->GetModifiers(tracker) == kADMShiftKeyDownModifier;
thisAction = sADMTracker->GetAction(tracker);

if ((action == kADMButtonDownAction) && shiftKeyDown)
{

handleShiftClick();
sADMTracker->Abort(tracker);
notify = false;

}
return notify;

}

The tracker-function example above is assigned to an item in the code example in “Init functions” on
page 43.

Destroy functions

A destroy handler function is where you do any necessary clean up for an object about to be deleted from
memory. It is triggered by a plug-in calling the Destroy function on the object. A destroy function is
passed a reference to the object about to be destroyed and is defined as follows:

typedef void ADMAPI (*ADMObjectDestroyProc)(ADMObjectRef inObject);

If an init function allocated memory, it should be de-allocated here.

Resizable windows

If a resizable window grows or shrinks, the resizing and relocating of dialog items must be handled. This
event is sent to the dialog’s resize-items notifier function, so adding your own notify handler and checking
that the notify event type is an kADMBoundsChangedNotifier event allows you to handle the resize. For
more information, see “Notifier functions” on page 44.

Adding custom item types
CAUTION: Custom item types are deprecated.

A mechanism is provided through which new ADM item types can be added. These custom item types are
then usable by other clients in their ADM dialogs. The provider is responsible for drawing the item for all
subscribers and maintaining information needed to do so.

An example of a custom ADM Item can be seen in the Adobe Illustrator® application tool panel. The fill and
stroke color indicators at the bottom of the tool panel are a custom ADM Item provided by the paint style
plug-in.

To add a new ADM item type, use sADMDialog->RegisterItemType at start-up:

error = sADMDialog->RegisterItemType(gPlugInRef, kMyADMCustomType);

CHAPTER 1: ADM Overview Adding custom item types 47

When any client creates a dialog with the added custom type, the provider receives a PICA event to create
it in an ADM dialog window. The provider is called through its main entry point with the following
information:

caller == kADMCaller
selector == kADMCreateCustomItem
message == ADMCreateCustomItemMessage*

The ADMCreateCustomItemMessage data structure looks like this:

typedef struct
{

SPMessageData d;
struct ADMDialog *dialog;
ADMint32 itemID;
ADMItemType itemType;
ADMRect boundsRect;
ADMItemInitProc initProc;
ADMUserData data;
struct ADMItem *item;

}
ADMCreateCustomItemMessage;

The provider needs to respond to this event by creating an item within the indicated dialog, in the location
specified by the bounds rectangle (boundsRect) in the message structure. This is done with the
sADMItem->Create function:

message->item = sADMItem->Create(message->dialog, message->itemID,
kADMUserType, &message->boundsRect, initProc, userData, options);

All event-handler functions for the new item must be overridden. The new handlers will handle drawing and
user events for the item. In the above example, an ADM User type is used. You may be able to use another
ADM Item type, if you want to use some of its functionality.

If a plug-in provides the custom item, it is responsible for acquiring itself to ensure it is not unloaded from
memory. This is done using the PICA constant, kSPAccessSuite. When it no longer is supporting any ADM
Items, the providing plug-in can release itself and be unloaded.

When the item is no longer needed (it or its containing dialog is to be destroyed), the destroy function that
provided is called. At this point, you need to do any clean-up associated with the item.

Using custom items

If a plug-in wants to use a custom item, it is a much simpler process. The plug-in simply includes an item of
type kADMCustomType in its resource item list. When ADM loads and creates the dialog, it notices the
custom item and tells the providing plug-in to create and maintain it. To indicate a custom item, the
resources listed in the following tables are used, depending on the platform.

Windows class name Window style

<custom item name> ""

CHAPTER 1: ADM Overview Using timer procedures 48

The custom item also can be created at runtime with the sADMDialog->CreateItem function:

sADMDialog->CreateItem(myDialog, kMyCustomItemID, customItemType,
&myCustomItemRect, itemInitProc, userData, options);

To initialize it, the custom item can use standard ADM Item suite functions, a function suite made available
by the providing plug-in, or a combination of both.

Using timer procedures
Often it is useful or necessary to use a timer function to provide a time-out or institute a custom reaction
to the activities (or non-activities) of the plug-in user. ADM supports this need with several timer functions
available in the suites. They all operate the same way.

An ADM timer function takes an item or dialog reference, a duration in milliseconds, and two callback
procedures:

The first callback procedure, the completion proc, is called if the duration expires. From the
completion proc, you can return true and ADM repeats the timer.

The second callback is called if the timer is aborted before the time duration elapses. An abort mask is
passed to the timer create procedure and takes an action mask as defined in ADMTracker.h. If one of
the actions in the mask occurs before the timer duration is finished, the abort proc is called. The action
that caused the timer abort is passed to the callback.

Using the C++ interfaces
There are two sets of interfaces for working with ADM, a standard C interface and a C++ interface. The C++
interface puts object-oriented wrappers around the procedural APIs, and you may find them more
convenient to use. They eliminate the need to specify and de-reference the suite pointer and to pass the
ADM object being processed. These wrappers can be found in the IADM (Interface to ADM) files in several
Adobe SDKs. The following example shows the same process in both styles:

// Using ADM in a procedural manner
ADMItemRef theItem;
ADMListRef theList;

theItem = sADMDialog->GetItem(dialogRefkADMMenuItemID);
theList = sADMItem->GetList(theItem)
sADMList->SetMenuID(theList, gPlugInRef, 16000, "Choices");
sADMItem->Enable(theItem, true);

// Using ADM as objects
IADMItem theItem = IADMDialog::GetItem(kADMMenuItemID);
IADMList theList = theItem.GetList();
theList.SetMenuID(kColorMenuID);
theItem.Enable(true);

Mac OS dialog item CDEF res ID Control title

Control Item 1090 <custom item name>

CHAPTER 1: ADM Overview Using the C++ interfaces 49

There are ADM C++ wrapper classes for each ADM object event suite. Each of these classes basically
repackages a corresponding set of suite functions into an object definition; for instance:

class IADMDialog
class IADMItem
class IADMList
class IADMEntry

class IADMNotifier
class IADMDrawer
class IADMTracker

The convention used for the definition files is to add “I” (for “Interface”) at the beginning of the standard
ADM suite (for example, IADMItem.hpp).

In addition to the wrapper classes, base classes are provided to help create C++-based ADM dialog, two of
which are as followss:

class BaseADMDialog
class BaseADMItem

These classes provide the basic constructors and destructors for ADM objects and a means for overriding
event callbacks. There is no support for custom-event functions in the interface wrappers; these are
handled in the base classes. You can use these as a foundation for building your own dialogs. The source
and header files for these classes are provided in .cpp and .hpp files of the class name.

To use the C++ interfaces you must use the following globals for ADM suites:

ADMBasicSuite *sADMBasic;
ADMDialogSuite *sADMDialog;
ADMDialogGroupSuite *sADMDialogGroup;
ADMDrawerSuite *sADMDrawer;
ADMEntrySuite *sADMEntry;
ADMHierarchyListSuite *sADMHierarchyList;
ADMIconSuite *sADMIcon;
ADMImageSuite *sADMImage;
ADMItemSuite *sADMItem;
ADMListSuite *sADMList;
ADMListEntrySuite *sADMListEntry;
ADMNotifierSuite *sADMNotifier;
ADMTrackerSuite *sADMTracker;

Getting started with ADM plug-in development

The easiest way to get started quickly with ADM is to examine the sample code in the various SDKs
available for the host applications using ADM (for example, Adobe Photoshop® and Adobe Illustrator®) and
adapt it to your needs.

Once you have implemented the basic dialogs, you can refine and add any of the many features supported
by ADM.

CHAPTER 1: ADM Overview Using the C++ interfaces 50

General development process

The process of using ADM is illustrated below.

By using ADM, you can greatly reduce the time required to create robust dialogs that conform to the
host-application appearance. This frees you to focus your energies on your plug-in functionality.

There are some basic requirements to using ADM. For example, for some applications the ADM plug-in
module must be placed in the host application’s plug-in folder to be available to the plug-in.

Second, whatever ADM features your plug-in uses must be acquired via PICA suite calls. Generally this
should be the first thing your plug-in code does. Then, when your plug-in calls for an ADM feature, the
appropriate ADM functions already are loaded into memory and ready to go. Typically, you acquire only
the suites you actually need.

While ADM eliminates much of the work associated with handling dialogs and is supported on both
Windows and Mac OS, the actual visual dialog resources themselves must be created using
platform-specific resource editors like Microsoft® Visual Studio in Windows and Resorcerer and ResEdit in
Mac OS. Once the resources are created, ADM handles displaying and manipulating them.

Consult your SDK for
information on how
ADM is configured
for development.

Acquire the ADM
suites containing
the functions you
will use.

Use Create () or
Modal () to create
your dialog.

ADM suite
function

calls

Display a standard
Adobe dialog with
push buttons,
pop-up menus, etc.

Create dialog
resources using a
platform-native
resource editor.

You must: Your code will:

Determine which
ADM functions
you will use.

Write your plug-in
user-interface code
using ADM function
calls.

Compile your code,
place in plug-in
folder, debug, and
adapt your code
to fit your needs.

Your InitProc
handles dialog
initiation.

Handle user input
and perform your
plug-in functions.

ADM suite
function

calls

ADM suite
function

calls

Set initial values,
set bounds, etc.

Track and respond
to user input
automatically or via
custom routines.

CHAPTER 1: ADM Overview Using the C++ interfaces 51

In general, your code does the following ADM-related tasks:

Acquire the ADM suites that contain the functions you will use in your plug-in.

Use sADMDialog->Create or sADMDialog->Modal to create your dialog

Use an Init proc to set up your initial values and parameters

Use Tracker and Notify functions to keep track of user events like mouse overs, mouse clicks, text
entries, radio button selections, and popup-menu selections.

Use Destroy to release your dialog (if it is a modeless or floating dialog).

You can make your dialogs as complex as you want and add custom graphics, custom event handlers, and
so on, but ADM provides a rich set of automatic user-event handling, and you may find much of what you
need already is built in to ADM.

 52

2 Using ADM with Adobe Illustrator

This chapter explains how the ADM plug-in code works for a specific Illustrator plug-in. To work through
this chapter, you may want to have the Illustrator SDK on hand, so you can browse the code in the plug-in.

ADMNonModalDialog plug-in
The Illustrator SDK provides a sample called ADMNonModalDialog that demonstrates the process of
creating a modeless (or floating) dialog. While it does not do anything but put up a floating dialog, it
shows all ADM function calls required to manage pop-up menus and lists. Unlike Photoshop, Illustrator
supports all ADM functionality, including modal and modeless dialogs.

The following figure shows the dialog created by the ADMNonModalDialog sample.

This dialog is the floating, tabbed, panel type. If you have multiple tabbed dialogs, they can be docked
together into a single dock. This behavior is handled by ADM and requires little support from your ADM
dialog.

Platform-specific resources
The first step is to create the visual dialog resource. You may want to start with the ADM Non-Modal Dialog
plug-in resource and adjust its parameters to fit your needs.

In Windows, use Microsoft Visual Studio to create your resources. In Mac OS, use a basic text editor like
TextEdit. You can use a visual editor (like Resorcerer from Mathemaesthetics), but we recommend you
keep your resources defined in source code for maintainability and flexibility; the source code is compiled
with the project in Xcode.

CHAPTER 2: Using ADM with Adobe Illustrator Dialog creation 53

The resources that define this dialog's controls are in the sample's ADMNonModalDialog.rc file (Windows)
or ADMNonModalDialog.r (Mac OS).

Dialog creation
The dialog is created using the ADMDialogSuite::Create function, as shown in the code below:

ADMNonModalDialog::ADMNonModalDialog(SPPluginRef pluginRef) : BaseADMDialog()
{

fAccessRef = NULL;
int options = 0;

// Create the Non-modal dialog. This does not necessarily show the dialog on
// the screen. If the dialog was hidden at last shutdown, it will not be shown
// until sADMDialog->Show() is called.
// Note: the init proc - Init, will be called immediately following Create()
this->Create(pluginRef, "ADMNonModalDialog", kADMNonModalDialogID,

kADMTabbedFloatingDialogStyle, options);
}

Dialog initialization
All required ADM suites are included in the project — via either the general IllustratorSDK.h header or
a project-specific ADMNonModalDialogSuite.h file.

In the ADM non-modal dialog, there are various pop-up menus, push buttons, radio buttons, and check
boxes. The constants for these items are defined in the ADMNonModalDialogID.h file that is included in
the ADMNonModalDialog project. These constants are as follows:

#define kADMNonModalDialogMenuResourceID 16050

// Dialog resource IDs.
#define kADMNonModalDialogID 16010
#define kADMNonModalDialogName kADMNonModalDialogPluginName

#define kPopupItem 5
#define kPopupMenuID 16060

#define kSpinEditPopupItem 6
#define kSpinEditPopupMenuID 16070

#define kBeepItem 11
#define kBeepBeepItem 12

#define kRadioButton1Item 15
#define kRadioButton2Item 16
#define kRadioButton3Item 17

#define kCheckBox1Item 18
#define kCheckBox2Item 19

#define ID_DIALOG_ICON 5041
#define ID_DIALOG_ICON_ROLLOVER 5042

The ADMNonModalDialog class defined in ADMNonModalDialog.h contains prototypes for all functions
covered in the following discussion.

CHAPTER 2: Using ADM with Adobe Illustrator Dialog initialization 54

Since the ADMNonModalDialog class implements BaseADMDialog, when an ADMNonModalDialog object is
created, it inherits all functions provided by BaseADMDialog and can call them directly. When a new
ADMNonModalDialog object is created, the constructor calls the Create() function defined in
BaseADMDialog, which then calls the redefined Init() function in ADMNonModalDialog. The Init()
function declares various ADM variables and sets up the dialog’s initial values and state.

ASErr ADMNonModalDialog::Init()
{

ASErr result = BaseADMDialog::Init();

// Set up the application context, so that suite calls will work.
AIAppContextHandle AppContext;
SPPluginRef pluginRef = this->GetPluginRef();
sAIAppContext->PushAppContext(pluginRef, &AppContext);

/***
 ** Dialog level stuff

 **/
ADMDialogRef dlg = this->GetDialogRef();
// Attach the dialog-level callbacks
sADMDialog->SetDestroyProc(dlg, DlgDestroyProc);

// Setup popup menu on dialog.
ADMItemRef menuItemRef = sADMDialog->GetItem(dlg, kADMMenuItemID);
sADMItem->SetNotifyProc(menuItemRef, dialogPopupMenuProc);
if (menuItemRef) {

ADMListRef menuListRef = sADMItem->GetList(menuItemRef);
if (menuListRef) {

sADMList->SetMenuID(menuListRef, kADMNonModalDialogMenuResourceID);
}
// Catch mouse down to do setup based on modifier keys.
sADMItem->SetTrackProc(menuItemRef, dialogPopupMenuTrackProc);

}

Key items in this dialog are as follows:

A kADMPopupMenuType menu (the right arrow on the right side of the panel).

A kADMPopupListType menu item (labeled Popup:).

A kADMSpinEditPopupType menu item (labeled Spin Edit).

Two kADMTextPushButtonType items (labeled Beep and Beep Beep).

Three kADMTextRadioButtonType items (labeled Radio Button 1, Radio Button 2, and Radio Button 3).

Two kADMTextCheckBoxType items (labeled Check Box 1 and Check Box 2).

In addition, the necessary list references are declared as follows:

ADMListRef menuListRef = sADMItem->GetList(menuItemRef);
ADMListRef popupListRef = sADMItem->GetList(popupItemRef);
ADMListRef spinEditPopupListRef = sADMItem->GetList(spinEditPopupItemRef);

CHAPTER 2: Using ADM with Adobe Illustrator Dialog initialization 55

Pop-up menu item

Note the arrow button at the top of the panel. This indicates a kADMPopupMenuType menu, as shown in the
following figure.

The first two items are grayed out. They show the ability of ADM to support Mod key effects. In this case
(Windows), they become active only when the Alt key is held down while the right-arrow menu button is
clicked, or the Ctrl key is pressed while the menu arrow is clicked. (On Mac OS, the keys are Option and
Command, respectively.)

The following code in Init sets up this kADMPopupMenuType dialog item:

// Setup popup menu on dialog.
ADMItemRef menuItemRef = sADMDialog->GetItem(dlg, kADMMenuItemID);
sADMItem->SetNotifyProc(menuItemRef, dialogPopupMenuProc);
if (menuItemRef) {

ADMListRef menuListRef = sADMItem->GetList(menuItemRef);
if (menuListRef) {

sADMList->SetMenuID(menuListRef, kADMNonModalDialogMenuResourceID);
}
// Catch mouse down to do setup based on modifier keys.
sADMItem->SetTrackProc(menuItemRef, dialogPopupMenuTrackProc);

}

Once the dialog is created and all buttons and pop-up menu values are established, the example tracks
the user’s activity. This is done by using ADM Notify and ADM Tracker functions. In the above code, the
following is used to set the Notify procedure as dialogPopupMenuProc:

sADMItem->SetNotifyProc(menuItemRef, dialogPopupMenuProc);

This is covered later in this chapter. The following code is used to track user activity on this dialog item:

sADMItem->SetTrackProc(menuItemRef, dialogPopupMenuTrackProc);

CHAPTER 2: Using ADM with Adobe Illustrator Dialog initialization 56

Pop-up list item

The first pop-up is a kADMPopupListType menu. It is shown in active position in the following figure.

The following code in Init creates and initializes the pop-up list:

// Create popup list.
ADMItemRef popupItemRef = sADMDialog->GetItem(dlg, kPopupItem);
sADMItem->SetNotifyProc(popupItemRef, PopupProc);
ADMListRef popupListRef = sADMItem->GetList(popupItemRef);
sADMList->SetMenuID(popupListRef, kPopupMenuID);
// Initialize popup list.
ADMEntryRef entry = sADMList->GetEntry(popupListRef, 1); // The number you pass is

 // 1-based, not 0-based.
sADMEntry->Select(entry, true);

Notice that PopupProc is used as a notify procedure.

CHAPTER 2: Using ADM with Adobe Illustrator Dialog initialization 57

Spin-edit Item

Below the PopupList menu is a spin-edit text-edit item, shown activated in the following figure.

The code below from Init creates and initializes the spin-edit pop-up list:

// Create SpinEditPopup list.
ADMItemRef spinEditPopupItemRef = sADMDialog->GetItem(dlg, kSpinEditPopupItem);
sADMItem->SetNotifyProc(spinEditPopupItemRef, spinEditPopupProc);
ADMListRef spinEditPopupListRef = sADMItem->GetList(spinEditPopupItemRef);
sADMList->SetMenuID(spinEditPopupListRef, kSpinEditPopupMenuID);
// Initialize SpinEditPopup list.
entry = sADMList->GetEntry(spinEditPopupListRef, 4);
sADMItem->Invalidate(spinEditPopupItemRef);
sADMEntry->Select(entry, true);

Notice that spinEditPopupProc is used as a notify procedure.

Radio-button and check-box items

At the bottom of the panel is an array of radio buttons and check boxes. ADM provides many useful
automatic functions, including the ability to group radio buttons together so that within a group, selecting
one button automatically de-selects the others. ADM considers any consecutively numbered radio button
items as a group.

The radio and check-box buttons are initialized with the following code from Init:

// All 3 radio button items will have the same notifier proc.
sADMItem->SetNotifyProc(sADMDialog->GetItem(dlg, kradioButton1Item),
radioButtonProc);
sADMItem->SetNotifyProc(sADMDialog->GetItem(dlg, kradioButton2Item),
radioButtonProc);
sADMItem->SetNotifyProc(sADMDialog->GetItem(dlg, kradioButton3Item),
radioButtonProc);

CHAPTER 2: Using ADM with Adobe Illustrator Dialog initialization 58

// Initialize radio button group
// Note: radio buttons with consecutive item numbers are automatically grouped by ADM
sADMItem->SetBooleanValue(sADMDialog->GetItem(dlg, kradioButton1Item), true);
sADMItem->SetBooleanValue(sADMDialog->GetItem(dlg, kradioButton2Item), false);
sADMItem->SetBooleanValue(sADMDialog->GetItem(dlg, kradioButton3Item), false);

/** Checkbox Items **/

// Each check box item will have its own notifier proc.
sADMItem->SetNotifyProc(sADMDialog->GetItem(dlg, kcheckBox1Item), checkBox1Proc);
sADMItem->SetNotifyProc(sADMDialog->GetItem(dlg, kcheckBox2Item), checkBox2Proc);

// Initialize checkboxes
sADMItem->SetBooleanValue(sADMDialog->GetItem(dlg, kcheckBox1Item), true);
sADMItem->SetBooleanValue(sADMDialog->GetItem(dlg, kcheckBox2Item), false);

Button items

The Init code sets up the button items (Beep and Beep Beep) with the code below:

// Attach the callbacks for the beep buttons.
ADMItemRef beepButtonItemRef = sADMDialog->GetItem(dlg, kBeepItem);
if (beepButtonItemRef) {

sADMItem->SetNotifyProc(beepButtonItemRef, beepButtonUp);
}

ADMItemRef beepBeepButtonItemRef = sADMDialog->GetItem(dlg, kBeepBeepItem);
if (beepBeepButtonItemRef) {

sADMItem->SetNotifyProc(beepBeepButtonItemRef, beepBeepButtonUp);
}

Dialog positioning and docking

Unlike a modal dialog, a modeless or floating panel dialog “floats” above the host application and can be
moved around the screen; therefore, there is additional overhead to position the dialog.

In addition, panel type dialogs can be combined or docked together into a single panel. For this
arrangement, you must be concerned with the positionCode value. This sets the dialog’s position within
a docked/tabbed group. The following code from Init takes care of this:

// Get the last known Docking group and Docking code out of the Prefs file
char groupName[64] = "SDK Dialogs";
sAIPreference->GetStringPreference("ADMNonModalDialog",

"kADM_DPDockGroupStr", groupName);
// For more info about the positionCode see ADMDialogGroup.h

positionCode = 0x00001c00; // Default: no dock, no tab group,
// front tab, zoom down, visible

sAIPreference->GetIntegerPreference("ADMNonModalDialog", "kADM_DPDockCodeStr",
&positionCode);

// Pick a default location in case it has never come up before on this machine
ADMRect boundsRect = {0, 0, 0, 0};
ADMRect dimensions = {0, 0, 0, 0};
sADMDialog->GetBoundsRect(dlg, &boundsRect);
sADMBasic->GetPaletteLayoutBounds(&dimensions);
location.h = dimensions.right - (boundsRect.right - boundsRect.left);
location.v = dimensions.bottom - (boundsRect.bottom - boundsRect.top);

CHAPTER 2: Using ADM with Adobe Illustrator Notification procedures 59

// Get the last known location out of the Prefs file
sAIPreference->GetPointPreference("ADMNonModalDialog", "kADM_DPLocationStr",

&location);

ADMPoint size = {0, 0};
size.h = 208; // Minimum width (which governs the inner client rect) + 2
size.v = 258;

#ifdef WIN_ENV // Different rules about whether the borders and tabs
// are in the dlg rect

size.v += 6;
location.v -= 6;
size.h += 4;

#endif
// Get the last known size out of the Prefs file
sAIPreference->GetPointPreference("ADMNonModalDialog", "kADM_DPSizeStr", &size);
ADMRect rect = {0, 0, 0, 0};
rect.left = location.h;
rect.right = location.h + size.h;
rect.top = location.v;
rect.bottom = location.v + size.v;

// Restore the size and location of the dialog
sADMDialog->SetBoundsRect(dlg, &rect);
// Restore the position code of the dialog
sADMDialogGroup6->SetDialogGroupInfo(dlg, groupName, positionCode);

}

Panel icons

Each panel can have an icon that is displayed when the panel is docked to the edge of the application
window. A different icon can be defined for the each state associated with an icon. The following code
from the Init function demonstrates how the ADMNonModalDialog sets its icon resources:

ADMIconRef icon = sADMIcon2->GetFromResource(pluginRef, 0, ID_DIALOG_ICON, 0);
sADMDialog->SetIcon(dlg,false, icon);

icon = sADMIcon2->GetFromResource(pluginRef, 0, ID_DIALOG_ICON_ROLLOVER, 0);
sADMDialog->SetIcon(dlg,true, icon);

// Clean up the application context and return.
sAIAppContext->PopAppContext(AppContext);

return result;
}

Notification procedures
Since the dialog box must be notified when the user interacts with the various dialog items, the code uses
notification procedures like dialogPopupMenuProc in ADMNonModalDialog.cpp to handle any activity:

void ASAPI ADMNonModalDialog::dialogPopupMenuProc(ADMItemRef item, ADMNotifierRef notifier)
{

// Dispatch the notifier type.
if (sADMNotifier->IsNotifierType(notifier, kADMUserChangedNotifier)) {

int selection = GetPopupSelection(item);

CHAPTER 2: Using ADM with Adobe Illustrator Notification procedures 60

// Use the selection data.
selection = 0;

}
}

This routine is passed the ADMItemRef and the notifier. Once the notifier is checked to make sure it is the
right one (that is, kADMUserChangedNotifier), you get the selection by calling GetPopupSelection, as
shown below:

int ADMNonModalDialog::GetPopupSelection(ADMItemRef item)
{

ADMListRef listRef = sADMItem->GetList(item);

// Get the current active entry.
ADMEntryRef activeEntry = sADMList->GetActiveEntry(listRef);
// Get the index (0 based) of the entry.
int selection = sADMEntry->GetIndex(activeEntry);

return selection;
}

Handling modifier keys

As noted above, when the user selects the right-arrow menu button shown again below, you can check
whether a modifier key is pressed. If so, one of the first two items becomes selected; if not, they remain
greyed out and de-selected. The figure below shows the flyout pop-up menu with the Alt key pressed
while the right arrow was pressed.

CHAPTER 2: Using ADM with Adobe Illustrator For more information 61

This is handled with the dialogPopupMenuTrackProc procedure:

ASBoolean ASAPI ADMNonModalDialog::dialogPopupMenuTrackProc(ADMItemRef item,
ADMTrackerRef tracker)
{

// Called at mouse down on the dialog context popup menu. This is your opportunity
// to change the status of menu items. In this example, the modifier keys enable
// menu items 1 and 2.

ADMAction action = sADMTracker->GetAction(tracker);

// Capture mouse down event.
if (action == kADMButtonDownAction){

// Checks if the (mac)OPTION (win)ALT modifier is pressed.
ASBoolean commandOptionDown = sADMTracker->TestModifier(tracker,

kADMModKeyDownModifier);
// Checks if the (mac)COMMAND (win)CONTROL modifier is pressed.
ASBoolean commandControlDown = sADMTracker->TestModifier(tracker,

kADMMenuKeyDownModifier);

ADMListRef menuListRef = sADMItem->GetList(item);

if (menuListRef) {
// If command is pressed, enable the first menu item, otherwise disable.
sADMEntry->Enable(sADMList->IndexEntry(menuListRef, 0), commandOptionDown);
// If command is pressed, enable the second menu item, otherwise disable.
sADMEntry->Enable(sADMList->IndexEntry(menuListRef, 1),

commandControlDown);
}

}

ASBoolean doNotify = sADMItem->DefaultTrack(item, tracker);

return doNotify;
}

For more information
For more information, see the ADMNonModalDialog sample plug-in and Adobe Illustrator CS4 SDK API
Reference.

 62

3 ADM Suites

For the latest significant changes to the ADM API, see Adobe Illustrator CS4 Porting Guide.

This chapter briefly describes the following suites:

Basic suite
The ADM Basic suite provides four types of functions:

Resource functions — APIs that deal with platform resources.

User-interface functions — APIs that deal with the GUI. User-interface functions control basic user
communications like beeps, alerts, and tool tips.

Utility functions — APIs for miscellaneous tasks.

Contextual-menu functions — APIs used to create pop-up contextual menus. Contextual menus can
be used to display a menu when the cursor is over a particular location and a combination of mouse
states or modifier keys can be used to select an option. For example, pressing and holding down the
mouse in an Internet browser window opens a pop-up menu with Back and Forward options. Most
likely, these functions are used by the host application rather than a plug-in. Contextual menus must
be destroyed when done.

Suite See page ...

Basic suite 62

Dialog suite 63

Dialog group suite 64

Drawer suite 65

Entry suite 68

Hierarchy list suite 69

Icon suite 72

Image suite 73

Item suite 73

List suite 78

List entry suite 80

Notifier suite 82

Tracker suite 86

CHAPTER 3: ADM Suites Dialog suite 63

NOTE: For user-interface functions, tool tips provide information about the ADM item pointed to by the
mouse cursor. A predefined string describing the item appears to the right of the item after the mouse is
positioned over it for a few seconds. When the mouse is moved, the tool tip disappears. The strings to use
for a dialog are defined with sADMDialog->LoadToolTips. For Illustrator and other Adobe tools, the tool
title is used for the tool tip.

Accessing the suite

Acquire this suite by calling SPBasicSuite::AcquireSuite(). To determine the values to use for the
name and version parameters in this call:

For Illustrator, see ADMBasicSuite in Adobe Illustrator CS4 SDK API Reference.

For other products, see the ADMBasic.h header file.

For more information

For Illustrator, see ADMBasicSuite in Adobe Illustrator CS4 SDK API Reference.

For other products, see the documentation in the ADMBasic.h header file.

Dialog suite
The ADM Dialog suite allows you to create and access ADM Dialog objects. Many of the functions are
common to all ADM objects, such as text-access functions. Others are unique to dialogs; for instance,
setting minimum and maximum sizes for resizable dialogs.

Accessing the suite

Acquire this suite by calling SPBasicSuite::AcquireSuite(). To determine the values to use for the
name and version parameters in this call:

For Illustrator, see ADMDialogSuite in Adobe Illustrator CS4 SDK API Reference.

For other products, see the ADMDialog.h header file.

Dialog styles

ADM supports several types of dialog styles. Valid modal-dialog styles are kADMModalDialogStyle,
kADMAlertDialogStyle, and kADMSystemAlertDialogStyle. Each dialog type is assigned a value. Alert styles
(0, 1, 8) are only for modal dialogs; all others are for non-modal dialogs. Style constants above FFFF are
reserved for host-application use. For details, see ADMDialogSuite in Adobe Illustrator CS4 SDK API
Reference and the ADMDialog.h header file.

For more complete descriptions of the dialog styles, see Chapter 1, “ADM Overview.”

CHAPTER 3: ADM Suites Dialog Group suite 64

Standard dialog-item IDs

ADM provides many types of dialog items, as outlined in Chapter 1, “ADM Overview. Each standard dialog
item is assigned an ID. For details, see ADMDialogSuite in Adobe Illustrator CS4 SDK API Reference and the
ADMDialog.h header file.

Callbacks

If default operation is not desired, most ADM dialog items support programmer-supplied callbacks, listed
below and defined in ADMDialog.h. As shown below, these procedures include the dialog Init proc, Draw
proc, Tracker proc, Notify proc, and dialog Destroy proc. The timer and timer-abort procedures are used to
attach timers to dialogs.

ADMDialogInitProc
ADMDialogDrawProc
ADMDialogTrackProc
ADMDialogNotifyProc
ADMDialogDestroyProc
ADMDialogTimerProc
ADMDialogTimerAbortProc

ADM help support

ADM has built-in support for ASHelp, a WinHelp-type help system. ASHelp uses WinHelp file definitions in
a cross-platform fashion. Every item has a helpID, and the system can operate in contextual fashion. For
example, selecting Command ? in Mac OS or Alt + F1 in Windows lets you click an item and see its help
resource. For plug-ins to support help files, there must be a Plugin Help location in the PiPL resource.

CAUTION: The Help APIs are deprecated.

For more information

For Illustrator, see ADMDialogSuite in Adobe Illustrator CS4 SDK API Reference.

For other products, see the documentation in the ADMDialog.h header file.

Dialog Group suite
The ADM Dialog Group suite handles the “grouping” or docking of dialogs, as in a docked panel window. It
also provides access to the collection of all dialogs ADM knows about at any given time.

Accessing the suite

Acquire this suite by calling SPBasicSuite::AcquireSuite(). To determine the values to use for the
name and version parameters in this call:

For Illustrator, see ADMDialogGroupSuite in Adobe Illustrator CS4 SDK API Reference.

For other products, see the ADMDialogGroup.h header file.

CHAPTER 3: ADM Suites Drawer suite 65

Position code and group name

The position code parameter, set and retrieved using the sADMDialogGroup->SetDialogGroupInfo and
sADMDialogGroup->GetDialogGroupInfo functions, is used to restore a dialog’s position within a
docked/tabbed group. (Tabbed dialogs can be “floating,” or they can be “docked” with other dialogs into a
docked/tabbed group.) These functions also can be used to set and retrieve the group name. The dialog
group is referred to using the name of the dialog that is the first tab in the top dock of the group.

When docking several panels, it is necessary to determine which panel is first, second, third, etc., and
where the tab is located (first, second, etc.). All these settings are determined by the position code. For a
description of the values that position code can take, see ADMDialogGroup.h.

For more information

For Illustrator, see ADMDialogGroupSuite in Adobe Illustrator CS4 SDK API Reference.

For other products, see the documentation in the ADMDialogGroup.h.h header file.

Drawer suite
The ADM Drawer suite is a set of cross-platform imaging functions for use within custom ADM drawer
functions. If you create a new type of dialog item or want to embellish an existing one, use the ADM
Drawer suite functions to create its appearance.

The functions of the ADM Drawer suite are similar to most platform imaging APIs, but they are optimized
for user-interface work. The suite includes basic imaging (e.g., sADMDrawer->DrawLine,
sADMDrawer->DrawRect, and sADMDrawer->SetClipRect) and text-handling functions. The color system
provides an easy way to specify user interface colors; for instance, two ADM color constants are
kADMDisabledColor and kADMButtonDownColor. Similarly, the fonts available to the text functions are
limited to those needed to make dialog items, like kADMItalicPaletteFont. In addition, functions are
provided that simplify the implementation of many standard dialog items, like sADMDrawer->DrawIcon
and sADMDrawer->DrawUpArrow. If the drawing capabilities of the ADM Drawer suite are insufficient, you
can access a drawing port for using platform imaging functions (or, for internal Adobe development,
Adobe’s imaging functions).

Accessing the suite

Acquire this suite by calling SPBasicSuite::AcquireSuite(). To determine the values to use for the
name and version parameters in this call:

For Illustrator, see ADMDrawerSuite in Adobe Illustrator CS4 SDK API Reference.

For other products, see the ADMDrawer.h header file.

Drawer functions

ADM drawers are callback functions assigned to ADM objects. Their purpose is to draw on the screen the
object to which they are assigned. To specify an ADM drawer function to use with an ADM object, use the
assignment functions:

CHAPTER 3: ADM Suites Drawer suite 66

sADMDialog->SetDrawProc
sADMItem->SetDrawProc
sADMList->SetDrawProc
sADMHierarchyList->SetDrawProc

For ADM dialogs and ADM items, the assignment function is found in the object suite. Drawer functions
for ADM Entry objects are assigned to the list that contains them. All entries in a list have the same drawer
function.

All ADM drawer callbacks are defined similarly:

typedef void ASAPI (*ADMObjectDrawProc)(ADMObjectRef inObject, ADMDrawerRef inDrawer);

Object is a reference to the dialog, item, or entry that is to be drawn. The ADMDrawerRef argument
basically is a graphics-device reference and is used with the functions in this suite to indicate the context
for the imaging operation.

All ADM objects have a default drawer function that provides their normal appearance. If your
customization to an object is an embellishment of this standard appearance, you can call the default
drawer and then modify it (the default drawer for ADM User items does nothing). To call the default
drawer, use a function of the object suite:

sADMDialog->DefaultDraw
sADMItem->DefaultDraw
sADMListEntry->DefaultDraw
sADMListEntry->DefaultDraw

Pass the DefaultDraw function the arguments that were passed to your customer drawer function; for
instance:

void mySquareDrawHandler(ADMItemRef item, ADMDrawerRef drawer)
{

sADMItem->DefaultDraw(item, drawer);
}

Using drawer functions

The functions in the ADM Drawer suite require an ADMDrawerRef, which is the target for the drawing
operation. One of the arguments passed to your drawer function is a drawer reference, and it is simply
passed to the each ADM drawer function:

void mySquareDrawHandler(ADMItemRef item, ADMDrawerRef drawer)
{

ADMRect boundsRect;
DMRect boundsRect;
sADMItem->DefaultDraw(item, drawer);

sADMDrawer->GetBoundsRect(drawer, &boundsRect);
boundsRect.top -= 2;
boundsRect.bottom += 2;
boundsRect.left -= 2;
boundsRect.right += 2;

sADMDrawer->SetADMColor(drawer, kADMShadowColor)
sADMDrawer->DrawRect(drawer, &boundsRect)

}

CHAPTER 3: ADM Suites Drawer suite 67

Fonts and colors

The ADM Drawer suite has a streamlined model for colors and fonts that offers benefits like facilitating the
design of user-interface components with the Adobe “look” and simplifying conformance to platform
standards. Both these qualities help the user have a consistent experience with Adobe applications and
their plug-ins.

The normal colors you use in implementing a dialog item have been abstracted. Except for black and
white, the keywords for the colors indicate the role they play in the user interface. Some of the constants
may represent the same color. In addition to helping provide a consistent user experience, another benefit
of using the ADM color constants is that your interface adapts to the changing platform interface
standards as ADM does.The standard colors used by ADM are listed in ADMColor struct in ADMTypes.h.

Fonts are simplified from the hundreds that are potentially available to just a few, abstracted so that the
correct font is used on a given platform. The standard fonts used by ADM are listed in ADMFont struct in
ADMTypes.h.

The constant names for the fonts indicate their purpose. For instance, the kADMDialogFont font generally
is bigger than the kADMPaletteFont font and is used for modal dialogs. Floating windows should use the
smaller font to reduce the screen area needed by a window that always is present. Font attributes like size
are handled automatically by ADM. ADM uses any required system settings when setting these attributes.

Drawer coordinate space

All drawing is done in coordinates local to the object being drawn, specified relative to the drawer origin.
By default, the origin of the drawer is the top-left corner of its object’s bounding rectangle. You can
redefine the origin if desired, and doing so may simplify some drawing operations.

Pixels are drawn in a Mac OS-like fashion, where a pixel is drawn down and to the right of the indicated
coordinate.

Drawing modes

ADM provides two drawing modes, normal mode and XOR mode, that affect how drawing operations occur
(see ADMDrawer.h). Valid styles are kADMNormalMode, kADMXORMode, and kADMDummyMode.

In normal mode, a graphics operation overwrites the background entirely. In XOR mode, the background
color is inverted when the color of the pixel being drawn is black. This is illustrated in the following figure.

A line drawn in kADMXORModeA line drawn in kADMNormalMode

CHAPTER 3: ADM Suites Entry suite 68

Graphics commands also are affected by a clipping path. A clipping path is a defined region outside of
which graphic operations have no affect. The figure below shows drawing with and without a clipping
path.

Clipping paths can be set in several ways: as a rectangle, as a polygon, and by combining multiple
rectangles and polygons.

For more information

For Illustrator, see ADMDrawerSuite in Adobe Illustrator CS4 SDK API Reference.

For other products, see the documentation in the ADMDrawer.h header file.

Entry suite
The ADM Entry suite allows you to create and access ADM Entry objects that are used in conjunction with
the ADM List suite. Most of the functions are common to all ADM objects, like text-access functions. A few
are similar to ADM Item objects, like setting picture IDs. The remainder are unique to ADM Entry objects,
for instance, checking if an entry is selected. This function reference builds on ideas established in
Chapter 1, “ADM Overview.

Horizontal lines Horizontal lines
with a clipping path

CHAPTER 3: ADM Suites Hierarchy List suite 69

Accessing the suite

Acquire this suite by calling SPBasicSuite::AcquireSuite(). To determine the values to use for the
name and version parameters in this call:

For Illustrator, see ADMEntrySuite in Adobe Illustrator CS4 SDK API Reference.

For other products, see the ADMEntry.h header file.

Initializing an entry

When you assign a menu ID to a list, ADM creates and initializes the list’s ADM Entry objects. They are
given an ID and assigned a text string. If you need initialization beyond this, or if you create your own ADM
entries, you need to perform these tasks yourself. This can be handled by assigning an ADMEntryInitProc
(see ADMList.h) callback function to the list. It is called for each entry that is created.

What you need to initialize depends on what the entries represent. ADM has several standard entry
properties that can be set, such as picture IDs. In addition, you can perform your own initialization, like
allocating memory or loading resources. If you do your own initialization, you probably will need to also
replace the list entries’ draw function.

NOTE: Unlike ADM dialogs and items, custom handler functions for entries, like Init and Draw procs, are set
for the containing list, not for individual entries. (See “Custom lists” on page 80.)

Help support

ADM has built-in support for ASHelp, a WinHelp-type help system. ASHelp uses WinHelp file definitions in
a cross-platform fashion. Every item has a helpID, and the system can operate in contextual fashion. For
example, selecting Command ? in Mac OS or Alt + F1 in Windows lets you click an item and see its help
resource. For plug-ins to support help files, there must be a Plugin Help location in the PiPL resource.

CAUTION: The Help APIs are deprecated.

For more information

For Illustrator, see ADMEntrySuite in Adobe Illustrator CS4 SDK API Reference.

For other products, see the documentation in the ADMEntry.h header file.

Hierarchy List suite
The ADM Hierarchy List suite allows you to access ADM Hierarchy List objects and ADM List Entry objects.
Since an ADM Hierarchy List object is an extended property of a standard ADM Item object, this suite lacks
many of the functions common to ADM objects; however, you can access a hierarchy list’s ADM item and
do common operations on it. Using functions in this suite, you can initialize the hierarchy list, and you can
create, destroy, customize, and iterate through the ADM list entries of a hierarchy list. The Hierarchy List
suite is used in conjunction with the ADM List Entry suite to further access list-related information.

NOTE: The relationship between ADM Hierarchy List objects and ADM List Entry objects is the same as that
between ADM List objects and ADM Entry objects; that is, list entries are the elements of a hierarchy list.
List entries themselves may be hierarchy lists with list-entry children of their own. See the figure below.

CHAPTER 3: ADM Suites Hierarchy List suite 70

Accessing the suite

Acquire this suite by calling SPBasicSuite::AcquireSuite(). To determine the values to use for the
name and version parameters in this call:

For Illustrator, see ADMHierarchyListSuite in Adobe Illustrator CS4 SDK API Reference.

For other products, see the ADMHierarchyList.h header file.

Hierarchy lists and list entries

ADM Hierarchy List objects are used by ADM Item objects to provide a list of expandable choices,
including list boxes, pop-up lists, pop-up menus, spin-edit popups, and text-edit popups. An ADM
hierarchy list comprises ADM list entries.

ADM hierarchy lists do not have many standard properties, such as a plug-in and bounds. Rather, these are
defined using the ADM hierarchy list’s item. To access them, use sADMHierarchyList->GetItem to get the
item owning the list, then use the ADM Item suite functions with the returned item reference.

ADM hierarchy lists have special properties, like a menu resource ID and a group of list entries. ADM list
entries have added properties, including an index and a selected state. These entry properties are used by
the ADM Hierarchy List suite to access the entries. The index is the position of the entry in list. The selected
state indicates the user has selected the item (others may be selected in the case of a multi-select list).

Using the Hierarchy List suite

To get the hierarchy list object for a list entry, use the sADMListEntry->GetItem function:

ADMHierarchyListRef theHierarchyList = sADMListEntry->GetList(theListEntry);

Once this is done you can use the ADM Hierarchy suite functions.

To initialize a list, assign it a menu resource ID:

sADMHierarchyList->SetMenuID(theItemsList, gPlugInRef, 16000, "Choices");

CHAPTER 3: ADM Suites Hierarchy List suite 71

You also can create each entry with the ADM Hierarchy List suite’s sADMHierarchyList->InsertEntry
function; for instance:

for (index = 0; index < kNumberEntries; index++)
{

char menuText[255];
ADMListEntryRef entry = sADMHierarchyList-

>InsertEntry(theItemList, index);
sADMBasic->GetIndexString(thePlugin, 16000, index, menuText, 255);
sADMListEntry->SetText(entry, menuText);
sADMListEntry->SetID(entry, index);

}

Note that list indices are 0-based.

To get the currently selected item of a single-selection list, use the
sADMHierarchyList->GetActiveEntry function, then get the entry’s index:

ASInt32 GetHierarchyListValue(ADMItem theListItem)
{

ADMHierarchyListRef theList = sADMItem->GetList(theListItem);
ADMListEntryRef theEntry = sADMHierarchyList->GetActiveEntry(theList);
return sADMListEntry->GetID(theEntry);

}

To get each selected item in a multiple-selection list, get the selection count and iterate through the
selections:

ASInt32 count = sADMHierarchyList->NumberOfSelectedEntries(theList);
for (index = 0; index < count; index++)
{

ADMListEntryRef entry = sADMHierarchyList->IndexSelectedEntry(theList, index);
doSomethingToSelectedEntry(theEntry);

}

Custom hierarchy lists

You can customize an ADM Hierarchy List object just like other ADM items. This is done by defining one or
more event-handler functions. Because ADM hierarchy lists are closely linked to ADM list entries, the
process is slightly different.

The ADM hierarchy list does not have its own event-handler functions. To do something to the list as a
whole in a handler, set the handler function for the list; for instance, to annotate the list, set the drawer
function for the list. These are assigned using the ADM Item suite.

To change the behavior of the hierarchy list at a lower level, set the handler functions of the list’s entries;
for instance, to change how each list entry draws, set the drawer function for the list’s entries. This is done
at the hierarchy-list level, using the ADM Hierarchy List suite, and it affects all list entries in a list. You
cannot directly set a handler function for an individual list entry; a custom handler function for a hierarchy
list must work for all its list entries.

To use the default behavior for a hierarchy list item, you use the ADM Item suite functions. To use the
default behavior for a list entry, use functions in the ADM List Entry suite, not the ADM Hierarchy List suite.

CHAPTER 3: ADM Suites Icon suite 72

For more information

For Illustrator, see ADMHierarchyListSuite in Adobe Illustrator CS4 SDK API Reference.

For other products, see the documentation in the ADMHierarchyList.h header file.

Icon suite
The ADM Icon suite provides a standard interface to picture resources on multiple platforms. The suite
supports pictures and icons on Windows and Mac OS and refers to them as ADM icons.

Accessing the suite

Acquire this suite by calling SPBasicSuite::AcquireSuite(). To determine the values to use for the
name and version parameters in this call:

For Illustrator, see ADMIconSuite in Adobe Illustrator CS4 SDK API Reference.

For other products, see the ADMIcon.h header file.

Icons

ADM provides a generic icon interface to several platform-based resource types. When an icon is read from
a plug-in file, ADM searches the supported resource types for the given resource ID. The resource is read
into memory, and a reference to the ADM icon is returned to the caller.

The supported resource types are defined by the ADMIconType enumeration. Resources are read using the
sADMIconSuite->GetFromResource function.

typedef enum
{

// Mac types
kCICN, kPICT, kIconSuite, kCGImage
// Windows types
kWinIcon, kBMP,
// Either type
kADMImageIcon,
kUnknown

} ADMIconType;

Icons of type kIconSuite and kWinIcon can have multiple icons with multiple depths, but all the supplied
icons should have the same dimensions. In Mac OS, icon-suite resources are searched in the following
order:

Large (ICN#/icl4/icl8)

Small (ics#/ics4/ics8)

Mini (icm#/ics4/ics8)

NOTE: In Mac OS, the CICN resource is provided for backward compatibility with Adobe Illustrator 6.0.
Resources of this type are not part of the resource search. Icon suites are the preferred format.

To draw an ADM icon, use the sADMDrawer->DrawIcon and sADMDrawer->DrawIconCentered functions.

CHAPTER 3: ADM Suites Image suite 73

For more information

For Illustrator, see ADMIconSuite in Adobe Illustrator CS4 SDK API Reference.

For other products, see the documentation in the ADMIcon.h header file.

Image suite
The ADM Image suite provides a means for creating off-screen images that can be displayed and
manipulated with ADM Drawer suite functions (see “Drawer suite” on page 65).

Accessing the suite

Acquire this suite by calling SPBasicSuite::AcquireSuite(). To determine the values to use for the
name and version parameters in this call:

For Illustrator, see ADMImageSuite in Adobe Illustrator CS4 SDK API Reference.

For other products, see the ADMImage.h header file.

For more information

For Illustrator, see ADMImageSuite in Adobe Illustrator CS4 SDK API Reference.

For other products, see the documentation in the ADMImage.h header file.

Item suite
The ADM Item suite allows you to create and access ADM Item objects. Many of the functions are those
common to all ADM objects, like text-access functions. Others are unique to dialog items; for instance,
setting text item numerics and picture IDs. This function reference builds on ideas established in
Chapter 1, “ADM Overview.

Accessing the suite

Acquire this suite by calling SPBasicSuite::AcquireSuite(). To determine the values to use for the
name and version parameters in this call:

For Illustrator, see ADMItemSuite in Adobe Illustrator CS4 SDK API Reference.

For other products, see the ADMItem.h header file.

Initializing ADM items

When you create a modal or non-modal ADM dialog, ADM automatically creates ADM items according to
the dialog’s item-list resource. These items have the default initialization. This means minimal initialization,
so the dialog initialization function you provide needs to further initialize the items.

Exactly what you need to initialize depends on the item type. You may want to set an item style if it cannot
be set from the resource. All items can be enabled or disabled. You may want to make one edit-text item

CHAPTER 3: ADM Suites Item suite 74

active. Also, any item that needs to interact with other items should have a notification function. Item
characteristics you might want to initialize for a given item are listed in the following table.

Item type (see ADMItem.h) Initialization

kADMChasingArrowsType Mac OS only. This typically would be used transiently to
indicate the user needs to wait. No initialization is required.

kADMDialType Set the dial’s minimum, maximum, and current value. Assign
a notification proc.

kADMFrameType There is likely nothing to initialize. You can set the style in the
resource. You may want to set the frame text if it has a title.

kADMHierarchyListBoxType Get the item’s list and set its menu ID. If necessary, activate
an entry or entries. Assign initialization, notification, and
drawer functions for the entries.

kADMItemGroupType Nothing needs to be done in an item group’s InitProc. At the
time the Init proc is called, no child items have been added,
so there is no way to apply any properties to them as a
group. Since previously assigned item-group properties are
not propagated to child items when they are added, there is
no point setting any of those values before all the children
are added. Perform the following steps to create an item
group:

sADMItem->Create the item group (this causes the
InitProc to be called before returning from
sADMItem->Create).

Add any child items that need to be added to this group
(use sADMItem->AddItem).

Set any properties for the group that should be
propagated to the children (using the various ADM Item
suite Set mutators).

kADMListBoxType Get the item’s list and set its menu ID. If necessary, activate
an entry or entries. Assign a notification function for the
entries.

kADMPasswordTextEditType Somewhat like kADMTextEditType, except passwords
typically are not numeric and do not have default values. Set
the maximum length in addition to the usual (enable/disable
and set Notify proc).

kADMPictureCheckBoxType Set the picture ID. You may want to disable and select
picture IDs as well. It might or might not need a notification
function.

kADMPicturePushButtonType Set the picture ID. You may want to disable and select
picture IDs as well. Also, a push button needs a notification
function.

CHAPTER 3: ADM Suites Item suite 75

kADMPictureRadioButtonType Set the picture ID. You may want to disable and select
picture IDs as well. Set the boolean value of one radio button
in a group to be true. You do not need to use a notification
routine to handle radio-button groups if all buttons in the
group have consecutive IDs; ADM handles this case
automatically.

kADMPictureStaticType Set the picture ID. You may want to disable and select
picture IDs as well. You may want a notification for an easter
egg.

kADMPopupControlButtonType Set the usual settings (enable/disable and set Notify proc). By
default, this type of item has a pop-up slider, so you set the
min and max values to specify the range of the whole item.
See Set***Value functions.

kADMPopupControlType Set the usual settings (enable/disable and set Notify proc). By
default, this type of item has a pop-up slider, so you set the
min and max values to specify the range of the whole item.
See Set***Value functions.

kADMPopupListType Get the item’s list and set its menu ID. If necessary, activate
an entry or entries.

kADMPopupMenuType Get the item’s list and set its menu ID. If necessary, activate
an entry or entries.

kADMPopupSpinEditControlType Set the usual settings (enable/disable and set Notify proc).
Set the item’s text. These types of items can have only
numeric data (floats or ints, negative values are acceptable).
Use sADMItem->SetText or Set***Value functions. By
default, this type of item has a pop-up slider, so you set the
min and max values to specify the range of the whole item.

kADMProgressBarType Set the initial value. This item type typically exists transiently
while an operation is being performed.

kADMResizeType Set a notification function for the item.

kADMScrollbarType Set the item’s range and value. Set the large and small
increments. Assign notification and tracking functions. Set
the item’s draw function for graphic feedback (e.g., a current
picture).

kADMScrollingPopupListType Get the item’s list and set its menu ID. If necessary, activate
an entry or entries.

kADMSliderType Set the item’s range and value. Assign a notification function
if necessary. Set the item’s draw function if it has graphic
feedback (e.g., a color slider).

kADMSpinEditPopupType Get the item’s list and set its menu ID. If necessary, activate
an entry or entries. Set the item’s text. Set any numerics,
including ranges, units, etc. Set the small increment to be
used for the spinner.

Item type (see ADMItem.h) Initialization

CHAPTER 3: ADM Suites Item suite 76

FloatToText and TextToFloat functions

The ADM ADMItemTextToFloatProc/ADMItemFloatToTextProc (see ADMItem.h) routines are available
to plug-in programmers who want to override the ADM default text-to-float and float-to-text routine
behaviors. You can override them by using sADMItem->SetTextToFloatProc and
sADMItem->SetFloatToTextProc. With ADMItemFloatToTextProc, you can affect the float value used

kADMSpinEditScrollingPopupType Get the item’s list and set its menu ID. If necessary, activate
an entry or entries. Set the item’s text. Set any numerics,
including ranges, units, etc. Set the small increment to be
used for the spinner.

kADMSpinEditType Set the item’s text. Set any numerics, including ranges, units,
etc. Set the increments to be used for the spinner.

kADMTabbedMenuType Obsolete.

kADMTextCheckBoxType Set the item’s boolean value.

kADMTextEditMultiLineReadOnlyType Same as kADMTextEditMultiLineType, except you cannot
type in them or select them.

kADMTextEditMultiLineType Set the item’s text and maximum text length. Set any
numerics, including ranges, units, and precision.

kADMTextEditPopupType Get the item’s list and set its menu ID. If necessary, activate
an entry or entries. Set the item’s text. Set any numerics,
including ranges, units, and precision.

kADMTextEditReadOnlyType Same as kADMTextEditType, except you cannot type in
them or select them.

kADMTextEditScrollingPopupType Get the item’s list and set its menu ID. If necessary, activate
an entry or entries. Set the item’s text. Set any numerics,
including ranges, units, and precision.

kADMTextEditType Set the item’s text and maximum text length. Set any
numerics, including ranges, units, and precision.

kADMTextPushButtonType Push buttons need a notification routine.

kADMTextRadioButtonType Set the boolean value of one radio button in a group to be
true. You do not need to use a notification routine to handle
radio-button groups if all buttons in the group have
consecutive IDs; ADM handles this case automatically.

kADMTextStaticMultilineType Possibly enable or disable.

kADMTextStaticType Possibly enable or disable.

kADMUserType Since this usually is used for custom items, you set the draw,
notification, and tracking functions. User items have the
same properties as any other items, so you also may want to
set a picture, text, or value. You determine the needed
initialization.

Item type (see ADMItem.h) Initialization

CHAPTER 3: ADM Suites Item suite 77

for the item; reciprocally, with ADMItemTextToFloatProc, you can affect the text that is made visible to
the user.

For instance, these would be used when you have an ADM numeric-text item that has a min and max but
also can have no value to indicate it is unused. Under the default ADM text-to-float routine, when the user
deletes the value, ADM puts a 0 back in the field. To keep it from doing this, use
ADMItemTextToFloatProc.

If the ADMItemTextToFloatProc returns false, the text is assumed to be invalid, and a notification is
presented to the user. If true is returned, and the item is known (see sADMItem->IsKnown), ADM checks it
against the min and max values and acts accordingly. If true is returned and your
ADMItemTextToFloatProc marked the value as unknown, the text is used as is, and no notification to the
user is made.

The float-to-text functions are as follows:

sADMItem->DefaultFloatToText

sADMItem->GetFloatToTextProc

sADMItem->SetFloatToTextProc

sADMItem->DefaultTextToFloat

sADMItem->GetTextToFloatProc

sADMItem->SetTextToFloatProc

Help support

CAUTION: The Help API is deprecated. This does not include tool tips.

ADM has built-in support for ASHelp, a WinHelp-type help system. This allows ADM user interfaces to use
WinHelp-compatible files to provide assistance to the user. ASHelp uses WinHelp file definitions in a
cross-platform fashion. Each ADM object can have a help ID that is used to identify a location in the help
file to be displayed when help is triggered. The system can operate in contextual fashion. For example,
selecting Command ? in Mac OS or Alt + F1 in Windows lets you click an item and see its help resource. For
plug-ins to support help files, there must be a Plugin Help location in the PiPL resource.

The host application probably provides a help file for itself and all the plug-ins that ship with it. Individual
plug-ins also can provide their own help files independently of this.

To specify an alternate help file, a property is created in the plug-in's PiPL. If this property does not exist,
help for the plug-in is assumed to be in the main help file. The property is as follows:

#define kHelpFileStrIDProperty 'HlpS'

The data for the property is versioned with the current specification:

//current is version 0
typedef struct PIHelpFileDesc
{

long fVersion;
long fFileNameStrID;

} PIHelpFileDesc

CHAPTER 3: ADM Suites List suite 78

The fFileNameStrID is an indexed string resource giving the name of the help file to use for the plug-in.
The name should be the first string in the list:

#define kHelpNativeStrIndex 1

So, on Mac OS, in addition to the PiPL/property, a 'STR#' resource is created with the indicated ID and the
name of the help file as the first (and possibly only) string. On Windows, a string resource with the ID
“fFileNameStrID + 1” identifies the help file.

The plug-in help file must be in the same directory as the main application help file.

The ADM help-support functions are as follows:

sADMItem->SetHelpID

sADMItem->GetHelpID

sADMItem->Help

sADMItem->SetTipString

sADMItem->GetTipString

sADMItem->GetTipStringLength

sADMItem->EnableTip

sADMItem->IsTipEnabled

sADMItem->ShowToolTip

sADMItem->HideToolTip

For more information

For Illustrator, see ADMItemSuite in Adobe Illustrator CS4 SDK API Reference.

For other products, see the documentation in the ADMItem.h header file.

List suite
The ADM List suite allows you to access ADM List objects and ADM List entries. Since an ADM list is an
extended property of a standard ADM item, this suite lacks many of the functions common to ADM
objects; however, you can access the list’s ADM Item and do common operations on it. Using functions in
this suite, you can initialize the list, and you can create, destroy, customize, and iterate through the entries
of a list. The list suite is used in conjunction with the ADM Entry suite to further access list-related
information.

Accessing the suite

Acquire this suite by calling SPBasicSuite::AcquireSuite(). To determine the values to use for the
name and version parameters in this call:

For Illustrator, see ADMListSuite in Adobe Illustrator CS4 SDK API Reference.

For other products, see the ADMList.h header file.

CHAPTER 3: ADM Suites List suite 79

Lists and entries

ADM lists are used by any ADM item that provides a list of choices, including list boxes, pop-up lists,
pop-up menus, spin-edit popups, and text-edit popups. An ADM list is composed of ADM entries.

ADM lists do not have many standard properties, like plug-in and bounds; rather, these are defined using
the ADM list’s item. To access them, use the sADMList->GetItem function to get the item owning the list,
then use the ADM Item suite functions (see “Item suite” on page 73”) with the returned-item reference.

ADM lists have special properties, such as a menu-resource ID and a group of entries. ADM entries (see
“Entry suite” on page 68”) have additional properties, including an index and a selected state. These entry
properties are used by the ADM List suite to access the entries. The index is the position of the entry in list.
The selected state indicates the user has selected the item (others may be selected in the case of a
multi-select list).

Using the List suite

To get the ADM List object for an item, use sADMItem->GetList:

ADMListRef theItemsList = sADMItem->GetList(theItem);

Once this is done, you can use the ADM List and Entry suite functions to modify it.

To initialize a list, assign it a menu-resource ID:

sADMList->SetMenuID(theItemsList, gPlugInRef, 16000, "Choices");

You also can create each entry with the sADMList->InsertEntry function followed by the
sADMEntry->SetText and sADMEntry->SetID functions:

for (index = 0; index < kNumberEntries; index++)
{

char menuText[255];
ADMEntryRef entry = sADMList->InsertEntry(theItemList, index);
sADMBasic->GetIndexString(thePlugin, 16000, index, menuText, 255);
sADMEntry->SetText(entry, menuText);
sADMEntry->SetID(entry, index);

}

NOTE: List indices are 0-based.

To get the currently selected item of a single selection list, use the sADMList->GetActiveEntry function,
then get the entry’s index, as follows:

int GetListValue(ADMItem theListItem)
{

ADMListRef theList = sADMItem->GetList(theListItem);
ADMListEntryRef theEntry = sADMList->GetActiveEntry(theItemList);
return sADMEntry->GetID(theEntry);

}

CHAPTER 3: ADM Suites List Entry suite 80

To get each selected item in a multiple selection list, get the selection count and iterate through the
selections, as follows:

int count = sADMList->NumberOfSelectedEntries(theList);
for (index = 0; index < count; index++)
{

ADMEntryRef entry = sADMList->IndexSelectedEntry(theList, index);
doSomethingToSelectedEntry(theEntry);

}

Custom lists

You can customize an ADM List object just as you can customize other ADM items. This is done by defining
one or more event-handler functions. Because ADM lists are closely linked to ADM entries, the process is
slightly different.

The ADM list does not have its own event-handler functions. To do something to the list as a whole in a
handler, set the handler function for the list; for instance, to annotate the list, set the drawer function for
the list. These are assigned using the ADM Item suite.

To change the behavior of the list at a lower level, set the handler functions of the list’s entries; for
instance, to change how each entry draws, set the drawer function for the list’s entries. This is done at the
list level using the ADM List suite, and it affects all entries in a list. You cannot directly set a handler
function for an individual entry; a custom handler function for a list must work for all its entries.

To use the default behavior for a list item, use the ADM Item suite functions. To use the default behavior for
a list entry, use functions in the ADM Entry suite; not the ADM List suite.

For more information

For Illustrator, see ADMListSuite in Adobe Illustrator CS4 SDK API Reference.

For other products, see the documentation in the ADMList.h header file.

List Entry suite
An ADM List Entry object is a member of an ADM Hierarchical List object. It acts exactly like an ADM Entry,
except it has the possibility of containing child lists and entries. Since an ADM list entry is an extended
property of a standard ADM Item, you can access the list entry’s ADM item and perform operations on it.
Using functions in this suite, you can create, destroy, customize, and iterate through the entries of a
hierarchical list. The List Entry suite is used in conjunction with the ADM Hierarchical List suite to further
access list-related information.

Accessing the suite

Acquire this suite by calling SPBasicSuite::AcquireSuite(). To determine the values to use for the
name and version parameters in this call:

For Illustrator, see ADMListEntrySuite in Adobe Illustrator CS4 SDK API Reference.

For other products, see the ADMListEntry.h header file.

CHAPTER 3: ADM Suites List Entry suite 81

List objects and entries

ADM List objects are used by any ADM Item object that provides a list of choices, including list boxes,
pop-up lists, pop-up menus, spin-edit popups, and text-edit popups. An ADM list is composed of ADM
entries. In similar fashion, an ADM Hierarchy List object is composed of ADM List Entry objects, which
themselves may be hierarchical lists. See the following figure.

ADM hierarchy lists and list entries do not have many standard properties, like plug-in and bounds; rather,
these are defined using the ADM hierarchy list’s item. To access them, use sADMListEntry->GetItem to
get the item owning the hierarchy list, then use the ADM Item suite functions (see “Item suite” on
page 73”) with the returned-item reference.

ADM lists and hierarchy lists have special properties, like a menu-resource ID and a group of entries. ADM
entries and list entries have other properties, including an index and a selected state. These entry
properties are used by the ADM List Entry suite to access the entries. The index is the position of the entry
in the list. The selected state indicates the user has selected the item (others may be selected in the case of
a multi-select list).

Help support

CAUTION: The Help API is deprecated. This does not include tool tips.

ADM has built-in support for ASHelp, a WinHelp-type help system. This allows ADM user interfaces to use
WinHelp-compatible files to provide assistance to the user. ASHelp uses WinHelp file definitions in a
cross-platform fashion. Each ADM object can have a help ID that is used to identify a location in the help
file to be displayed when help is triggered. The system can operate in contextual fashion. For example,
selecting Command ? in Mac OS or Alt + F1 in Windows lets you click an item and see its help resource. For
plug-ins to support help files, there must be a Plugin Help location in the PiPL resource.

For more information

For Illustrator, see ADMListEntrySuite in Adobe Illustrator CS4 SDK API Reference.

For other products, see the documentation in the ADMListEntry.h header file.

CHAPTER 3: ADM Suites Notifier suite 82

Notifier suite
The ADM Notifier suite lets you access the high-level events happening within your plug-in/user
interaction. For low-level events, use the ADM Tracker suite functions (see “Tracker suite” on page 86).

Accessing the suite

Acquire this suite by calling SPBasicSuite::AcquireSuite(). To determine the values to use for the
name and version parameters in this call:

For Illustrator, see ADMNotifierSuite in Adobe Illustrator CS4 SDK API Reference.

For other products, see the ADMNotifier.h header file.

Notifier functions

ADM notifiers are callback functions assigned to ADM objects. They allow your plug-in to be notified that
the user has interacted with an object. A notifier function is be called when the user interaction is
complete; for instance, when the mouse button is released. To specify an ADM notifier function to use with
an ADM object, use an assignment function:

void ASAPI (*SetNotifyProc)(ADMObjectRef inObject, ADMObjectNotifyProc inNotifyProc);

For ADM Dialog objects and ADM Item objects, this assignment function is found in the object suite.
Notifier functions for ADM Entry objects and ADM List Entry objects are assigned to the list or hierarchy
list, respectively, that contains them. All entries or list entries in an ADM List object or ADM Hierarchy List
object have the same notifier function.

All ADM notifier callbacks have the following signature:

typedef void ASAPI (*ADMObjectNotifyProc)(ADMObjectRef inObject,
ADMNotifierRef inNotifier);

The object argument is a reference to the dialog, item, or entry that is to be notified a user event has
occurred. The inNotifier argument is a reference to the notification event and is used with the functions
in this suite to obtain information about the event.

All ADM objects have a default notifier function that provides their normal notification behavior. For
instance, the default notifier for a kADMTextRadioButtonType is to set its selected state to true and the
selected state of other buttons in its group to false. You always should call the default notifier function of
an object to ensure standard behaviors occur. To call the default notifier, use a function of the object suite:

void ASAPI (*DefaultNotify)(ADMObjectRef inobject, ADMNotifyRef inNotifier);

Pass the DefaultNotify function the arguments that were passed to your notifier function; for instance:

void mySquareNotifyHandler(ADMItemRef item, ADMNotifierRef notifier)
{

sADMItem->DefaultNotify(item, notifier);
}

CHAPTER 3: ADM Suites Notifier suite 83

Using notifier functions

The functions in the ADM Notifier suite require an ADMNotifierRef, which basically is an event context.
One of the arguments passed to your notifier function is a notifier reference, which is passed to each ADM
notifier function:

void myDialogNotifyHandler(ADMDialogRef inDialog, ADMNotifierRef inNotifier)
{

sADMItem->DefaultNotify(inDialog, inNotifier);

if (sADMNotifier->IsNotifierType(inNotifier, kADMZoomHitNotifier)
{

// handle the window zoom...
}

}

Notifier types

Several types of ADM notifiers are received at certain times. Some are listed in the following table.

Notifier Purpose

kADMBoundsChangedNotifier Received when an object is resized. This is received by
both ADM items and dialogs. If a dialog receives this
notification and resizes its items, the resized items would
then receive this notifier.

kADMCloseHitNotifier Received by ADM dialogs when a window’s close button is
clicked. It is your responsibility to hide the window; ADM
does not do so automatically.

kADMCollapseNotifier Received by ADM dialogs when the user is collapsing the
panel via the tab.

kADMContextMenuChangedNotifier Received by ADM dialogs when an edit operation occurs
via a clipboard operation.

kADMCycleNotifier Received by ADM dialogs when a user is double clicking or
triple clicking in the title bar of a tab panel.

kADMEntryTextChangedNotifier Received by ADM Entries when a list entry’s text changes
by in-place editing. For instance, when an edit-text item’s
text changes, a kADMUserChangedNotifier notifier is
received.

kADMExpandNotifier Received by ADM dialogs when the user is expanding the
panel via the tab.

kADMGroupHideNotifier Received by an ADM item group when it is hidden.

kADMGroupShowNotifier Received by an ADM item group when it is shown.

kADMIntermediateChangedNotifier Received by ADM items when a user is in the process of
changing input data via a slider, etc., but has not yet
completed the task.

CHAPTER 3: ADM Suites Notifier suite 84

kADMNumberOutOfBoundsNotifier Received by ADM dialogs when a user enters a value
greater or smaller than the min/max values for the entry.

kADMUserChangedNotifier The default notifier, received by all ADM objects. This type
applies to all notification events that cannot be classified
explicitly as one of the precise types below.

kADMWindowActivateNotifier Received by ADM dialogs when a window is activated
(focus moves into the dialog area).

kADMWindowDeactivateNotifier Received by ADM dialogs when a window is deactivated
(focus moves to another screen area).

kADMWindowDragMovedNotifier Received by ADM dialogs when the user moves the dialog
by dragging it.

kADMWindowHideNotifier Received by ADM dialogs when the user is in the process
of hiding a window.

kADMWindowShowNotifier Received by ADM dialogs when the user is in process of
showing a window.

kADMZoomHitNotifier Received by ADM dialogs when a window’s zoom button
is clicked. It is your responsibility to change the window
size; ADM cannot do this automatically.

Text-item notifiers:

kADMPostClipboardClearNotifier Received by ADM text-edit items after the clipboard clear
operation occurs.

kADMPostClipboardCopyNotifier Received by ADM text-edit items after the clipboard copy
operation occurs.

kADMPostClipboardCutNotifier Received by ADM text-edit items after the clipboard cut
operation occurs.

kADMPostClipboardPasteNotifier Received by ADM text-edit items after the clipboard paste
operation occurs.

kADMPostClipboardRedoNotifier Received by ADM text-edit items after a redo command
occurs.

kADMPostClipboardUndoNotifier Received by ADM text-edit items after an undo command
occurs.

kADMPreClipboardClearNotifier Received by ADM text-edit items when a user issues a
command to clear the clipboard, but the clear has not yet
occurred.

kADMPreClipboardCopyNotifier Received by ADM text-edit items when a user issues a
copy command, but the copy has not yet occurred.

kADMPreClipboardCutNotifier Received by ADM text-edit items when a user issues a cut
command, but the cut has not yet occurred.

Notifier Purpose

CHAPTER 3: ADM Suites Notifier suite 85

ADM items automatically handle certain behaviors internally and not through their notification function.
These behaviors include setting text values or pop-up list selections. If you want ADM items to interact,
you need to use a notifier. As a matter of practice, you should always call the sADMItem->DefaultNotify
function within your custom function, even though in many cases there is no default notification. The
default behaviors of item notifiers are shown in the following table.

kADMPreClipboardPasteNotifier Received by ADM text-edit items when a user issues a
paste command, but the paste has not yet occurred.

kADMPreClipboardRedoNotifier Received by ADM text-edit items when the user issues a
redo command, but the redo has not yet occurred.

kADMPreClipboardUndoNotifier Received by ADM text-edit items when the user issues an
undo command, but the undo has not yet occurred.

kADMPreTextSelectionChangedNotifier Received by ADM text-edit items when the user issues a
text-selection change command, but the change has not
yet occurred.

kADMTextSelectionChangedNotifier Received by ADM text-edit items after the text-selection
change operation occurs.

Item type Standard notification behavior

kADMFrameType
kADMListBoxType
kADMPictureCheckBoxType
kADMPicturePushButtonType
kADMPictureStaticType
kADMScrollbarType
kADMSliderType
kADMSpinEditType
kADMTextCheckBoxType
kADMTextEditMultilineType
kADMTextEditType
kADMTextPushButtonType
kADMTextStaticMultilineType
kADMTextStaticType
kADMUserType

None

kADMPictureRadioButtonType
kADMTextRadioButtonType

Sets the state of other radio buttons in the group.

kADMHierarchyListBoxType
kADMPopupListType
kADMPopupMenuType
kADMScrollingPopupListType
kADMSpinEditPopupType
kADMSpinEditScrollingPopupType
kADMTextEditPopupType
kADMTextEditScrollingPopupType

When the popup is used, notifies the item only if a list entry was
selected.

kADMResizeType Sends bounds-changed notification.

Notifier Purpose

CHAPTER 3: ADM Suites Tracker suite 86

For more information

For Illustrator, see ADMNotifierSuite in Adobe Illustrator CS4 SDK API Reference.

For other products, see the documentation in the ADMNotifier.h header file.

Tracker suite
The ADM Tracker suite lets you access the low-level events or actions happening within your plug-in/user
interaction. For high-level events, use the ADM Notifier suite functions. The ADM tracker stores all the
“tracked” state information in the TrackerRef, and it is a snapshot of what activity was in progress when the
tracker was activated. Any GetTrackerInfo function obtains the state of the events at that point, not the
current state.

Accessing the suite

Acquire this suite by calling SPBasicSuite::AcquireSuite(). To determine the values to use for the
name and version parameters in this call:

For Illustrator, see ADMTrackerSuite in Adobe Illustrator CS4 SDK API Reference.

For other products, see the ADMTracker.h header file.

Trackers

ADM trackers are routines that track low-level user interaction with dialogs and dialog items. When used in
conjunction with action masks (see ADMTracker.h for a complete listing of all trackable modifier keys and
mouse-key actions), you can use trackers to keep aware of what the user is doing in interacting with your
plug-in dialog.

For example, by setting up an ADM action mask with the various conditions you want to track and having
your initialization routine set up a tracker procedure to call a notify procedure, your plug-in code can be
alerted when the user causes an event you want to track.

The sequence is as follows:

1. Select the item to be “tracked,” with sADMDialog->GetItem.

2. Set up a notifier routine to call when your user-interface button is pressed, with
sADMItem->SetTrackProc.

3. Tell ADM what conditions to check for, with sADMItem->SetMask. When the specified condition is
encountered, your Tracker proc should handle the appropriate response.

For more information

For Illustrator, see ADMTrackerSuite in Adobe Illustrator CS4 SDK API Reference.

For other products, see the documentation in the ADMTracker.h header file.

 87

4 ADM Folders and Files

The ADM files are part of an accompanying SDK for an Adobe host application. They provide the
supporting files you need to work with your host application.

The following table lists the core ADM files.

File Description

ADM.txt Definitions of ADM item types and Windows and Mac OS resource information.
This is the same information listed in the tables in “Windows ADM items” on
page 36 and “Mac OS ADM items” on page 39.

ADMBasic.h ADM Basic Suite functions.

ADMDialog.h ADM Dialog Suite functions.

ADMDialogGroup.h ADM DialogGroup Suite functions.

ADMDrawer.h ADM Drawer Suite functions.

ADMEntry.h ADM Entry Suite functions.

ADMHierarchyList.h ADM Hierarchy List Suite functions.

ADMIcon.h ADM Icon Suite functions.

ADMImage.h ADM Image Suite functions.

ADMItem ADM Item Suite functions.

ADMList.h ADM List Suite functions.

ADMListEntry.h ADM List Entry Suite functions.

ADMNotifier.h ADM Notifier Suite functions.

ADMResource.h ADM Resource ID lists.

ADMTracker.h ADM Tracker Suite functions.

ADMTypes.h Definitions of ADM resources, units, fonts, colors, etc.

 88

5 ADM Error Codes

The following error codes can be returned wherever you see an ASErr / ADMErr returned by an API, or as
the value of the outError argument to the sADMBasic->GetLastADMError call. In addition, you can
return any of these errors from your initialization callbacks.

kNoErr 0
kOutOfMemoryErr ’!MEM’
kBadParameterErr ’PARM’
kNotImplementedErr ’!IMP’
kCantHappenErr ’CANT’
kADMCustomResourceError ’rErr’
kADMCustomResourceExistsError ’!Unq’
kADMStreamUnavailableError ’noSe’
kADMResourceNotFoundError ’r!fd’
kDialogResourceNotFoundError ’DLOG’
kDialogItemListResourceNotFoundError ’DITL’
kCouldntCreateItemError ’!itm’
kDockHostConflictError ’DOCK’
kTabGroupNotFoundError ’T!FD’
kAlreadyDockedError ’DCKD’

For more information on errors returned by Illustrator, see Error Return Codes in Adobe Illustrator CS4 SDK
API Reference.

 89

6 Frequently Asked Questions

Lists
My hierarchical list entries are not showing. What do I need to do?

Call sADMHierarchyList->SetEntryTextRect. The text rectangle for hierarchical lists defaults to an
undefined rect.

I have an ADM frame item in my dialog with items inside. Those items do not seem to work. How do
I make them work?

Move the frame item lower in the item list, so it is the last item created. Do not just change the ID;
open the .rc file as text, and move the line defining the item.

I'm trying to get a scrolling list box that allows items to be checked and unchecked. Is there an easy
way to do this in ADM?

There is no built in way, but it is not hard to implement. Essentially, make two icons, checked and
unchecked, and put a track proc on the list. When the mouse clicks the icon, use the
sADMItem->SetPictureID function to change the icon. Then call the default.

I've seen a reference to kADMNewDeleteStyle, but it seems to be gone. Is there an equivalent? (I
want a trash can at the bottom of my list, and I'll be adding a few custom icons too.)

Add the items yourself as pict push buttons. You can use the resize item for a relative position and
height. The icons are included in ADM, and you can set the picture ID to one of ADM's constants. See
ADMResource.h.

My list flickers when it draws. Is there a way to reduce this?

There is support for drawing entries in a list box off-screen. Just add the kADMUseImageListBoxStyle
style.

Is it possible to hide the scrollbar in an ADM ListBox? I have a list box that will have a fixed number
of items and does not need the disabled scrollbar.

Use the following code to hide the scrollbar:

scrollbarItem = sADMItem-
>GetChildItem(listItem,kADMListBoxScrollbarChildID);

sADMItem->Show(scrollbarItem, false);

CHAPTER 6: Frequently Asked Questions Text 90

Text
I have an ADM numeric text item that has a min and max, but it can also have no value to indicate it
is unused. When the user deletes the value, ADM puts a 0 back in the field. How can I get it to stop
this behavior?

Use an ADM TextToFloat function (see “FloatToText and TextToFloat functions” on page 76). ADM has
a default TextToFloat routine it uses. You can override it by using sADMItem->SetTextToFloatProc,
and you will have an opportunity to affect the float value used for the item.

If the TextToFloat proc returns false, the text is assumed to be invalid, and a notification is presented
to the user. If true is returned and the item is known (see sADMItem->IsKnown), ADM checks it against
the min and max values and acts accordingly.

If true is returned and your TextToFloat proc marked the value as unknown, the text is used as is, and
no notification to the user is presented.

I want to have a static text label select the text edit item next to it. How do I do this?

kADMTextStaticType and kADMPictureStaticType items auto-activate the edit items they are next
to. By default, they look at the next item to see if it is editable. If not, they try the previous item. If that
still is not editable, they try the one after the next item. (The last case is to handle labels on a slider that
have edit boxes.) This works in most cases.

if this is not the behavior you want, you can use kADMDisableAutoActiveTextStaticStyle and
kADMDisableAutoActivatePictureStaticStyle to turn off auto-activate.

If it does not seem to work, check the ordering in the resource. Alternately, disable auto-activate and,
on the kADMUserChangedNotifier, activate the correct edit item.

For Windows static-text items, kADMDisableAutoActivateTextStaticStyle also disables
converting ampersands to underscores for shortcuts in modal dialogs. Any Windows static-text items
that display user defined strings should turn this flag on in their dialog init code.

How do I tell if a text item is part of a composite item?

If you use composite items, you would need to keep track of the parent item and check for matches
against its children using GetChildItem.

Why does every edit item display with “pt” appended to the text?

This is the default. You can turn off units for the individual item with the sADMItem->SetUnits
function. You can set the defaults for all new text items with the host suite SetADMDefaultTextInfo
function.

I can't get an edit text to display centered. Why?

This would be on Windows, since the sADMItem->SetJustify function works in Mac OS. Windows
does not support changes in justification to a single-line edit item after it is created.

Is there any way to measure how many pixels wide a particular string displayed in a text item will
be?

No. Only static text can be measured.

CHAPTER 6: Frequently Asked Questions Text 91

How do I get ADM numeric text fields to not allow decimal numbers. When I set a precision of 0, I can
still enter, for instance, “5.5,” and it will truncate to “5.0.”

Set kADMIntegerNumeric instead of 0.

There is no mechanism for appending text to the text edit item. I can get the text, append to that,
and re-set the text, but that’s not an efficient solution for an interactive console, especially once the
console contains a lot of text.

Use sADMItem->GetChildItem. The child IDs are listed in ADMItem.h.

Is it possible to access the scroll bar for this multi-line text item (and if so, how do I get a reference to
it)?

No.

I’d like to change text fields back and forth between edit-text and static-text based on the settings
of check boxes. This works in the Mac OS dialog manager. I can’t just disable an edit-text item, since
text in disabled edit-text boxes disappears. That's annoying, as I'd like users to see the text, just not
edit it.

You can make an edit and a static text. Instead of doing a set type, flip the one that is visible.

I'd like a call in the ADM Entry suite to change the text style.

You can override the drawer for the list, and since you would use the ADM Drawer suite, it will be
cross-platform.

I want to set the text on my list item. Is the basic idea as follows (using IADM)?
IADMEntry e = hl->InsertEntry(1);

IADMItem i = e->GetItem();

i->SetText("foo");

You would not set the text on the item, but on the entry itself. You probably do not need the item
reference/object.

IADMEntry e = hl->InsertEntry(1);
e->SetText("foo");

What are the string lengths in use by ADM?

For the most part, and for ADM object text, the length is 256 (including the terminator). Tool-tip text is
allocated dynamically, since tool tips may not be in use. Text identifiers (e.g., dialog names) are pooled
strings. As such, they are subject to the SuitePea string pool limits. By default, there is no maximum
length, but SuitePea allows the string pool to be substituted and, so, it is subject to the host.

My edit control is defaulting to a numeric style control and ADM tries to validate it and gives an
error if there was ASCII text in the control. The resource definition looks like the following. How can
I get it to be a normal text item by default?
EDITTEXT ctUser1,102,35,70,12,ES_AUTOHSCROLL | ES_OEMCONVERT

Add the ES_LEFT style as:

EDITTEXT ctUser1,102,35,70,12,ES_AUTOHSCROLL | ES_OEMCONVERT | ES_LEFT

CHAPTER 6: Frequently Asked Questions Color 92

Color
I want to fill a rect with color. How do I do this?

Use an ADM user item and override the Drawer proc. In the your Drawer proc, you can use
sADMDrawer->SetRGBColor and sADMDrawer->FillRect.

Tell me where I'd get the proper ADM calls for tool bevel colors (3DShadow, 3D highlight, 3D Fill,
etc.)?

The ADM colors are in ADMTypes.h. Some of the colors may have the same RGB values, but by using
the constants, the user interface can change and will look correct.

For a given ADM drawing operation, you can set them with sADMDrawer->SetADMColor. You can get
the RGB representation of an ADM color with sADMBasic->ADMColorToRGBColor.

How is kADMForegroundColor used? Is there a foreground color that is stored even when you've
switched to something like kADMBackgroundColor? If so, what is the proper way to save/restore
the color state? Does calling sADMDrawer->SetRGHColor implicitly switch you to
kADMForegroundColor mode?

Image-processing programs likely have a concept of a foreground color and a background color that
affect certain operations. ADM’s color scheme is very simple, being intended for user-interface work.
The foreground color is always black (or gray for disabled items). That’s it—no modes, just black. The
background color is some variant of grey.

To get and restore colors, use the ADM Drawer color functions:

sADMDrawer->GetRGBColor
sADMDrawer->SetRGBColor
sADMDrawer->GetADMColor
sADMDrawer->SetADMColor

sADMDrawer->GetADMColor returns either the user-interface color constant in use or the RGB color, so
it may be more convenient in some cases since you would not need to do a look-up yourself.

Should I save/restore both the RGB color and the ADM color? Or is the state reset to default at each
draw event? Is my drawer private to me?

A drawer is created for each drawing operation, and whatever defaults exist are used. So, in general,
your drawer is reset and ready to use. There is one known bug with the clip rect for ADM entries, so we
cannot say it always is fully reset. Assume it is, and report strange behavior to Adobe Developer
Support.

How does ADM handle the window’s system colors?

ADM recolors bitmaps in .icn format, but not those in .bmp. The recoloring scheme recolors all
shades of gray in the original image. Colors are not recolored, and you can prevent recoloring by
making pixels slightly off-gray.

If the face color is dark, it maps a dark shade of gray; if it is light, it maps a light shade of gray.
Everything else maps proportionally. So, for example, if the color scheme has the face at 25% intensity,
the highlight at 10%, and the shadow at 50%, the grays map accordingly (50% gray becomes the
shadow color when mapped). If the scheme is darker and has the face at 50%, the highlight at 25%,
and the shadow at 75%, the grays still map accordingly (50% gray becomes the face color when
mapped).

CHAPTER 6: Frequently Asked Questions Panels 93

Panels
How do I set and restore how panels are tabbed together?

For sample code, see the ADMNonModalDialog sample on the Adobe Illustrator SDK. The gist of the
process is described below.

The following two functions are involved: sADMDialogGroup->GetDialogGroupInfo and
sADMDialogGroup->SetDialogGroupInfo.

The Get function is used to retrieve the current panel positioning information, so you can save it in
your preferences. The Set function is used to restore your panel position. You need to have some
default information for the first time the panel used.

Use the Get function in your dialog Destroy proc. This way, whenever your dialog is destroyed its
position is saved; you do not have to worry about it being saved at shut-down or whenever else saving
might need to occur. Similarly, use the Set function from within your dialog Init proc.

There are two values needed to save a tab panel position: groupName and positionCode. When you
use the sADMDialog->Create function, you specify a dialog name. This is meant to be a unique
identifier and is used to determine a panel’s position. The groupName returns this identifier for the
top-left-most panel in a tab/dock group. All panels in a group should have the same groupName
identifier. The front tab is dealt with elsewhere; the groupName panel is an anchor.

The position code identifies where a panel is relative to the top-left panel (groupName). There is
information on this in the ADMDialogGroup.h header file; in a nutshell, it is a four-byte code. The low
two bytes are 1-based indices specifying where the panel is relative to the top left one. 0x00nn0101 is
the top left, 0x00nn0201 is the second tab in the top tab group (top dock), 0x00nn0102 is the first tab
in the second tab group (second dock), 0x00nn0202 is the second tab in the second dock, etc.

The third byte is a group of bit flags. (There are masks in ADMDialogGroup.h.) Bit0 indicates whether
the current dialog is the front-most tab; only one per tab group would have this set. Bit1 indicates
whether the tab group is collapsed (1 is collapsed, 0 is expanded); all panels in a tab group probably
would have the same setting. Bit2 indicates whether the entire dock group (all tabs and all tab groups)
is visible; all panels in the collection would have the same setting (if not, the last one to set a position
code would set the visibility for all).

In your preferences file, just write/read a C string and a long.

In Illustrator, there is a file with all the panel name constants and dock codes. Since they are all relative
to each other, they should be in the same place.

Do I always have to create all my panels?

A panel would not have to be created if it is not visible and standalone (not tabbed or docked with
anything else; there is a function to determine this for a given position code). Other times, a panel
must be created, because it is in a group or visible but standalone. The tendency is to create all panels
all the time.

Does the order in which I restore my panels matter? Do I have to restore a group completely?

No. During restoration, the top-left dialog does not have to exist initially or at any time in the process.
Other tab panels can be missing and it will not affect the process. So, for instance, if you are operating
in a plug-in panel world, panel restoration works even if one or more plug-ins is removed.

CHAPTER 6: Frequently Asked Questions Panels 94

How do I create the pop-up list for a panel—the one in the upper right of the window by the tabs?

Get the kADMMenuItemID item and, from it, get its list. When you populate the list with either a
platform menu resource or by creating entries, it automatically is made visible.

How do I do a dialog tracker?

Most panels/dialogs that need tracking need it at the item level. If they need to track the entire
window, probably there is one or more items that cover that window. Simply make a tracker as big as
the window or, for instance, as big as the window less scroll bars, and assign a tracker to it. Dialog
trackers can be tricky to use.

Dialog trackers are different than item trackers; a dialog track proc should not expect that the actions
sent to it are similar to those sent to an item’s track proc. Dialog trackers can be used when the items
in the dialog do not want to handle an event. The ADM tracker sends that event to the item’s dialog, to
see if it can process the event. You can set up a dialog tracker to process such an event.

For example, a use of a dialog’s track proc would be to trap keyboard events/modifiers for making
shortcuts work.

We are laying out our ADM panels and dialogs with PICTs for picture buttons. The backgrounds of
the picture buttons sometimes differ from that of the dialog. How does ADM handle the system
colors?

Do you mean, how do you get your pictures to blend in with whatever color scheme is being used?
With PICT/BMP resources, you cannot; they always retain their panel. The preferred way of doing
picture buttons is using icons, because of their masking feature, enabling backgrounds and other
system colors to show through.

How can I tell when my panel window is visible?

There are two notifiers for this in ADMNotifier.h. Dialogs should receive hide and show notification.
The simplest case for this is when the close box is hit.

When a dialog is tabbed with others but not front-most, it is considered hidden. When it is brought to
the front, the show notification is received. When another tab is selected, the hide notification is
received.

All dialogs that are part of a dock group and the front-most tab of their tab group receive hide/show
notification based on a hide/show action to any other front tab in the dock group. This is because a
hide/show on any visible panel affects any docked panels similarly.

Using the Tab key to hide/show all panels triggers this notification for any visible dialog.

The collapsed state of a tab does not affect its visible state and, thus, its corresponding menu state.
Collapsing and expanding a tab does not trigger a hide/show notification.

Also when saving state information to the preferences file, the visible state of tabbed panels should
not be saved directly; the visibility of all panels docked together is noted in the group position code.

Is there a desirable width for floating panels?

The default Adobe panel width is 206 pixels.

CHAPTER 6: Frequently Asked Questions Dialog-box behavior 95

The multi-line text-edit field includes a scroll bar. Normally this is useful, except when I size the field
to the full extent of the dialog. In this case, the down arrow on the scroll bar is hidden by the close
box. I normally would fix this by making the scroll bar shorter than the text field itself.

All Adobe panels are like this, presenting information above the resize box and using the area to the
left for things like buttons. Your design should follow this layout and provide shortcut buttons (or
pictures or white space).

My panel windows lose focus when the return key is pressed. This is interfering with my track proc’s
ability to get key events.

The window with focus is the one that receives key events. Even though an ADM window is
front-most, it does not necessarily have focus. This is by design, so the document window has priority.
The user can assign a panel window to have focus by doing a Cmd/Opt or Ctrl/Alt-click on the
window. It should then receive all key events.

I just started using ADM to implement the tool panel and am having problems getting the pop-right
flyout tools menu to track. I am creating a kADMPopupDialogStyle window and then adding
kADMPictureRadioButtonType items to it. I receive the mouse-down and -up messages to show and
hide the submenu through the tracking proc fine, but I don't get any mouse-movement messages
to track the menu. Should this work, or do I have to track the menu via the Notify proc using the
kADMIntermediateChangedNotifier message?

The ADM item in which the mouse down occurred captured the mouse, and all mouse actions go to
that item until the mouse is released. So you should be getting MouseMovedDown actions for the
item in which the button press occurs, which you must translate into the space of the flyout to figure
out what tool it is in.

The mouse-down item would “uncapture” the tracker, which then would allow events to be
dispatched to the items in which they occur. The mouse-down item would get an additional
UncapturedButtonUp event when the mouse button is released, so it could know to pop the tool
menu down.

Dialog-box behavior
I'm trying to create a resizable ADM dialog but am unable to figure out how to get items inside of
the dialog resizing correctly. The things that I've tried all end up in a stack overflow. How do I do
this?

Attach a notifier proc to the resize item instead of the dialog. The notifier proc should look for bounds
changed.

I want to bring up a system modal dialog and need to de-activate the ADM windows. How is this
done?

To support de-activating panels in Mac OS when you bring up a system modal dialog, there is the
ActivateWindows call in ADMHost.h.

Why does a dialog have a name, an ID, and text?

The ID maps to the resource ID. The text is displayed in the tab or the title bar of the window. The
name is an internal identifier and is not displayed to the user. It is used to restore dock groups and may
be used for identifying resources in the future.

CHAPTER 6: Frequently Asked Questions Dialog-box behavior 96

Calling sADMDialog->SetText for a dialog of type kADMFloatingDialogStyle doesn't make the title
appear. It seems as if your WDEF doesn't display them (I am working on Mac OS). Is this by design,
and is there any way around it?

sADMDialog->SetText is the correct way to do this. The text appears in the tab for tab panels. Adobe
does not put text in our title bars, so for non-tabbed windows, it was not hooked up.

I am experiencing problems getting ADM to load resources that are attached to the application and
not a plug-in. Is there a way to set where ADM looks for resources?

When you add a dialog or panel (e.g., sADMDialog->Create), you specify a plug-in ref, even for the
application-base ones. What did you specify here? You should create and save a single host plug-in
(SPAddHostPlugin) and use this for all your application-defined dialogs. When you add the host
dialog, you can specify a file instance to use for resources. ADM will use this.

How do I draw into an ADM window at an arbitrary time?

You can invalidate the item, and ADM calls your Drawer proc during the next update. If you need to do
something like drag feedback where this is not possible, you can create a drawer for the window port.
Remember to release it, though.

ASWindowRef windowRef = sADMDialog->GetWindowRef(sADMItem->GetDialog(item));
ASPortRef portRef = sADMDrawer->GetADMWindowPort(windowRef);

ADMDrawerRef drawer = sADMDrawer->Create(portRef, &boundsRect,kADMDialogFont);

DrawFeedbackXOR(drawer, location);

sADMDrawer->Destroy((ADMDrawerRef)drawer);

sADMDrawer->ReleaseADMWindowPort(portRef);

Why don’t my dialogs remember their last location on the screen, and instead always pop up in the
same place?

The “same place” should be centered on the screen, which is the default location if you do not bother
putting them somewhere else. The ones that remember their location are ADM dialogs where the
plug-in does a sADMDialog->GetBoundsRect in the Destroy proc and sADMDialog->SetBoundsRect
in the Init proc. Some of your dialogs may be system dialogs (e.g., print/file-related ones); there is
nothing ADM can do for you there.

sADMDialog->InvalidateRect causes an update of the whole dialog. Is there a workaround for this?

Invalidate the individual items and entries.

Is it possible to change the type of an item after a dialog is created?

You cannot change dialog or item types after they have been created.

The modal dialog I create doesn't prevent Photoshop from switching out. I'm using
sADMDialog->Create with kADMModalDialogStyle, and then using sADMDialog->DisplayAsModcel,
rather than using sADMDialog->Modal directly. Is that OK?

In the Adobe user interface, you are supposed to be able to switch out of the application.

CHAPTER 6: Frequently Asked Questions Popups 97

What is the correct way to delete a dialog? In my dialog Notify proc, I look for the
kADMCloseHitNotifier notifier. I then call sADMDialog->DefaultNotify then sADMDialog->Destroy,
but ADM crashes.

The way this is implemented, you are essentially deleting it while it is still in use. The crash is expected.
Note the dialog that needs to be deleted, and call sADMDialog->Destroy during your idle proc.

I want to dismiss a modal dialog with a shortcut. How does sADMDialog->EndModel work?

The sADMDialog->EndModal function takes a parameter, ASBoolean inCancelling. Normally this
should be false, but it can be true if you are implementing another way of getting the Cancel
functionality. When you call sADMDialog->EndModal with inCancelling set to true, ADM does not
verify the text in the current selection. If inCancelling is set to false, sADMDialog->EndModal might
return false (this is the place where you probably have to change your code); if it does, your code
should stop processing the notification and act as if nothing happened. What is happening in this case
is that a numeric text item had the focus, the user typed in something illegal, ADM put up an alert, and
so your code should cancel the notification handling.

I have a dialog box that uses sADMItem->SetFont, passing in the kADMPaletteFont on some items
and normal on the other text items. Everything is fine on the Roman side: small text is small, and
normal text is normal. But when I run the US Photoshop on a Japanese operating system on
Windows, the text is all the same, normal size. My dialog box is very busy, and I need the small text
to be small. How do I get around this?

You cannot. Non-Roman fonts tend to be less usable at smaller sizes, so though they exist, they are not
supported.

How should I handle an error in my Init proc during modal-dialog initialization?

Do not use sADMDialog->EndModal in your initialization procedure. Instead, when an error occurs
during initialization, the Init proc should return something other than kNoErr, and the dialog will not
start up or show up.

Popups
I want to have a pop-up menu at the top of my preferences dialog, so I may have multiple sections.
(Basically the same kind of functionality as the standard Adobe preferences dialog.) What is the
solution with ADM?

All the items exist within one dialog and are hidden/shown or moved on/off-screen as needed.

In response to certain user actions (for instance, a double click), I pop a modal dialog from within a
tracker. I get some odd behaviors on the trackers I add to the new dialog.

The code used to display the dialog resides within the Tracker proc, resulting in nested trackers. ADM
is not robust when it comes to handling nested trackers.

The thing to do is note that a double click occurred (and any other relevant info), and then call
sADMTracker->Abort and return true. This allows ADM to clean up the current tracker and causes
the notifier proc to be executed. In your notifier proc, check for a user-changed notification and your
double-click flag, then pop the dialog. All should be well. If you can get the platform port for an AGM
port, you can create an ADM drawer for it, although AGM support in ADM is deprecated.

CHAPTER 6: Frequently Asked Questions Dialog-box elements 98

How can I set a pop-up item list to use the small (panel) font?

You cannot mix fonts in dialogs (with the occasional exception of static text).

There’s no call in the ADM List suite for selecting a single item.

You could just get the active one and de-activate it, followed by activating the new active one.

Dialog-box elements
What is an intermediate change notifier?

When a user action is completed for an item, like a button press or tabbing out of a text item, a
kADMUserChangedNotification is sent to the item. For sliders, where the user clicks on them and
moves them, you might want some notification before the user lets up on the mouse. In this case,
ADM sends kADMIntermediateChangedNotifications to the item. When the mouse is released, the
user-changed notification is sent.

How can we display a string after our name in the Splash Screen, so we can put up something like
“Initializing QuickDraw 3D”?

It goes something like the example below. This works only during the start-up message. The string you
pass should appear in the splash screen. Also, see SPRuntme.h.

SPErr error = kSPNoError;

SPHostProcs *gHostProcs;

error = sSPRuntime->GetRuntimeHostProcs(&gHostProcs);

if (!error)

{

gHostProcs->startupNotify(kSetMessage,

(void*)”Initializing QuickDraw 3d”, gHostProcs->hostData);

}

When I create a slider, it won't do anything.

Make sure you set the min and max. They are the same by default.

Resizing the field (by resizing the window) causes the scrollbar to reset to zero and changes the
selection.

Get a resize notifier and set the position wherever you think it should be.

How do you recommend doing icon toggle buttons (i.e., an icon button that toggles on and off,
rather than one that’s off by default and turns on only when you hold the button down on it)?

There are picture check buttons, kADMPictureCheckBoxType. This should do what you want. There
also are picture radio buttons for use in a group.

CHAPTER 6: Frequently Asked Questions Timers 99

What are the resource parameters for creating a kADMPictureCheckBoxType?

See the platform-specific resource information in the tables in “Windows ADM items” on page 36 and
“Mac OS ADM items” on page 39.

Timers
I start doing something in my intermediate notification, and it takes a long time and the control
isn't very responsive anymore. What do I do?

You either scale back on what that “something” is, or you set a timer to see if the user has paused for a
duration and do the update. ADM timers work especially well in this case.

How do timers work?

A timer takes an item or dialog reference, a duration in milliseconds, and two callback procs. The first
callback proc is called if the duration expires; from the completion proc, you can return true, and ADM
repeats the timer. The second callback is called if the timer is aborted before the time duration. In this
case, an abort mask is passed to the create timer call (see, for example, sADMItem->CreateTimer). If
one of the actions in the mask occurs before the timer duration is finished, the abort proc is called. The
action that caused the abort is passed to the callback.

Operating-system-related queries
How does ADM handle platform native resources?

ADM uses platform native resources edited with the platform resource editor, so you have to maintain
two sets of resources, for Mac OS and for Windows.

Can I use a Windows ActiveX control within an ADM item?

Yes, it has been done. This is not explicitly supported by Adobe Developer Support, so you are on your
own in doing so. For possible help, see the Q&A for MFC controls.

Is ADM thread safe?

ADM is as thread safe as the operating system on which it runs. This is because ADM items are
implemented using platform controls.

Can ADM panels/dialogs receive operating-system-level drag events?

Yes, it is possible. It is a host- or platform-provided service, meaning there is no support for
drag-and-drop built into ADM. For instance, Illustrator implements drag and drop between the main
document and the panels and exports this as a SweetPea suite. This allows both the application and
plug-ins to take advantage of it by acquiring the suite/functionality.

What essentially happens is the subscriber (application or plug-in with a panel) registers the data
types it can accept and a callback for the drag action. The callback handles the feedback within the
ADM dialog using standard ADM dialog, item, and drawer functions.

The call sADMItem->SetCursorID is failing in Mac OS but works in WIndows.

The Mac version is missing the cursor resources. ADM recognizes 'CURS', not 'crsr'.

CHAPTER 6: Frequently Asked Questions Operating-system-related queries 100

When you move any of the panels in Windows, the panel outline border is the same color as the
main window. This results in not being able to see the panel outline when moving it. Expected
results: use a different border shade/color from the main application window to make it visible. The
default Windows color scheme was used. Is there anything we can do about it?

Not on the ADM side. This is a system setting. If you use the display-control panel and turn off “show
window contents when dragging,” all applications have this behavior. Live dragging was disabled,
because docked panels actually are several windows.

Can I have a notifier function set for an event as a Windows or Mac OS event?

No. Notifiers are assignable to an ADM object, not an event. If you want to get low-level events, use a
tracker. ADM provides a cross-platform event mechanism, and there is no way to get the system event.

Severe flashing occurs with the insertion cursor and text as you add or delete words. In some cases,
the issue is so bad that the insertion cursor fails to correctly line up at the location of where you
really are editing.

This is standard Windows behavior. Windows does not know how to set an insertion point in a
single-line edit text.

I can’t get floating-point sliders to work with a range of [0,1]. I use the following for initializing,
where min, max, incr, and value are all floats. Using min = 0, max = 1, incr = .01, and value = .5, the
slider thumb pops back and forth between 0 and 1 (the left and right endpoints). (Workaround: I
gave up and scaled the values into and out of the sliders.)
sItem->SetMinFloatValue(i, min);

sItem->SetMaxFloatValue(i, max);

sItem->SetSmallIncrement(i, incr);

sItem->SetFloatValue(i, value);

In Mac OS, the slider is a custom CDEF. This means that internally the values are integers. On Windows,
the slider code explicitly casts to an integer and then to a float, perhaps for compatibility with the
Mac OS CDEF.

sADMDialog->Create appears to be ignoring the “initially visible” bit in the Mac OS DLOG resource.
Is there a way to make a dialog initially invisible, so I can set a bunch of parameters and move
controls around without being visually disturbing?

In your Init proc, you should do all your set-up. The default Show does not occur until after
initialization, which should give you the effect you want. In your Init proc, you could do a
sADMDialog->Show with the Boolean parameter set to false. The window will not appear until you
do a sADMDialog->Show with the Boolean parameter set to true.

Is there a way to set the style of items in pop-up menus? I need to sometimes make items bold
and/or italic. Do pop-up menus use a Mac OS menu on Mac OS? If so, is there a way to get access to
it?

No.

PICT items in Mac OS dialogs are stretched on display to fit the item rect, while in ADM, PICTs are
apparently centered. Is there a way to get stretch-to-fit?

No. Adobe interfaces are pixel-perfect, so we would use the correct size picture.

CHAPTER 6: Frequently Asked Questions Other 101

It appears to me that Windows ADM doesn't attempt to control the font used in pop-up menus. On
my machine, the popups appear to use MS Sans Serif instead of Adobe UI. The MS Sans Serif font
does not have all the glyphs we have in the Adobe UI font, so when we try to use fancy quotes in a
pop-up menu, they just show up as a vertical bar.

ADM uses standard platform controls where it can, and this is one of those cases.

On WIndows, Invalidate and InvalidateRect do not erase the background when repainting.

Use the Windows invalidate calls with the bErase flag set to true to force the background to repaint.

How do you specify ADMHierarchyList control in a DIALOG resource on Windows?

Add a custom control item to the dialog layout when in the resource editor, then name the “class” of
the custom control to be “ADM Hierarchy List Box Type” along with quotation marks.

Other
Can I mix platform functions such as the following with ADM suite functions?
ShowWindow(admGetWindowRef(dlgRef1), SW_SHOW);

No. There often are additional housekeeping things ADM does that would likely get out of sync if the
direct message is sent. Also, using the sADMDialog->Show function keeps your code cross-platform.

I don't see anything in ADM to handle customized standard file dialogs (and their Win95
equivalent).

ADM provides a standard file dialog, but the only customizable bit is the file filter proc that can be
passed to it. There is no provision to add items, and since this is a system dialog, there is no simple way
to append an ADM item to it in a cross-platform/product manner.

I'm hard-coding a rectangle to tell me where to do a Photoshop::DisplayPixels. Can this be
expressed in a resource?

ADM provides a user item you can use. It will do nothing if it is not assigned drawer/tracker/notifier
procs, so it can serve as a placeholder. The bounds can be retrieved with an ADM Item call.

I need to be able to have ADM not adjust the cursor over an item, as we want to do our own cursor
adjustment and not have ADM change it back.

There is a cursor constant you can set, and ADM will not bother changing the cursor at all:
kADMHostControlsCursorID.

The following routine is ignoring the passed rectangle. Has this been fixed already? If so, can I
assume that the invalRect is passed in item-local-coordinates?

void ADMEdgeItem::InvalidateRect(IASRect &invalRect)

{

if (GetWindowRef())

::InvalidateRect(GetWindowRef(), nil, false);

}

The implementation of this in some versions of ADM did invalidate the whole item. In current releases,
the rect is local.

CHAPTER 6: Frequently Asked Questions Other 102

I want to handle the clipboard operation in a special way. How do I do this?

You need to override clipboard operations within an ADM dialog. To override the clipboard operation
in a dialog, for all edit-text items in the dialog, attach a notifier that watches for the
kADMPreClipboard* notifiers below. When you detect one, you can inspect the edit state and decide
whether to allow it. For instance, you might look at the selection range.

If you decide you want to handle it in some fashion, call the notifier suite function:

void ASAPI (*SkipNextClipboardOperation)(ADMNotifierRef notifier,ASBoolean skip);

ADM will not do the default clipboard action. Presumably, you would do something appropriate
within your notifier function. See the text-item notifiers in the table in “Notifier types” on page 83.

Do you have any examples I could start from, such as an ADM reference application?

There are examples of the use of ADM from within plug-ins in the SDKs for Photoshop and Illustrator.

Is there any way to set up an ADM drawer to draw into an AGM off-screen port? I have a
user-interface item that I draw with AGM and then copy to the screen. It now has an icon as part of it.
What I'm doing now is copying the AGM port, then using ADM to draw the icon. But when the item
changes, it flickers. Can I use ADM to draw the icon into the AGM port? I also am using AGM to draw
into an off-screen port for later use. I need to draw some text into this using the UI font. Drawing
text with AGM is difficult and if I could use ADM to do it, it would be much easier.

AGM support in ADM is deprecated. You can perform off-screen drawing in a Drawer proc with the
ADM Image suite:

void ASAPI myDrawProc(ADMItemRef item, ADMDrawerRef inDrawer)
{

imageRef = sADMImage->CreateOffscreen(width, height);
if(imageRef != nil)
{

offscreenDrawer = sADMImage->BeginADMDrawer(imageRef);
// draw stuff with offscreenDrawer

sADMImage->EndADMDrawer(imageRef);
topLeftPoint.h = 0;
topLeftPoint.v = 0;
sADMDrawer->DrawADMImage(inDrawer, imageRef, &topLeftPoint);

}
}

CHAPTER 6: Frequently Asked Questions Other 103

I have written a plug-in, and now I am implementing (functionality implementation). What I am
trying to do is to have a group of buttons, with each button responding in the same way. So I would
place all buttons in a group box. Now, when implementing in my plug-in the ideal way would be to
get one notification when any of the buttons is being pushed that is on the group. How would I
implement this using ADM? Can I attach callback function directly to the group?

Use an ADM item group.

We want to have Cmd/Ctrl do something like channel selection in Photoshop. ADM provides the
Illustrator behavior (select the last active dialog). How can we change this?

ADM knows nothing about the Photoshop behavior, or what panels exist in the host application and
how to activate them. It can do nothing for this custom behavior.

You have two options:

➣ Handle this on the host end by trapping this key code before calling
HandleADMMessage/HandleADMEvent, to keep ADM from handling it. Then implement whatever
behavior you want. Do not feed it to ADM.

➣ Accept the default ADM behavior, and let Photoshop differ.

In my multi-line edit field, double clicking a word then dragging left/right/up/down does not
highlight as you drag as it does in text-edit programs. Single click and drag works normally though.
I can't get kerning and tracking to preview in my ADM multi-line text-edit item. Pressing the Up or
Down arrow does not take you to end-of-line or beginning-of-line.

ADM does not claim to offer a word-processing text item. Standard platform text tricks are supported.

Sometimes when I click for an insertion point, it takes two or three seconds for the insertion cursor
to catch up. This tends to happen after a lot of use of the type dialog or using large anti-aliased
type.

You probably have the notifier doing some hefty processing when the mouse is clicked. There are no
interruptible ADM notifiers.

I have some cases where the ADM CDEFs (for buttons, combo-boxes, etc.) aren't found. I think
what’s happening is that in the cases where plug-ins are not moved to the top of the resource chain,
the CDEFs which are in the application aren’t found because it is at the top of the chain.

The expected resource chain order when ADM is used is application-ADM-plug-in. SP plug-ins usually
get this for free. There are some host callback procs which, if specified, allow you to set the resource
chain for a SPPluginRef before ADM tries to do a resource access.

Am I right in assuming that if you cannot enter units, you can’t enter math expressions?

No, units and math are orthogonal. You can do math without units, but you cannot specify units in the
operands.

CHAPTER 6: Frequently Asked Questions Other 104

How does the “known” state for an ADM item work?

An item is in a “known” state if it has a “good” or valid value. For example, setting a check-box item to
known(checkboxItem, false) sets it to an intermediate state. The check-box item then becomes
“known” when it is checked by the user. The only way for an item to become “unknown” is by using
the known(someItem, false) API. As another example, if you set a text item to unknown, it clears
itself.

If you set the value of an item through the Set interfaces, it becomes known. If the user enters a value
in a text item, it becomes known. If the value of a text item is unknown, it reverts to being empty in
error conditions instead of reverting to its current value. If you have an item that you may set to
unknown, check sADMItem->IsKnown before getting its value.

Another example can be taken from the kADMSpinEditPopupType item. For the spin-edit as whole,
“known” means the numerical value is known. Setting the parent item to unknown makes all its child
items unknown, but setting the parent item to known does not make its pop-up child known. (If the
value is not on the menu, the popup can be unknown even though the spin edit is known.) If the
popup is becoming known, it will do so by virtue of its value being set or by an entry being selected.

What is the return value for a track proc?

The return value from a tracker procedure can mean two different things. For keyboard actions, it
indicates whether the tracker “ate” the keystroke or whether it should be propagated out to the
surrounding environment. For other actions, it indicates whether to call the notify procedure. Some
cases have arisen where the latter meaning is required for keyboard actions.

Does ADM provide a way to get event information outside of a track proc?

For the ADM Tracker suite, if you pass NULL for sADMTracker->GetModifiers,
sADMTracker->TestModifier, and sADMTracker->GetPoint, they return the current state.
(Normally they return the state of the keys when the event occurred in the tracker.) So, for example, if
you need to check the state of the Opt/Alt key when your menu item is chosen, you would call the
following:

if (sADMTracker->TestModifier(NULL, kADMModKeyDownModifier))

I am trying to use sADMHierarchyList->SetInitProc. Shouldn't the OnListEntryInit function be
called at the third line of code?

void ASAPI (*SetInitProc)(ADMHierarchyListRef list,

ADMListEntryInitProc initProc);

ADMHierarchyListRef listRef = sADMItem->GetHierarchyList(itemRef);

sADMHierarchyList->SetInitProc(listRef, OnListEntryInit);

ADMListEntryRef entry = sADMHierarchyList->InsertEntry(listRef, index);

There is a bug in ADM that prevents Init procs from ever being called for hierarchy list entries.

Is it possible to construct dialogs without a platform resource?

Not in the current ADM. You can define a default, empty, dialog resource and use that repeatedly.

 105

Glossary

A

Activate
When applied to edit-text items, the cursor has
been set somewhere in the text, by either the
plug-in/application or the user. When applied to
an entry, this means the user has selected it. When
applied to dialogs, this means a floating dialog has
focus. The Activate(bool) call
activates/deactivates the associated list item.

Action
A low-level system event like a mouse-up,
mouse-down, or key-down. The ADM tracker fields
ADMActions. Actions can be filtered using an
ADMActionMask.

AGM
Adobe Graphics Manager. Using AGM, you can
write directly to a graphics port, bypassing ADM;
this is not recommended. AGM is not “exposed” to
third-party developers in all Adobe applications.

ASPoint
A point on the screen, defined by x and y
coordinates. A point can appear within the
coordinate system (0,0 in the upper left, with y
values increasing “downward” and x values
increasing to the right) of an item, a dialog, or the
screen.

ASRect
A rectangle on the screen, defined by bottom, left,
top, and right corners (each as an ASPoint). A “rect”
can appear within the coordinate system (0,0 in
the upper left, with y values increasing
“downward” and x values increasing to the right)
of an item, a dialog, or the screen.

B

Bounding rect
The full size of a “rect” (usually a dialog), including
the border.

C

Callback
A user-supplied routine that is written and
registered with ADM. A callback must follow the
signature provided in the header files. Prototype
signatures always are procs (end with a “proc”), but
the user must define his own name.

Clipping
An operation performed on a display element to
change (decrease) its size in some way, possibly
changing its shape.

D

Dialog
Along with item, the base object of ADM, usually a
rectangle that appears on the screen, filled with
Items. A dialog can be modal, non-modal, or popup.

Dialog group
A group of dialogs. A dock is a group of panels or
dialogs.

Dividing line
The line drawn to separate list entries. This is
distinguished from separator.

Dock
A group of panels or dialogs.

Docked panel
A panel that resides in its defined spot within a
dock of panels.

E

Enable
To make an object selectable by a user. If disabled,
the object is grayed out (for example, an entry may
be greyed out). A disabled ADM dialog is dimmed
and unusable.

Entry
An element of a list. Not to be confused with list
entry, which is an element in a hierarchical list.

Glossary 106

F

Floating panel
A dialog that is visible by itself on the screen (i.e.,
not docked and part of a group of panels).

Flyout
A type of pop-up dialog that appears when the user
clicks on the pop-up button of another dialog.

Focus
Ready to receive user input, or simply not in the
background (while other items or dialogs are).

H

Hierarchy list
A list with a sublist. The sublists may in turn have
sublists. An element of hierarchy lists is called a list
entry.

I

Item
Along with dialog, the base object of ADM. An item
can be a radio button, a text box with editable text,
a list, etc.

Item group
Collects several items that need to respond to calls
as a group. For example, you might have five items
that need to be enabled or disabled
simultaneously. Once those items belong to a
group, you need to enable/disable just the group.

K

Known
An item is in a “known” state if it has a “good” or
valid value.

L

Leaf entry
A child in a hierarchical list. Regular
(non-hierarchical) lists do not have leaves. An entry
that has no list attached is a leaf. If the entry has a
list attached it is referred to as just an entry.

List
A group of entries. Not to be confused with a
hierarchical list.

List entry
An element of a hierarchical list. Not to be confused
with an entry, which is an element of a regular flat
list.

Local rect
The area with the rect, usually a dialog, that does
not include the border of the rect.

M

Modal dialog
A dialog that exists only while it is on-screen. It
must be dismissed by the user before the
application can resume interacting with the user.
To be distinguished from a non-modal dialog or
modeless dialog.

Modeless dialog
Same as non-modal dialog.

N

Non-leaf entry
A list entry that is not a child.

Non-modal dialog
A dialog that can exists indefinitely on-screen and
must get focus before it can be used. Docks,
floating panels, and dialog groups are examples of
non-modal dialogs.

Notification
A high-level event like an undo or redo. Not to be
confused with an action.

Notifier
The ADM component that fields notifications.

P

Pixel
The smallest addressable point in a display. Widths
and heights are specified in pixels in ADM, as are
ASPoints.

Glossary 107

Pop-up dialog
A special type of DIALOG that is invoked by the user,
usually via a mouse click. A flyout is an example of a
pop-up dialog. A traditional modal dialog can be
dismissed only by the OK or Cancel button. The
pop-up modal dialog is similar to a modal dialog in
that it stays up only while the end user is using it.
The pop-up modal dialog, however, has no
OK/Cancel button; it is dismissed when the end
user makes a selection, presses the Esc key, etc.

Position code
Used with docked panels to determine which
panel is first, second, third, etc., as well as where
the tab is located (first, second, etc.).

Proc
A procedure. Often this is used synonymously with
callback, although a proc can be invoked even
though a user has not written his own callback and
registered it with ADM. A common proc is the Init
proc (initialization callback). Other procs include
Notifier procs, Tracker procs, and Draw procs.

S

SuitePea interface
Refers to the Plug-in Component Architecture
(PICA), which is implemented as a series of suites.
Pointers to the suites often are coded as suiteP;
hence the term SuitePea or, sometimes, SweetPea.

Select
Same as activate, except it invalidates the entry,
causing a redraw.

Separator
The line that goes between menu items and takes
up a place in the menu list. To be distinguished
from a dividing line.

T

Tool panel
A floating panel with close boxes.

Tool tip
When the user moves his mouse over a GUI
element (and does not click), a small indicator
appears after some amount of (programmable)
time, describing the GUI element.

Tracker
The ADM component that fields ADMActions.

V

Visible
Appears on-screen (Mac OS) or within the
application Window (Windows).

W

Window
The basic element of display provided by an
application.

	Preface
	What is in this guide
	Intended audience
	Typographic conventions
	Related documentation

	ADM Overview
	Conventions
	Accessing suites
	Architecture
	PICA plug-ins
	ADM objects
	Quick summary of using ADM
	Types
	Types defined the same across platforms
	Types defined differently across platforms
	Coordinates using ADMRect

	Events
	Properties
	Resources

	Suites
	ADM object specifics
	ADM Dialog objects
	Item objects
	kADMFrameType and kADMPictureStaticType
	kADMPicturePushButtonType and kADMTextPushButtonType
	kADMTextRadioButtonType, kADMPictureRadioButtonType, kADMTextCheckBoxType, and kADMPictureCheckBoxType
	kADMTextEditType, kADMTextEditReadOnlyType, kADMTextStaticType, kADMTextEditMultilineType, kADMTextEditMultilineReadOnlyType, and kADMTextEditScrollingPopUpType, kADMTextMultilineType
	kADMPopupListType, kADMPopupMenuType, kADMScrollingPopupListType, kADMTextEditPopupType, kADMPopupControlType, kADMPopupControlButtonType, kADMPopupSpinEditControlType, and kADMSpinEditScrollingPopupType
	kADMSpinEditType and kADMSpinEditPopupType
	kADMScrollbarType and kADMSliderType
	kADMListBoxType and kADMHierarchyListBoxType
	kADMProgressBarType
	kADMChasingArrowsType
	kADMDialType
	kADMItemGroupType
	kADMUserType
	kADMResizeType

	Composite items
	ADM item groups
	ADM item numeric properties
	ADM List and ADM Entry objects
	ADM Hierarchy List and ADM List Entry objects
	Windows and Mac OS ADM item-resource lists
	Windows ADM items
	Mac OS ADM items

	Using event callbacks
	Init functions
	Drawer functions
	Notifier functions
	Tracker functions
	Destroy functions
	Resizable windows

	Adding custom item types
	Using custom items

	Using timer procedures
	Using the C++ interfaces
	Getting started with ADM plug-in development
	General development process

	Using ADM with Adobe Illustrator
	ADMNonModalDialog plug-in
	Platform-specific resources
	Dialog creation
	Dialog initialization
	Pop-up menu item
	Pop-up list item
	Spin-edit Item
	Radio-button and check-box items
	Button items
	Dialog positioning and docking
	Panel icons

	Notification procedures
	Handling modifier keys

	For more information

	ADM Suites
	Basic suite
	Accessing the suite
	For more information

	Dialog suite
	Accessing the suite
	Dialog styles
	Standard dialog-item IDs
	Callbacks
	ADM help support
	For more information

	Dialog Group suite
	Accessing the suite
	Position code and group name
	For more information

	Drawer suite
	Accessing the suite
	Drawer functions
	Using drawer functions
	Fonts and colors
	Drawer coordinate space
	Drawing modes
	For more information

	Entry suite
	Accessing the suite
	Initializing an entry
	Help support
	For more information

	Hierarchy List suite
	Accessing the suite
	Hierarchy lists and list entries
	Using the Hierarchy List suite
	Custom hierarchy lists
	For more information

	Icon suite
	Accessing the suite
	Icons
	For more information

	Image suite
	Accessing the suite
	For more information

	Item suite
	Accessing the suite
	Initializing ADM items
	FloatToText and TextToFloat functions
	Help support
	For more information

	List suite
	Accessing the suite
	Lists and entries
	Using the List suite
	Custom lists
	For more information

	List Entry suite
	Accessing the suite
	List objects and entries
	Help support
	For more information

	Notifier suite
	Accessing the suite
	Notifier functions
	Using notifier functions
	Notifier types
	For more information

	Tracker suite
	Accessing the suite
	Trackers
	For more information

	ADM Folders and Files
	ADM Error Codes
	Frequently Asked Questions
	Lists
	Text
	Color
	Panels
	Dialog-box behavior
	Popups
	Dialog-box elements
	Timers
	Operating-system-related queries
	Other

	Glossary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

