
Shale Dialog Manager

Introduction

One of the frustrating aspects of organizing the flow of control in a web based application is
that fact that it is composed of completely disconnected interactions with the client (via the
HTTP protocol). The popularity of application frameworks based on model-view-controller
(MVC) principles, and particularly the emergence of the front controller design pattern, have
become the de facto standard architectural approach.

Like other frameworks, JavaServer Faces supports a mechanism to define navigation rules for
transitions between views. The actual processing is performed by an implementation of the
javax.faces.application.NavigationHandler . The standard implementation provided by
the framework (which can be customized via a pluggable API) performs transitions from one
view to another based on three inputs:

• What view is currently processing this form submit?
• Which of the potentially several actions were invoked? (This allows you to support different

"submit" buttons with different functionality, or share actions between, say, a "Save" button at
the top and bottom of a table.)

• What "logical outcome" was returned by the action that was invoked?

Basing navigation on outcomes, by the way, assists in reducing the coupling between pages, because
the developer that writes the action method is only focused on reporting "what happened" rather than
worrying about "where do I go next". This concept is also found in the way Struts has
Action.execute() methods that return a logical ActionForward describing the outcome of
performing the action.

However, it is still difficult to reuse individual views in more than one "conversation" or
"dialog" with the user, nor to treat one dialog as a "black box" subroutine that can be called by
more than one calling dialog. To address these needs, Shale offers Dialog Manager support.

The functionality of this feature was heavily inspired by the implementation of Spring
Webflow (Preview 2), whose home page is:

http://opensource.atlassian.com/confluence/spring/display/WEBFLOW/Home

API and Implementations

The Shale Dialog Manager defines an API that supports access to an abstract "execution
engine" that manages the processing flow through a dialog. In addition, multiple
implementations of this API are provided that offer different sets of unique features:

• Basic Implementation A relatively simple implementation that models a dialog as a state
diagram with four types of states:

o Action - Execute an arbitrary method
o Exit - Terminate execution of this dialog
o Subdialog - Execute another dialog as a subroutine
o View - Display a JSF view (page) and wait for the following submit to execute an

application action method

This implementation supports a superset of the functionality that was present in versions of
Shale up through 1.0.3.

• State Chart XML Implementation A more sophisticated implementation based on state charts
modelled with State Chart XML, which is currently a Working Draft published by the W3C.
This technology has grown out of the use of similar techniques in the telephony industry, and
Shale uses the Jakarta Commons SCXML library to provide the required execution engine.

The remainder of this document describes services that are available no matter which implementation
you choose. See the module descriptions for the implementation modules for details of configuration,
as well as the unique features provided by that implementation.

Services Provided

The fundamental APIs that an application interacts with are simple and straightforward:

• DialogContext - Represents the state of an active dialog with the user. There will be one such
instance for each window or frame running a dialog, stored in session scope.

• DialogContextManager - Factory for creating new DialogContext instances. The Shale
Dialog implementation that you select will provide a suitable factory as a session scope
managed bean under a well-known key. At most one active DialogContext instance can be
associated with each window or frame that the user is operating, in association with the same
session.

• DialogListener.html - An active DialogContext fires events that document interesting
changes in the state of the dialog. Interested objects can ask to be notified of such events by
implementing this interface, and registering themselves with the DialogContext using
standard JavaBeans event listener design patterns.

DialogContextManager provides public methods that support the following functionality:

• Create and return a new DialogContext instance, optionally associated with a parent
DialogContext (useful for popup windows that need to coordinate their behavior with the
underlying page).

• Retrieve an active DialogContext for the current user, based on a specified dialog identifier.
• Remove an active DialogContext instance, denoting that this instance is no longer active.

As a side effect, the content of the data property of this DialogContext will be made
available for garbage collection, as long as the application does not maintain any other
references to the data object.

DialogContext provides the following public properties:

• active - Flag indicating that this DialogContext instance has been started but not yet
stopped.

• data - General purpose object made available for storing state information related to a
particular active dialog instance. Details of how this property is implemented are specific to
the implementation you choose, but will generally default to being an instance of
java.util.Map . You can also replace this object at runtime with an object that contains
state properties specific to a particular use case.

• id - An identifier, unique within the scope of the current user, for this particular instance. The
Dialog Manager framework promises to transport this identifier along with the JSF component
tree, and will use it to regain access to the corresponding DialogContext instance on a
postback.

• name - The logical name of the dialog definition being executed by this instance. This will
typically map to configuration information that is specific to the implementation you select.

• parent - Optional reference to a parent DialogContext instance that we were associated
with when this instance was created.

DialogContext provides public methods to support the following functionality:

• Start the active execution represented by this instance, advancing until the instance has
displayed a JSF view and needs to wait for the user to fill out a form and submit it.

• Advance the state of the computation represented by this instance, passing in the logical
outcome that was returned by the application's action method.

• Stop the execution of the computation represented by this instance, which will cause it to be
passed to the remove() method on the DialogContextManager instance for this user.

DialogListener is an event listener interface that follows standard JavaBean design patterns. Interested
objects can register themselves as a listener on a DialogContext instance, and be notified of the
occurrence of the following events:

• This DialogContext instance was started.
• This DialogContext instance was stopped.
• An exception was thrown by this DialogContext instance.
• A named "state" was entered (details are specific to the selected implementation).
• A named "state" was exited (details are specific to the selected implementation).
• A transition from one named "state" to another was performed (details are specific to the

selected implemenation).

Applications that wish to implement listeners are encouraged to subclass AbstractDialogListener
instead of implementing the interface described above. In addition to only needing to implement event
handling methods you are interested in, this protects the ability to compile your application against
future versions of the listener interface, if more event handling methods are added in the future.

Using Dialog Manager

The following paragraphs describe functionality that works no matter which specific Dialog
Manager implementation you have selected. Be sure to consult the page for your selected
implementation for additional features and capabilities.

Starting A New DialogContext Instance

At most one DialogContext instance can be active, in a particular window or frame, at one
time. There are several ways in which an application can cause such a DialogContext
instance can be activated and associated with the current window or frame. Each technique is
described below.

Starting A DialogContext Via Navigation

This technique is very useful if your application contains a mixture of pages managed by
standard JavaServer Faces navigation, and pages managed by the Shale Dialog Manager. To
enter a dialog whose logical name is foo, simply have one of your application actions return a

logical outcome string of dialog:foo , and a new DialogContext instance will be started for
you.

In the example above, we used the default dialog: prefix value to trigger starting a dialog.
You can also specify your own prefix by setting a context init parameter whose name is
defined by the symbolic constant Constants.DIALOG_PREFIX_PARAM (i.e.
org.apache.shale.dialog.DIALOG_PREFIX). By convention this value should end with a ':'
character to look like a namespace, but this is not required.

Starting A DialogContext Programmatically

Under some circumstances, it may be preferable for your application's event handler to decide
programmatically which dialog to use, and start it programmatically. To start a dialog named
foo programmatically, code something like this in your action method:

 FacesContext context = FacesContext.getCurrentIns tance();
 DialogContextManager manager =
 DialogHelper.getDialogContextManager(context);
 DialogContext dcontext = manager.create(context, "foo");
 dcontext.start();

(If you are using a version of Shale before 1.1, you have to work slightly harder to achieve the
same effect:)

 FacesContext context = FacesContext.getCurrentIns tance();
 DialogContextManager manager = (DialogContextMana ger)
 context.getApplication().getVariableResolver().
 resolveVariable(context, Constants.MANAGER_BEAN);
 DialogContext dcontext = manager.create(context, "foo");
 dcontext.start(context);
 return null;

Starting A DialogContext Via URL Parameters

In a use case like a pop-up window, the first request served by the application will be to a new
window that is not currently associated with a current dialog. In order for such a window to
immediately become associated with a DialogContext instance, the Dialog Manager also
recognizes the following request parameters, if they are present, and if there is no active
DialogContext already:

• org.apache.shale.dialog.DIALOG_NAME - The logical name of the dialog to be created
and started.

• org.apache.shale.dialog.PARENT_ID - (Optional) the logical dialog identifier of a parent
DialogContext instance that should become the parent of the newly created one. This
allows, for example, a popup window to be associated with the data element for the
DialogContext instance associated with the parent window.

Request Processing for an Active DialogContext Instance

Once a DialogContext instance has been associated with the current window, the Dialog Manager
performs the following tasks automatically, with no need for application interaction:

• Cause a dialog identifier for this DialogContext instance to be saved and restored as part of
the JSF compoennt tree and associated state.

• When a POST request for this window is processed, the active DialogContext instance for
the logical dialog identifier for this window will be retrieved from the
DialogContextManager for this user, and stored as a request scope attribute under key
dialog for easy reference in expressions.

• During Invoke Application phase of the request processing lifecycle, the logical outcome
returned by the action method will be intercepted by the Dialog Manager, rather than being
fed into the standard JSF navigation handler. Instead, the outcome will be passed in as a
parameter to the advance() method on the current DialogContext instance, which will
advance the state of the computation until a further interaction with the user is required. Then,
the Dialog Manager will create the requested JSF view, and forward to Render Response
phase so that this view may be rendered.

Accessing Per-DialogContext State Information

The Dialog Manager provides a convenient place for an active DialogContext instance to maintain
state information that lasts only for the lifetime of the instance. This is the data property of the
DialogContext instance for the currently active dialog. Each Dialog Manager implementation will
provide a default data structure (typically an instance of java.util.Map) for this purpose, but you
may also provide a JavaBean class that is application specific if you wish.

Note that, due to the combination of the current DialogContext instance being exposed as a
request scoped attribute under key dialog , and the fact that data is a standard Java Bean
property on this instance, you can conveniently use JSF value binding expressions to bind
component values to state information. For example, assume you have provided an
application specific Java Bean class for the state information, and it has a name property to
contain a customer name. You can easily bind an input component to that name, like this:

 <h:inputText id="name" ... value="#{dialogScope.n ame}"/>

(Prior to version 1.1, use this approach instead:)

 <h:inputText id="name" ... value="#{dialog.data.n ame}"/>

As an extra value-added feature, if the object you store as the data property is of a class that
implements the DialogContextListener interface, your data object will also be
automatically registered to receive the corresponding events. This can be useful (for
example), when your application needs to know when a particular "state" has been entered, or
whether a transition to a particular "state" came from some other particular "state".

If you intend to leverage this feature, you can optionally make your data class extend
AbstractDialogContextListener instead of implementing the interface directly. If you do
this, you only need to implement the event handling methods that you are interested in, rather
than all of them.

Stopping An Active DialogContext Instance

There are two general approaches to stopping the processing of an active DialogContext
instance:

• Each Dialog Manager implementation will typically define a particular state as an "exit" or
"end" state. When a transition to such a state occurs, the Dialog Manager implementation will
call stop() on the active DialogContext instance, which will take it out of service.

• You can also cause the current DialogContext instance to be aborted by calling stop() on
it yourself.

Shale Dialog Manager 2 (SCXML Implementation)

Introduction

The Shale Dialog Manager defines a generic API by which an application may utilize a
Dialog Manager implementation to manage conversations with the user of that application. A
user may have (at most) one active conversation in each window or frame that he or she is
using.

This module contains the SCXML (State Chart XML) Implementation of the Shale Dialog
Manager facilities. It uses the Commons SCXML library for the dialog state machine
execution under the covers, and the dialogs are described using SCXML documents.

Benefits

• SCXML is a W3C Working Draft which may translate to better support in tooling,
number of implementations and various runtime environments. It is the candidate
controller notation coming out of the W3C.

• SCXML is more closely aligned to state chart theory and UML2, which helps those
using model driven development methodologies.

• SCXML semantics provides for much more than the basic Shale dialogs
implementation, such as histories, per state contexts, arbitrary expression evaluation,
parallelism and the possibility (currently not available in the shale-dialog-scxml
module) to add domain-specific XML vocabularies via action namespaces. See the
Commons SCXML site for details.

• Those developing multi-channel applications, or using frameworks that use SCXML
for the controller bits in other contexts (e.g. RDC framework), may be inclined
towards SCXML-based authoring for Shale dialogs.

Describing Shale dialogs via SCXML documents

A Shale dialog is modeled as a state machine. The various "state types" that commonly
constitute the dialog state machine are described in the Shale dialogs basic implementation
documentation.

This section maps these types to the corresponding SCXML snippets appropriate for the Shale
dialogs SCXML implementation. The example dialog from the Shale usecases sample
application is captured here as a UML state machine diagram and forms the basis of the
snippets below.

• Action state instances may be mapped to executable content in UML <onentry> (and
may be chained similarly).

• <!-- An "action" state -->
• <state id="checkCookie">
•
• <!-- Execute the method binding expression in the onentry block,
• method must take no arguments and return a St ring. These
• method binding expressions must use the #{... } syntax -->
•
• <onentry>
• <var name="cookieOutcome" expr="#{profile$logon .check}" />
• </onentry>
•
• <!-- Check the return value, and conditionally tr ansition
• to the appropriate state. Arbitrary EL expres sions must use
• the ${...} syntax. Since transitions are not guarded by
• events, the transitions are "immediate" -->
•
• <transition cond="${cookieOutcome eq 'authenticat ed'}"
• target="exit"/>
• <transition cond="${cookieOutcome eq 'unauthentic ated'}"
• target="logon"/>
•
• </state>

• View state instances use event guards to wait for postback. The mapping between the
<state> id and the JavaServer Faces view identifier is pluggable. The default
mapping is an identity transform i.e. the state identifier is reused as the view identifier.
See the DialogStateMapper Javadocs for details. This mapping may be overridden by
using the <shale:view> custom Commons SCXML action. See the Shale dialogs
custom Commons SCXML actions section for details. Also note the associated best
practices when authoring view <state>s.

• <!-- A "view" state, the default convention maps th is state to
• to the JSF view identifier "/logon" -->
• <state id="logon">
•
• <!-- Wait for postback event, which is named "fac es.outcome"
• The reserved variable "outcome" contains the logical
• outcome, which is used to conditionally trans ition
• to the next state -->
•
• <transition event="faces.outcome"
• cond="${outcome eq 'authenticated'}"
• target="exit"/>
• <transition event="faces.outcome"
• cond="${outcome eq 'create'}"
• target="createProfile"/>
•
• </state>

• Subdialog state instances may be mapped to external SCXML documents (describing
the subdialog) via the "src" attribute of the SCXML <state> element.

<!-- A "subdialog" state, the "src" attribute point s to the SCXML
 document describing the subdialog. -->

<state id="createProfile" src="edit-profile.xml">

 <!-- Wait for <state_id>.done event, which lets u s know
 the subdialog has run to completion. This sub dialog uses the
 the "outcome" variable to convey its logical outcome to the
 parent dialog (the SCXML <assign> element can be used
 to assign values to existing variables) -->

 <transition event="createProfile.done"
 cond="${outcome eq 'success' or outcome eq 'c ancel'}"
 target="exit"/>
 <transition event="createProfile.done"
 cond="${outcome eq 'failure'}"
 target="fail"/>

</state>

• End state instances may be mapped to SCXML final states.
• <!-- An "end" state, signifies that the dialog has run to
• completion, the default convention maps this st ate to
• to the JSF view identifier "/exit". -->
• <state id="exit" final="true"/>

Once the dialog reaches an end state, the dialog manager cleans up the current instance
of the executing dialog.

Using Dialog Manager (SCXML implementation)

To use the SCXML Dialog Manager facilities in Shale, take the following steps:

• Model your dialog as a series of States with transitions between them labelled with the
logical outcome that selects that particular transition. A UML State Diagram is a very
useful mechanism for visualizing such a model. Then create a SCXML document for
each of the dialogs (dialog state machine diagrams can be easily mapped to SCXML
documents, see above section).

• Build the views (and corresponding ViewController beans, if you are also using the
Shale View Controller Support functionality) that comprise your dialog, using
standard JavaServer Faces and (optional) Shale ViewController facilities.

• Declare your dialogs via an XML document, conventionally named /WEB-

INF/dialog-config.xml , that conforms to the required DTD:
• <!DOCTYPE dialogs PUBLIC
• "-//Apache Software Foundation//DTD Shale SCXML D ialog

Configuration 1.0//EN"
• "http://shale.apache.org/dtds/dialog-scxml-config _1_0.dtd">
•
• <dialogs>
•
• <dialog name="FirstDialogName"
• scxmlconfig="firstdialog.xml"
• dataclassname="org.apache.shale.examples.Fir stDialogData"
• />
•
• <dialog name="SecondDialogName"
• scxmlconfig="seconddialog.xml"

• dataclassname="org.apache.shale.examples.Sec ondDialogData"
• />
•
• ...
•
• </dialogs>

• If you have more than one dialog configuration file, or you have defined your only
dialog configuration file as a web application resource with a name different than the
one described above, use a context initiaization parameter to define a comma-
delimited list of context-relative paths to configuration resources to be loaded:

• <context-param>
• <param-name>org.apache.shale.dialog.scxml.CONFIGU RATION</param-

name>
• <param-value>/WEB-INF/foo.xml,/WEB-INF/bar.xml</p aram-value>
• </context-param>

• In addition to the dialog configuration resources defined by this context initialization
parameter, a resource named /WEB-INF/dialog-config.xml will be automatically
processed, if it exists, and has not already been loaded.

• Alternatively, or in addition to the above, any JAR file in /WEB-INF/lib will be
scanned for configuration documents at META-INF/dialog-config.xml . Such
resources will be automatically processed, making it easy to define JAR files with
dialog configurations and corresponding Java classes and resources, which are
recognized simply by including this JAR file in the application.

• To initiate a dialog named "xxxxx", use one of the techniques defined by the Shale
Dialog Manager.

Custom Commons SCXML actions

The Shale dialogs Commons SCXML implementation provides a couple of custom Commons
SCXML actions out of the box (background reading on custom actions). The first one allows
the use of redirects while navigating to a view, and the second allows overriding the
DialogStateMapper mapping between a "view" state and the associated JSF view identifier.

• <shale:redirect> - Typically used in the <onentry> section of the "view" <state> that
should be visited by issuing a redirect.

• <onentry>
• <shale:redirect/>
• </onentry>

• <shale:view> - Typically used in the <onentry> section of the "view" <state>, such
that the "viewId" attribute contains the JSF view identifier that should be rendered
when in this dialog state.

• <onentry>
• <shale:view viewId="/faces/wizardpage3" />
• </onentry>

The shale prefix used above is arbitrary. The association is made using the namespace URI
associated with the prefix (the above custom actions belong to the
http://shale.apache.org/dialog-scxml URI), so the SCXML document describing the above
dialog would need to establish that prefix to namespace URI association, for example:
<scxml xmlns="http://www.w3.org/2005/07/scxml" vers ion="1.0"
 xmlns:shale="http://shale.apache.org/dialog- scxml"
 initialstate="...">

It is possible for application developers to define additional custom actions per dialog
definition. For example, a developer may define a custom Commons SCXML action via a
class my.actions.Foo (which must extend org.apache.commons.scxml.model.Action, see
background reading link above) and make it available in the namespace URI
http://foo.bar/actions to the dialog named "wizard" by defining it in the dialog-config.xml like
so:

<dialog name="wizard" scxmlconfig="wizard.xml"
 dataclassname="wizard.Data">

 <scxmlaction name="foo" uri="http://foo.bar/act ions"
 actionclassname="my.actions.Foo " />

</dialog>

and further using it in the wizard.xml SCXML document like so:
<scxml xmlns="http://www.w3.org/2005/07/scxml" vers ion="1.0"
 xmlns:shale="http://shale.apache.org/dialog- scxml"
 xmlns:my="http://foo.bar/actions"
 initialstate="...">

 ...

 <state id="state1">
 <onentry>
 <my:foo .../>
 </onentry>

 ...

 </state>

Best practices

The particular usecase of SCXML within Shale dialogs implies certain restrictions on the
SCXML document used to describe the dialog. In particular, best practices for SCXML
documents used to describe Shale dialogs include:

• A "view" <state> must be a simple leaf state (should not contain other <state>
elements and should not have a <parallel> ancestor).

• A "view" <state> must not rely on <onexit> or <onentry> executable content. Such
executable content can be moved to a preceeding or following "action" state. This is
due to the possibility of browser navigation buttons (back/forward) being used during
the dialog execution. The exception to this is the two custom actions described in the
previous section, when used as mentioned above.

• All views that participate in a dialog should provide for checks to guard against double
submits (see <token> tag in shale-core) and provide "immediate" actions such as a
cancel button to exit out of the dialog.

