Shale Dialog M anager

I ntroduction

One of the frustrating aspects of organizing tbevfbf control in a web based application is
that fact that it is composed of completely disamtad interactions with the client (via the
HTTP protocol). The popularity of application frawmks based on model-view-controller
(MVC) principles, and particularly the emergencehafront controller design pattern, have
become the de facto standard architectural approach

Like other frameworks, JavaServer Faces suppariscnanism to define navigation rules for
transitions between views. The actual processipgiformed by an implementation of the
javax.faces.application.NavigationHandler . The standard implementation provided by
the framework (which can be customized via a plbggaPI) performs transitions from one
view to another based on three inputs:

« What view is currently processing this form submit?

« Which of the potentially several actions were iredR (This allows you to support different
"submit" buttons with different functionality, ohare actions between, say, a "Save" button at
the top and bottom of a table.)

« What "logical outcome" was returned by the actloat tvas invoked?

Basing navigation on outcomes, by the way, asgigesducing the coupling between pages, because
the developer that writes the action method is émdysed on reporting "what happened" rather than
worrying about "where do | go next". This concepalso found in the way Struts has
Action.execute() methods that return a logicattionForward describing the outcome of
performing the action.

However, it is still difficult to reuse individuaiews in more than one "conversation" or
"dialog"” with the user, nor to treat one dialogadblack box" subroutine that can be called by
more than one calling dialog. To address thesesy&dthle offers Dialog Manager support.

The functionality of this feature waavily inspired by the implementation of Spring
Webflow (Preview 2), whose home page is:

http://opensource.atlassian.com/confluence/sprisolay/WEBFLOW/Home

API and Implementations

The Shaléialog Manager defines an API that supports access to an abseaetution
engine" that manages the processing flow throudjialag. In addition, multiple
implementations of this API are provided that offéferent sets of unique features:

- Basic Implementatior relatively simple implementation that modelsialay as a state
diagram with four types of states:
o Action - Execute an arbitrary method
o Exit - Terminate execution of this dialog
o Subdialog - Execute another dialog as a subroutine
o View - Display a JSF view (page) and wait for the failog submit to execute an
application action method

This implementation supports a superset of thetiomality that was present in versions of
Shale up through 1.0.3.

- State Chart XML ImplementatioA more sophisticated implementation based on staes
modelled withState Chart XML which is currently a Working Draft published InetW3C.
This technology has grown out of the use of siniahniques in the telephony industry, and
Shale uses th#éakarta Commons SCXMlibrary to provide the required execution engine.

The remainder of this document describes serviwgsare available no matter which implementation
you choose. See the module descriptions for théeimgntation modules for details of configuration,
as well as the unique features provided by thatémpntation.

Services Provided
The fundamental APIs that an application interagth are simple and straightforward:

- DialogContext Represents the state of an active dialog wighutber. There will be one such
instance for each window or frame running a diakigred in session scope.

- DialogContextManager Factory for creating ne®ialogContext instances. The Shale
Dialog implementation that you select will provideuitable factory as a session scope
managed bean under a well-known key. At most otieeaBialogContext instance can be
associated with each window or frame that the issgperating, in association with the same
session.

- DialogListener.htmt An activeDialogContext fires events that document interesting
changes in the state of the dialog. Interestedctban ask to be notified of such events by
implementing this interface, and registering thdwesewith theDialogContext using
standard JavaBeans event listener design patterns.

DialogContextManageprovides public methods that support the followfimgctionality:

- Create and return a néialogContext instance, optionally associated with a parent
DialogContext (useful for popup windows that need to coordirth&gr behavior with the
underlying page).

« Retrieve an activBialogContext ~ for the current user, based on a specified di@eqtifier.

« Remove an activbialogContext instance, denoting that this instance is no loagéve.
As a side effect, the content of theta property of thiDialogContext ~ will be made
available for garbage collection, as long as th@iegtion does not maintain any other
references to the data object.

DialogContextprovides the following public properties:

- active - Flagindicating that thiBialogContext instance has been started but not yet
stopped.

- data - General purpose object made available for gjastate information related to a
particular active dialog instance. Details of hdws (property is implemented are specific to
the implementation you choose, but will generalifadilt to being an instance of
java.util.Map . You can also replace this object at runtime \aittobject that contains
state properties specific to a particular use case.

- id - Anidentifier, unique within the scope of therant user, for this particular instance. The
Dialog Manager framework promises to transport idhésitifier along with the JSF component
tree, and will use it to regain access to the spoadingDialogContext instance on a
postback.

« name - The logical name of the dialog definition bexgcuted by this instance. This will
typically map to configuration information thatgpecific to the implementation you select.

- parent - Optional reference to a pardditlogContext instance that we were associated
with when this instance was created.

DialogContextprovides public methods to support the followingdtionality:

- Start the active execution represented by thisnt, advancing until the instance has
displayed a JSF view and needs to wait for the task out a form and submit it.

« Advance the state of the computation representdtisynstance, passing in the logical
outcome that was returned by the application'®actiethod.

« Stop the execution of the computation represernyadib instance, which will cause it to be
passed to theemove() method on th®ialogContextManager instance for this user.

DialogListeneris an event listener interface that follows staddivaBean design patterns. Interested
objects can register themselves as a listeneral@Context instance, and be notified of the
occurrence of the following events:

« ThisDialogContext instance was started.

« ThisDialogContext instance was stopped.

« An exception was thrown by thidalogContext instance.

- A named "state" was entered (details are spedfibe selected implementation).

- A named "state" was exited (details are specifitiéoselected implementation).

« Atransition from one named "state" to another padormed (details are specific to the
selected implemenation).

Applications that wish to implement listeners aneairaged to subclagdstractDialogListener
instead of implementing the interface describedsabim addition to only needing to implement event
handling methods you are interested in, this ptstée® ability to compile your application against
future versions of the listener interface, if mex@nt handling methods are added in the future.

Using Dialog M anager

The following paragraphs describe functionalityttvarks no matter which specific Dialog
Manager implementation you have selected. Be sucerisult the page for your selected
implementation for additional features and capaédi

Starting A New DialogContext Instance

At most oneDialogContext instance can be active, in a particular windorame, at one
time. There are several ways in which an applicati&an cause suchDéalogContext

instance can be activated and associated withuitierd window or frame. Each technique is
described below.

Starting A DialogContext Via Navigation

This technique is very useful if your applicatiantains a mixture of pages managed by
standard JavaServer Faces navigation, and pagesyethhy the Shale Dialog Manager. To
enter a dialog whose logical namédas, simply have one of your application actions netar

logical outcome string afialog:foo , and a newbialogContext instance will be started for
you.

In the example above, we used the defdiallig: prefix value to trigger starting a dialog.
You can also specify your own prefix by settingoatext init parameter whose name is
defined by the symbolic constahinstants.DIALOG_PREFIX_PARAM (i.e.
org.apache.shale.dialog.DIALOG_PREFIX). By convention this value should end with a "'
character to look like a namespace, but thistsrequired.

Starting A DialogContext Programmatically

Under some circumstances, it may be preferablgdor application's event handler to decide
programmatically which dialog to use, and staprdggrammatically. To start a dialog named
foo programmatically, code something like this in yaation method:

FacesContext context = FacesContext.getCurrentins tance();

DialogContextManager manager =
DialogHelper.getDialogContextManager(context);

DialogContext dcontext = manager.create(context, "foo");

dcontext.start();

(If you are using a version of Shale before 1.1y jave to work slightly harder to achieve the
same effect:)

FacesContext context = FacesContext.getCurrentins tance();
DialogContextManager manager = (DialogContextMana ger)
context.getApplication().getVariableResolver().
resolveVariable(context, Constants. MANAGER_BEAN);
DialogContext dcontext = manager.create(context, "foo");
dcontext.start(context);
return null;

Starting A DialogContext Via URL Parameters

In a use case like a pop-up window, the first retjgerved by the application will be to a new
window that is not currently associated with a eatrdialog. In order for such a window to
immediately become associated withialogContext instance, the Dialog Manager also
recognizes the following request parameters, ¥ tre present, and if there is no active
DialogContext already:

- org.apache.shale.dialog.DIALOG_NAME - The logical name of the dialog to be created
and started.

- org.apache.shale.dialog.PARENT_ID - (Optional) the logical dialog identifier of angat
DialogContext instance that should become the parent of theynenghted one. This
allows, for example, a popup window to be assodiati¢h thedata element for the
DialogContext instance associated with the parent window.

Request Processing for an Active DialogContext Instance

Once aialogContext instance has been associated with the currentowinthe Dialog Manager
performs the following tasks automatically, with meed for application interaction:

« Cause d@ialogidentifier for thisDialogContext instance to be saved and restored as part of
the JSF compoennt tree and associated state.

« When a POST request for this window is proces$edattiveDialogContext instance for
the logical dialog identifier for this window witle retrieved from the
DialogContextManager for this user, and stored as a request scopbutrinder key
dialog for easy reference in expressions.

« During Invoke Application phase of the request processing lifecycle, theégutcome
returned by the action method will be interceptgdhe Dialog Manager, rather than being
fed into the standard JSF navigation handler. &ktthe outcome will be passed in as a
parameter to thadvance() method on the currebialogContext instance, which will
advance the state of the computation until a furititeraction with the user is required. Then,
the Dialog Manager will create the requested J8wyvand forward to Render Response
phase so that this view may be rendered.

Accessing Per-DialogContext State Information

The Dialog Manager provides a convenient placafoactiveDialogContext instance to maintain
state information that lasts only for the lifetimiethe instance. This is thata property of the
DialogContext instance for the currently active dialog. Eachl@iaManager implementation will
provide a default data structure (typically anamste ofiava.util.Map) for this purpose, but you
may also provide a JavaBean class that is apmitapecific if you wish.

Note that, due to the combination of the curmalbgContext instance being exposed as a
request scoped attribute under keyog , and the fact thatata is a standard Java Bean
property on this instance, you can convenientlyli&e value binding expressions to bind
component values to state information. For exanmgdsyme you have provided an
application specific Java Bean class for the stdtgmation, and it has @ame property to
contain a customer name. You can easily bind amtiopmponent to that name, like this:

<h:inputText id="name" ... value="#{dialogScope.n ame}'/>

(Prior to version 1.1, use this approach instead:)

<h:inputText id="name" ... value="#{dialog.data.n ame}"/>

As an extra value-added feature, if the objectstowe as theata property is of a class that
implements th®ialogContextListener interface, your data object will also be
automatically registered to receive the correspugméivents. This can be useful (for
example), when your application needs to know wdearticular "state" has been entered, or
whether a transition to a particular "state" canoenfsome other particular "state".

If you intend to leverage this feature, you cariaally make your data class extend
AbstractDialogContextListener instead of implementing the interface directlyydu do
this, you only need to implement the event handiireghods that you are interested in, rather
than all of them.

Stopping An Active DialogContext Instance

There are two general approaches to stopping tieepsing of an activigialogContext
instance:

- Each Dialog Manager implementation will typicallgfihe a particular state as an "exit" or
"end" state. When a transition to such a statergsctioe Dialog Manager implementation will
callstop() on the activédialogContext instance, which will take it out of service.

« You can also cause the curr@ilogContext instance to be aborted by callisgp() on
it yourself.

Shale Dialog Manager 2 (SCXML Implementation)

I ntroduction

TheShale Dialog Manageatefines a generic APl by which an application malze a

Dialog Manager implementation to manage convemsatwith the user of that application. A
user may have (at most) one active conversati@aah window or frame that he or she is
using.

This module contains tH&CXML (State Chart XML) Implementation of the Shale Dialog
Manager facilities. It uses tli@mmons SCXMLUibrary for the dialog state machine
execution under the covers, and the dialogs araitdes using SCXML documents.

Benefits

« SCXML is aWw3C Working Draftwhich may translate to better support in tooling,
number of implementations and various runtime emvirents. It is the candidate
controller notation coming out of the W3C.

+ SCXML is more closely aligned to state chart theammg UML2, which helps those
using model driven development methodologies.

+ SCXML semantics provides for much more than theck®blale dialogs
implementation, such as histories, per state ctstarbitrary expression evaluation,
parallelism and the possibilitgyrrently not available in the shale-dial og-scxml
module) to add domain-specific XML vocabularies via antrmamespaces. See the
Commons SCXML sitdor details.

- Those developing multi-channel applications, onggrameworks that use SCXML
for the controller bits in other contexts (eRDC frameworl, may be inclined
towards SCXML-based authoring for Shale dialogs.

Describing Shale dialogs via SCXML documents

A Shale dialog is modeled as a state machine. &heus "state types" that commonly
constitute the dialog state machine are describéae Shale dialogsasic implementation
documentation

This section maps these types to the correspor®l¥MVL snippets appropriate for the Shale
dialogs SCXML implementation. The example dialagnirthe Shale usecases sample
application is captured here aflIL state machine diagraand forms the basis of the
snippets below.

Action state instances may be mapped to executablient in UML<onentry> (and
may be chained similarly).

<l-- An "action" state -->

<state id="checkCookie">

<!-- Execute the method binding expression in the onentry block,
method must take no arguments and return a St ring. These
method binding expressions must use the #{... } syntax -->
<onentry>
<var name="cookieOutcome" expr="#{profile$logon .check}" />
</onentry>
<!I-- Check the return value, and conditionally tr ansition
to the appropriate state. Arbitrary EL expres sions must use
the ${...} syntax. Since transitions are not guarded by

events, the transitions are "immediate" -->

<transition cond="${cookieOutcome eq 'authenticat ed}"
target="exit"/>
<transition cond="${cookieOutcome eq 'unauthentic ated'}"

target="logon"/>

</state>
View state instances use event guards to waitdeth@ack. The mapping between the
<state>d and the JavaServer Fae@svy identifier is pluggable. The default

mapping is an identity transform i.e. the stataidier is reused as the view identifier.
See théialogStateMapper Javadofos details. This mapping may be overridden by
using the <shale:view> custom Commons SCXML act@ee theéShale dialogs
custom Commons SCXML actions section details. Also note the associatasbst
practicesvhen authoring view <state>s.

<!-- A "view" state, the default convention maps th is state to

to the JSF view identifier "/logon" -->
<state id="logon">

<!-- Wait for postback event, which is named "fac es.outcome"
The reserved variable "outcome" contains the logical
outcome, which is used to conditionally trans ition

to the next state -->

<transition event="faces.outcome"
cond="${outcome eq 'authenticated'}"
target="exit"/>

<transition event="faces.outcome"
cond="${outcome eq 'create'}"
target="createProfile"/>

</state>
Subdialog state instances may be mapped to ext8@¥ML documents (describing
the subdialog) via the "src" attribute of the SCXMétate> element.

<!-- A "subdialog" state, the "src" attribute point s to the SCXML
document describing the subdialog. -->

<state id="createProfile" src="edit-profile.xm|">

<I-- Wait for <state_id>.done event, which lets u s know
the subdialog has run to completion. This sub dialog uses the
the "outcome" variable to convey its logical outcome to the
parent dialog (the SCXML <assign> element can be used

to assign values to existing variables) -->

<transition event="createProfile.done"
cond="${outcome eq 'success' or outcome eq 'c ancel'}"
target="exit"/>
<transition event="createProfile.done"
cond="${outcome eq 'failure’}"
target="fail"/>

</state>

« End state instances may be mapped to SCXML fiaabst

. <!-- An "end" state, signifies that the dialog has run to
. completion, the default convention maps this st ate to
. to the JSF view identifier "/exit". -->

. <state id="exit" final="true"/>

Once the dialog reaches an end state, the dialoggea cleans up the current instance
of the executing dialog.

Using Dialog Manager (SCXML implementation)
To use the SCXML Dialog Manager facilities in Shaske the following steps:

- Model your dialog as a series @iites with transitions between them labelled with the
logical outcome that selects that particular trigorsi A UML State Diagram is a very
useful mechanism for visualizing such a model. Ttreate a SCXML document for
each of the dialogs (dialog state machine diagreansbe easily mapped to SCXML
documents, see above section).

+ Build the views (and correspondir@wController beans, if you are also using the
Shale View Controller Suppoftinctionality) that comprise your dialog, using
standard JavaServer Faces and (optional) Stale€ontroller facilities.

- Declare your dialogs via an XML document, convemdidy namedwEB-

INF/dialog-config.xml , that conforms to the required DTD:
. <IDOCTYPE dialogs PUBLIC
. "-//[Apache Software Foundation//DTD Shale SCXML D ialog
Configuration 1.0//EN"
. "http://shale.apache.org/dtds/dialog-scxml-config _1 0.dtd">
. <dialogs>
. <dialog name="FirstDialogName"
. scxmlconfig="firstdialog.xml"
. dataclassname="org.apache.shale.examples.Fir stDialogData"
° />
. <dialog name="SecondDialogName"

. scxmlconfig="seconddialog.xml"

. dataclassname="org.apache.shale.examples.Sec ondDialogData"
° />

. </dialogs>

- If you have more than one dialog configuration, fde you have defined your only
dialog configuration file as a web application ne@s@ with a name different than the
one described above, use a context initiaizatioarpater to define a comma-
delimited list of context-relative paths to configtion resources to be loaded:

. <context-param>

. <param-name>org.apache.shale.dialog.scxml.CONFIGU RATION</param-
name>

. <param-value>/WEB-INF/foo.xml,/WEB-INF/bar.xml</p aram-value>

. </context-param>

- In addition to the dialog configuration resource$irted by this context initialization
parameter, a resource nameB-INF/dialog-config.xml will be automatically

processed, if it exists, and has not already besadeld.

- Alternatively, or in addition to the above, any JAI in /WEB-INF/lib will be
scanned for configuration documents/&TA-INF/dialog-config.xml . Such
resources will be automatically processed, makiegsy to define JAR files with
dialog configurations and corresponding Java ctaasd resources, which are
recognized simply by including this JAR file in tapplication.

- To initiate a dialog named "xxxxx", use one of taehniques defined by ti&hale
Dialog Manager

Custom Commons SCXML actions

The Shale dialogs Commons SCXML implementation i@ a couple of custom Commons
SCXML actions out of the boxk{ackground reading on custom actipridhe first one allows
the use of redirects while navigating to a viewd #re second allows overriding the
DialogStateMappemapping between a "view" state and the assocEg&dview identifier.

- <shalerredirect> - Typically used in the <onentry> section of theeW" <state> that
should be visited by issuing a redirect.

. <onentry>
. <shale:redirect/>
. </onentry>

- <shaleview> - Typically used in the <onentry> section of thee" <state>, such
that the "viewld" attribute contains the JSF vielentifier that should be rendered
when in this dialog state.

. <onentry>
. <shale:view viewld="/faces/wizardpage3" />
. </onentry>

Theshale prefix used above is arbitrary. The associatianasle using the namespace URI
associated with the prefix (the above custom astlmiong to the
http://shale.apache.org/dialog-scxml URI), so the SCXML document describing the above

dialog would need to establish that prefix to ngmaes URI association, for example:
<scxml xmins="http://www.w3.0rg/2005/07/scxml" vers ion="1.0"
xmins:shale="http://shale.apache.org/dialog- scxml”
initialstate="...">

It is possible for application developers to defaaklitional custom actions per dialog
definition. For example, a developer may defineisteam Commons SCXML action via a
classmy.actions.Foo (which must extendrg.apache.commons.scxml.model.Action, see
background reading link above) and make it ava@ablithe namespace URI
http://foo.bar/actions to the dialog named "wizard" by defining it in tth@l og-config.xml like
so:

<dialog name="wizard" scxmlconfig="wizard.xml|"
dataclassname="wizard.Data">

<scxmlaction name="foo" uri="http://foo.bar/act ions"
actionclassname="my.actions.Foo ">
</dialog>
and further using it in theizard.xml SCXML document like so:
<scxml xmins="http://www.w3.0rg/2005/07/scxml" vers ion="1.0"
xmins:shale="http://shale.apache.org/dialog- scxml”

xmlns:my="http://foo.bar/actions"
initialstate="...">

<state id="statel">
<onentry>
<my:foo .../>
</onentry>

</state>

Best practices

The particular usecase of SCXML within Shale dialogplies certain restrictions on the
SCXML document used to describe the dialog. Inipaldr, best practices for SCXML
documents used to describe Shale dialogs include:

« A'view" <state> must be a simple leaf state (sdowdt contain other <state>
elements and should not have a <parallel> ancestor)

« A'view" <state> must not rely on <onexit> or <ot executable content. Such
executable content can be moved to a preceedifajl@ving "action” state. This is
due to the possibility of browser navigation buttg¢back/forward) being used during
the dialog execution. The exception to this isttix@ custom actions described in the
previous section, when used as mentioned above.

- All views that participate in a dialog should prdeifor checks to guard against double
submits (see <token> tag in shale-core) and prdndmediate™ actions such as a
cancel button to exit out of the dialog.

