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Abstract
The dissertation thesis proposes a new method of using an artificial conversational
enti(later also dialogue system or chatbot) influenced by information or information
fusion. This new method could potentially serve various purposes of use like fitness
and well-being support, mental health support, mental illness treatment, and a like.
To propose such a new method, one has to investigate two main topics. Whether it
is possible to influence the dialogue system by information (fusion) and what kind
of data needs to be collected and prepared for such influence.
The dialogue system uses textual data from conversation to determine the context
of human interaction and decide about next response. It presents correct behavior
without external influence with data, but with the influence, the dialogue system
needs to react without hiccups in the conversation adequately.
The data which could be used for the dialogue system influencing can be a combina-
tion of qualitative measure (from text extracted sentiment, from voice determined
tone, from face revealed emotion), and measured quantitative values (wearable mea-
sured heartbeat, on-camera correctly performed exercise, based on EEG found focus
on activity).
All the research found in the relation of those two topics is described in next more
than 200 pages. It is supported with more than 500 references from former ones up
to the most recent, including elementary solutions up to state of the art.
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• Tomáš Šimandl to give me an insight into the precision of the wearable devices
measuring Heart Rate (HR) when I was leading and adjusting the way of his work
on his bachelor thesis [1].
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Chapter 1

Introduction

This work serves as the author’s overview of what existing research is suitable to offer the

support of his research work (the dissertation). Nevertheless, during the last two years,

the techniques, methods, and also technologies related to Natural Language Processing

(NLP) and dialogue systems evolve drastically in a good manner. So, the work is trying

to follow up this rise and build on top of that.

1.1 Motivation

The worldwide increase of various psychological disorders or mental diseases leads to the

disproportion between the impacted population and available treatment. The treatment

itself consumes lot of time, and some of the people are even not willing to admit they

need some help. During last years, self-help-based intervention (books, DVDs, computer

programs), replacement, or support of ambulatory treatment have been provided in con-

temporary research either by utilizing SMSs or dialogue systems. In all cases, the aim is

to get an equivalent substitution of psychological or medical support.

Dialogue systems represent modern and positive way to solve this disproportion that

is supported by the growing spread of mobile phones and installed applications in the

population. We want to validate their usability for such an application. As a novel

approach, we would like to combine dialogue model with additional information collected

from wearables or otherwise during the user’s conversation. Moreover, we would like to

explore if this information can potentially help to orchestrate the conversation differently

or provide some additional value to the conversation.

1.2 Problem Statement

For interventions that are led by a dialogue system, the usual process of usage is a con-

versation itself combined with some psychological approach.

When we compare such an approach with a standard conversational diagnostic ap-

proach led by a human doctor, we could see there parallels in the conversation, and its

analysis via empathy and understanding. However, quantitative measurements, such as

blood pressure, heart rate, and temperature, are missing.

1
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From a high-level perspective, the gap can be filled in by switching between the dia-

logue system module, leading a standard dialog with human and the influence mod-

ule affecting the human conversation in a positive way (Figure 1.1). The quantitative

measure (for example the number of coins in the pocket or the age of the car) can be

used either directly or pre-processed and combined with the qualitative measure (for

instance the softness of a cat or the color of the sky) within the data fusion module in

the way it represents a reasonable value to influence the conversation.

Device

Request Text

Quantitative 
Measure

Data Fusion

ResponseText

Dialogue System

Influence

Influencing Data

Qualitative 
Measure

Figure 1.1: Introduction to the idea of dialogue system influencing

1.3 Structure of the thesis

The rigorous thesis is split into several parts and the sections which focus on particular

topics and either act as an introduction to further topics or deal with one or several

Research Questions (RQs).

The introductory section (§1) describes motivation and problem statement. Followed

by state of the art (§2), which is a comprehensive overview of various methods that have

been used for similar research purposes before and forms the elementary parts for Research

Objective (RO).

The first part of the thesis is working with data. It starts with the chapter, which de-

scribes everything related to soft and hard data (§3). With the previous soft and hard data

description, the fourth section focuses on the influencing data (§4), and its pre-processing.

Furthermore, the next section is dedicated to data interpolation or discretization for later

usage of fusion techniques (§5).

The second part of thesis is focusing almost purely on the dialogue systems. It starts

with the introduction to dialogue systems (§6), where an overview of the main principles

is. It continues through the inserted section about specific corpora (§7) organized by the

application. Then it ends with detail description of dialogue system models (§8), which

follows up where the previous introduction ends and extends the dialogue system basics

with comprehensive methods.

The last part of thesis wraps up all the previous research overview. First, it uses every

chapter conclusion and brings them into account to come with several design variants
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of the dialogue system influencing (§9). Such dialogue system influencing needs to be

tested and evaluated (§10) appropriately from the technical solution and user experience

perspectives.

The very last chapter deals with the research proposal (§11). The foremost it de-

fines the Research Objective (RO) and relevant Research Questions (RQs) together with

validation via Research Use Cases (RUCs). The RUCs are organized by the solutions

complexity and potential limitations to support the Research Objective (RO) and answer

the RQs.

The work has also two addendum’s. The first appendix is about practical experience

(§A) with existing chatbot solutions. The second one reflects the popularity of Massive

Open Online Courses (MOOCs) (§B) related to dialogue systems and relevant study fields.



Chapter 2

State of the Art

The state of the art section presents various topics which are related to the thesis subject

and touches the eminent and contemporary research in the field.

The idea of usage an intervention tool to support or replace ambulatory treatment and

achieve better adherence and attrition is not new as stated in introduction (§1). So, such

methods used in past years are part of replacement or support of ambulatory treatment

(§2.1).

The emerging era of dialogue systems (§6) allows to use them for various purposes.

So, first we do the review of the dialogue systems evolution (§2.2) followed by the state

of the art (§2.3) in the field.

Dialogue systems are evolving also thanks to dialogue platform competitions (§2.4)

like Loebner Prize (§2.4.1), Alexa Prize Challenge (APC) (§2.4.2), Dialog System Tech-

nology Challenge (DSTC) (§2.4.3) or The Conversational Intelligence Challenge (ConvAI)

(§2.4.4).

Next to the competitions with common chatbot purpose, we can find the dialogue

systems for specific purposes (§2.4.5) and last but not least as intervention tools for

health and well-being (§2.4.6).

The dialogue systems testing (§2.5.1) went long way from Turing test up to the con-

temporary — in the could offered — test services. The same long way can be spotted in

dialogue system evaluation (§2.5.2), which focuses not only on technical capabilities from

measurable technical perspective, but also compares the machine with the humans.

Dialogue systems, when oriented to provide well-being or coaching functionality are

usually introducing more or less psychological and psycho-social intervention methods

(§2.6.1). Those methods require wide knowledge of psychology which is out of the thesis

scope. For our purpose it would be good enough to introduce simple cognitive strategies

which help to regulate emotions (§2.6.2).

Increasing capabilities of wearables allows to use them in health care and medical

research (§2.7). Since the wearables provide more and more different measured data

(§2.7.1) there is interest to quantify the devices precision (§2.7.2) and come with potential

applications (§2.7.3).

Well-being starts when negative feelings are identified and eliminated. The discomfort

caused by feeling the strain and pressure is called stress (we are considering the negative

one). To identify stress (§2.8) it is necessary to follow up and measure the physiological

4
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markers (§2.8.1), for which the wearables with HR measure (§2.8.2) could serve.

2.1 Replacement or support of ambulatory treatment

The replacement or support of ambulatory treatment is under the eminent scientific re-

search. The usual problem when it goes about any treatment is patient adherence to any

activity or correct description of problems leading the system to correct diagnosis.

The early systems tent to heavily use the SMS as the modern communication channel

with questionnaires as the assessment tool. Use of SMS can enhance adherence for treat-

ment of schizophrenia by enhancing patients adherence to antipsychotic medication [3]

and uses a questionnaire as the feedback from patients. There is another work that uses

SMS to replace ambulatory treatment in patients with primary depression or alcohol [4]

with feedback provided by assessment and survey. Another solution which utilizes SMS

solution ITAREPS [5] serves for weekly remote monitoring schizophrenia and psychotic

disorders with questionnaire as the feedback from patients.

With more significant capabilities of mobile phones also chatbot applications instead

of SMS have been utilized to replace or support ambulatory treatments in recent years,

mostly for well being. The specific examples, e.g. the help with weight reduction

(Nombot) or treatment of people with symptoms of depression and anxiety (Woebot)

are well described later in dialogue systems for well-being (§2.4.6). These dialogue system

are still far from the perfection of full human intervention, but with the simplicity of use

and 24x7 availability are broadly accepted as a suitable substitution. The statistics of

results are incredible when Woebot significantly reduced the symptoms of depression in

two weeks in a randomized controlled trial [6] at Stanford University.

2.2 Dialogue Systems Evolution

Like any human activity, even the dialogue systems evolved over the time. The next part

is pointing out the most interesting evolution milestones which written the history in the

field.

1966 — ELIZA [7] In 1966 created by Joseph Weizenbaum as a simulation of a Roge-

rian therapist. The program recognizes certain patterns (pattern matching) and

keywords based on which generates appropriate responses.

1972 — PARRY [8] Written in 1972 by psychiatrist Kenneth Colby to simulate a per-

son with paranoid schizophrenia. The program implemented a crude model of the

behavior of a person with paranoid schizophrenia and also embodied a conversa-

tional strategy.

1988 — Jabberwacky Rollo Carpenter created it in 1988 as the chatbot, which simu-

lates natural human chat in an interesting, entertaining, and humorous manner. It

won in 2005 the Loebner Prize (§2.4.1) as character George and in 2006 as another

character Joan.
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1995 — Artifcial Linguistic Internet Computer Entity (ALICE) [9] Inspired by

Joseph Weizenbaum’s ELIZA chatbot Richard Wallace implemented ALICE. The

chatbot utilizes the dialogue language which is an XML Schema called Artificial

Intelligence Markup Language (AIML) specifying the heuristic conversation rules.

It won the Loebner Prize (§2.4.1) three times in 2000, 2001 and 2004.

2005 — Mitsuku Worldwide popular1 chatbot based on the AIML and implemented

by Steve Worswick. The implementation contains not only all of ALICE’s AIML

files but also additional functionality, which includes the ability to reason objects,

play the games, and do magic tricks. It is a five-time Loebner Prize (§2.4.1) winner

(in 2013, 2016, 2017, 2018, 2019).

2006 — Watson IBM’s QA system, which beat two former Jeopardy show champions.

2010 — Siri It is the assistant which was originally developed by the SRI International

Artificial Intelligence Center as the spin-off Siri. It was acquired by Apple in 2010

and turned into a virtual assistant that is integrated into all Apple’s computer and

wearable operational systems.

2012 — Now Now was a feature of Google Search application used till October 2016

when Google Assistant replaced it.

2014 — Alexa It is a virtual assistant developed by Amazon. Amazon uses it in his

smart speaker products Amazon Echo and the Amazon Echo Dot. To enhance

Alexa’s skills Amazon established Alexa Prize Challenge (APC) (§2.4.2) with a goal

of building a socialbot.

2014 - XiaoIce (”Little Ice” literally in Chinese) [10] Is very popular2 social and

emphatic chatbot (IQ and EQ plays the role) deployed mostly in Asia. The XiaoIce

has mutlimodal interface to receive users input like text, images and voice. It

dispatch the input to the proper various modules through the chat manager such as

core-chat or visual awareness which are part of various skill-set.

Microsoft defined a new metric Conversation-turns Per Session (CPS)3(§10.3.2) as

the metric for social chatbots evaluating the success and emotional engagement with

users.

2015 — Cortana It was (till January 2020) a virtual assistant created by Microsoft for

Windows operational systems, wearables, mobile phones, and other devices.

2016 — Tay It was a chatbot implemented by Microsoft and deployed to Twitter in

March 2016. The chatbot was expected to interact with users and learn from those

interactions, but during the next 16 hours began to post inflammatory and offensive

tweets, and Microsoft shut down the service (§6.14.3).

129.11.2015: Mitsuku has had over 14 million interactions on Kik in just over two months.
2Since her launch in 2014, XiaoIce has communicated with over 660 million active users and succeeded

in establishing long-term relationships with many of them.
3XiaoIce has achieved an average CPS of 23
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2016 — Zo Zo is a Microsofts’s successor to the Tay chatbot, which is the English

version of Microsoft’s other successful social chatbot XiaoIce (2014) introduced in

China. Zo holds Microsoft’s longest continual chatbot conversation: 1,229 turns,

lasting 9 hours and 53 minutes (December 2016) [11]. Zo tries to avoid Tay’s con-

versational mistakes by strong Dialogue Policy (DP), which rejects any debate about

prohibited topics4, which led to the pitfalls of Tay (§6.14.3).

There are other local modifications of XiaoIce introduced worldwide. In Japan, it

is Rinna (2015), in India popular Ruuh and Indonesia Rinna again both launched

in 2017.

2020 - Meena [12] Meena is most recent contribution to the neural-based dialogue sys-

tems. Its multi-turn open-domain chatbot and its End-to-End (E2E) neural conver-

sational model is trained on 2.6 billion parameter Artificial Neural Network (ANN).

Google incorporated the incredible computational power5 to train the model to

minimize the perplexity of the next token. They also proposed a human evaluation

metrics called Sensibleness and Specificity Average (SSA) (§10.3.2), which captures

key elements of a human-like multi-turn conversation and strongly correlates with

perplexity.

2.3 Dialogue Systems State of the Art

The long history of dialogue system evolution (§2.2) brings over the time several ap-

proaches how to deal with conversation and those are grateful topics of comprehensive

papers or survey publications. These publications define their dialogue systems classifi-

cation and describe the dialogue systems architecture (§6.3), either pipeline architecture

(§6.3.1) or overall End-to-End (E2E) architecture (§6.3.2).

One of the sources is comprehensive Jurafsky’s Speech and Language Process-

ing [13], the 3rd draft of the book6. Dialogue systems and chatbots are divided into

several groups in the chapter Dialogue Systems and Chatbots (Figure 2.1).

4https://qz.com/1340990/microsofts-politically-correct-chat-bot-is-even-worse-than-its-racist-one
5The model was trained for a whopping 30 days on a TPU v3 pod (2,048 TPU cores)
6https://web.stanford.edu/ jurafsky/slp3/ed3book.pdf
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Conversational Agents

Chatbots
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Dialogue Management
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Relexicalization

AI/ML-based

Figure 2.1: Dialogue Systems and Chatbots classification by Jurafsky et al.

Another book Complex, Intelligent, and Software Intensive Systems [14] with

the section Survey on Intelligent Chatbots: State-of-the-Art and Future Re-

search Directions classifies the chatbots in different way. It is a more shallow division to

non-task-oriented (with retrieval-based and generation-based chatbots) and task-oriented

(with supervised and unsupervised approaches).

Two tutorials present a comprehensive overview of dialogue systems and its classifi-

cation focusing specifically on the Deep Learning (DL) dialogue systems. The first one is

Deep Learning for Dialogue Systems [15] overview presented at various conferences

like ACL 2017, IEEE ICASSP 2017 and INTERSPEACH 2017. The second one is Deep

Chit-Chat: Deep Learning for ChatBots [16] presented at EMNLP 2018.

Next to the book and conference tutorial presentations there exist also surveys or

various reviews of dialogue systems, chatbots, and architecture components (§6.3). Some

of them have are excellent while some of them are of worse quality.

One of the surveys purely dedicated to the phenomenon of the contests, competitions

or prizes (§2.4) is A Survey of Chabot Systems through a Loebner Prize Compe-

tition [17]. It brings no more than an overview and analysis of dialogue system techniques

used by Loebner Prize (§2.4.1) winners.

From the classification perspective A Survey on Dialogue Systems: Recent Ad-

vances and New Frontiers by Chen et al. [18] is the most intriguing. It tries to

categorize the dialogue systems in a new way (Figure 2.2) and adds neural-based models

when compared to Jurafsky classification.
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Dialogue Systems

Task-oriented

Pipeline Methods

NLU

Intent Detection
AI-based

Slot Filling

DBN-based

CRF-based

AI-based

Dialogue Management

Dialogue State Tracking

Rule-based

CRF-based

ME-based

Policy Learning

Rule-based

AI/ML-based

NLG
AI-based

End-to-end Methods

Database-based

AI/ML-based

Non-task-oriented

Neural Generative Methods

Sequence-to-sequence
AI-based

Dialogue Context

AI-based

Hierarchical Model-based

Retrieval-based Methods

Singe-turn Response Matching
AI-based

Mutli-turn Response Matching
AI-based

Hybrid Methods
multiple methods

Figure 2.2: A Survey on Dialogue Systems classification by Chen et al.

The paper Review of Research on Task-Oriented Spoken Language Under-

standing [19] presents an introduction into the Natural Language Understanding (NLU)

(§6.8) part of the dialogue system. It presents the independent models of slot filling

(§6.8.4) and intent detection (§6.8.2) tasks and then also joint models for both tasks

together.

A comprehensive review of Dialogue State Tracker (DST) is presented by Henderson

in Machine Learning for Dialog State Tracking: A Review [20] provides the basic

classification of particular DST methods and review of previous years of Dialog System

Technology Challenge (DSTC).

Another DST evolution is nicely described by Williams with contribution from Hen-

derson in The Dialog System Technology Challenge (DSTC) Series: A Review

(§2.4.3) paper [21]. It gives reviews of method, challenge, data, and evaluation standard-

ization.

A survey about connection between Reinforcement Learning (RL) and Dialogue

Management (DM) strategies [22] describes DM approaches, strategies and evaluation

in detail. It introduces common approaches about DM like management strategies, inti-

tiative, and confirmation and then deep dives into RL (§8.6.2) with detailed explanation

including the Markov Decision Process (MDP).

From the content and topic point of view there is an exhaustive Survey of state of

the art in NLG (§6.10) [23]. It contains almost 120 pages related to the Natural Lan-

guage Generation. It includes not only dialogue systems topics related to the generation

of text but also topics about image captioning, generating text with style, personality,

and affect or creative and entertaining text.

Much shorter is A Survey of Natural Language Generation Techniques with
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a Focus on Dialogue Systems - Past, Present and Future Directions [24]. It

describes the complete mechanics of NLG up to the detail realization from hand-crafted

methods, over templates up to the statistical approaches including Deep Learning (DL).

Another comprehensive publication about NLG is Evaluating the State-of-the-Art

of End-to-End Natural Language Generation: The E2E NLG Challenge [25].

It contains 80 pages describing the methods, datasets, and evaluation of NLG.

The comprehensive paper A Survey of Available Corpora for Building Data-

Driven Dialogue Systems [26] is mainly focused on datasets, their description, usage,

advantages and disadvantages. Moreover, it also presents the introduction to dialogue

systems and their evaluation.

Except this specific one the pipeline module NLG evaluation paper [25] exists. Survey

on Evaluation Methods for Dialogue Systems [27] leads the reader trough all the

relevant topics to the dialogue systems evaluation including task-oriented, conversational

dialogue, and QA systems.

2.4 Dialogue Systems Competitions

Behind the extensive development of dialogue system is standing research. With the

increasing number of publications on such topic with generative methods (§6.4.2), it looks

like dialogue based on Deep Learning (DL) (§8.6.1) seems to be promising and stable

solution soon, but the Loebner Prize (§2.4.1) running since 1991 is still convincing us to

the contrary. Also recently founded Alexa Prize Challenge (APC)7 (§2.4.2) is not fully

utilizing AI, but builds on top of the ensemble dialogue systems (§8.8.2) approach. Each

of these competitions has defined its own state of the art category in dialogue system

evolution.

There are two other contests focusing fully on a dialogue. The first one DSTC8 (§2.4.3)

is an on-going series of research community challenge tasks. The main subject is to create

a tracker which is able to predict the dialogue state for new dialogues. Every year the

challenge is oriented to a different main theme with data from a different conversation do-

main. In each challenge, trackers are evaluated using held-out dialogue data. The second

one (ConvAI9) (§2.4.4) is the Neural Information Processing Systems (NIPS) conference

competition track first presented in 2017 and continued in 2018. There are several tasks

for which this competition is aiming at and these are: providing a dataset and making

conversations more engaging for humans and simplifying the evaluation process (auto-

matic evaluation, followed by the human evaluation). So, these contests bring another

contribution to the state of the art of dialogue systems.

2.4.1 Loebner Prize Chatbots

The contest defined by Hugh Loebner and Cambridge Center for Behavioral Studies,

Massachusetts, United States was founded in 1990 to evaluate chatbots based on the

7https://developer.amazon.com/alexaprize
8https://www.microsoft.com/en-us/research/event/dialog-state-tracking-challenge
9http://convai.io
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application of the Turing Test [28].

The competition has been running since 1991 with a well known [17], [29] list of winners

(Table 2.1). The rules changed slightly over the years, but the main goal has remained

the same.

Annually, the awarded price bronze medal for the most human-seeming program in

the competition is $2,000. Whenever the chatbot cannot be distinguished from humans

the silver medal award of $25,000 is given and if the chatbots fully understand the text,

audio and video input the reward of $100,000 is given to the author and the competition

ends.

Year Winner Design Specifics P
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1991 PC Therapist • •

1992 PC Therapist • •

1993 PC Therapist • •

1994 TIPS personal history model • •

1995 PC Therapist • •

1996 HeX personal history model • • •

1997 Converse • • • •

1998 Albert One •

1999 Albert One •

2000 A.L.I.C.E. • •

2001 A.L.I.C.E. • •

2002 Ella phrase normalization • •

2003 Jabberwock context free grammar • •

2004 A.L.I.C.E. • •

2005 George (Jabberwacky) •

2006 Joan (Jabberwacky) •

2007 Ultra Hal script •

2008 Elbot commercial

2009 Do-Much-More commercial

2010 Suzette • • •
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2011 Rosette • • •

2012 Chip Vivant artificial intelligence •

2013 Mitsuku • •

2014 Rose • • • •

2015 Rose • • • •

2016 Mitsuku • •

2017 Mitsuku • •

2018 Mitsuku • •

2019 Mitsuku • •
Table 2.1: Loebner Prize Summary

The first main conclusion out of the Loebner Prize summary Table 2.1 is that pattern

matching technique drives the design of chatbots in this competition. During the last 28

years we can see additional design approaches like database usage, phrase normalization,

mostly also ontology and WordNet, context-free grammar and Markov chains. All these

techniques are used to give a chatbot chance to recognize relations in the language and

use it for a better understanding of the matched pattern.

2.4.2 Alexa Prize Challenge (APC)

Current solutions related to the APC are dealing with very complex issues to build a

dialogue open system. As it will be described later on in chatbot introduction (§6), the

open domain (§6.5.1) dialogue system is one of the biggest challenges and it is difficult to

be achieved.

Overview of 2017

A summary of particular chatbots participating in APC is in Table 2.2, where the high-

lighted solutions took first three places and are described in more detail below the table.

Program Design Highlights

CMU Magnus [30] maximal marginal relevance, finite state tranducer

Ruby Star [31] confidence score (BoW), CoreNLP

Alquist [32] structured topic dialogue, CoreNLP, YodaQA

Emersonbot [33] Gradient Boosting (Word2Vec, TF-IDF), Yahoo, Wikipedia

Alana [34] bot priority list, contextual ranking mechanism

Pixie [35] confidence index, CoreNLP, Google knowledge graph

Wise Macaw [36] AIML, seq2seq with LSTM trained on Twitter
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Chatty Chat [37] finite state machine or TF-IDF with SVN, Wikipedia

Eigen [38] state machine modules, discriminator, transfer learning

SlugBot [39] dialogue manager, confidence score, database, ELIZA

Edina10 [40] rule-based and generative (RNN), TF-IDF, self dialogue

MILA Team [41] template, knowledge, search, retrieval, generation models

Roving Mind [42] pipeline with modules, rule-based, database, CRF 11

Sounding Board [43] state-based dialogue model, TextRank (Gensim)

Table 2.2: Alexa Prize Summary 2017

Sounding Board [43] It is a social bot from the University of Washington implemented

from scratch as the contribution to Alexa Prize Challenge (APC). It employs a hi-

erarchical dialogue manager of overall conversation and is supported by a collection

of mini-skills to manage different conversation topics. The dialogue policy is strictly

user driven multi-dimensional representation of utterance (§6.8.1) that includes user

sentiment as well as intent detection (§6.8.2). During the conversation the chatbot

detects user frustration to initiate a topic change.

Alquist [32] It is implemented by a research group from the Czech Technical University

in Prague represents a dialogue system which (as the authors say) provides coherent

and engaging conversation on various topics. It uses an advantage of two types of

Dialogue Managements (DMs): top-level and topic-level. The top-level dialogue

manager decides which module should be executed (chit-chat, question answering,

topic dialogue, etc.). The topic-level dialoge manager switches to particular topics

(sports, movies, etc.). Overall, the system combines machine learning modules and

rule based modules for response generation.

Alana [34] It is a bot created at the Heriot-Watt University in Edinburgh. It takes an

advantage from an ensemble of various agents/bots. These bots generate a pool

of replies on which a ranker model is going to select the most relevant reply. The

bots ensemble contains the following two categories of bots: Data-driven bots and

Rule-based bots (persona bot, Eliza resp. its extension Rosie, news bot, fact bot,

EVI, weather bot). The responses proposed by each bot are ranked according to a

set of features by a hand-engineered ranker function and linear classifier ranker.

10Implemented in RiveScript (https://www.rivescript.com/)
11Conditional Random Fields
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Overview of 2018

Table 2.3 summarizes design used in particular solutions with highlighted first three places

which are described in more detail below.

Program Design Highlights

EVE [44] conversational scaffolding12, knowledge graph, ScriptDog lang.13

Tartan [45] retrieval based, dynamic Finite State Machine

Alquist [46] ontology-based topic, LSTM-based model for DM14

Iris [47] Mixture of Experts Model implemented by CNN and FCNN

Alana [48] clarification questions, contextual NLU with FEL15

Fantom [49] Evolving Dialog Graph context modeling

Gunrock [50] context-aware hierarchical DM 16, LSTM for dialogue predicition

SlugBot [51] Discourse relation dialogue model (DRDM)

Table 2.3: Alexa Prize Challenge (APC) Summary 2018

Gunrock [50] It is a social bot designed to engage users in open domain conversations

built by the University of California Davis. With an incredible effort dedicated to

each part of the architecture pipeline it became the winner of Alexa Prize Challenge

(APC) in 2018. First, they focus on the main chatbot architecture building blocks

like a context-aware hierarchical Dialogue Management (DM) reacting and han-

dle a wide variety of user behaviours (typically question answering and difficulties

with topic switching). Secondly, they focus on error correction of automatic speech

recognition (ASR) and developed sentence segmentation in NLU with a large data

set.

Alquist 2nd version [46] It is developed by the team from the Czech Technical Univer-

sity in Prague won the second place in 2018 as well as it happened in 2017. They

improved their original implementation with a system leveraging ontology-based

topic structure called topic nodes. This is a major innovation when compared to

the previous year utilized fixed tree structure for each topic node. These nodes

consist of several sub-dialogues where each one of them utilizes a dialogue man-

agement model built with Long / Short Term Memory (LSTM). During the main

dialogue the sub-dialogues based on the existing topic hierarchy or user intent can

be triggered.

12a technique which uses a (small) conversational dataset to define a generalized response strategy
13https://github.com/BYU-PCCL/scriptdog
14dialogue management
15Fast Entity Linking
16dialogue manager
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Alana v2 [48] It provides improvement of the first version. It was developed by a team

from Heriot-Watt University in Edinburgh. They focused on the improvement of

Natural Language Understanding (NLU) part to generate clarification questions

to disambiguate between Named Entity Recognition (NER) interactively. Another

technique used to retrieve additional information associated with the entities is en-

tity linking, resp. fast entity linking (FEL) system [52], [53]. It is fundamental for

chatbots coherent conversation with the user about a specific topic. For individual

bot responses improvement, they utilized data from the previous year competition

and train BiLSTM classifiers. Last but not least, they introduced new Ontology,

Abuse mitigation, and Reddit bots to improve the overall conversational engage-

ment.

2.4.3 Dialog System Technology Challenge (DSTC)

The DSTC is an on-going series of research community challenges established in 2013

and first having been a part of the Special Interest Group on Discourse and Dialogue

(SIGdial) conference and then Institute of Electrical and Electronics Engineers (IEEE),

International Workshop on Spoken Dialog System (IWSDS), Neural Information Process-

ing Systems (NIPS) or Association for the Advancement of Artificial Intelligence (AAAI)

conferences in the next years.

The primary objective is to create a “tracker” that can predict the dialogue state for

new dialogues. The task is every year driven by different data provided by various organi-

zations (universities or research institutions) and contains diverse domains for particular

dialogue system topic related to the specific year of challenge (Table 2.4).

Challenge Conference Domain Topic

DSTC1 [54] SIGdial 2013 Bus Timetable Evaluation Metrics

DSTC2 [55] SIGdial 2014 Restaurant User Goal Changes

DSTC3 [56] IEEE SLT 2014 Tourist Information Domain Adaptation

DSTC4 [57] IWSDS 2015 Tourist Information Human Conversation

DSTC5 [58] IEEE SLT 2016 Tourist Information Cross-Lingual Adaptation

DSTC6 [59] NIPS 2017 Restaurant E2E17 Goal Oriented Dialogue [60]

OpenSubtitles E2E Conversation Modeling [61]

Twitter

Various Dialogues Dialogue Breakdown Detection [62]

DSTC7 [63] AAAI 2019 E2E Dialogue System Noetic E2E Response Selection [64]

Grounded Response Generation [65]

AVSD18 [66]

17End-to-End
18Audio Visual Scene-aware Dialog
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DSTC8 [67] NIPS 2019 E2E Dialogue System E2E Multi-Domain DS19

Fast Adaptation Task

Predicting Responses Track

AVSD

Table 2.4: Dialogue System Technology Challenges

Each task released dialogue data labeled with dialogue state information. It is given

by the dialogue history up to the current turn, for instance the user’s desired restaurant

search query. In each challenge, trackers are evaluated using held-out dialogue data.

2.4.4 The Conversational Intelligence Challenge (ConvAI)

The ConvAI focuses mainly on two topics (Table 2.5) which are essential for non-goal-

oriented dialogue systems (chatbots). Gathering and preparing datasets for appropriate

training chatbot models make conversations more engaging for humans. Standardizing

chatbot models evaluation is equally problematic if not even more painful. It includes hu-

man evaluation (for instance Turing test (§10.2.1)) followed then by computed evaluation

(for example evaluated by metrics §10.3.2).

Challenge Conference Dataset Metrics

ConvAI NIPS 2017 Human-to-Chatbot Dialogues [68] MTurk 20

ConvAI2 [69] NIPS 2018 Persona-Chat [70] MTurk

Perplexity (PPL)

Hits@1

F1

Table 2.5: The Conversational Intelligence Challenge

Overview of 2017

The first year of competition evaluated chatbots only with the Amazon Mechanical Turk,

which is the online service providing the individual evaluation. Table 2.6 presents the

results of particular chatbots compared to the human rating representing the baseline.

Rank Bot21 Rating

1-2* bot#1337[71] 2.746

1-2* poetwannabe [72] 2.536

3 kAIb 2.105

19Dialogue System
20Amazon Mechanical Turk, i.e. human evaluation
21https://github.com/DeepPavlov/convai/tree/master/2017/solutions
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4 RLLChatBot [73] 1.905

5 PolyU 1.5

6 DeepTalkHawk 1.229

– Human 3.8

Table 2.6: ConvAI Summary 2017

Overview of 2018

In the second year of the competition, the chatbots were not only human evaluated,

but also automatically evaluated with chosen metrics (§10.3.2). From this two round

evaluation (Table 2.7), the human rating was taken as the primary one to decide what

position a particular team’s chatbot achieved.

Rank Bot Rating PPL Hit@1 F1

1 Lost in Conversation 22 3.11 - 17.1 17.77

2 (Hugging Face) 2.68 16.28 80.7 19.5

3 Little Baby 2.44 - 64.8 -

4 Mohd Shadab Alam 2.33 29.94 13.8 16.91

5 Happy Minions 1.92 29.01 - 16.01

6 ADAPT Centre 1.6 31.4 - 18.39

- Human 3.48 - - -

Table 2.7: ConvAI Summary 2018

2.4.5 Chatbots for Specific Purposes

Apart from the dialogue system competitions (§2.4), there are other commercial solutions

which refer to the latest research in the field of specific topic dialogue systems (see the

closed domain §6.5.2) which are not less valuable when compared to any topic dialogue

system (see the open dialogue system §6.5.2), but use different approaches in the much

narrow field:

• A User Simulator for Task-Completion Dialogues [74] represents a dialogue system

for helping users to book movie tickets or to look up the movies they want, by

interacting with them in natural language. It is built on top of Natural Language

Understanding (NLU) and Natural Language Generation (NLG) techniques.

• A conversational agent for two different domains (a conference information sys-

tem and local tourist guide) [75] is quite unusual. The common approach is

22https://github.com/atselousov/transformer chatbot
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usually to develop a single domain-oriented chatbot. The system consists of two

main parts — decision and orchestration. The first one activates the search module

based on the incoming request. The second one orchestrates various resources (QA,

Paper content DB, Tourist Info DB, and Web). They cooperate to generate the

response.

• A Neural Conversational Model [76] utilizes a Sequence to Sequence (Seq2Seq) model

(§8.2.3) and Recurrent Neural Network (RNN) (§8.1.2) which reads the input se-

quence (one token at a time) and predicts an output sequence, also one token at a

time. The model was tested on data from an IT helpdesk dataset of conversations

and can sometimes track the problem and provide a useful answer to the user.

2.4.6 Chatbots in Health and Well-being

When considering chatbots in health care, we can see research which in several cases

turned into practically used applications. Chatbots themselves are used not alone as

simple conversational entities but are supported by several additional techniques, for

instance gamification and those which are reviewed in psychological methods (§2.6).

Feasibility and effectiveness of using a chatbot or any other one-on-one mental health

intervention that uses text-based synchronous chat was reviewed in [77] with the conclu-

sion that studies showed significant and sustained improvements in mental health out-

comes following synchronous text-based intervention, and post-treatment improvement

equivalent but not superior to the usual treatment (e.g. face-to-face and telephone coun-

seling).

Another chatbot survey [78] focuses on the narrow field of mental health care assis-

tance in psychiatric counseling via dialogues. Based on the various studies it suggests to

combine high-level Natural Language Understanding (NLU) with multi-modal emotion

recognition from various content including intonation, and facial expression. It intelli-

gently corresponds such as psychiatric case-based reasoning and long-term monitoring,

and ethical judgment. All these techniques require not only significant implementation

complexity but also sensitive continuous observation of users emotional changes.

Nombot [79] It is a food tracking chatbot which represents one of the applications. It

tends to simplify manual food tracking which is not popular. It is built on top of

the existing instant messaging service Telegram (§6.13.3). The approach is to use

gamification with various motivation types (points collection, higher level unlocking)

and compare it to the existing food tracking application (MyFitnessPal) via A/B

testing (§10.2.2).

Woebot [6] Another chatbot implementation which serves as the psycho-social interven-

tion (§2.6.1). It uses Cognitive Behavioral Therapy (CBT) to treat young adults

with symptoms of depression and anxiety. Facebook Messenger (§6.13.3) is the

platform through the chatbot was implemented and then clinically tested on the

group of 70 participants. Additionally to the usage of the chatbot the participants
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fulfilled various standardized questionnaires (§10.4.1) such as Patient Health Ques-

tionnaire (PHQ-9), Generalized Anxiety Disorder (GAD-7), Positive and Negative

Affect Schedule (PANAS) and Acceptability and Usability questionnaire.

Lark [80] The chatbot provides the support and cheer-leading together with tracking

daily movement, weight (once a week), sleep and food. It is initially designed to

promote weight loss and other health behaviors related to diabetes prevention. The

study also measured user acceptability of AI coaches as alternatives to live health

care professionals. The mobile application promotes sustainable behavior change

and increased self-efficacy; the AI incorporates interactive elements of Cognitive

Behavioral Therapy (CBT) such as reflection, legitimization, respect, support, and

partnership.

2.5 Dialogue Systems Testing and Evaluation

For any software development or developed systems, we need to know how well it works.

So, the testing methods and evaluation metrics represent the ways to get information

about the dialogue system functionality.

2.5.1 Dialogue System Testing

To validate the functionality of dialogue system, it has to be tested. The testing can be

done by two different approaches:

Human tests Those are done by people and their intuition and consider various ap-

proaches. From the Turing test [28] (§10.2.1) which distinguishes a dialogue system

from human communication up to the A/B test (§10.2.2) where the dialogue system

variants can be compared.

Automated tests The human is replaced by automated testing process which relays

on the data rather than the intuition. It can be provided as on-premise (locally

containerized) solution (§10.2.3) or in the cloud (via API) offered solution (§10.2.4)

for chatbot testing.

2.5.2 Dialogue System Evaluation

When the system is tested it can be evaluated, for the evaluation it is good to have some

baseline against the evaluation can be done. The baseline is usually defined by dialogue

system human evaluation.

To narrow down the dialogue system evaluation we can consider three parts which

include:

Evaluation aspects For the evaluation of dialogue system quality we consider specific

criteria. Those criteria are called aspects (§10.3.1) and include various scale of

qualitative measures in three main groups: efficiency, effectiveness, and satisfaction.
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Those were identified by systematic review of more then forty research publications

and articles [81].

Evaluation metrics Since the aspects are qualitative criteria we need to consider also

quantitative part which can be calculated automatically. For such purposes var-

ious evaluation metrics (§10.3.2) exist. From BiLingual Evaluation Understudy

(BLEU) [82] one of the mostly used metrics comparing candidate and response sen-

tence and correlate with the human judgement up to the most recent Sensibleness

and Specificity Average (SSA) [12] which combines two fundamental aspects of a

human-like chatbots: making sense and being specific.

Evaluation benchmarks The standardization activities lead to the establishing sev-

eral benchmark datasets (§10.3.3) from which mostly known are Stanford Question

Answering Dataset (SQuAD) [83], [84] and General Language Understanding Eval-

uation (GLUE) [85] recently evolved into Super General Language Understanding

Evaluation (SuperGLUE) [86]. Next to the universal benchmarks also benchmarks

for pipeline methods (§8.7) co-exist. One of them used for Dialogue Management

(DM) benchmarking is a persona-chat dataset [70] established during the The Con-

versational Intelligence Challenge (ConvAI) (§2.4.4). Another one is an End-to-End

(E2E) dataset used for Natural Language Generation (NLG) benchmarking released

as a part of E2E NLG Challenge [25].

On top of those three in case of influenced dialogue system it is necessary to evaluate

also the intervention (§10.4). This is purely subjective evaluation and it can be done by

various questionnaires (§10.4.1) used in clinical psychology and psychiatry.

2.6 Psychological methods

Two already described chatbots (§2.4.6) Woebot [6] and Lark [80] are (next to other

methods) utilizing Cognitive Behavioral Therapy (CBT). This psychological method helps

them to regulate and support users behavior in the way to provide the best psycho-social

intervention.

The CBT from the perspective of layman seems to be a complex psychological tool

which needs either cooperation with a psychologist or his/her participation in the project.

However, this is not necessary. The thesis objective is quite different than provide com-

plex psycho-social intervention. Its enough to prove or disprove the Research Objective

(RO) (§11.4.1) stated in thesis research proposal (§11).

Nevertheless, since the CBT was mentioned already, it would be good to introduce

Psychological and Psycho-social interventions a little bit more (§2.6.1) and provide al-

ternatives to CBT which still can be used when the chatbot is influenced by a stressed

participant.

As the alternative to the CBT Emotion Regulation (ER) strategies could serve. They

are more understandable and it is possible to implement them. A brief overview is pro-

vided in this section (§2.6.2); a detailed overview is given later (§9.4).
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2.6.1 Psychological and Psycho-social interventions

Psychological and psycho-social interventions have traditionally made use of interaction

between the client and therapist, worker, helper or counselor. Moreover, in recent years

there has been a higher demand for the self-help-based interventions that involve the use

of DVDs, books, computer programs or self-help manuals [87].

There is no widely accepted categorization of psychosocial interventions. The term

is generally applied to a broad range of types of interventions. A few examples of such

psycho-social interventions are [88]:

Assertive community treatment It encompasses an array of services and interven-

tions provided by a community-based, interdisciplinary, mobile treatment team [89].

Cognitive Behavioral Therapy (CBT) The CBT (Figure 2.3) is used for a wide ar-

ray of mental health and substance use disorders. It combines behavioral techniques

with cognitive psychology, the scientific study of mental processes, such as percep-

tion, memory, reasoning, decision making, and problem-solving. The goal is to re-

place maladaptive behavior and faulty cognition with thoughts and self-statements

that promote adaptive behavior [90].

Feelings

Thoughts

CBT

Behavior

Figure 2.3: Cognitive-behavioral therapy diagram

Contingency management It is a psycho-social intervention designed for substance

use disorders. As an evidence-based practice it uses an incentive-based approach

that rewards a client contingent upon meeting desired outcomes [91].

2.6.2 Cognitive strategies to Emotion Regulations (ERs)

Emotions become dysfunctional when they interfere with one’s ability to behave adap-

tively and therefore successful ER, when necessary, is crucial for psychological health [92].
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ER is usually maintained by methods belonging to cognitive strategies which include dis-

traction (§9.4.1), reappraisal (§9.4.2), labeling (§9.4.3) or paraphrasing (§9.4.4) which are

described later in a deeper detail in intervention-methods (§9.4)

2.7 Wearable Technology and Health

As the wearable technology stepped into our lives and the market offers cheaper devices,

more people start to monitor their health.

Wearables evolved over the time and offer various types of measured data (§2.7.1) with

better and more reliable devices-precision (§2.7.2).

Next to health the field of well-being monitoring is also expanding. It includes more

sophisticated analyses than just how many steps were done or how long the sleep was.

Together with that extensions of existing applications and the use of measured data

or monitoring of well-being more and more specific applications appear (§2.7.3).

2.7.1 Measured data

Devices (either smart watches or activity trackers known as wearables) used every day

can quickly collect hard data (§3) about health of its users.

Steps are the primary measure together with traveled distance and climbed floors

usually gathered by three axes accelerometer. As the part of the movement active minutes

and burned calories can be calculated. Next to steps there are devices able to measure

specific exercises or activities, for instance, swimming, elliptical exercise and also sleep

time and sleep quality.

Next to steps the heart rate collected by the optical measurement via photoplethys-

mography (PPG) techniques is the second desirable measure. It allows us to indicate

specific heart rate zones and identify for instance the fitness score.

By including GPS into wearables the user can record workout routes and pace of his

activities.

Some specific measures like diabetes indicators, blood pressure or ECG require specific

sensors and implemented sensory controlling functionality, but makes the promise that

wearables become more useful in daily life.

2.7.2 Devices Precision

Precision of wearable devices is perceived from various angles and measured under various

setups of experiment designs [93]–[95] and for specific purposes like weight management

[93].

The most commonly measured data are steps, calories, and heart rate (§2.7.1). Heart

rate is in the focus of this work.

Heart Rate Measurement Precision

Wearables detect the heart rate through optical measurement, and its measurement pre-

cision can vary due to the technical design and processing firmware implementation.
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There are papers considering some devices (Microsoft Band) very precise [95] when

compared to other devices (Fitbit Surge). Some of them are oriented explicitly to some

specific devices [1], [96]–[98] like Fitbit.

The paper [96] concludes that the Fitbit trackers (Fitbit Charge HR) are affected

by significant systematic errors under free-living conditions. Improvements in tracker

accuracy and sensitivity when measuring physical activity are required before they can

be considered for use in the context of exercise prescription to promote better health.

[97] claims that individual heart rate measure (by Fitbit Charge HR 2) could plausibly

be underestimated by almost 30 bpm. Finally the conclusion of [98] is that wear-position

of the evaluated wrist watch (Fitbit Charge 2) may impact heart rate readings, so it is

necessary to hold the recommended position for accurate measurement strictly.

During data collection phase in the Pilot experiment (PX) (§3.6.1) and Quasi-experiment

(QX) (§3.6.2) two specific devices were used.

The first one was Fitbit Charge HR. The results from [94] show that the mean absolute

percentage error was 6.2 % when the comparison between Fitbit Charge and ECG was

made. Other results from [93] present that device heart rate estimates were within 1-9 %

of reference estimates.

The second device was Basis Peak. The precision of this wearable HR measurement

for the entire testing interval was determined as an average difference of 3.6% between

the values measured by the Basis Peak and the ECG [94].

2.7.3 Wearables Applications

Currently, other applications within health care are being explored with a new potential

from measured data derived information which can improve users health and well-being:

• Samsung together with UCSF started the research into the relationship between

stress and blood pressure derived from heart rate 23

• NIH/NIAAA supported measuring blood alcohol concentration by Milo Sensors 24

• Monitoring how sick the user is by tracking physiology and activity using wearable

biosensors [99]

• Health Risk Assessment applications, including measures of frailty and risks of age-

dependent diseases [100]

• Real-time seizure (Epilepsy) monitoring together with alerting is provided by Em-

brace 2 wristband from Empatica 25 company.

2.8 How to identify Stress

Chatbot intervention makes sense only when the user physiological state changes and

triggers the event of the chatbot influence — the change of users physiological state can

23https://mybplab.com
24http://www.milosensor.com
25https://www.empatica.com
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represent stress which needs a correct identification.

2.8.1 Stress Physiological Markers

The most commonly used physiological markers of stress are as follows [101]:

Galvanic skin response (GSR) Uses changes in skin conductivity. During stress, the

resistance of skin drops due to increased secretion of sweating glands [102].

Electromyogram (EMG) Mesures the electrical activity of the muscles. Stress causes

differences in the contraction of muscles which can be used to identify stress [103],

[104].

Skin temperature Changes in the skin temperature are related to the stress level [105].

Electrical activity of the heart The most commonly used stress marker parameters

are derived from the Electrocardiogram (ECG), HR and HRV [106], [107].

Respiration Acute stress causes changes in the breath rate [108]

Blood pressure Stressors induce an increase in the blood pressure compared to the

baseline [109].

2.8.2 Stress Identified from Heart Rate (HR)

Wearable devices allow to measure many signals and provide various data. The most

common (see §2.7.1) are steps which are practically dependent variable on the subject

daily movement and HR. It is a suitable measure because it can be used as a stress

identifier.

Stress can be identified from HR using a variety of techniques and methods, for in-

stance:

• Using chest strap as the low-cost HR sensor which provides a combination of mea-

sures from which the mean HR, pNN5026, and RMSSD27 features lead to identifica-

tion of stress [101]

• With an activity tracker (wearable device) connected to a smart-phone, five types

of various data (steps, calories, sleep cycle, HR and resting HR) are collected; they

serve to engineer 17 features used for stress recognition. [110]

26The pNN50 statistic is a time domain measure of HRV defined as the mean number of times per hour
in which the change in consecutive normal sinus (NN) intervals exceeds 50 milliseconds.

27Root Mean Square of the Successive Differences is one of a few time-domain tools used to assess
HRV, the successive differences being neighboring R-R intervals.
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2.8.3 Heart Rate (HR) vs. Heart Rate Variability (HRV)

Next to the HR another parameter that was proposed to help recognize stress is HRV

[111].

HRV calculations require a precise measurement of R-R interval between two heart-

beats. To this day (January 2020) there are no wristbands or smartwatch (wearables) on

the market that would use LED/Pulse Oximetry sensors and have enough accuracy in

capturing the exact R-wave peak. On the other hand, the technology is advanced enough

that such devices can measure the basic heart rate accurately. It is given by the fact that

HR is not sensitive to tiny changes as it is with HRV.

To measure HRV accurately, the heart rate monitor of choice must:

• Capture and transmit measured R-R intervals accurately.

• Transmit the unaltered R-R intervals via wireless networks.

2.9 Summary and Research Direction

Whenever SMS (§2.1) or chatbot (§2.4.6) are used as an intervention tool, health care

support for well being, support or replacement of treatment; those methods are trying to

solve the same problem mainly. The adherence (commitment) and attrition (process of

increasing effectiveness of the intervention, treatment, and so on) of patients or people

who are using such service is the primary issue. It does not matter whether it is a message

about taking a medicament or doing another round of intervention (for instance Emotion

Regulation (ER) (§2.6.2)).

Chatbots are representing a new direction over the SMSs with the advantage of imme-

diate interactive bidirectional communication. So, a chatbot through the application can

ask and get feedback which complies with the required patient activity, acknowledgment

about pills or current patient status gathered during the conversation.

With the advantage of keeping the high adherence and low attrition there is an increas-

ing risk that the user is annoyed with the frequency of reflections during the day. It could

lead to resign on positive aspects of the intervention application or to the tendency to

skip or pretend the results and behavior which do not correspond to reality. It is not suit-

able for intervention treatment. In such cases it would be helpful to extend the dialogue

intervention method with the simultaneously measured biological signal. Such a signal

can represent a typical or elevated emotional level (for instance represented by stress). It

might help the application to react and adapt itself to the situation by regulating emotions

adequately.
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Soft and Hard Data

A tremendous growth of big data1 in the recent years and also possibilities to store and

process them led to the need to focus not only on physics-based sources of information

— hard data (see the definition in §3.1), but also soft data — human-based sources of

information (also defined in §3.1).

Those data have various sources which are quite closely inspected in §3.2. Several

relationships (§3.3) between soft and hard data are defined and extensively described and

then data fusion (§3.4) is introduced to reveal undiscovered information which can be

used later for dialogue system influencing purposes.

A practical use of soft data or hard data (§3.5) alone or their fusion is described in

three various examples including the lifestyle, mental health and medicine.

Last but not least soft and hard data need to be carefully collected (§3.6) by performing

the experiments that follow broadly used standards.

3.1 Definitions of Soft and Hard Data

In the common understanding we distinguish two main types of data: qualitative and

quantitative. These are then divided further into binomial, nominal and ordinal for qual-

itative data; for quantitative data we distinguish between discrete and continuous data.

The first type of data (soft data) is based on qualitative observations. Such as ratings,

surveys, pools, blog posts and discussion which contain people opinions, suggestions,

interpretations, contradictions, uncertainties, and feelings. It is difficult to measure them

[112]–[114].

The second type of data (hard data) is the data based on facts from reliable - quan-

titative sources like devices and applications. This includes phones, computers, sensors,

smart meters, traffic monitoring systems, call detailed records, bank transaction records,

etc. All this data can be measured, tracked, validated and proved [113]–[115].

1extremely large data sets

26
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3.2 Sources of Soft and Hard Data

According to [116] data is divided (in the military terminology) by a source that gener-

ates it (header row in Figure 3.1) which heads to the classification between soft and hard

information (Figure 3.1). While HUMINT (human intelligence) and OSINT (open source

intelligence) are mostly soft data, SIGINT (signals intelligence) provides both, depends

on how and for what purposes data is used and interpreted; GEOINT (geospatial intel-

ligence), and MASINT (measurements and signatures intelligence) are considered to be

mostly hard data.

Figure 3.1: Representative information elements according to generating source (header
row) and classification between hard and soft information

For our purposes, we would like to point out a few maybe obvious HUMINT/OSINT

soft data sources (§3.2.1) and MASINT hard data sources (§3.2.2).

3.2.1 Sources of Soft Data

Human-generated data represent typically opinions and feelings about tangible and in-

tangible things and can be found e.g. in:

• Textual movie reviews from users, for instance, Rotten Tomatoes 2

• Assorted merchandise reviews, where one of the most known is Amazon 3

• Open discussion forums and platforms for discussions of any kind, like Reddit 4

• Any kind of social media beginning with Facebook 5, going over Twitter 6, to In-

stagram 7 and others.

• And much more.

2https://www.rottentomatoes.com
3https://www.amazon.com
4https://www.reddit.com
5https://www.facebook.com
6https://twitter.com
7https://www.instagram.com
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3.2.2 Sources of Hard Data

There are many applications or devices where the measured data (hard data) is the main

source of information:

• Static sensors included in diverse products or measurement devices providing on-

demand output.

• Numerous wearables and smartwatch; when synchronized they upload data into a

cloud.

• IoT used in different devices for continuous measurement and reporting in real-time

or close to real time.

3.3 Relation between Soft and Hard Data

The circumstances under which soft and hard data are collected determine their relation-

ships. The following list describes several examples of such relations.

• Common Object of Interest — whenever we have some interest about a partic-

ular object, this object can be described by technical or statistical data (hard data)

and subjectively when the author is projecting his/her feelings and opinions (soft

data) on such object. These data do not necessarily need to be recorded at the same

time. The object which can be described by parameters or statistical data together

with the subjective description defines the relation between data.

– Movie

∗ Movie visits provide statistical (hard data) information about the object.

∗ Movie reviews represent subjective description (soft data) about the object.

– Car

∗ Car technical parameters describe an object from the technical (hard data)

perspective

∗ Car review contains a subjective description of its attributes (soft data)

• Common Subject of Evaluation — an evaluation of human being is possible

by multiple standardized approaches, e.g. from a psychological or physiological

perspective.

We can have long-term given attributes which are barely changing in time (hard

data) and physiological measures that change frequently (hard data). Next to the

hard data the subject also provides the feedback which represents his/her feelings

or mood (soft data).

Like the previous category such data does not need to be recorded at the same time

but within a short period. The main point of the relation is the measured subject

describing his/her feelings.



CHAPTER 3. SOFT AND HARD DATA 29

– Age, race, gender, BMI, smoker, drug user, alcoholic, and so on represent

subject long-term observed attributes (hard data)

– Temperature, blood pressure, heart rate, and so on represent short-term subject

physiological measures (hard data)

– Results from a questionnaire or assessment represent a subject feedback (soft

data)

• Common Period of Data Collection — the last relation between soft and hard

data can be described as any soft and hard data recorded at the same time. This

relation can be represented by physiological measures together with mood or feelings

expression.

An important aspect is the precise collection of data because the relation between

soft and hard data is time dependent.

– Temperature, blood pressure, heart rate, and so on are physiological measures

from subject collected during a certain period (hard data)

– The subject mood can be extracted from utterances or speech several times a

day during the same period (soft data)

3.4 Soft and Hard Data Fusion

Data fusion is a discipline which next to the existing problems with a single source or sen-

sor data brings the problems specifically related to the fusion process [117] like conflicting

data, data correlation, data association, operational timing and so on.

Data fusion itself demands a fusion algorithm related to specific data or a specific

problem to process data into the final product. In this case, our interest is a fusion of soft

and hard data.

The soft data (human created) expressed preferably as a text without any constraints

and processed by Natural Language Processing represents a complex fusion problem [118].

Combination of soft and hard data and its fusion is considered even more challenging

despite this is necessary for some applications [119].

However, there are papers related to the human-centered data fusion paradigm [120]

and soft and hard data fusion [116], [121], [122] that establish new trends related to a

general data fusion framework where soft and hard data can be processed efficiently.

3.5 Usage of Soft and Hard Data

Soft and hard data either alone or together gives us various options to use them, for

instance:

Lifestyle Marketing measurements like Pay per click (PPC), Pay per post (PPP), Pay for

placement (P4P), Cost per acquisition (CPA) together with the product placement,

product reviews, product blog posts, etc.



CHAPTER 3. SOFT AND HARD DATA 30

Mental Health Psycho-social questionnaires (§10.4.1) to evaluate a particular mental

illness or state or quantified and qualified emotions for Emotions Regulation (Emo-

tion Regulation (ER)).

Medicine Signal measurement or quantified laboratory results together with subjective

feedback leading to the proper illness diagnostics.

3.6 Soft and Hard Data Collection

There are several papers [116], [122] which present a collection of soft and hard data

(Common Object and Common Subject) described in §3.3. It is not a typical approach

to collect both types of data at the same time (Common Period) so there are not many

sources. The reasonable approach is to collect relevant data in few stages and use them

later as an input for further research.

3.6.1 Pilot Experiment (PX)

A PX is a small scale preliminary study conducted in order to evaluate the feasibility,

time, cost, adverse events, and improve upon the study design before the performance of

a full-scale research project [123].

The first data collection approach was the two-times performed PX with one subject;

its detailed description including collected data can be found in [124] and it is also briefly

described in §11.2.1.

3.6.2 Quasi-experiment (QX)

A QX is an empirical intervention study used to estimate the causal impact of an interven-

tion on its target population without random assignment. Quasi-experimental research

shares similarities with the traditional experimental design or randomized controlled trial,

but it specifically lacks the element of random assignment to treatment or control. In-

stead, quasi-experimental designs typically allow the researcher to control the assignment

to the treatment condition, but using some criterion other than random assignment (e.g.,

an eligibility cutoff mark) [125].

Based on the experience gathered during PX design, data collection and results and

conclusions derived from the data we made the decision to adapt PX in the way it is more

suitable for QX. The full description of QX can be found in §11.2.2 later in this work.

3.6.3 Natural Experiment (NX)

A NX is not part of this thesis. Its setup and execution depends on the results and

conclusions related to particular Research Objective (RO) of this work.
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3.7 Conclusion! What Next With Data?

Soft and hard data are giving us the chance to look at a particular action or process

from a quantitative or qualitative perspective. The data can be engaged in the process

or action independently or jointly, so they are collected alone or together in some relation

(§3.3).

From a broad perspective, it is correct to talk about quantitative and qualitative or

soft and hard data. However, for a practical application, we need real sources of such

data which are described in the next section (§4).

The relation between soft and hard data collected during PX and QX determines them

as a potential further input to the data fusion (§5) and it also determines its usage (§3.5).

Then later we would like to use them (it does not matter if fused or not) as the

source for dialogue system influencing (§9). It might lead to a potential change in the

conversation. And fulfill the original idea about psychological treatment or counseling

based not only on the text input, but also on measured data.



Chapter 4

Influencing data

In chapter (§1.2) we have introduced dialogue system common influencing idea in Fig-

ure 1.1. There were depicted quantitative and qualitative measures. However, wearable

devices provide specific measured data and from the text we are able to extract specific

qualitative measures. So, we need to concertize those two sources (Figure 4.1) to be able

to collect them and use them in the future for dialogue system influence.

Data Fusion

Device

Request Text

Quantitative 
Measure

ResponseText

Dialogue System

Influencing Data

Influence

Heart Rate

Sentiment

Fusion Approach

Qualitative 
Measure

Figure 4.1: Influencing data

Most of the wearable devices are able to measure several various quantitative measures

(§2.7.1). The problem is usually with their extraction either in real-time or in batch mode

(§5.6). The real-time extraction (§5.6.2) is a much suitable option for influencing than the

batch mode (§5.6.1). From this perspective information about steps is usually available,

heart rate (not always) and sleep cycles. So, this data can be used for dialogue system

influence.

From the conversation itself, we can process the dialogue text and extract from it the

human sentiment as the qualitative measure.

The Research Objective (RO) (§11.4.1) is about to feed the dialogue system by either

quantitative measure or qualitative measure or their fusion (combination) (§5). So, we

can take a look how to get a correct quantitative and qualitative measures from the raw

data and later (if necessary) how to do such data fusion.

32



CHAPTER 4. INFLUENCING DATA 33

4.1 Data Pre-processing

Raw exported data from various sources are not useful as influencing data. It might not

contain the information which is suitable for influencing; such information needs to be

first extracted. It could be also incomplete or normalization is necessary.

Data collections obtained in the particular experiments, i.e., Pilot experiment (PX)

and Quasi-experiment (QX) are briefly described in §3.6 and fully described (with all the

details how the author collected the data) in §11.2.

4.1.1 Tweet Data Pre-processing

Textual data (recorded on Twitter) collected during Quasi-experiment (QX) (§3.6.2) were

recorded in the Czech language. Before it can be used for further analysis it is necessary

to pre-process them.

1. Manual or automatic Czech grammar corrections (Czech Grammar Checker inte-

grated in MS Office)

2. Machine translation via Google Translator 1 to English

3. Manual check of the translation correctness

4. Machine learning or Deep learning sentiment extraction (see §4.2.3)

Since the sentiment is subject matter it cannot be normalized.

4.1.2 Heart Rate Data Pre-processing

Heart rate collected during QX is recorded per individual subject and time window. Data

normalization and standardization eliminate differences in minimum and maximum HR

among participants of an experiment.

1. Fix the missing values by Heart Rate (HR) imputation (see §4.3.1)

2. Normalization and/or standardization of HR data (see §4.3.2 and §4.3.3)

4.2 Sentiment

There are multiple ways how to extract sentiment from utterances. Either a search for

particular keywords or use smileys to express the sentiment. And extract it per aspect or

entity, sentence and document [126].

1https://translate.google.com
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4.2.1 Sentiment Representation

Also the representation of sentiment extracted from text can vary. From simple polarity

expression which defines negative sentiment as (-1, N and Neg) values, positive as (+1, P

and Pos) and sometimes adding (0, X or Neu) as neutral sentiment. To the continuous

scale from {-1, +1} or the categorical (Very Negative, Negative, Neutral, Positive and Very

Positive), discrete values (0, 1, 2, 3, 4) expressed scale [127] or similar representation (–,

-, 0, +, ++) [128]. Up to the emotions defined by psychologists as anger, sadness, joy,

disgust, fear and surprise [129] and enhanced about shame and guilty [130].

In the following sections sentiment with following values will be used:

• Continuous scale: {-1, +1}

• Discrete scale: (N, P) or encoded as (-1, +1) respectively

4.2.2 Sentiment Extraction Techniques

According to a survey on sentiment analysis of scientific citations [131], the sentiment anal-

ysis domains suitable for sentiment extraction are following: scientific citations, product

reviews, discussion forums and micro-blogs.

The techniques used for sentiment analysis are the following: lexicon based, key-

word based, machine learning based, and deep learning based approaches. The modern

approaches tend to use more and more deep learning as the storage prices drop and

computational power increases due to big data popularity.

The above mentioned techniques for sentiment extraction do the following:

Keyword based Build based on the emotionally colored words (affective rating) which

represents either strong positive emotion or negative emotion. The words or word

collocations are chosen based on the previous text analysis (Natural Language Pro-

cessing (NLP)).

Lexicon based There exist several lexicons containing word lists labeled with emotional

valence, for instance [132] or there is research which provides word rating, like

Affective Norms for English Words (ANEW) [133], AFINN sentiment lexicon [134],

OpinionFinder [135], SentiWordNet [136], [137] and WordNet-Affect [138] or word

list which could be found in SentiStrength2 software [139].

Machine learning based Usually utilize Support vector Machine (SVM) or Näıve Bayes

machine learning algorithms and based on the training data and particular corpora

(§7.1) provide a supervised model which classifies the sentiment in provided input

texts.

Deep learning based It is practically logical continuation of previously applied machine

learning algorithms for sentiment extraction, only with application deep learning

methods like recursive deep models (Recurrent Neural Network (RNN)) and large

2http://sentistrength.wlv.ac.uk
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datasets with sentiment label (e.g. Stanford Sentiment Treebank3) or subjective

rating (Movie Review Data4).

4.2.3 Sentiment Extraction Tools

The following list presents several public libraries which provide either sentiment extrac-

tion out of the box or with some benefit (pre-trained models, contemporary research

direction). The programming languages vary, some of them are written in Java or C, but

most of them in Python.

Stanford CoreNLP5 [127] It is one of the most used tool, which provides sentiment

analysis using Deep Learning (DL) [128] models. A binary tree represents the

sentence where each root node gets a sentiment score.

VADER6 [140] Another popular NLP library often used is Natural Language Toolkit

(NLTK) which has a sentiment package containing several sentiment modules and

amongst others, VADER sentiment module. This module utilizes strictly the key-

word based sentiment extraction.

Sentiment Classifier7 It is library using word sense disambiguation using WordNet

[141] and word occurrence statistics from movie review corpus NLTK. So, the tech-

niques utilized for sentiment extraction are keyword based and lexicon based

combination.

fastText8 [142] It is the library developed by Facebook research that is intended for effi-

cient learning of word representations and sentence classification which utilizes the

DL models. The advantage is the word embedding and thanks to that availability

of pre-trained models (English and other 157 different languages).

TextBlob9 The TextBlob is also a popular library which stands on the NLTK and pat-

tern libraries and makes text processing simple by providing an intuitive interface to

NLTK. It contains two sentiment analysis implementations, lexicon based (Pat-

ternAnalyzer) and Machine Learning (ML) based (NaiveBayesAnalyzer which

is trained on a movie reviews corpus §7.1).

The most recent approaches for sentiment extraction more and more involve modern

word embedding (§8.2.2) and sentence embedding (§8.2.3), more specifically transformers

and specifically Bidirectional Encoder Representations from Transformers (BERT) and

various evolution’s and modifications. In nutshell it is modern way to represent a text in

the form to be processed with Deep Learning (DL) techniques.

3http://nlp.stanford.edu/sentiment
4http://www.cs.cornell.edu/people/pabo/movie-review-data
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4.3 Heart Rate

HR is measured time series data corresponding to each subject, and its mental and physical

state at the moment of measurement.

All the missing data can be replaced by values calculated by imputation techniques

(§4.3.1). Several techniques of data imputation are discussed later.

For further analysis, it is necessary to have a consistent scale and distribution of data.

Two techniques can be used to re-scale the data values consistently normalization (§4.3.2)

and standardization (§4.3.3).

4.3.1 Missing Data Imputation

The assumption about the nature types of missing data is named the missingness mech-

anism. According to the definition [143], there are three unique types of missing data

mechanisms:

Missing Completely at Random (MCAR) The inclination for a data point to be

missing is completely random.

Missing at Random (MAR) The inclination for a data point to be missing is not

related to the missing data, but it is related to some of the observed data.

Non-Ignorable (NI) or Missing Not at Random (MNAR) It means there is a re-

lationship between the inclination of a value to be missing and its values.

Since HR is collected automatically by a wearable we are considering only MCAR

missing data mechanism. So, the randomness is given either by external (wrong position

or tightening of the watch on hand) or internal (error of data measurement or processing)

causes.

The data collected during the Pilot experiment (PX) (§11.2.1) by Fitbit Charge HR

contains not particular missing values but gaps longer the standard sampling frequency

(every 5 seconds with typical values every 5 - 15 seconds) [124]. For data collected during

QX (§11.2.2) there is an assumption we can expect similar problems as they appeared in

previously collected data.

The imputations with mean, median and mode are simple but, like complete case

analysis, can introduce bias on mean and deviation [144] with proving the point and

proposes to use the regression imputation which can preserve the relationship between

missing values and other variables.

4.3.2 Heart Rate Normalization

Normalization is a rescaling of the data from the original range to the range of 0 and 1.

This range represents the advantage in comparison of various subjects with the same

collected measure. The disadvantage in comparison to the standardization (§4.3.3) is

smaller standard deviations. This, on the other hand, can suppress the effect of outliers.
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Rescaling (min-max normalization)

The simplest method is rescaling the range of features to scale the range in [0,1] or [-1,1]:

x′ =
x−min(x)

max(x)−min(x)
(4.1)

where x is an original value, x′ is the normalized value.

Mean normalization

Similarly to the min-max normalization, we can rescale the range of features not with the

min value, but with the mean value

x′ =
x−mean(x)

max(x)−min(x)
(4.2)

where x is an original value, x′ is the normalized value.

4.3.3 Heart Rate Standardization

Standardization (or Z-score normalization) of a dataset involves rescaling the distribution

of values (features) so that the mean (µ) of observed values is 0 and the standard deviation

(σ) is 1, i.e., properties of a standard normal distribution.

If the population mean and population standard deviation are known, the standard

score (also called z score) of a raw score x is calculated as

x′ =
x− µ
σ

(4.3)

where x is an original value, x′ is the standardized value, µ is the mean of the popu-

lation, σ is the standard deviation of the population.

4.4 Conclusion: The Power of Influence

It is a difficult question what data to use for influencing a dialogue system. The influence

needs to make sense in the way it has a significant effect on dialogue system behavior,

and the dialogue system is reacting naturally without any back and forward jumps in

conversation.

From the previous chapter (§3), it is obvious it could be either soft or hard data or

their fusion that is described in the next section (§5).

In this rigorous thesis, the main focus is on sentiment extracted from the conversation

and the HR serving as influencing data. However, this data are not the only data suitable

to influence a dialogue system. So, these two expected data sources can be either extended

or replaced by new ones which are available using new devices (e.g. a camera) or better

approaches.

For instance, there are expected wearables with blood pressure measurement or other

stress levels indicators. Alternatively, video processing with real-time capabilities in mo-



CHAPTER 4. INFLUENCING DATA 38

bile phones, which allows the identification of mood from the face mimics in the real-time,

would be beneficial.

Nevertheless, the power of influence can be achieved in many ways; the most simple

and effective solution corresponds to the intent of the application itself.
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Data Fusion

The influencing data (§4) gives us the chance to turn them into relevant information.

However, when it stands independently, it gives us only a partial picture.

When combined with multiple data sources (multi-sensor data), we can get a better

overview of what is happening at a particular moment. This data combination is called

data fusion. Data fusion includes various processes to combine data.

In our particular case we will describe the fusion (Figure 5.1) of soft data (§3), for

instance sentiment (§4.2) and hard data (§3), for instance Heart Rate (HR) (§4.3). The

data fusion provides influencing data (in this case, ideally stress) for dialogue system

influence.

Data Fusion

Device

Request Text

Quantitative 
Measure

ResponseText

Dialogue System

Influencing Data

Influence

Heart Rate

Sentiment

Stress

Qualitative 
Measure

Figure 5.1: Data Fusion

5.1 Discrete and Continuous Variables

Variables with the finite, generally small number of values are called discrete. So, gender

and blood type are considered as examples of discrete variables.

Opposite to discrete variables we have continuous variables which can take an unlim-

ited (infinite) number of values within a range. Typically weight and height are examples

of a continuous variable.

Any measured variable is usually recorded by sampling its value in time. Thus also the

sampling frequency determines whether the data from a time perspective are continuous

39
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or discrete.

5.1.1 Heart Rate and Sentiment Representation

Sentiment can be represented (§4.2.1) by both continuous <-1: +1> or discrete values

enumerated by (-1, 0, +1) or (0, 1, 2, 3, 4). From the sampling perspective sentiment is

purely discrete, since it’s recorded with a long period about dozens of minutes.

HR is represented by discrete values from 40 to 200 bpm with step 1 bpm, and also

sampled in discrete intervals from 1 to 60 per minute. However, compare to sparse senti-

ment, we will consider HR continuous in value and time because of the density of samples.

5.2 Discrete and Continuous Sentiment

Since sentiment is represented either by discrete or continuous values, we can use both

representations for data fusion. The values do not need to be adapted in any way (nor-

malization) because they contain personal expression of a sentiment, which is individual.

For the discrete time dimension we need to adapt either sentiment and reconstruct it

(§5.2.1) to continuous time or interpolate (§5.2.2) each sentiment record into the window

in which will serve for later to make HR continuous time discrete (§5.3.1).

Here are those two options of sentiment transformation in the diagram (Figure 5.2):

1. Discrete sentiment is extracted from textual data with discrete time. Represented

by scalar values (-1, 0, 1).

(a) Further used for fusion with HR: discrete value and discrete time (§5.4.1).

(b) Filter window in which the continuous HR is transformed to: discrete or con-

tinuous value and discrete time (§5.3.1).

2. Continuous sentiment is also extracted from textual data with discrete time. The

values are vectors normalized from -1 to 1 continuously.

(a) Further used for fusion with HR: continuous value and discrete time (§5.4.2).

(b) Further used for fusion with HR: continuous value and continuous time (§5.5).
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Data Fusion
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Figure 5.2: Sentiment data transformations

5.2.1 Sentiment Reconstruction

For two time series fusion we need to enhance granularity and smooth sentiment, i.e., to

do signal reconstruction because we consider sentiment records as time discrete (§5.1.1).

For this purpose, we can either use simple prolongation of existing sentiment data till

the next change, i.e. Zero-order Hold (ZOH) reconstruction or triangular prolongation

of existing sentiment till the next change called First-order Hold (FOH) reconstruction.

Reconstruction by Zero-order Hold (ZOH)

ZOH is a mathematical model of the possible signal reconstruction (5.1). Its application

is to convert a discrete time signal to a continuous time signal by holding the same sample

value for one sample interval, so prolong the value in time.

xZOH =
∞∑

n=−∞

x(n)rect(
t− T

2
− nT
T

) (5.1)

Where rect(x) is the rectangular function (5.2)

rect(x) = Π(x) =


0, if |x| > 1

2

1
2
, if |x| = 1

2

1, if |x| < 1
2

(5.2)

In the practical approach is just about to repeat the value of extracted sentiment for

corresponding HR data where the sentiment is unknown until the next extracted sentiment

appears (Figure 5.3).
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HR

sentiment

time

Figure 5.3: Zero-order Hold Sentiment Reconstruction

Reconstruction by First-order Hold (FOH)

FOH is a mathematical approach of discrete signal reconstruction (5.3) where the signal is

reconstructed as a piecewise linear approximation to the original signal that was sampled.

So, we do the linear interpolation between the values from two consecutive samples.

xFOH =
∞∑

n=−∞

x(nT )tri(
t− nT
T

) (5.3)

Where tri(x) is the triangular function (5.4).

tri(x) = Λ(x) =

{
1− |x|, if |x| < 0

0, otherwise
(5.4)

From the implementation perspective, it is about to find out such linear interpola-

tion between two consecutive extracted sentiments. Such linear function interpolates the

adjusted sentiment value evenly for all the HR data where sentiment is unknown (Fig-

ure 5.4).

HR

sentiment

time

Figure 5.4: First-order Hold Sentiment Reconstruction

5.2.2 Sentiment Interpolation

The sentiment value is not a single occurrence in time; the sentiment lasts for some time.

So, the sentiment value validity is within some interval or window. This interpolation is
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later used to make HR discrete within the sentiment interval or window. Thus we need

to perform some sentiment interpolation over the originally recorded sentiment data.

Two basic approaches of sentiment interpolation were described in [145]: splitting by

interval and splitting by window. Both will be briefly introduced in the next two sections.

Interpolation by Splitting Interval

The first option is to split the interval between two neighborhood sentiment values and

interpolate them (Figure 5.5).

sentiment

TT/2
B' B

A A'

time

Figure 5.5: Sentiment interpolation by splitting the interval

The original sentiment is represented by the black arrows A and B in the graph. The

interpolated sentiment is represented by the corresponding red arrows A′ (5.5) and B′

(5.6).

A′ = {tsA +
(tsB − tsA)

2
; sA} (5.5)

B′ = {tsB −
(tsB − tsA)

2
; sB} (5.6)

where ts is a time-stamp, s represents information about the sentiment and ∀ts : tsB >

tsA.

Interpolation by Moving Window

The second option is to define a window around each sentiment occurrence and perform

the interpolation process inside this window.

sentiment

?? /2

A' B'A

time

Figure 5.6: Sentiment interpolation using the moving window
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The original sentiment is represented by the black arrows A in the graph. The inter-

polated sentiment is represented by the corresponding red arrows A′ (5.7) and B′ (5.8).

A′ = {tsA −
∆

2
; sA} (5.7)

B′ = {tsA +
∆

2
; sA} (5.8)

where ts is a time-stamp, s represents information about the sentiment, and ∆ is the

length of the interpolation window (for instance 30 minutes).

5.3 Discrete and Continuous Heart Rate (HR)

HR is considered as a continuous variable (§5.1.1), so it allows us to work with its contin-

uous form, or it has to be discretized. For the fusion with the original discrete sentiment,

the adaption is necessary to reduce the HR time series into particular discrete values by

using various discretization techniques. On the other hand, the HR data can remain as

they are whenever combined with the reconstructed (§5.2.1) continuous time sentiment.

A list of HR data type options and the corresponding diagram (Figure 5.7) follow:

1. Continuous HR (values <40:200>) is collected directly from a wearable device with

continuous time.

(a) Discretized through linear regression - slope trend (§5.3.1) for further fusion

with sentiment: discrete value and discrete time, i.e. scalar analysis (§5.4.1).

(b) Discretized through linear regression - slope value (§5.3.1) for fusion with the

sentiment: continuous value and discrete time, i.e. vector analysis (§5.4.2).

(c) Normalized across all experiment participants for future fusion with sentiment:

continuous value and continuous time (§5.5).
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Figure 5.7: Heart Rate data transformations

5.3.1 Heart Rate Discretization

HR is a continuous variable in time and value. We can make a fusion with reconstructed

sentiment (§5.2.1) right away, but it is necessary to discretize HR for the fusion with

discrete sentiment.

To make HR discrete, it makes sense to include all the HR values from the near

neighborhood where the sentiment is valid. This filtration criteria for HR is given by

sentiment (§5.2.2) interpolated either with moving window or splitting interval as it is

already described above.

In the neighborhood of particular sentiment the HR discrete value can be given for

instance by trend (slope or value). Such trend can be gained as 1st or nth derivation of

the linear or polynomial regression or Simple Moving Average (SMA) of HR signal.

For simple linear regression, both sentiment interpolation methods (splitting interval or

moving window) have been proved as equivalent and interchangeable in [145]. Regardless

of the sentiment interpolation method, it is possible to use one of them without any loss.

Simple Linear Regression

The HR trend can be gained as a slope (first derivation) value or trend of the simple

linear regression (5.9) of HR in the neighborhood of particular sentiment.

yi = β0 + β1xi + εi (5.9)

describes a line with slope β1, y-intercept β0 and random error ε.

Polynomial Regression

The polynomial regression model (5.10) can be used as a better interpolation of HR to

receive the slope value or trend as the nth derivation of interpolated data.
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The polynomial regression model:

yi = β0 + β1xi + β2x
2
i + ...+ βmx

m
i + εi (5.10)

describes a base definition with parameters β and random error ε.

Simple Moving Average (SMA)

SMA (5.11) is the unweighted mean of the previous n data usually used for financial

analysis on stock or forex market. This method can be used for HR interpolation in the

specific window corresponding to the particular sentiment to which the discrete value of

the HR can be found.

xSM =
1

n

n−1∑
i=0

xM−i (5.11)

where the window size n ∈ IR and n > 0

The calculation of the next value (5.12) means that a new value comes into the sum,

and the oldest value drops out.

xSM = xSM , prev +
xM
n
− xM−n

n
(5.12)

5.4 Discrete Data Fusion

In this part of the analysis, we take the sentiment and HR (§5.3.1) with discrete time

and discrete or continuous values. The sentiment is represented by discrete-time with low

granularity with resolution once per 45 minutes (§11.2.1) or once per hour (§11.2.2).

5.4.1 Scalar Analysis

For purposes of scalar analysis, both signals are points in a specific time, i.e., scalars for

the specific moment when they are paired together.

Sentiment is then represented by (-1, 1) pair for negative and positive one. HR by its

slope direction coming from discretization (§5.3.1) also takes values (-1, 1) for increasing

and decreasing HR on particular interval (split interval or interpolation window (§5.2.2))

related to specific sentiment in time.

Matrix Representation

The natural combination of previous pair values of sentiment and HR leads to the following

matrix representation (Table 5.1). It can be later used when the combinations are correctly

translated into specific states (for instance stress dichotomy) as influencing data for a

dialogue system.
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HR Slope
-1 1

Sentiment
-1 [-1,-1] [-1, 1]
1 [ 1,-1] [ 1, 1]

Table 5.1: Sentiment and HR in matrix representation

Stress Dichotomy

Stress dichotomy (eustress, distress) represents the relation between the HR and sentiment

and has been presented in [145] already. The following Table 5.2 shows translated relation

between particular values of sentiment in combination with HR slope values into the

specific states.

HR Trend
decreasing increasing

Sentiment
negative relax distress
positive relax eustress

Table 5.2: Stress dichotomy in matrix representation

5.4.2 Vector Analysis

In the previous section §5.4.1 sentiment and HR data were considered as the discrete

values — scalars. In this section they are presented as vectors.

The sentiment direction and length represent a vector in the sentiment data. Where

the orientation is either positive or negative, the length is between <0,1> up to the

maximum of 1. The HR represent the vector with the trend (can be a slope of its linear

interpolation within a specific window) which is also either positive or negative, and it

has its size which could be potentially normalized in the same way as the sentiment up

to the 1.

Dimensional Representation

The two vectors fusion can be depicted in the orthogonal space. It is the similar to the

emotion detection [146] (Figure 5.8) which is a part of NLP where we need emotional

corpus.
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Figure 5.8: Six basic emotions in dimensional space

The vectored HR and sentiment are combined within orthogonal space (Figure 5.9).

It can be either inside the circle normalized to 1 or the ellipse when HR is not normalized.

This dimensional representation defines the clusters of the stress dichotomy.

positivenegative

Sentiment

increasing

decreasing

HR slope

distress

eustress

relax

Figure 5.9: Stress dichotomy in dimensional space

5.5 Continuous Data Fusion

Considering that both data are taken in continuous time, i.e. HR in its original form

as it was collected or with imputed missing values (§4.3.1) and sentiment reconstructed

(§5.2.1) up to the granularity of HR. It gives us a bigger amount of data to fuse and

process (dozens times a day vs. thousands times a day).

To influence the process of the dialogue system it does not matter if the data is time-

series or sequence of values. Whereas a time-series is an ordered list of numbers and a

sequence is an ordered list of nominal values (symbols) [147], we can use the data as it

was originally collected (time-series) or easily convert it into the sequence.

For the analysis and identification of stress from continuous data, we can use time-

series or sequence analysis. For instance, we can identify seasonality [148] in HR and

combine it with discrete or continuous values of sentiment to get the influencing data for

the dialogue system.
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5.6 Real-time or Batch Data Processing

All the previous analytical methods are either an ideal option on how to process data or

taken from practical experience how the data were processed already. In all the cases, the

data were already collected, stored, and processed as static.

In the practical application of dialogue system influencing the data will be received in

real-time. The Heart Rate (HR) of the subject will be measured several times a minute,

and the sentiment can be extracted whenever there is a textual response from the subject

to the dialogue system.

It leads to the adaption of current data processing and fusion for identification stress as

an influencing signal. The data can be either buffered and processed lately cumulatively

in a batch mode (§5.6.1) to provide relevant information over some specific window or

processed in real-time mode (§5.6.2).

Both modes have advantages and disadvantages and both modes require to choose

corresponding methods described in the previous sections.

5.6.1 Batch Data Processing

Whenever the batch data processing is applied, it leads to the delay between incoming

data and the dialogue system influencing because the influencing signal needs to be first

identified in the collected data during some collection window.

The trigger definition and identification when the window for data collection into the

buffer needs to be closed is also a nontrivial task. It depends on what kind of data

(discrete, continuous) is used and what particular method is applied (split by interval,

split by window).

5.6.2 Real-time Data Processing

Real-time processing allows reacting with much more flexibility than batch data processing

(no delay is an advantage). On the other hand, the disadvantage lays in the lack of

overview of the actual pattern.

The data which is known from the past plus the current incoming set of data of non-

closed collection window gives us the potential for the immediate outcome, but it can be

incorrect. The next set of data coming in a few moments can change the perception of

the problem immediately.

5.7 Conclusion! The fusion that is what is going on!

The data fusion brings additional information that can be used for dialogue system in-

fluencing. Stress can be identified just by HR (§2.8.2), but to combine it with other data

gives an opportunity to identify the type of stress and its possible origin. It is impor-

tant to distinguish whether the response of the dialogue system might or might not be

influenced.
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The data fusion of sentiment and HR for dialogue system influencing can be done

through various data adaptations like sentiment interpolation (§5.2.2) or HR discretization

(§5.3.1) because the data doesn’t have the same character when collected.

For data preparation, use of Zero-order Hold (ZOH) is the easiest way to sentiment

reconstruction (§5.2.1), because it keeps the value of sentiment till the next change (when

compared to First-order Hold (FOH)). The choice of the sentiment interpolation (§5.2.2)

is not important as it was already investigated [145]. HR discretization can be performed

using the simplest methods presented, i.e., simple linear regression, which brings the slope

value and trend right away.

Discrete data fusion (§5.4) allows to do scalar (§5.4.1) and vector (§5.4.2) analysis

using batch data processing (§5.6.1), limited by HR discretization (§5.3.1).

Continuous data fusion (§5.5) can lead to real-time data processing (§5.6.2) but with

some limitations given by seasonality analysis or other methods suitable for continuous

data.

Overall, discrete data fusion (§5.4) seems to be more natural because the sentiment is

discrete in both time and value dimensions and thus more corresponds to the character of

data which might be used for dialogue system influencing. The dialogue system influence

will then follow the discrete influencing data and does not happen continuously. This

will bring the stability of the dialogue which will not change so often from influenced to

uninfluenced state and vice versa.



Chapter 6

Dialogue System Introduction

The dialogue system is a computer program designed to provide interaction with a human

through auditory or textual methods. It is designed and implemented in a way to con-

vincingly simulate human behavior to give a conversational partner the feeling it writes

or talks to a real human. That’s one of the main motivations (§6.1).

The dialogue system (Figure 6.1) complexity (§6.7) is given by various aspects. There

are two main classes of dialogue systems (§6.2) the chit-chat (chatbots) (§6.2.1) and task-

oriented (goal-oriented) (§6.2.2). From the architecture perspective (§6.3) two approaches,

pipeline (§6.3.1) and E2E (§6.3.2) (Figure 6.1), are known.

Taxonomy (§6.4) defines whether the system is a retrieval (§6.4.1) or generative one

(§8.6) and the domain (§6.5) whether the dialogue system operates in an open (§6.5.1) or

closed (§6.5.2) domain. The length of conversation (§6.6) defines if the dialogue system

responses in the Question-Answering (QA) manner (single-turn) or in context keeping

manner (multi-turn).

Dialogue System - introduction

Device

Request Text

ResponseText

Influencing Data

Influence

Data Fusion

Quantitative 
Measure

Qualitative 
Measure

Pipeline

End-to-End

or

NLU DM NLG

E2E

Figure 6.1: Dialogue System - introduction

When the dialogue system is implemented as a pipeline it consists of Natural Language

Understanding (NLU) (§6.8), Dialogue Management (DM) (§6.9), and Natural Language

Generation (NLG) (§6.10). Besides that it is important to keep focus on customer expe-

rience (§6.11) side.

To support the chatbot implementation there exist various NLP libraries (§6.12) and

51
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platforms (§6.13). And last, but not least there is an ethical issue (§6.14) of dialogue

systems.

6.1 Dialogue Systems Motivation

At the moment (June of 2020) there are thousands 1 of chatbots available [149]. Their

implementations serve to various purposes and can be classified into usage categories

such as analytics, communication, customer support, design, developer tools, education,

entertainment, finance, food, games, health, HR, marketing, news, personal, productivity,

shopping, social, sports, travel, and utilities.

According to Gartner: ”By 2020, customers will manage 85% of their relationship with

the enterprise without interacting with a human.” [150] It does not necessarily mean that

chatbots are representing that 85 % more likely chatbots will operate 25 % of customer

services by 2020. [151]

For many applications three main reasons in favor of use dialogue systems talk:

1. Dialogue systems learn quickly with processing more and more data from many

people. The intelligence behind a dialogue system improves over time and provides

more accurate and reliable responses.

2. They are always available. The customer support with fixed business hours is not

suitable solution all the time, either the support is needed outside business hours,

i.e., word wide or the workload of customers is enormous. So, in that case, the

dialogue systems can support or completely replace the human operators.

3. The bots never get tired or frustrated. Repeating conversation topics leads to better

results over the many different ones, so the field where the people are getting bored

is giving the advantage to the application of dialogue systems.

6.2 Dialogue Systems Classification

Reviewing the existing state of the art (§2.3) and contemporary applied research in dia-

logue systems competitions (§2.4) it is obvious there are two main categories: chit-chat

(chatbots) (§6.2.1) and task-oriented (goal-oriented) dialogue systems (§6.2.2).

6.2.1 Chit-chat (chatbot) dialogue systems

Chit-chat (chatbot) dialogue systems usually serve for human entertainment as they have

no specific goal, but must provide many conversational topics which require large corpora

(§7.2.3).

1https://botlist.co
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6.2.2 Task-oriented (goal-oriented) dialogue systems

The task-oriented dialogue systems built on top of the corpora (§7.2.2) which cover con-

versations on similar topics can provide better conversational experience for a specific

task.

6.3 Dialogue System Architecture

The dialogue systems are designed with two different standards of architecture: pipeline

(§6.3.1) and End-to-End (§6.3.2).

6.3.1 Pipeline Architecture

From the architectural perspective, the dialogue system can represent pipeline steps which

process the requests from users which come in, are turned into response and go out. Each

part of such pipeline can have its representation by functions with different complexity.

The components of such a dialogue system are shown in Figure 6.2.

Dialogue ManagementNLU NLG

request response

Context

NLU Model
Dialogue 

State 
Tracking

Dialogue 
Policy

NLG Model

Figure 6.2: Dialogue system pipeline architecture

According to Figure 6.2 the dialogue system building blocks are the following:

Natural Language Understanding (NLU) (§6.8) processes user’s request and turns

it into a computer understandable form.

Dialogue Management (DM) (§6.9) drives the conversation flow through the Dia-

logue State Tracker (DST), chooses the dialogue act via Dialogue Policy (DP), and

keeps the context (if multi-turn) or not (if single-turn).

Natural Language Generation (NLG) (§6.10) Prepares the appropriate response based

on the user input and conversational context if required.

The dialogue system architecture defines straightforward the vertically divided archi-

tecture (Figure 6.3).
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Dialogue ManagementNLU NLG

request response

Figure 6.3: Vertically divided pipeline architecture

Additionally to this we know (from Alexa Prize Challenge (§2.4.2)) that the archi-

tecture is also defined by various modules responding to a particular conversational re-

quirement. In other words, whenever the request from the user is given and NLU (§6.8)

detects the intent (§6.8.2) and fills the slots (§6.8.4), the specific DM (§6.9) for particular

topic (which may vary) is used for finding a response and a proper response generation by

Natural Language Generation (§6.10). Such architecture is considered to be horizontally

divided (Figure 6.4). It is also called ensemble dialogue system (§8.8.2).

Dialogue Management

Option A

Option B

NLU NLG

request response

Figure 6.4: Horizontally divided pipeline architecture

The detail principal components [21] of spoken dialogue (Figure 6.5) include, on top

of the dialogue system, the Automatic Speech Recognition (ASR) and Text to Speech

(TTS) components.
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Figure 6.5: Principal components of a spoken dialogue system in a pipeline architecture

6.3.2 End-to-End (E2E) Architecture

In the dialogue system architecture world, the E2E architecture (Figure 6.6) is the most ex-

citing approach because it does not need any dialogue management. The request-response

pairs are learned through training data. On the other hand, it is well known by not so

grammatically correct responses (§6.4.2) and is also problematic from the understanding

point of view because it represents a black box.

E2E

request responseRequest-response Model

Figure 6.6: End-to-End dialogue system architecture

The E2E architecture is a more general case of horizontally divided (Figure 6.7) ar-

chitecture that does not involve the vertical division of the particular NLP blocks which

includes the overall E2E model.
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E2E

request responseOption A

Option B

Figure 6.7: Horizontally divided End-to-End architecture

6.4 Dialogue Systems Taxonomy

The basic taxonomy definition of dialogue system methods is a part of many blog post

and publications [152]–[155]. These define two main models: retrieval based (§6.4.1) and

generative (§6.4.2) models lately called corpus based.

6.4.1 Retrieval Models

The dialogue systems established on top of the retrieval models (Figure 6.8) represents

a simpler model solution where the repository with conversational content is represented

by predefined responses and the heuristic algorithm for choosing an appropriate response

is based on the request and context.

The algorithm for choosing response can be represented either by simple rule-based

(§8.5.1) expression match, complex ensemble Machine Learning (ML) model or Deep

Learning (DL) model. Such a system does not generate any new text; it picks the response

from the predefined text.

From this perspective it is potentially possible (not all the models represent the same)

to control fully or partially the desired output. So due to the repository of handcrafted

responses, retrieval-based methods do not make grammatical mistakes.

Handcrafted responses represent the matter of the retrieval based models and the more

sophisticated system we have more time and effort to prepare such conversational corpora

with various dialogue topics is needed.

Response

Retrieval model

Request

ResponsesContext

Figure 6.8: Retrieval Model Schema
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6.4.2 Generative Models

Generative models (Figure 6.9) based dialogue systems do not rely on the repository based

responses, but contrary they generate new text responses based on the request considering

the context (usually the previous request).

Such a complex solution is typically based on machine translation techniques, but

instead of translating from one language to another, it generates responses based on the

current and previous input (context).

Despite the potential disadvantage of grammatical mistakes during the process of

translation the request into the response (or multiple ranked responses) generative models

have the advantage to deal with unseen requests.

However, the exploitation of such advantage means to find proper sources of the sig-

nificant volume of various data, adapt them into proper corpora (§7) and train the Deep

Learning (DL) model properly.

Previous Request

Response

Generative
Model

Request

Training
Data

Figure 6.9: Generative Model Schema

6.5 Conversation Domain

Taxonomy defines the model options, its advantages and limitations. Another property

which defines the chatbot is its conversational domain. This topic is described in multiple

sources as well, for instance [152], [153], but the definition of terms is crucial for further

chatbot complexity, so let follow with their brief overview.

6.5.1 Open Domain

When the conversation can go into all kind of directions, we call it open domain conver-

sation. It does not have a given intent, and it can follow up any topic which follows up

somehow (logically or illogically) the previous conversation. It is hard to gather reason-

able knowledge for a chatbot and thus create reasonable responses. As the example of

open domain conversation, we can take any discussion forum (Quora, Reddit) or social

media (Facebook, Twitter).
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6.5.2 Closed Domain

Narrowing down the topics and setting up the space of possible questions and answers

is called the closed domain. This limitation is beneficial because the conversation leads

to a particular goal. For such chatbot purpose it is much easier to prepare reasonable

responses to the questions (even strictly predefined as few options from which a participant

can choose). Chatbots with limited conversation topics do not replay to any question,

but need to be efficient within their specific task and fulfill it. For this purposes, we

can take an example of the closed domain looking at customer support (Zendesk and its

DigitalGenius) or shopping assistants (H+M and its implementation of bot on the Kik

platform)

6.6 Conversation Length

The length of the conversation increases the difficulty to automate it.

Whenever we have a short-text conversation, the goal is to create a single response to

a single request and then forget the context. It corresponds to reply to a specific question

with an appropriate answer (Question-Answering (QA)), for instance to find a location

of the restaurant. And we call it single-turn.

The long conversation means to keep the conversational context in the long term (for

instance 20 minutes on listed topics defined as criteria [156] in Alexa Prize Challenge

(APC) (§2.4.2)) and follow up with appropriate answers during the whole conversation.

An example could be not just a location of the restaurant, but specific cuisine restaurant

with possibility to reserve a table online and offer the menu. This is usually known as

multi-turn.

6.7 Dialogue System Complexity

The combination of all the previous attributes of the dialogue system (Figure 6.10) defines

its complexity.
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Figure 6.10: Dialogue system attributes

The combination of dialogue systems taxonomy (§6.4) and conversational domain

(§6.5) is shown in Figure 6.11 [153]. The dialogue system architecture (§6.3) and the

length of dialogue system conversation (§6.6) give to this combination additional levels of

complexity.
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Figure 6.11: Dialogue systems complexity

The most popular approaches are either design dialogue systems as retrieval models

or generative model smart machines within a closed domain.

Whenever an open domain is required it is most likely supported by a combination

of previous approaches, i.e. models ensemble (§8.8.2). The ensemble dialogue system is

built on top of several topic specific dialogue corpora combined together.
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6.8 Natural Language Understanding (NLU)

The first part of the pipeline architecture (§6.3.1) is NLU. It is a subfield of NLP which

deals with transforming a free-form text into structured data. We need such structured

data as the input for the Dialogue Management (DM).

6.8.1 Utterance

When the user formulates any statement represented by several words or even several

sentences, we call it utterance.

6.8.2 Intent Detection

Intent is the overall meaning of purpose or goal. It can be defined in many ways. There

is no clear way to assign the intent to utterance. It has to be done manually or by the

classification process [19].

Whenever there is a complex utterance which is represented by double (multiple)

intents we need to deal with this issue [157]. The solution is to split the utterance into

parts where each has its own intent. It allows using existing chatbot solution without

redesigning its functionality.

The examples of intents from utterances presented in Figure 6.5 are shown in Code

6.1.

Utterance: Leaving from downtown

Intent: travel

Utterance: Leaving at 1 PM

Intent: travel

Code 6.1: Intent examples

6.8.3 Entity

Entities in utterances fill the slots (§6.8.4) which parameterize intent. They represent in-

tent extension as it is, for example, the date and time, place, location, person or company,

and so on. Entities are identified from the text by the Named Entity Recognition (NER)

technique.

The examples of entities from utterances in Figure 6.5 are shown in Code 6.2.

utterances: Leaving from downtown. Leaving at one PM.

intent: travel

entities: downtown , 1300

Code 6.2: Entity examples
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6.8.4 Slot Filling

The slot filling is in the common NLP better known as shallow semantic parsing. Se-

mantic parsing is a NLP task that converts a natural language utterance to machine-

understandable representation [158]. The idea comes from the frame-based dialogue sys-

tems [159].

Slot-filling systems are widely used in virtual assistants in conjunction with intent clas-

sifiers, which can be seen as mechanisms for identifying the frame evoked by an utterance

[160].

Two examples (Table 6.1 and Table 6.2) of semantic parse of an utterance with slots,

domain, intent annotations, following the IOB (in-out-begin) [161] representation for slot

values:

Utterance find flights to new york tomorrow

Slot O O O B-Dest I-Dest B-Date

Domain flight

Intent find flight

Table 6.1: Slots, domain and intent parsing example for

finding the flight [160]

Utterance first class from boston to denver

Slot B-Class I-Class O B-Dept O B-Dest

Domain flight

Intent order flight

Table 6.2: Slots, domain and intent parsing example for

order first class flight [162]

6.9 Dialogue Management (DM)

After NLU, when we have identified intent (§6.8.2) and entities (§6.8.3) in the current

input from the user, we can move forward and come with a dialogue, the second part of

the pipeline architecture (§6.3.1). The dialogue heavily depends on chatbot complexity

(§6.7).

Dialogue Management (DM) is responsible for the state and flow of the conversation.

It is usually divided into several parts which include:

Input control which takes an input from NLU (§6.8) already converted to its semantic

representation. It allows context-dependent dialogue.

Strategic flow control (§6.9.1) holds the structure of the dialogue and keeps the pointer
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on the current topic related to corresponding context.

Tactic flow control (§6.9.2) makes conversational decisions that affect the quality of

conversation.

Output control provides the semantic representation of the response and converts it

to a human language by the means of NLG (§6.10). The generation of the text is

state-dependent.

6.9.1 Strategic Flow Control

The strategic flow control creates and maintains the states defining the structure of the

dialogue. It decides what action the dialog agent should take at each point of the dialogue

based on the current and previous observations (Figure 6.12) [163].

Figure 6.12: Dialogue Management Elements

The dialogue can be stored in various structures, for instance, a hierarchical structure

(multi-level dialog structure) [164], [165], topic tracking structure [166], forms or slots

filling structures, and others.

The main components of the strategic flow control are Dialogue State Tracker (DST)

which tracks the dialogue state and utilizes slot filling (§6.8.4). It keeps the information

about the context and provides the input to the Dialogue Policy which chooses the next

Dialogue Act (DA).

Dialogue State Tracking (DST)

Whenever the dialogue is multi-turn (§6.6), the previous steps of conversation need to be

recorded to support the current dialog flow to be topic consistent, smooth, informative,

and reliable. Dialogue State Tracker (DST) uses those previously recorded steps and,

based on the evolving state of the dialogue, constructs the state estimation.

Broadly speaking there are three families of DST algorithms [21]:
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Hand-Crafted Rules [21] have been used in early dialogue systems for DST. It consid-

ered only a single NLU result.

The benefit of the hand-crafted rules is that DST does not require any data to be

implemented. As the examples hand-written rules in a dialogue control table [167]

or hand-written update rules [168] can serve.

Generative Models [21] allow to model the dialogue as a Bayesian network which de-

pends on the dialogue state, the system action, the unobserved user action, and

NLU result.

The model parameters must be estimated using for instance the Expectation Max-

imization method [169] or the Expectation Propagation method [170].

Discriminative Models [21] score for dialogue states with discriminatively trained con-

ditional models.

The first discriminative DST was proposed as a hand-written rule enumerated a

set of k dialogue states to score [171]. Another approaches included altering the

logistic regression model [172], application of ranking algorithm [173] or classification

through the deep neural network [174].

The dialogue turned into sequential process modeling is the next step of evolution.

One of the method to model the sequence of dialogue history is the discriminative

Markov Model [175], with another technique the dialogue can be cast as a Condi-

tional Random Field [176] and the recurrent neural networks can be used to get the

distribution over the dialogue states [177].

All the previously mentioned discriminative approaches are based on supervised

training and require domain-specific dialogue data.

DST itself can be realized, for instance, as:

Finite State Tracker [20], [21] where the system tracking the states is represented by

a graph where nodes are questions, and the transitions between nodes represent

answers to questions.

Frame Based Tracker [178] Is a tracking system, which is an extension to the finite

state tracking. It requires understanding which frames the user is talking about

and recognizing when the user changes the goal, which implies that a new frame is

created.

Neural Belief Tracker [179], [180] It estimates the user’s goal at every step of the

dialogue. It utilizes the pre-trained vectors of the current input (user utterance)

and previous system output to decide which intents have been expressed by the

user.

Word-Based Tracker [177] It uses Recurrent Neural Network (RNN) to provide a nat-

ural model for DST. It combines the most recent user input and last machine Dia-

logue Act (dialogue turn). It updates the RNN internal memory and calculates an

updated belief over the values of the slot.



CHAPTER 6. DIALOGUE SYSTEM INTRODUCTION 64

Dialogue Policy (DP)

Dialogue Policy (DP) is a crucial component that influences the efficiency (e.g., the con-

ciseness and smoothness) of the communication between the user and the agent [181].

The DP optimizer or learner follows the estimation from the Dialogue State Tracker

and chooses the next Dialogue Act (DA). The optimized DP selects (predicts) the best

action that maximizes the future reward (Figure 6.13) [182]. Proper rewards are a crucial

factor in dialogue policy training.

Natural Language 
Understanding 

(NLU)

Dialogue Policy 
(DP)

Observation (O)

Natural Language 
Generation (NLG)

Action (A)

Reward (R)

Figure 6.13: Dialogue Policy - Reward

DP approaches solving the problem of reward that evolved during the years are Su-

pervized Learning (SL) [183]–[185] and Reinforcement Learning (RL) [186]–[188].

6.9.2 Tactic Flow Control

In addition to the strategic flow control (§6.9.1) Dialogue Management (DM) can make

also some tactical conversational decisions, i.e. activities that affect the quality of con-

versation. Initiative, grounding and negation belong among such activities. Initiative

(§6.9.2) determines pro-activeness of the system, grounding (§6.9.2) keeps the chatbot

on the correct conversation understanding by using the dialogue steps confirmation and

negation (§6.9.3) activity excludes unwanted entities from the slots (§6.8.4).

Initiative

Classic human-human conversation exchanges the dialogue initiative (who has control

of conversation) between dialogue participants. It would be ideal in case of human-

machine conversation, but it represents many difficulties that need to be done seamlessly

and automatically with a focus on the content and context of the conversation. Usual

approaches are a system, single and mixed initiative [22], [154].

System initiative [189] It is an initiative where the system controls the conversation

completely. The benefits like simplicity to build such a system or known topics,

wording, and others can overcome too limited usage for straightforward tasks like

online payment, password recovery, and many others.

Single initiative It represents the initiative with a little bit more flexibility for the user.

It gives the specific commands (called universals), which can be used for dialogue
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adjustment. It means that every dialogue state is extended with an additional state

allowing the user to reset or correct the conversation.

Mixed initiative [190] The conversational initiative can shift between system and user.

Thus it gives both parties the same freedom of flexibility. The complexity lies in

the implementation of dialogue guidance for which a frame with slot filling should

be used.

Based on the research, the hybrid approaches are recommended [191], [192]. With a

problem identified during the conversation, the dialogue system based on the hybrid ap-

proach changes a mixed-initiative system to the system-initiative and restores the control

over the conversation.

Grounding

To find a common language between a user and chatbot is one of the most crucial tasks

for any dialogue platform. Grounding (also known as error handling) serves as the ac-

knowledgment that chatbots understand what the user wants. It is good to apply for

every intent, and every critical entity identified, but the frequency needs to be chosen

wisely not to get users annoyed by constant confirmation of users’ questions or answers.

Grounding is not needed whenever the chatbot assumes that, during the conversation,

the most probable interpretation is correct, and continues the conversation with no-

confirmation.

Whenever the interpretation is not clear, one of the two error recovery strategies [165]

needs to be activated:

Strategy for recovering from misunderstandings It can be done by explicit and im-

plicit confirmation. The explicit-confirmation involves the repeating question

with identified intent, ”Do you mean X?” ”Did you want X or Y?” to get confirma-

tion. Furthermore, the implicit-confirmation demonstrates the understanding by

adding some words such as ”OK, you want to go to a restaurant. Where exactly?”.

Strategy for recovering from non-understandings The dialogue system is asking

the user to repeat or to rephrase the question, so it can analyse the question again

and continue in the conversation. For instance, it states, ”I do not understand. Can

you please repeat it?”.

6.9.3 Negation

Defining what we want and what we do not want is the main conversational approach

leading to a particular result. For instance, see (Code 6.3) the next food ordering chatbot

interaction.

BOT: What do you want for dinner tonight?

BOT: Nearby is a new sushi restaurant.

HUMAN: I do not want sushi.

BOT: Can I offer you a pizza instead?

HUMAN: I want burritos , not pizza.
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Code 6.3: Negation dialogue example

The logic of chatbot keeps information about the negation of particular entities during

the conversation. Keeping this information leads to a more sophisticated interaction with

the user and does not let the chatbot to use already rejected information again.

6.10 Natural Language Generation (NLG)

The third part of the pipeline architecture (§6.3.1), i.e., response generation supported by

the NLG module converts, a meaning representation of a Dialogue Act to a sentence. It

is often modeled in two stages: content planning (what to say) and sentence realization

(how to say it).

According to [74] two main basic approaches are: template-based and model-based;

both meet the above requirements, but both suffer from specific ailments for the particular

method.

The comprehensive survey [193] refers many different approaches, which have been pro-

posed for NLG task, but discusses just three of them: human-crafted templates, human-

crafted grammar-based systems and statistical approaches. Those practically correspond

to the approaches mentioned above.

The Deep Learning for Dialogue Systems tutorial [15] mentions in the outline the

following extensive list of NLG: template-based, plan-based, class language modeling,

phrase-based, Recurrent Neural Network (RNN) language modeling, semantic conditioned

Long / Short Term Memory (LSTM), structural and contextual methods.

It means that NLG is a difficult task. The difficulty comes from the requirements to

generate grammatically correct, culturally appropriate responses that include the right

information. Also the difficulty is given by the method complexity as Figure 6.14 shows.

Figure 6.14: Illustration of trade-offs between using rule-based (template-based) vs. neu-
ral (corpus-based) text generation systems [194].

Template-based NLG It comes from strictly predefined outputs from rule-based tem-

plates which serve for dialogues. This method is fully in line with the retrieval

based chatbot models (§6.4.1). The responses are grammatically correct, but the

limitation is inflexibility of the dictionary with the predefined request - response di-

alogue pairs. These are typically implemented using Artificial Intelligence Markup

Language (AIML) or Open Intent Markup Language (OIML) languages.
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Corpus-based NLG It is usually trained on a labeled dataset utilizing statistical meth-

ods implemented either as machine learning or deep learning methods. Such meth-

ods fully cover generative chatbot models (§6.4.2). In this case, responses are not

strictly grammatically correct, and their generation is given by corpora size, topic

and correctness of labeling. The corpus-based NLG is usually implemented by neu-

ral networks (§8.6) specifically Recurrent Neural Network (RNN), Gated Recurrent

Unit (GRU) or Long / Short Term Memory (LSTM) models.

The examples of NLG are shown in Code 6.4:

dialogue act: confirm(from = downtown)

generated utterance: From downtown , right?

dialogue act: inform(name = Spiga Ristoranti , eat_type = restaurant ,

food = Italian , area = riverside)

generated utterance: Spiga Ristoranti is an Italian restaurant near the

river

Code 6.4: The NLG examples (first one corresponds to Figure 6.5)

The Dialogue Act (DA) type (inform, request, confirm, and so on) together with slot

(attribute) and value pairs represent a computer understandable output from DM turned

into a human understandable output.

6.11 Customer Experience (CX)

All what dialogue systems present to the user is called Customer Experience (CX). It

consists of several components like personality, conversational tone, pro-activity, and goal

or purpose orientation. Overall, those components serve to primary purpose to make a

dialogue system more human-like and thus mimic real human conversational skills.

6.11.1 Dialogue System Tone and Personality

Personality (§8.8.1) creates a difference between a command line application which re-

ceives commands and a dialogue system which performs the conversation.

Another reason for giving a dialogue system personality is user accessibility. Nobody

wants to talk to a pure machine. At least the machine needs to behave similarly to a

human. Also, in case of voice assistants it is good to have a pleasant voice which supports

conversation. Moreover, users expect it.

Tone determines how a dialogue system looks like in front of the user; if it has a formal

conversational style or a more friendly style. Friendly dialogue systems are preferred.

6.11.2 Dialogue System Proactivity

Conversation initiation and initiative (§6.9.2) determine whether a user have a conversa-

tion with a passive or active dialogue system.
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Proactivity can be demonstrated as providing unasked information like the calendar

or daily goals summary or anticipating questions and answer them in advance. Typically

it is the domain of coaching dialogue system with no other goal than users well-being.

Inactivity is given by open the conversation with the standard phrase like how are

you?, what do you do?, how can I help you? and offers the user to follow up the choices

in the menu to turn the dialogue system in the proper subject for conversation. In such

category e.g. a shopping dialogue system with limited offer and purpose as the additional

sales channel belongs.

6.12 NLU, NLG and Dialogue Libraries

On the Internet it is possible to find plenty of information related to dialogue systems

including libraries supporting particular parts from Dialogue System Architecture. Here

is the list of the most popular or interesting libraries:

spaCy It is a Python NLP library2 that comes with pre-trained statistical models (§8.2.4)

and word vectors (§8.2.2). It is claimed it features the fastest syntactic parser in the

world. It utilizes Convolutional Neural Network (CNN) models for tagging, parsing

and Named Entity Recognition (NER) and thus provides functionality for Natural

Language Understanding (NLU) process.

ParlAI It is a Facebook’s Python framework [195] for dialogue AI research3. It provides a

unified framework for sharing, training, and testing dialogue models including many

popular datasets. For data collection and human evaluation seamless integration

with Amazon Mechanical Turk (AMT) can be used. The easy integration with the

Facebook Messenger gives the opportunity to connect agents with humans in a chat

interface.

Rasa tools Rasa NLU and Rasa Core4 [196] are two open source Python libraries for

development of conversational AI. Rasa NLU provides the intent detection (§6.8.2)

and slot filling (§6.8.4) whereas Rasa Core cares about dialogue management (§6.9).

NLTK.chat The Natural Language Toolkit (NLTK) chat5 is a package of Python NLTK

library which implements rule-based chatbot engine including several chatbot im-

plementation examples (submodules) like ELIZA [7], Ieasha (average teen anime

junky that frequents YahooMessenger or MSNM), Rude (abusive bot), Tsu (quotes

from Sun Tsu’s The Art of War) and Zen (talks in gems of Zen wisdom).

PyAIML is a Python Artificial Intelligence Markup Language (AIML) interpreter6. It

strives for simple austere 100% compliance with the AIML 1.0.1 standard.

Snips NLU [197] It is a NLU Python library7 with the capability to extract structured

2https://spacy.io
3http://www.parl.ai
4https://rasa.com
5https://www.nltk.org/ modules/nltk/chat.html
6https://github.com/creatorrr/pyAIML
7https://snips-nlu.readthedocs.io
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information like intent (§6.8.2) or entities (§6.8.3) from structured written sentences

when properly trained. The training file needs to be prepared manually or generated

in YAML format.

DeepPavlov Is an open-source library8 for dialogue systems fast development [198]. It

provides state-of-the-art modules with a simple or complex solution of NLU tasks.

On top of that it contains a set of pre-trained models (§8.2.4) for quick dialog system

prototyping.

AllenNLP Is another open-source library9 (Python, Docker) providing an implementa-

tion of broad NLP tasks [199]. As well as the previous libraries AllenNLP provides

also pre-trained models which are used for solving a specific problem as demo im-

plementations.

PyDial This end-to-end statistical spoken dialogue system toolkit10 is provided as open-

source. It allows to implement dialogue modules based on the statistical approaches

extendable into multi-domain conversational functionality [200].

fast.ai is a Python library11 containing support for vision, text and tabular, and col-

laborative filtering models. It simplifies and accelerates training Artificial Neural

Network (ANN) using the best practices including Universal Language Model Fine-

tuning (ULMFiT) (Figure 8.2.2).

Flair It is another state-of-the art NLP open source library12 [201] which provides vari-

ous functionality like Named Entity Recognition (NER), Part-of-Speech (PoS) tag-

ging, sense disambiguation and classification. It includes the implementation of

Flair embedding [202], Embeddings from Language Models (ELMo) embedding,

and Bidirectional Encoder Representations from Transformers (BERT) embedding

(Figure 8.2.2).

NLP.js is an NLP JavaScript library13 for building bots. It provides various functionality

from entity extraction over sentiment analysis to automatic language identify, and

more.

6.13 Dialogue System Platforms

According to online blogs, journals and magazines which provide a review of various

platforms there is a long list of various chatbot platforms. For instance, a complete

overview of 25 platforms [203], top 10 powerfull platforms [204] or top 14 platforms of

2017 [205] or a comprehensive list of such chatbot platforms which are supported by

particular instant messaging platform like [206] and [207] are given.

8https://docs.deeppavlov.ai
9https://allennlp.org

10http://www.camdial.org/pydial
11https://docs.fast.ai/text.html
12https://github.com/flairNLP/flair
13https://github.com/axa-group/nlp.js
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Those platforms can be divided into three main groups non-conding flatforms (§6.13.1),

coding platforms (§6.13.2) and instant messaging platforms (§6.13.3).

6.13.1 Non-Coding Chatbot Platforms

Non-Coding platforms provide a user interface to the coding platforms in the way to

give the user opportunity to create a simple chatbot for marketing purposes with setup

simple or complex conversational rules defined by patterns triggers and give the expected

response from the bot.

Such platforms usually provide non-coding interface to Facebook Messenger, Telegram,

WhatsApp, Slack, Kik, Tiwllio, Instagram or others. In blogs or tutorials they are often

mentioned platforms like Chatfuel14, Wit.ai, DialogFlow15 or Botsify16.

6.13.2 Coding Chatbot Platforms

Contrary to non-coding platforms coding platforms give more flexibility to implement a

chatbot in more flexible way usually using Application Programming Interface (API). It

allows programmers to develop complex systems and wholly or partially control chatbot

interactions.

On the other hand, for some applications complexity is redundant and leads to un-

necessarily complicated chatbots which do not serve its original purpose. Such specific

cases are exactly simple task-oriented chatbots which could lead user straight to the ac-

complishing the task without any further complex conversations.

Platforms like IBM Watson17, Microsoft Bot Framework18 or Amazon Alexa19 and

many others allow to implement any dialogue system.

6.13.3 Instant Messaging Platforms

It doesn’t matter if a chatbot is created on top of the Coding (§6.13.1) or Non-coding

(§6.13.2) platform or implemented based on some library or completely from scratch.

The primary purpose is the dialogue with humans. With existing instant messaging

platforms we can ensure a known UX, easy integration and scalability without any prob-

lem. The most known are Facebook Messenger and Telegram, but we can utilize many

others like Google Assistant, Slack, Kik, Skype, Twilio, Viber, and WhatsApp.

6.14 Dialogue Systems and Ethics

One of the critical question, if not the most important one, is ethics in connection with

chatbots. We can consider several criteria where we can define ethics. Of course, there

14https://chatfuel.com
15https://dialogflow.com
16https://botsify.com
17https://www.ibm.com/watson
18https://dev.botframework.com
19https://aws.amazon.com/lex
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could be plenty of aspects, but those are the basic ones.

6.14.1 Chatbot Introduction

The user needs to know that he or she is talking to the chatbot. So, they should not think

it is a human. They will sooner or later figure it out. The prevention from disappointment

which can lead to losing the trust in the application is crucial.

6.14.2 Conversation abuse

The provider should present a clear statement about content and data security. It is

essential that user feels save with all provided data and the conversation overall. The

chatbot can serve for marketing purposes, but data needs to stay private or be anonymous

on a single person level.

6.14.3 Ethical training data

There are few experiments which demonstrate the power of training data and thin-line

that is between an ethical and unethical chatbot.

Norman AI

Norman AI 20 represents a specific kind of chatbot. According to its creators, Norman is

”World’s first psychopath AI.”

The researches from MIT trained Norman AI on images from Reddit 21 like suicides,

homicides and other violent acts and Standard AI on ordinary pictures.

During the test they ran the Rorschach’s inkblot tests22 recognition by both of the

chatbots. Where the Standard AI sees an ordinary and expected outcome in captioned

images, Norman AI sees only death (Figure 6.15).

Figure 6.15: On the Rorschach’s inkblot (in the middle) Norman (left) sees only death
and the Standard AI (right) a nice and expected outcome

At the moment researchers are trying to ”fix” Norman with volunteers who mark the

pictures differently to prepare labeled data for Norman training.

20http://norman-ai.mit.edu
21https://www.reddit.com
22The Rorschach test is a psychological test in which subjects’ perceptions of inkblots are recorded

and then analyzed using psychological interpretation, complex algorithms, or both. Online available for
instance at http://theinkblot.com.
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Microsoft Tay

It was expected to be one of the greatest innovation, but it was one of the biggest failure.

When Microsoft deployed Tay chatbot [208] to Twitter in March 2016 something went

wrong. It was expected that Twitterbot would interact with users and learn from those

interactions.

At the beginning, the conversations were led in a positive and friendly way, but the

users who interact with Tay figure out quickly that the bot was learning from interaction

and started to manipulate its algorithm by attacking it and used the language full of with

racism, misogyny, and other offensive content to see if the bot imitates them. So it did.

Figure 6.16: From nice start up to racism including offensive content during less then
twenty-four hours.

During less than twenty-four hours the kind and friendly chatbot turned into a monster

(Figure 6.16). So Microsoft was forced to turn the bot off.

6.15 Conclusion! Where do dialogue systems walk?

The dialogue systems evolution ambles towards the ideal solution of personal companion

in the open domain (§6.5.1). It is part of the research activities of big market players like

Google, Facebook, Microsoft, or IBM.

In parallel to this effort, they offer solutions for goal-oriented dialogue systems in

the closed domain (§6.5.2). These are very important for specific business solutions like

customer support or sales channels.

Dialogue systems are either built from heterogeneous components or they are simple

End-to-End (E2E) solutions. This is obvious either from the architecture review section

(§6.3) or previously from several sections in state-of-the-art (§2).

The dialogue system architecture (§6.3) is practically followed in the next chapters

and contains a quick overview of necessary corpora (§7) and then an in-depth review of

algorithms, respectively an overview of specific dialogue system models (§8).

All this is taken into account later to describe perspective ways to influence a dialogue

system (§9).



Chapter 7

Corpora

Natural Language Processing (NLP) implemented as a supervised model is dependent on

adequately collected or chosen corpora. The quality of corpora, together with the used

learning algorithm, implies the quality of the further NLP model and thus the quality of

expected NLP functionality.

When we look at the original idea with Data Fusion, Chatbot and Influence (Fig-

ure 1.1) we can identify that each of these parts represents various NLP tasks and requires

corpora.

Device

Request Text

Quantitative 
Measure

Data Fusion

ResponseText

Dialogue System

Influence

Influencing Data

Qualitative 
Measure

Influence
Corpus

DS
Corpus

Opinion
Corpus

Figure 7.1: Corpora usage

Figure 7.1 shows the three modules with three corresponding corpora. The function-

alities which need specific corpora were already described in the previous sections:

Opinion corpora (§7.1) needed for sentiment extraction (§4.2.2)

Dialogue corpora (§7.2) needed to build either a specific chatbot model or specific

functionality in the chatbot architecture (§6.3)

Influence copora (§7.3) needed to provide support for intervention methods (§9.4), for

instance Emotion Regulation (ER)

Usage of existing corpora is one of the options to deal with particular NLP tasks.

It has the benefit; in fact, the collection of data and especially its labeling for further

machine learning costs time and resources.

73



CHAPTER 7. CORPORA 74

On the other hand, corpora collection (§7.4) gives us the potential to collect many

specific texts which correspond to the desired functionality and the domain in which the

functionality is assumed. It might lead to better results.

Some of the dialogue platforms already contain built-in data sets (§7.5). It brings the

advantage that data are clean and prepared for various dialogue domains that can be used

out of the box. The datasets are closely curated and follow the popularity of broadly used

datasets in the NLP community. On the other hand, the disadvantage is they are either

narrow domain-specific or contain broad conversation topics, especially chit-chat. So they

are not suitable for all the applications and their use has to be carefully considered.

The question related to ethics come (§7.6) with larger datasets and especially pre-

trained models (§8.2.4) based on them. The better and larger data we have, then more

reliable outputs we have, and the probability of abuse with reliable results grow.

7.1 Opinion Corpora for Sentiment Extraction

The sentiment extraction task was already presented in the influencing data chapter (§4)

in the sentiment dedicated section (§4.2). Tools for sentiment extraction (§4.2.3) use

either some rule-based approach (VADER[140]) to extract sentiment or they are based on

Machine Learning (ML) (TextBlob) or Artificial Intelligence (AI) (fastText[142]) methods.

The approaches which are based on ML or AI need annotated datasets for the supervised

learning or use words embedding (§8.7) to mix supervised and unsupervised learning in

the case of sentiment extraction.

Stanford Sentiment Treebank 1 Stanford University introduced first a fully labeled

parse trees corpus which is based on the Movie Review Data, respective sentence

polarity dataset [209]. It allows the complete analysis of the composition effect of

the sentiment [128].

Movie Review Data 2 It is the collection of sentiment annotated datasets collected by

Cornell University. It consists of such datasets as sentiment polarity dataset [210]

with 1000 positive and 1000 negative processed reviews, sentence polarity dataset

[209] with 5331 positive and 5331 negative processed sentences.

Large Movie Review Dataset 3 It is a dataset again produced by Stanford University

which uses semi-supervised learning utilizing a vector-based approach [211] with

25000 movie reviews with high sentiment polarity for training, and 25000 for testing.

7.2 Dialogue Corpora for Chatbot Model

Publications presenting chatbots built on top of specific machine learning or deep learning

techniques present either proprietary or publicly available corpora.

1https://nlp.stanford.edu/sentiment/index.html
2http://www.cs.cornell.edu/people/pabo/movie-review-data
3http://ai.stanford.edu/ãmaas/data/sentiment/



CHAPTER 7. CORPORA 75

One of the most significant research contribution brought into this field is A Survey

of Available Corpora for Building Data-Driven Dialogue Systems [26] which also

discusses some of the most commonly used corpora.

Another paper [195] divides the most commonly used datasets into several groups

based on the functionality which they serve for.

The next sections represent the most commonly used datasets. It is not in human

power to monitor an increasing number of all new public dialogue corpora.

7.2.1 Question-Answering (QA) Datasets

Some of the datasets which seem to be most commonly used for QA are the following:

Stanford Question Answering Dataset (SQuAD) ver. 1.0 and ver. 2.0 [83], [84]

is a reading comprehension dataset, consisting of questions posed by crowd-workers

on a set of Wikipedia articles4.

ReAding Comprehension Examinations (RACE) [212] It is a large-scale reading

comprehension dataset prepared by researchers from Carnegie Mellon University.

The questions-answers were collected from English Examinations and created for

middle school and high school students 5.

bAbI tasks [213] Those are proxy tasks developed by Facebook evaluating the reading

comprehension via question answering6.

MovieQA [214] University of Toronto curates a dataset which aims to evaluate automatic

story comprehension from both video and text.

WIKIQA [215] is a set of question and sentence pairs collected and annotated for re-

search on open-domain question answering7.

7.2.2 Task-oriented Dialogue Data sets

The task-oriented dialogue systems belong to the closed domain (§6.5.2), which strictly

limits its usage and content of the conversation. Despite that specificity for chit-chat,

domain-specific dialogues represent the source of data whenever the user starts such a

conversational topic in the complex chit-chat dialogue system.

Domain specific datasets Those were used during a challenge where the particular

domain was subject of Dialog System Technology Challenge (DSTC) (§2.4.3), for

instance DSTC1 (bus timetable [54]), DSTC2 and 6 (the restaurant [55] dataset)

and DSTC3-5 (tourist information [56]).

4https://rajpurkar.github.io/SQuAD-explorer
5http://www.qizhexie.com/data/RACE leaderboard.html
6https://github.com/facebook/bAbI-tasks
7https://www.microsoft.com/en-us/download/details.aspx?id=52419
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MultiWOZ 2.0 It is a task-oriented dataset. It contains seven domains, including

tourist attraction, hospital, police, hotel, restaurant, taxi, and train information.

The dataset contains 10438 dialogues with an average number of 8.93 turns for a

single domain and 15.39 turns for multi-domain dialogues [216].

Frames The paper [217] describes the Frames dataset. It is a corpus with 1369 human-

human dialogues from a travel booking domain. The dataset contains, on average,

15 turns per dialogue. With this dataset, they introduced the frame-based tracker

(§6.9.1) as the extension of finite state tracker from Dialogue Management (DM)

(§6.9).

Semantic Parsing Dialog The dataset covers the navigation and event queries do-

mains. It was crowd-sourced by asking the assistant about particular domains.

The result of crowd-sourcing is a set of 44k annotated queries with 25 intents and

36 slots [218].

Stanford Dialog Dataset The overall domain car autopilot agent includes calendar

scheduling, weather information retrieval, and point-of-interest navigation sub-domains.

The domain of the dataset is quite uncommon compared to the typical restaurant

or travel domains in other commonly provided datasets [219].

PersonalDialog [220] It is a personalized task-oriented dataset containing personal at-

tribution (various traits like Age, Gender, Location, Interest Tags). The dataset

consists of 20.83M sessions and 56.25M utterances from 8.47M speakers. Several

anonymization schemes are designed to protect the privacy of each speaker.

The Task-Oriented Dialogue Dataset Survey maintained as GitHub repository8 records

more task-oriented datasets which can be further used for research or development.

7.2.3 Chit-chat Dialogue Datasets

Collecting, preparing, curating and annotating chit-chat or chatbot dialogue datasets is

the challenge in open domain (§6.5.1) dialogue systems. Since they do not represent any

specific topic they can be a mixture of several dialogues. It leads to the inconsistent

personality of the chatbot and sometimes even the lack of attractiveness.

The Ubuntu Dialogue Corpus [221] Dialogues between an Ubuntu user and an expert

trying to fix an issue. The paper [221] presents the 1st version of the dataset and

there also exists the 2nd version where the data has been cleaned to some extent.

Douban Conversation Corpus [222] was crawled from a Chinese social networking on

open-domain topics. The Douban corpus is constructed in a similar way to the

Ubuntu Dialogue Corpus.

8https://github.com/AtmaHou/Task-Oriented-Dialogue-Dataset-Survey
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OpenSubtitles [223], [224] is a dataset of dialogues from movie scripts. It exists in The

Open Parallel Corpus (OPUS)9 datasets collection in two versions, from 2009 and

2018.

Persona-Chat [70] is a chit-chat dataset prepared for a NIPS 2018 conference where

the second year of The Conversational Intelligence Challenge (ConvAI) competition

(§2.4.4) was hosted.

7.2.4 Dialogue State Tracker (DST) Datasets

Two datasets related to the Dialogue State Tracker (DST) are the following ones. They

are mentioned in multiple DST related papers [179], [180], [225].

Dialog System Technology Challenge (DSTC) 2 [55] It is the dataset collected by

the Amazon Mechanical Turk (AMT) containing 3324 dialogues. In the paper [179]

the researchers used transcriptions, Automatic Speech Recognition hypotheses and

turn-level semantic labels provided for the DSTC.

Wizard of Oz (WOz) 2.0 [226] It has been collected by experiment technique WOz

(§7.4.2). The task-oriented dialogue system based on the DSTC2 ontology was

defined and two web pages with Amazon Mechanical Turk (AMT) have been created.

One of them served for the wizard and the other for user roles.

The researchers in [179] expanded the original WOz dataset [226] using the same

data collection procedure as in DSTC2 to the total of 1200 dialogues. Later the

English data [225] were translated to German and Italian by professionals. The

improved dataset was used in paper related to the research into neural belief tracking

[180].

7.2.5 Natural Language Understanding (NLU) Datasets

The human readable text understating by computer and turning it into computer readable

form is entry part of each dialogue system. There are several standard datasets which

relate to two main activities performed under Natural Language Understanding (NLU)

(§6.8), i.e. intent detection (§6.8.2) and slot filling (§6.8.4).

Air Travel Information System (ATIS) [227]. It is a dataset from Microsoft Cogni-

tive Toolkit. The slots are labeled in the IOB (in-out-begin) [161] (§6.8.2) format

and the dataset contains air travel related commands.

SNIPS 10 It is a dataset built by Snips.ai which serves primarily for NLU benchmarking.

It contains several categories (playing the songs, booking the restaurants, and so

on) of day to day user commands categories.

9http://opus.nlpl.eu
10https://github.com/snipsco/nlu-benchmark
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7.2.6 Natural Language Generation (NLG) Datasets

The human-understandable form of a dialogue generated by a computer, the response,

depends on the correct translation from the computer-understandable form in Natural

Language Generation (§6.10). The Dialogue State Tracker provides the input data to

those components or an independently stored dataset is needed. Nevertheless, the NLG

part could or could not have an awareness of the context and thus be or not to be

dependent on the previous utterance. There are not many datasets purely dedicated to

NLG part of the dialogue system.

Alex11 Context NLG Dataset12 [228] The dataset was collected using the crowd-sourcing

approach. They used a CrowdFlower platform13 to crowdsource English call record-

ings, transcriptions, and create response paraphrases. The data collection took

several stages to obtain natural user utterances and corresponding relevant, natu-

ral, and contextually bound system responses. The dataset covers the domain of

public transport information and contains 1859 items.

7.3 Influence Corpora for Emotion Regulation

In the State-of-the-art (§2) chapter, the section Psychological methods (§2.6) mentions

several Emotion Regulation (ER) techniques (§11.3.1). These can be used as intervention

techniques when the chatbot is influenced and needs to act to perform intervention.

One of the ER techniques already solved as the NLP problem is paraphrasing (§9.4.4).

So, the next datasets are purely related to this technique only. The rest of the ER

techniques require complex solutions, or they are not part of NLP research yet or at all.

ParaPhrase DataBase (PPDB)14 [229], [230] It is a paraphrase archive where para-

phrase datasets in various languages (21 in October 2019) are collected, maintained,

and provided either as single-lingual or multi-lingual. The paraphrase datasets

download allows to chose particular paraphrase type (lexical, phrasal, and syntac-

tic) or download them all. Furthermore, the database provides several sizes of the

dataset (from small to triple extra-large).

WikiAnswers15 The paraphrase dataset contains a collection of 18 million question-

paraphrase pairs scraped from WikiAnswers. The reason for collecting such a huge

dataset is Paralex (Paraphrase-Driven Learning for Open Question Answering) [231]

system that learns to answer questions using this dataset.

Paraphrase for Plagiarism (P4P) It is a manually annotated corpus composed of 847

English source-plagiarism pairs. The dataset was created first for building up the

evaluation framework for plagiarism detection [232], then also used for studying

paraphrases concepts and typology [233] and then turned back again to its roots

towards automatizing the plagiarism detection [234].

13http://crowdflower.com
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Microsoft Research Paraphrase Corpus (MRPC) The MRPC dataset is the cor-

pus of sentence pairs that were automatically extracted from online news sources.

Then they were annotated by humans whether the sentences in the pair are seman-

tically equivalent. It contains 3900 English paraphrase pairs [235].

Relational Paraphrase Acquisition from Wikipedia (WRPA) The paraphrases cor-

pora are extracted from Wikipedia and consist of several sub-corpora. Several hun-

dreds of paraphrases are related to person date and place of birth and death. Other

several hundreds paraphrases are dedicated to person family relations and origin.

More than 80 thousand paraphrases express the authorship relation [236], [237].

7.4 Collection of Corpora

The reason to collect a text and turn it into proper corpora is unavailability of domain-

relevant sources. Despite plenty of resources on the Internet, it can happen that the

particular domain data has not been published yet or they are not in the expected quality.

7.4.1 Data Generation

One of the option is to generate corpora as the collection task. If we return to Dialog

System Technology Challenge (DSTC) (§2.4.3), specifically its second year, a large corpus

of dialogues with various telephone-based dialog systems was collected [55] using the

Amazon Mechanical Turk (AMT). A little bit different approach was used in [238]. The

Rosetta16 language generation toolkit originally designed for the CMU Communicator

[239] was used for NLG.

7.4.2 Wizard of Oz (WOz) Data Collection

Another data collection technique is Wizard of Oz (WOz) when one participant (wizard)

of dialogue plays the role of the chatbot [226], [240], [241]. The wizard (a participant of

a dialogue) must have access to relevant sources (internet, curated databases) to be able

to respond to factoid and news related questions. WOz allows to collect dialogues usable

for the development of complete dialogue pipelines from NLU, to DM up to NLG.

7.5 Built-in Datasets

Dialogue platforms that are implemented for sharing, training, and evaluating dialogue

models contain built-in datasets. Such built-in datasets provide the advantage of fast

dialogue implementation, because the most time consuming task, the model training, is

already fully or partially done.

Some of those platforms were already introduced (§6.12). For instance, Facebooks

ParlAI [195] which contains17 79 (August 2019) tasks where most of them are built-in

16https://www.rosettastone.com
17http://www.parl.ai/static/docs/tasks.html
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datasets. 21 of them are dedicated to QA, 14 to chit-chat, 10 of them are task-oriented,

the others are testing and debugging tasks. All of them are well documented and point

out to related research papers or even code.

Another one is Google TensorFlow Dataset18 containing 106 (October 2019) datasets

from which two are audio relevant, 68 are related to image processing, five contain struc-

tured data, 14 textual data and 11 are suitable for translation tasks, and last but not

least four of them contain video.

7.6 Corpora Ethics

The pre-trained models (§8.2.4) if provided fully can lead to malicious applications 19 like

fake news generation, which are commonly known under the most broadly descriptive

term Deepfake (i.e., deep learning and fake) [242].

As the resolution of this situation OpenAI published a report [243] related to the

release of theirs Generative Pre-Training (GPT)-2 language model (§8.2.3). In the report

a staged release which conducts the risk and discussed ongoing partnership-based research

and recommendations for responsible publication in AI is considered.

7.7 Conclusion, One corpora to rule them all!

A necessity to prepare new corpora whenever a specific task is studied is evident from

the extensive and still small list of various types of datasets turned into annotated cor-

pora. Furthermore, a reuse of the existing corpora is mandatory whenever the particular

task is elaborated by using another method, and performance comparison (evaluation) is

done. It means that there are no silver bullet corpora, no single solution, even though

standardization like Stanford Question Answering Dataset (SQuAD), The Open Parallel

Corpus (OPUS), Persona-Chat, or even Dialog System Technology Challenge (DSTC) are

becoming more usual.

In the State-of-the-art (§2) chapter, Alexa Prize Challenge (APC) (§2.4.2) requires to

keep the conversation at least for twenty minutes. To achieve that most of the solutions

utilize the mixture of various corpora and related NLP techniques. This leads to longer

natural conversation with the user.

So, the solution about corpora related to this rigorous thesis can be done in several

ways. Either it would be necessary to experiment with multiple corpora and their fusion

as they are provided or the advantage of built-in corpora can be leveraged. Such solutions

offer a cleaned data source on one hand, but no flexibility of data adaptation on the other

hand. The last and most challenging way is to collect the text and build specialized and

purely research dedicated corpora.

18https://www.tensorflow.org/datasets/catalog/overview
19https://openai.com/blog/better-language-models



Chapter 8

Dialogue System Models

In the previous section dealing with dialogue systems the elementary introduction (§6)

was described. This section follows this introduction (Figure 6.1) and reveals deeply the

dialogue systems modeling techniques (Figure 8.1), their advantages and disadvantages.

In this case we consider the application of a particular modeling technique to provide the

best overview for the next section about dialogue system influencing (§9).

Dialogue System - models

Device

Request Text

ResponseText

Influencing Data

Influence

Data Fusion

Quantitative 
Measure

Qualitative 
Measure

Pipeline

End-to-End

or

NLU DM NLG

E2E

Figure 8.1: Dialogue System - models

This section starts with Artificial Neural Networks (ANNs). They are briefly intro-

duced (§8.1.1) due to their huge popularity in dialogue system research; a short description

of the most relevant or interesting types of ANNs is given (§8.1.2).

Before we go deeply into dialogue system models we need to describe the fast evolution

in the NLP field related to Natural Language Modeling (NLM) (§8.2). Its history goes into

the 1950s, but the modern era has started approximately at the beginning of millennia,

and most innovations have happened in the last decade with the highest acceleration

during the last three years.

The recent years fast evolution of NLM (§8.2) is also connected with the boom of

Pre-trained Language Models (PLMs) (§8.2.4) which were of large sizes at the beginning,

but with the application of various compressing approaches (§8.3), especially knowledge

distillation (§8.3.1), they have become reasonably small and keep the performance of

original model.

81
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This all is important for the latest evolution of dialogue systems built on top of retrieval

methods (§8.5), generative methods (§8.6) or pipeline methods (§8.7). For the generative

methods we especially consider Deep Learning (DL) (§8.6.1) and Reinforcement Learning

(RL) (§8.6.2) dialogue systems or various pipeline architecture (§6.3.1) components.

When bringing dialogue systems closer to the user, various improvements (§8.8) have

been made in recent years (for instance personalizing (§8.8.1) in order to give the dialogue

systems either a better understanding of user personality or bestow the personality to the

dialogue system to react better and less generic way). Next to personalizing ensemble

(§8.8.2) dialogue systems stand. They bring together various functions to the user with

the a broader spectrum of answers and keep the conversation longer and fruitful, which

is one of the ways to beat the Turing test (§10.2.1).

Last but not least, machines suffer from their baby diseases, and dialogue systems

are no exception. So, the conversation contains pathologies (§8.9), which need to be

taken into account during the dialogue system design phase and avoid them via specific

improvements or methods.

8.1 Artificial Neural Network (ANN)

ANN were defined in the 1940s and after AI winter 1 they have had the renaissance era

due to the computer processing power (GPU and/or Cloud) in the last decade.

In recent years ANNs have become important in various disciplines, NLP is one of them

starting with Natural Language Modeling (NLM) (§8.2) using a shallow ANN for modern

word embedding (§8.2.2) up to the complex language models for sentence embedding

(§8.2.3) built on top of RNN (or its modifications like LSTM or GRU) and Encoder-

decoder architectures.

8.1.1 Introduction to Artificial Neural Network

The main idea is based on a collection of connected units (nodes) called artificial neurons

(similarity to biological neurons, but simplified). Connections are represented by a sim-

plified version of a biological synapse; connection provides the output of one neuron as

an input to another neuron.

An artificial neuron (Figure 8.2) have an input (xi) represented by a feature vector,

assigned weights (wi) that represent the relative importance of the input, bias (b) and

output (y). It conntains propagation function which computes the input to a neuron as

a weighted sum
∑

with bias which can be added to the result of the propagation and

activation function f which provides a smooth transition of computed sum to the output.

1https://en.wikipedia.org/wiki/AI winter
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artificial neuron

Figure 8.2: Artificial Neuron Schema

ANN can be, but not necessarily (for instance based on Good Old-Fashioned Artificial

Intelligence (GOFAI) [244]), a superset of Machine Learning (ML) techniques. Essentially,

AI is any machine that shows intelligence in some decision. It has been either fed or trained

by a large number of datasets to successfully analyze inputs such as text, images, video,

and speech.

Nodes are usually organized into layers and create hidden layers that interconnect

input and output layers, providing the required functionality of ANN (Figure 8.3). The

chain of transformations from input to output is called Credit Assignment Path (CAP).

There is no universal agreement about the threshold of depth that divides shallow learning

from deep learning. However, most researchers consider ANN to be deep whenever the

CAP depth is higher than 2; otherwise, it is a shallow ANN.
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hidden 
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hidden 
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hidden 
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output 
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Figure 8.3: Shallow and deep learning ANN

8.1.2 Types of Artificial Neural Network

There are plenty of different kinds of Artificial Neural Network (ANN) [245] with archi-

tectures suitable for specific applications. Convolutional Neural Networks (CNNs) are

usually used for image processing; Recurrent Neural Networks (RNNs) are suitable for

chain forms of data (e.g. time-series or text). Here is a brief overview of a few neural

network types:

Feed Forward Neural Network (FFNN) It is the most common type of the artificial
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neural network. In this architecture, information moves only in one direction, for-

ward, from the input layer, through the “hidden” layers, to the output layer. There

are no loops in the network [246]. The first single-neuron network was proposed in

1958 by AI pioneer Frank Rosenblatt [247]. While the idea is not new, advances

in computing power, training algorithms, and available data led to higher levels of

performance than previously possible.

Convolutional Neural Network (CNN) is an artificial neural network in which con-

nections between neural layers are inspired by the organization of the animal visual

cortex, the portion of the brain that processes images; it is well suited for visual

perception tasks, but also used for NLU tasks. [248].

Capsule Neural Network (CapsNN) It is another type of ANN with added struc-

tures called “capsules” [249] to a CNN. It have four major conceptual advantages

compared to CNN: viewpoint invariance (recognizes objects regardless of the per-

spective), fewer parameters (groups neurons in capsules), better generalization to

new viewpoints (linearizes complex rotation transformations), defense against white-

box Adversarial Learning (AL) attacks (Fast Gradient Sign Method (FGSM) can

drop accuracy below 20%, CapsNN maintains it above 70%).

Generative Adversarial Network (GAN) These is a pair of ANNs [250], which com-

pete with each other in the game. According to the game theory, it is often but not

always in the form of a zero-sum game. One of the networks is called generative

and generates candidate data while another network is called discriminative and

evaluates the generated data. The GAN trained on photographs can generate new

realistically looking photographs.

Recurrent Neural Network (RNN) Artificial neural networks whose connections be-

tween neurons include loops (Figure 8.4 [251]) are well-suited for processing se-

quences of inputs. It makes them highly effective in a wide range of applications,

like handwriting recognition, texts analysis and speech recognition [252].
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Figure 8.4: The repeating module in a standard RNN contains a single layer

Recursive Neural Network (RecNN) It is another kind of deep ANN; it is essentially

generalization to structures of a recurrent neuron [253]. It is created by applying

the same set of weights recursively over a structured input. RecNN produces a

structured prediction over variable-size input structures, or a scalar prediction on it

by traversing a given structure in topological order [254].
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Long / Short Term Memory (LSTM) It is another RNN architecture composed of

a cell, input gate, output gate and forget gate (Figure 8.5 [251]). The cell remem-

bers values over arbitrary time intervals, and the three gates regulate the flow of

information into and out of the cell [255]. It is suitable for processing sequential

data like time-series, text, speech, or video.
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Figure 8.5: The repeating module in an LSTM network contains four interacting layers

Gated Recurrent Unit (GRU) GRU [256] It is a faster (but less powerful) variation

on the LSTM network; it merges the cell state and hidden state (Figure 8.6 [251]).

On the certain smaller datasets the GRU network exhibits even better performance

than LSTM [257], but overall LSTM cells consistently outperform GRU [258], [259].
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Figure 8.6: The repeating module in an GRU contains three interacting layers

8.1.3 Neural Network Frameworks

ANN frameworks are one of the many ways to implement dialogue system modules within

the pipeline (§6.3.1) or E2E architecture (§6.3.2). This section introduces several libraries

which represent the current state of the art and are widely used not only for dialogue

system implementations but also for any deep learning application.

TensorFlow 2[260] It is an open source data flow library usually used for machine learn-

ing applications such as neural networks developed by Google.

Keras 3 It represents an open source interface running on top of the Tensorflow or Mi-

crosoft Cognitive Toolkit (CNTK). It is designed to enable fast experimentation

with deep neural networks.

2https://www.tensorflow.org
3https://keras.io
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PyTorch 4[261] It is another open source machine learning library developed by the

Facebook’s artificial-intelligence research group mostly used for neural network ap-

plications.

8.2 Natural Language Modeling (NLM)

A statistical language model is a probability distribution over sequences of words. The

language model is usually represented numerically. It can be, for instance, done by word

frequency appearance in a sentence or by vector space representation of words in sentences.

In the last few years, the modern word embedding (§8.2.2) and sentence embed-

ding (§8.2.3) stand behind the acceleration of NLP and speed up research in various

subordinated fields like Natural Language Understanding, Neural Machine Translation,

Question-Answering, Natural Language Generation, and others. It has also accelerated

the improvement of various retrieval-based or generative dialogue system models.

8.2.1 Early Word Embedding

The history of word embedding goes back in 1950s with early reference to Bag-of-Words

(BoW) in a linguistic context defined by Harris [262]. Then in 1960s the paper from

Salton [263] using the Term-document matrix formalization was released.

A few years later, during the 1970s, the research about the term weighting was moved

forward by Jones [264] when she conceived a statistical interpretation of term specificity

called Inverse document frequency (Idf). Based on this Salton [265] proposed later

a vector space model known as Term frequency - Inverse document frequency

(Tf-Idf) in mid 1970s.

Next to the word embedding other NLP approaches also evolved. At the end of

the 1980s Latent Semantic Analysis (LSA) was patented and published by Deer-

wester [266] in 1990.

During the 1990s classic statistical NLP approaches based on n-grams employing

smoothing to deal with unseen n-grams [267] were evolved. And in late 1990s Baker [268]

and others introduced the FrameNet5 project which part is a task of Semantic Role

Labelling also called shallow semantic parsing or slot-filling (§6.8.4) that is still actively

researched today.

At the beginning of millennia, Lafferty introduced the Conditional Random Fields

(CRF) [176] method, one of the most influential classes of sequence labeling. Further-

more, two years later, in 2003 one of the most widely used techniques in machine learning

(which is still the standard way to do topic modeling) the Latent Dirichlet Allocation

(LDA) [269] was introduced.

The popularity of ANN continued and in 2003 the first Feed Forward Neural Net-

work (FFNN) language model [270] was also presented. The FFNN was fed by vector

representations of the n previous words (embeddings). Lately in 2010, respectively 2013,

4https://pytorch.org
5http://framenet.icsi.berkeley.edu
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FFNNs have been replaced with Recurrent Neural Network (RNN) [271] and Long / Short

Term Memory (LSTM) [272] for language modelling.

8.2.2 Modern Word Embedding

The era of modern word embedding started in 2013. This computational technique helped

to establish a new focus on AI after AI Winter, which took time until late 2000s. The

timeline (Figure 8.7) of keyword embedding related papers released since 2013 is acceler-

ating.
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Figure 8.7: Modern Word Embedding Timeline

• In January 2013 the Google research team (Mikolov et al.) [273] presented a Word

to Vector (Word2Vec) group of word embedding models with two solutions: Con-

tinuous Skip-gram and Continuous Bag-of-Words (CBOW). The models are shallow,

two-layer ANNs are trained to reconstruct linguistic contexts of words. CBOW is

faster than the skip-gram, but the skip-gram does a better job for uncommon words.

• More than one year later, in October 2014 the Stanford research team came with the

Global Vectors (GloVe) [274] model for distributed word representation. Vector

representations for words are obtained through unsupervised learning. It maps the

words into a meaningful space where the distance between words is related to their

semantic similarity.

• As an extension of the Continuous Skip-gram model [273], [275] the improvement

implemented by the Facebook research team was introduced in July 2016. It is

called fastText [142], [276] and takes into account sub-word information.

• Another contribution to the representation of words with vectors is the Contextual

Vectors (CoVe) [277] published in August 2017 by the Salesforce team. It utilizes

Transfer Learning (TL), and it is inspired by Machine Translation (MT) tasks. The

first part is the bidirectional Long / Short Term Memory (LSTM) trained on various

datasets to create MT-LSTMs models. The second part is to append the outputs of

the MT-LSTMs CoVe to the word vectors typically used as inputs to these models.

• At the beginning of 2018 (January), Howard and Ruder proposed Universal Lan-

guage Model Fine-tuning (ULMFiT) [278], an effective Transfer Learning (TL)

method that can be applied to any task in NLP.
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• In February 2018 Allen Institute for AI6 came with Embeddings from Language

Models (ELMo) [279]. It models not only complex characteristics of word use

(e.g., syntax and semantics) but also how these uses vary across linguistic contexts.

Word vectors are based on a deep bidirectional language model (biLM).

8.2.3 Sentence Embedding

In NLP the context given by order and relation of words in a sentence plays an important

role in proper language understanding.

The latest modern word (it does not need to be only the word, it could be a letter,

syllabus, so more precisely we can speak about token) embedding (§8.7) takes into account

complex characteristics of word use and linguistic context (ELMo). The ambiguity in the

language can be eliminated or at least minimized by sentence (the sentence is not entirely

correct, we can include a fragment of a sentence, paragraph, so it is better to define it as

a sequence) embedding.

The sentence embedding timeline (Figure 8.8) has also a sign of unrestrained de-

velopment. Considering transformer evolution (Figure 8.10) described later it is really

impressive how much NLP has evolved in last few years.
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Figure 8.8: Modern Sentence Embedding Timeline

• Sequence to Sequence (Seq2Seq) It is a sequence to sequence mapping language

model [280]. The best suitable solution is to employ Recurrent Neural Network

(RNN), but usually it is implemented via a more advanced version of Long / Short

Term Memory (LSTM) or Gated Recurrent Unit (GRU) (vanilla RNN is not suitable

due to its vanishing gradient problem).

The Seq2Seq model usually consists of two components (Figure 8.9):

– Encoder utilizes a deep ANN and encodes the input words to the hidden vec-

tors. The vectors are created from the current word and the context based on

the word in the sentence.

– Decoder is also based on a deep ANN, but it works oppositely to the encoder. It

takes the hidden vector previously generated by the encoder, its hidden states,

and current word and produces the next hidden vector from which the next

word is finally predicted.

6https://allenai.org



CHAPTER 8. DIALOGUE SYSTEM MODELS 89

tanh

tanh

?? ? tanh

tanh

?? ?

T
ho

ug
ht

 v
ec

to
r

tanh

tanh

?? ?tanh

tanh

?? ?tanh

tanh

?? ?tanh

tanh

?? ?tanh

tanh

?? ?tanh

tanh

?? ?

Are you free tomorrow?

Request

ENCODER

DECODER

<START>

Yes, what's up? <END>

Response

Figure 8.9: Sequence to Sequence Model

• Attention The pure encoder-decoder network represents the vanilla Seq2Seq im-

plementation which has its limitations.

One of the limitations is that the complete information in the input sentence should

be encoded into a fixed-length vector — context. The decoder takes as the input

a single vector. It stores all the information about the context. It is not an issue

for short sequences, but the problem starts with long sequences.

Attention mechanism [281] allows the decoder to selectively look at the input se-

quence hidden states, which are then provided (as a weighted average) as an addi-

tional input to the decoder.

The attention can have different forms [282] and is widely applicable for tasks con-

stituency parsing [76], reading comprehension [283], one-shot learning [284], image

captioning [285] and many others.

• Beam Search. The decoder selects as the output the word with the highest prob-

ability. However, it does not mean that the highest probability always leads to the

best result due to the basic problem of greedy algorithms. The beam search [286]

is applied to suggest the possible translation at each step, making a tree of top k

results.

• Convolutional Seq2Seq. The original Seq2Seq model is purely based on Recur-

rent Neural Network (RNN). On the other hand, Convolutional Neural Network

(CNN), compared to RNN models, brings an advantage that computations over

all elements can be fully parallelized during training [287]. It leads to a better

chance to use the GPU hardware and makes optimization easier since the number

of non-linearities is fixed and independent of the input length.

• Single Headed Attention (SHA) RNN. It is a progressive language model [288].

It is not completely following the current hype around the Transformer, but it is

built on top of RNN. Additionally to RNN, it is composed of pointer-based atten-

tion, and ”Boom” large feed-forward layer (also found in Transformers and other

architectures) with a sprinkling of layer normalization.

The Transformer, BERT and GPT models are described in the next section.
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Transformer Evolution

The year 2019 was the year of the Bidirectional Encoder Representations from Transform-

ers (BERT), which initially evolved from Transformer [289]. For instance, 169 BERT-

related papers [290] have been published. With the rise of BERT and the Transfer Learn-

ing (TL) (§8.6.3) trend in NLP has been lifted up by vast use of Pre-trained Language

Models (PLMs) released with fine-tuning [291] for specific NLP-related tasks.
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Figure 8.10: Transformer Evolution

• Transformer [292] It represents a simplification of sequence transduction mod-

els usually based on complex RNN or CNN that include an encoder and decoder.

The simplified architecture of the Transformer is solely based on attention mecha-

nism dispensing with recurrence and convolutions entirely. The advantage of this

approach is the better quality of the model, which can be more parallelized and

requires significantly less time to train.

• Generative Pre-Training (GPT) Another Transformer successor is a large gen-

erative language model implemented by OpenAI company7 called GPT [293]. They

demonstrated that the large gains could be made with generative pretraining of a

language model on a diverse corpus of unlabeled text, followed by discriminative

fine-tuning on each specific NLP tasks from SQuAD, RACE or GLUE benchmarks

(§10.3.3).

• Bidirectional Encoder Representations from Transformers (BERT) It uses

the now ubiquitous Transformer architecture. BERT [294] is designed to pretrain

deep bidirectional representations from the unlabeled text by jointly conditioning

on both left and right context in all layers. BERT is trained on a combination of

Book Corpus [295] plus English Wikipedia corpus. The pre-trained model can be

fine-tuned with just one additional output layer to create state-of-the-art models for

a wide range of NLP tasks from SQuAD, RACE, or GLUE benchmarks (§10.3.3).

• Cross-lingual Language Model (XLM) XLM [296] offers two cross-lingual lan-

guage models. The first one is unsupervised and relies only on monolingual data.

The second one is supervised and leverages parallel data with a new cross-lingual

language model objective. It significantly outperforms the previous state of the

art on cross-lingual classification, unsupervised machine translation, and supervised

machine translation.

7https://openai.com
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• Transformer-XL [297] It is a novel language model based on the original Trans-

former, which enables learning dependency beyond a fixed-length without disrupting

temporal coherence. It consists of a segment-level recurrence mechanism and a novel

positional encoding scheme. It brings the functionality to learn dependency, which

is nearly two times longer than RNN and nearly six times longer than vanilla Trans-

formers. It outperforms vanilla Transformer in both short and long sentences, and

it is approximately 1800 times faster in evaluation.

• Generative Pre-Training (GPT)-2. GPT-2 [298] It is a direct scale-up of GPT.

The Transformer based architecture was used, and the model largely follows GPT

model with a few modifications. The model was trained on a corpus called WebText,

contains slightly over 8 million documents for a total of 40 GB of text from URLs

shared in Reddit.

GPT-2 generates exceptionally fluent English, which led to the ethical conundrum

if OpenAI should or should not publish the complete Pre-trained Language Model

(PLM). So, in February 2019, they instead released a small 124M parameter model

[299] for researchers to experiment with, as well as a technical paper. Three months

later, in May 2019, they staged the release of a medium 355M model. Furthermore,

in August 2019, they decided to release a 774 million parameter model [300] with

publishing a paper related to the social impacts of such release [243]. Later in

November 2019, OpenAI decided to publish a full model with 1.5 billion parameters

[301].

• Enhanced Representation through kNowledge IntEgration (ERNIE) It is

another language model inspired by BERT, especially its masking strategy. ERNIE [302]

is designed to learn language representation enhanced by knowledge masking strate-

gies, which includes entity-level (composed of multiple words) masking and phrase-

level (composed of several words standing together as a conceptual unit) masking.

• XLNet It represents another improvement of the elementary BERT language model.

The XLNet [303] model utilizes a generalized autoregressive pretraining method that

enables learning bidirectional contexts by maximizing the expected likelihood over

all permutations of the factorization order and overcomes the limitations of BERT

thanks to its autoregressive formulation. Moreover, it integrates the concepts from

Transformer-XL to the state-of-the-art autoregressive model into pretraining.

• Robustly optimized BERT approach (RoBERTa) The original BERT work

suffers from significant undertraining. So, the Facebook research team presents the

replication study [304] of BERT pretraining that carefully measures the impact of

many key hyperparameters and training data size. This improved model achieved

state-of-the-art results on GLUE, RACE and SQuAD benchmark datasets (§10.3.3).

• Enhanced Representation through kNowledge IntEgration (ERNIE) 2.0

is the improved version of original ERNIE. It is built on top of the idea that pre-

training tasks can be incrementally constructed [305]. The models are pre-trained
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trough continual multi-task learning, and the pre-trained model is fine-tuned to

adapt to various language understanding tasks.

• Conditional TRansformer Language (CTRL) It is another Transformer lan-

guage model released completely with 1.63 billion parameters [306]. It was trained

by condition control codes that govern style, content, and task-specific behavior.

Control codes are additional metadata derived from the structure that naturally co-

occurs with a raw text. It still allows us to preserve the advantage of unsupervised

learning and, on top of that, provide more precise control of text generation.

• A lite BERT (ALBERT) It is an NLP model based on BERT. ALBERT [307]

uses two parameter-reduction techniques to lower memory consumption and in-

crease the training speed of BERT. The first technique is a factorized embedding

parameterization. The second is cross-layer parameter sharing. Both lead to sig-

nificantly better results in the standard NLP tasks from SQuAD, RACE, or GLUE

benchmarks (§10.3.3) with fewer parameters than BERT.

• DistilBERT It is a smaller — compressed by knowledge distillation (§8.3.1) —

general-purpose language representation of original BERT language model [308].

It can then be fine-tuned to achieve good performances on a wide range of stan-

dard NLP tasks from SQuAD, RACE or GLUE benchmarks (§10.3.3) like its larger

counterpart.

8.2.4 Pre-trained Language Models (PLMs)

A Pre-trained Language Model (PLM) represents the modern way to save the costs on the

training phase of the language model. The PLMs assumes usage of Transfer Learning [309]

(§8.6.3) in which a deep neural network language model is pretrained on a web-scale

unlabelled text dataset with a general-purpose training objective before being fine-tuned

on various downstream tasks [310].

At the moment (January 2020) it is possible to find various PLMs, the most known

and used ones are:

HuggingFace’s Transformers 8[310] is a state-of-the-art Python library for Tensor-

flow and Pytorch, which provides general-purpose architectures (GPT, BERT, XLM,

Transformer-XL, GPT-2, XLNet, RoBERTa, CTRL, ALBERT, DistilBERT, Camem-

BERT [311], Text-to-Text Transfer Transformer (T5) [312], XLM-RoBERTa [313],

MultiModal BiTransformer (MMBT) [314] and others from external contributors)

for Natural Language Understanding (NLU) and Natural Language Generation

(NLG) with over 32 Pre-trained Language Models in more than 100 languages.

Google’s Tensorflow Hub 9 is a Python library for Transfer Learning (§8.6.3) by reusing

parts of TensorFlow models. It contains over 400 models (January 2020) related to

three domains: text (over 100), images (over 300), and video (exactly 4). The text

8https://github.com/huggingface/transformers
9https://www.tensorflow.org/hub
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models support text embedding; the image models can do pose detection, classi-

fication and segmentation, image generation, and the video models serve for clas-

sification and generation. The models are either prepared by Google or external

contributors.

Facebook’s PyTorch Hub 10 is another Python repository for Transfer Learning (§8.6.3)

with pre-trained PyTorch models. It is the smallest repository with model defini-

tions or pre-trained weights. So far (January 2020) it contains about 30 models

from the following domains: audio (3), image generative (2), NLP (10) including

8 HuggingFace’s models, various scriptable models (12) and others categorized as

vision models.

8.3 Compressing Language Models

Using the modern language models (§8.2.3) like Transformer or Bidirectional Encoder

Representations from Transformers (BERT) requires a huge model with hundreds of mil-

lions parameters (Figure 8.11). Then not only the training phase to establish such a

model and its fine tuning needs GPU, but also during inference calculation, a CPU (or

even multiple) could not be enough.

Figure 8.11: Parameter counts of several recently released pre-trained language models

The model size can be compressed during the training or after it. Compressing a

model means to reduce the number of parameters (weights) or their precision.

Three main approaches used to language models compression are:

10https://pytorch.org/hub
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Quantization The quantization (pseudo- or real- quantization) of ANN [315] is a com-

pression technique which could be achieved by decreasing the numerical precision

of a model’s weights.

Pruning The pruning [316], [317] technique also belongs to compression; it removes parts

of a model (weight pruning or neuron pruning) to make it smaller and faster.

Knowledge Distillation The knowledge distillation [318] is not a model compression

approach; it corresponds more to Transfer Learning (TL) (§8.6.3). The pre-trained

big and slow model is used to train a smaller model to mimic original model behavior.

The Knowledge Distillation technique is the most popular and used for the NLP

purposes; it is described deeper in the next section (§8.3.1).

8.3.1 Distilling Knowledge

Distilling knowledge means to train a big and slow model and use it to train a smaller one

[318]. It is about to use big model raw predictions (soft targets), before the final activation

function (hard targets) is applied, to train a small model (Table 8.1). For example, the last

activation function reduces information of outcome classification to one of many classes,

and remaining turns to zero. The raw predictions of ANN internal representations thus

also contain not-predicted classes [319] and bring more information for future small model

training.

cow dog cat car

0 1 0 0 hard targets

10−6 0.9 0.1 10−9 soft targets

Table 8.1: Examples of hard and soft targets [320]

The teacher (big and slow model) and student (smaller model) approach are shown

in Figure 8.12 [321]. The loss calculated between the output of student model and hard

targets is to make the student model to perform much better than teacher model in

practice.
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Figure 8.12: Joint training and distillation approach to learn compact student models

The only problem with the teacher-student approach is that it works up to some par-

ticular size difference between the pre-trained teacher model applied to the student. To

solve the problem, there is research that proposes to build an intermediate pre-trained

model called teacher-assistant. Moreover, the research even proposes multi-step distilla-

tion [322].

The performance of the BERT distilled version (Table 8.2) compared to the original

BERT model is degraded by 3%, but training time takes 25% of the original, and the

number of parameters dropped to 60% (66 millions) of original Base (110 millions) and

20% of original Large (340 millions).

Model Size11 Training Time Performance

BERT [294] Base 110 100% 100%

Large 340

XLNet [303] Base 110 500% 102-115%

Large 340

RoBERTa [304] Base 110 400-500% 102-120%

Large 340

DistilBERT [308] Base 66 25% 97%

Table 8.2: BERT vs. other models comparison [323]

11in Millions
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8.4 Dialogue Systems Classification

Due to the fast evolution (§2.2) of dialogue systems, various architectures (§6.3) and the

system complexity (§6.7) many approaches to classify dialogue models exist. The dialogue

system state-of-the-art section (§2.3) presents a comprehensive overview built on top of

the several research papers which stand behind the inspiration (Figure 8.13) of how to

organize this chapter and classify the dialogue systems from the author´s perspective.

Dialogue Systems

Chatbots

Retrieval Methods

Rule-based

Information Retrieval-based

Response Selection-based

Single-turn

Multi-turn

Generative Methods

Deep Learning

Sequence-to-Sequence

Transformer Knowledge Distillation

Reinforcement Learning

Transfer Learning

Active Learning
Self-feeding

Task-oriented

Pipeline Methods

NLU

Intent Detection

Slot Filling

Joint Intent Detection and Slot Filling

DM

Dialogue State Tracking

Policy Learning

NLG

Template-based

Plan-based

Class LM-based

AI-based

Generative Methods

Deep Learning

Reinforcement Learning

Transfer Learning

Figure 8.13: Dialogue systems classification

Needless to say, like any of those attempts to give a complex field structure, it is not

perfect, and the author is aware that his approach mixes several point-of-views, more

concrete dialogue systems architecture (§6.3) together with taxonomy (§6.4).

8.5 Retrieval Methods

The retrieval methods for dialogue systems are based on the retrieval-based models

(§6.4.1) and are either hand-crafted or request-response pair methods.

The dialogue system returns the response based on the request-response similarity

or other matching criteria. The primary methods which provide the grounding for the

retrieval-based methods are Question-Answering (QA), response selection, response gen-

eration, response matching, and others.

The main directions which the research currently focus on are rule-based dialogue

systems (§8.5.1), Information Retrieval (IR) dialogue systems (§8.5.2), and Response Se-

lection (RS) dialogue systems (§8.5.3).
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8.5.1 Rule-based Dialogue Systems

Early dialogue models as well as elementary contemporary models were rule-based (one

of the retrieval-based models §6.4.1 approaches). This approach requires no data, i.e., the

systems usually use pattern matching or database instead of dataset based training. On

the other hand, a lot of manual effort, which costs many resources, needs to be invested

in building the Question-Answering (QA) model. Moreover, the topic coverage of such a

system is not fully satisfactory.

The early era of dialogue system evolution (§2.5.2) describes dialogue systems which

models are rule-based.

One of the most known patterns matching dialogue system implementation is ELIZA [7]

in the late 1960s. It uses the pattern/transformation rules with the keyword ranking ap-

proach in the human conversation. ELIZA was followed by PARRY [8] created in the late

70s.

It was implemented by Jaberwacky in 1988. The winner of the Loebener Prize

(§2.4.1)) is based on contextual pattern matching, i.e., a rule based dialogue system.

ELIZA inspired the implementation of ALICE [9] created in 1995, which applies

the heuristic pattern matching rules to the conversation with a human. The dialogue

system uses an XML Schema called Artificial Intelligence Markup Language (AIML) for

specifying the heuristic conversation rules.

It led to the implementation of Mitsuku in 2005, the state-of-the art AIML dialogue

system which won the Loebner Prize (§2.4.1) five-times.

The rule-based models are still used, but over time they are replaced by more so-

phisticated approaches based on Artificial Neural Network (ANN) or Machine Learning

(ML).

The following list presents the examples of dialogue system engines that use config-

uration languages to simplify conversation definition. All of them (no matter in which

programming language they are implemented) are E2E engines based on the pattern

matching approach with various complexity behind.

Artificial Intelligence Markup Language (AIML) AIML12 is the XML schema for

dialogue modeling. It provides flexibility to establish a complex and powerful dia-

logue model through pattern-matching definitions (see example Code 8.1) and ad-

ditional approaches like variables or memory fields to keep the conversation with

sort of context.

<?xml version ="1.0" encoding ="UTF -8"?>

<aiml version ="1.0" >

<category >

<pattern >MY NAME IS _</pattern >

<template >Nice to meet you , <star />!</template >

</category >

</aiml >

Code 8.1: An elementary AIML example, which reads the name from the pattern and

uses it in conversation.

12http://www.aiml.foundation
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Open Intent Markup Language (OIML) can be taken as an alternative to AIML.

It was implemented independently as an open-source framework to create dialogue

systems in short time. The configuration of the dialogue system based on OIML13

is done by three files that are required to describe the bot: dictionary JSON file,

model OIML file and user actions file (implemented for instance in JavaScript).

RiveScript The scripting text-based (see example Code 8.2) language RiveScript15 is an

alternative to the previous AIML and OIML languages. It is designed to help with

the development of interactive dialogue systems.

+ my name is *

- Nice to meet you , <star1 >!

Code 8.2: A simple RiveScript example which get the name from the trigger (+) and uses

it in response (−).

8.5.2 Information Retrieval (IR) Dialogue Systems

The dialogue models based on the Information Retrieval (IR) work on the principle to

respond to users’ request by some appropriate response built from the corpus of natural

text. The text of human conversation can be collected from social networks, discussion

forums or blogging platforms. Data can come from various existing corpora, for instance

MovieQA [214] (§7.2.1) or OpenSubtitles [223], [224] (§7.2.3).

The Information Retrieval (IR)-based system can use any retrieval algorithm to choose

a relevant response based on the given corpus and user input. According to Jurafsky [324],

the two most straightforward methods of how to get a turn response are the following

ones:

Return the response to the most similar turn The idea is that we should look for

a turn that most resembles the user’s turn, and return the human response to that

turn [325], [326].

Return the most similar turn The idea here is to directly match the users’ query with

turns from the conversational corpus since a good response will often share words

or semantics with the prior turn [327].

In both cases mentioned above the similarity function between the users request and

returning response is usually cosine similarity computed either over words (Tf-Idf (§8.2.1)

or Word2Vec, fastText, GloVe, ELMo (§8.2.2) or others) or sentence embeddings (BERT

and others (§8.2.3)).

8.5.3 Response Selection (RS) Dialogue Systems

The Response Selection (RS) dialogue systems are the evolution of the IR dialogue sys-

tems.

1314

15https://www.rivescript.com
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We recognize two main groups of RS dialogue systems: single-turn (Figure 8.14) and

multi-turn (the message in Figure 8.14 is replaced by context, i.e. message + history).

The single-turn RS are also known as Question-Answering (QA), answer selection, or

matching short text systems. The multi-turn systems can be also called multi-view RS.

Two main datasets are typically used for the RS-based dialogue systems: The Ubuntu

Dialogue Corpus [221] and Douban Conversation Corpus [222] (§7.2.3).

Retrieval
Feature 

Generation
Ranking

online

offline

Index of 
message- 
response 

pairs

Matching Models Learning to Rank

Message
Ranked
Responses

Retrieved message-
response pairs

Message-response 
pairs with features

Deep Learning
Message-response 

matching

Gradient boosted 
tree

Figure 8.14: Single-turn Response Selection Dialogue System

Wu [16] then, under the following two main groups, identified several framework ap-

proaches and methods used within each group as matching models.

Single-Turn provides an immediate response to the input message without keeping the

context and can be solved as following frameworks:

• With message-response sentence embedding [328]–[332]. The message and re-

sponse are turned into vector representations by a sentence embedding layer

(for instance by using: CNN, BiLSTM with attention, or GRU with attention)

and the similarity of both vectors is calculated by matching layer (Multilayer

Perceptron (MLP), Eclidean distance, Cosine distance).

• With message-response word interaction [328], [333]–[336]. The message and

response words are represented as vectors turned into interaction matrices by

an interaction layer (for example cosine/dot product, linear or non-linear trans-

formation), transformed into an interaction vector by a transformation layer

(CNN, RNN), and the matching score is calculated by a matching layer (MLP,

softmax).

Multi-Turn holds the context to provide a multi-turn response to the single input mes-

sage with the previous history and can be solved with following frameworks:

• With context-response sentence embedding [221], [337]–[339]. The message and

context are turned into vectors representation by a context embedding layer

(LSTM, GRU) and sentence embedding layer (word embedding (§8.2.2),

BiLSTM, CNN, GRU), and the matching score is calculated by a matching

layer (Bilinear, MLP).

• With context-response sequential matching, specifically Sequential Matching

Network (SMN) [222] and Sequential Attention Network (SAN) [340], [341].
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The message and context are turned into vectors representation and the utterance-

response matching is provided by the matching layer (CNN, attention (§8.2.3))

followed by a matching accumulation layer (GRU) and end up with a pre-

diction layer which provides the matching score.

8.6 Generative Methods

The generative methods for dialogue systems are based on the generative models (§6.4.2).

The generative methods are purely data-driven, respectively corpora based (§7.2) models.

The dialogue systems are usually following the existing solutions from other dialogue

tasks. The problem of dialogue research is not standing alone in the vacuum. So, we

can see the influence of fields like Statistical Machine Translation (SMT), Neural Machine

Translation (NMT), and others.

The generative methods can be divided into two main groups, open domain (§6.5.1)

chit-chat dialogue systems, and closed domain (§6.5.2) task-oriented dialogue system.

The main directions which the research currently focus on are Deep Learning (DL)

dialogue systems (§8.6.1), Reinforcement Learning (RL) dialogue systems (§8.6.2), Trans-

fer Learning (TL) dialogue systems (§8.6.3), Active Learning (AL) dialogue systems

(§8.6.4), Adversarial Learning (AL) dialogue systems (§8.6.5), and hybrid dialogue sys-

tems (§8.6.6).

8.6.1 Deep Learning (DL) Dialogue Systems

There are several reasons to use DL in combination with corpora for a dialogue system.

The advantage when compared to retrieval-based dialogue systems is direct data-driven

development.

Chit-chat The first non-goal-driven systems have taken the inspiration from the use

of ANN (§8.1) in Natural Language Modeling (NLM) (§8.2), Statistical Machine

Translation (SMT) and Neural Machine Translation (NMT) tasks.

The DL E2E dialogue systems based on ANN have shown promising results on

various dialogue tasks. Sutskever presented his Sequence to Sequence [280] language

model (§8.8) later improved by attention mechanism [281]. The RNN Seq2Seq

encoder-decoder approach approach was used in phrase representation [256] and

neural conversational model [76]. It was followed by attention ANN conversational

model [342].

Use of RNN for generating responses was proposed by Shang [343] followed by

Sordoni [344] who extended the framework and made from request-response pairs

the context sensitive responses generation (triples of three consecutive utterances).

On top of that Sordoni [345] built a novel Hierarchical Recurrent Encoder-Decoder

(HRED) architecture that allows the model to be sensitive to the order of requests in

the context. This was extended further by Serban [346] for web request suggestion

given by the request already submitted by the user.
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During several years research is shattered amongst various dialogue related meth-

ods like Reinforcement Learning (RL) (§8.6.2), Transfer Learning (TL) (§8.6.3),

Active Learning (AL) (§8.6.4) and Adversarial Learning (AL) (§8.6.5). Starting

with the publication of Bidirectional Encoder Representations from Transformers

(BERT) [294] in November 2018 the focus has been also going towards Pre-trained

Language Models (PLMs) (§8.2.4).

The recent advances of large-scale PLMs transformer-based architectures are also

useful for dialogue systems. DialoGPT [347] is a dialogue generative pre-trained

transformer (GPT-2 model) on 147M conversation-like exchanges extracted from

Reddit. It extends the Hugging Face PyTorch transformer [310] to attain a per-

formance close to human both in terms of automatic and human evaluation in

single-turn dialogue settings.

The latest contribution to the E2E dialogue systems is the multi-turn open-domain

chatbot Meena [12]. Meena scores high on Sensibleness and Specificity Average

(SSA) (§10.3.2), 72% base, 79% full version. It suggests that a SSA human-level of

86% is potentially achievable having better optimized perplexity (§10.3.2).

Task-oriented One of the first systematic approach to standardize baseline to deal with

the task-oriented dialogue systems can be found in the Dialog System Technology

Challenge (DSTC) (§2.4.3) established in 2013. The first three years were focused

on developing a single component for Dialogue State Tracker (DST) on task-oriented

human-machine conversations: evaluation metrics [54], user goal changes [55] and

domain adaption [56]. The following two years, DSTC4 [57] and DSTC5 [58] in-

troduced human-human conversations and cross-lingual adaption to offer multiple

tasks not only for DST but also for other components in dialogue systems.

From the sixth DSTC [59] multiple main tracks were organized in parallel to address

a wider variety of dialogue related problems like End-to-End (E2E) task-oriented di-

alogue [60], conversational modeling [61], and detection of dialogue break down [62].

The last two years of Dialog System Technology Challenge (DSTC) returned to the

development of E2E dialogue systems, the 7th DSTC [63] with the following three

tracks: noetic response selection [64], grounded response generation [65], and audio-

visual scene aware dialog [66]. Moreover, the most recent DSTC8 [67] focused on

topics like E2E multi-domain dialogue system, fast adaption, predicting responses,

and again audiovisual scene aware dialog.

Next to DSTC, there are plenty of other attempts to deal with task-oriented dialogue

systems.

Wen [226] comes with E2E trainable task-oriented dialogue system along with a new

way of collecting dialogue data based on a novel pipe-lined Wizard of Oz (WOz)

(§7.4.2) framework and utilization of Artificial Neural Network (ANN).

Bordes [348] follows with a task-oriented dialogue system built on top of the memory

networks [349]. To confirm the results, he compared his system to a hand-crafted

slot-filling baseline on data from the second DSTC.
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The task-completion 16 neural dialogue system [74], [350] is another way to solve

an E2E task-oriented system to overcome issue that system cannot adapt easily to

multiple topics, because each module is trained individually. It utilizes the pipeline

based architecture (§6.3.1) implemented by ANN in combination with a backend

database. It evolves an idea of knowledge based bot [351]17.

One solution which fulfills the requirements of DSTC 6 challenge is an E2E task-

oriented dialogue system [352] which employs the memory network MemN2N [353]

architecture.

As the evolution of the previous memory network usage E2E task-oriented dialog

systems [354] with MEM2Seq18 are introduced, which are memory to sequence com-

posed models of two components: the MemN2N encoder, and the memory decoder.

One of the latest contributions [355] to the memory network E2E task-oriented dia-

logue models is the application of bidirectional LSTM. It is located at the beginning

of the model to better reflect temporal information and achieve state-of-the-art per-

formance among the memory networks. It is comparable to Hybrid Code Network

(HCN) (§8.6.6) and hierarchical LSTM models.

Another direction in task-oriented dialogue systems is represented by existence of

humans in the loop for dialogue learning. The human user assists in completing tasks

by conducting multi-turn conversations. The solutions usually use hierarchical Long

/ Short Term Memory (LSTM) to model a dialogue with multiple turns [356]–[358]

in combination with a knowledge base to keep the dialogue history.

As both chit-chat and task-oriented dialogue systems evolve, both categories affect

each other. So, the context-aware task-oriented dialogue system [359], which applies

re-ranking to the candidate response given by matching function (§8.5.3) is the

outcome of such synergy.

One of the latest directions in task-oriented dialogue systems in combination with

the growing popularity of Pre-trained Language Models (PLMs) (§8.2.4) is that

researchers and developers tend to use them not only for chit-chat but also for task-

oriented dialogue systems [360]. Because it has been shown [361], [362] that the

Generative Pre-Training (GPT) model (§8.2.3), once fine-tuned, can be useful in

the domain of personal conversations (§8.8.1).

8.6.2 Reinforcement Learning (RL) Dialogue Systems

RL belongs to basic machine learning paradigms alongside supervised and unsupervised

learning. It is a problem faced by a (software) agent that must learn behavior through

trial-and-error interactions with a dynamic environment [363].

Chit-chat One of the common problems of DL (§8.6.1) chit-chat solutions is that they

16TC-Bot implementation §A.2
17KB-InfoBot implementation §A.2
18MEM2Seq implementation §A.2
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suffer from being repetitive and producing generic responses [364]. This is the moti-

vation why to use Reinforcement Learning (RL) for open-domain dialogue systems.

The RL model [365] simulates dialogues between two virtual agents using policy

gradient methods, and it was compared to two agents using a 4-layer LSTM encoder-

decoder as the baseline. Both approaches were trained on the OpenSubtitles [223],

[224] dataset (§7.2.3). The comparison shows that the proposed algorithm generates

more interactive responses and manages to foster a more sustained conversation in

a dialogue simulation.

Another chatbot solution [366] is built on top of the latent action-framework that

treats action spaces of a E2E dialogue agent as latent variables and develops unsu-

pervised methods in order to induce its own action space from data.

The chit-chat dialogue system [367] solved with action spaces (representation of a

type of meaning, for instance, greeting, question around a topic, statements around

a topic, etc.) derived from unsupervised clustering is a recent contribution to the

RL chatbots. It uses the reward function which is based on human-human dialogues

and noisy dialogues for learning to rate good vs. bad dialogues.

The ensemble (§8.8.2) of particular sources or functionality of the dialogue system

is a common approach for complex dialogue systems (§8.8.2). Inspired by the pre-

vious chit-chat solution [367], an ensemble version of the chatbot [368] with a novel

approach for chatbot training by using value-based RL and reward function was

prepared.

To improve results in diversity and provide interesting and non-redundant responses

chit-chat solution [369] was formulated as the dialog attribute prediction RL prob-

lem. It uses policy gradients methods to optimize utterance generation using long-

term rewards.

Task-oriented RL is a popular approach for learning an optimal Dialogue Management

(DM) in the task-oriented dialogue systems. The dialogue flow requires significant

hand-craft effort, instead, the Dialogue Management (DM) module can be cast as a

continuous Markov Decision Process (MDP) (Partially Observable Markov Decision

Process (POMDP)) or different method and trained through RL [370].

A Simple deep Reinforcement Learning (RL) dialogue system (SimpleDS) [371] uses

raw, noisy text without any engineered features to represent the dialogue state. Such

dialogue system does not require a NLU component which is bypassed by learning

Dialogue Policy (DP) directly from (simulated) speech recognition outputs. The RL

agent receives the state and reward, and updates its policy during learning.

The Reinforcement Learning can also serve for jointly learning policies for both

NLU and Dialogue Management (DM) [372] for the End-to-End (E2E) task-oriented

chatbot.

RNN can be used for E2E learning of task-oriented dialog systems [185]. The main

component is a LSTM optimized by RL, which maps from a raw dialogue history

directly to a distribution over Dialogue Acts (DAs). LSTM automatically infers a
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representation of dialogue history, which saves the work on manual feature engi-

neering of dialogue state.

Another E2E approach is the multi-turn dialogue agent with Knowledge Base (KB) [351]

showing that KB lookup helps the reinforcement learner discover a suitable Dialogue

Policy (DP).

An ensemble dialogue system (§8.8.2) MILABOT [373] implemented as a part of

Alexa Prize Challenge (APC) (§2.4.2) uses RL selection policy for one of 22 response

modules.

The popularity of neural network-based task-oriented dialogue systems, which are

end-to-end optimized with deep RL led to a solution [374] where dialogue-level

LSTM is combined with the knowledge base for request information retrieval and

Multilayer Perceptron based policy network overall Dialogue Acts (DAs).

The recent work represents an AgentGraph [375] universal framework with struc-

tured deep RL which tries to solve two main challenges for RL models.The first

challenge is the efficiency of training RL based models. The second one is related

to the RL policies transfer between different domains. The framework is based on

a Graph Neural Network (GNN) [376].

8.6.3 Transfer Learning (TL) Dialogue Systems

The motivation for use of TL in the field of machine learning goes in the mid of the

1990s to the NIPS-95 workshop on “Learning to Learn”19. It is a technique where the

initial model was trained on the large dataset after random initialization of the parameters

(weights) to acquire general concepts. Then those general concepts are adapted through

the TL technique to another model where an ANN (§8.1) is initialized with pre-trained

weights from the intial model. Finally the the model created by Transfer Learning (TL) is

fine-tuned on a specific task with a small dataset to allow the Natural Language Modeling

(NLM) (§8.2) converge faster and with relatively lower requirements of fine-tuning data

[309], [377].

The distilling knowledge (§8.3.1) is sometimes misleadingly considered as Transfer

Learning, but it is not. Even though it looks like the same technique, it is just similar; it

works based on the loss comparison between teacher and student models.

The TL based models use the Pre-trained Language Model (PLM) (§8.2.4) to achieve

better results in the various Natural Language Processing (NLP) applications.

The broadly known Natural Language Modelings (NLMs) use Transfer Learning. For

instance, the modern word embedding (§8.2.2) NLMs includes CoVe, ULMFiT, and ELMo

and the sentence embedding (§8.2.3). Lately also the Pre-trained Language Models

(§8.2.4) are used for TL. It includes all kind of transformer based language models, for

instance GPT based conversational agent [361] with TL approach, or TL based BERT

fine tuned dialogue system [378].

The latest attempts in TL are based on the Zero-Shot Learning (ZSL) [379] technique

usually used for image classification. The image classification ZSL aims to recognize

19http://socrates.acadiau.ca/courses/comp/dsilver/NIPS95
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objects whose instances may not have been seen during training, for instance, attribute-

based. The technique was successfully (outperforming other techniques) used in research

paper with cross-lingual task-oriented dialog system [380] where no annotated data in the

target language exists. Another cross-lingual task-oriented dialogue system combines ZSL

with transferable latent variables [381] to achieve better performance. The above men-

tioned BERT fine-tuned dialogue system [378] also uses the schema-guided ZSL Dialogue

State Tracker.

8.6.4 Active Learning (AL) Dialogue Systems

The general concept goes back to the beginning of 1990s. It is based on predictive mod-

eling [246] and active learning [382] which has two other related concepts: never-ending

language learning [383] and lifelong learning [384].

The main idea of AL dialogue systems comes from the fact that purely trained and

deployed chatbots leave a vast store of potential training data unused [385]. With this

idea in mind, they trained a dialogue system based on the PersonaChat dataset (§7.2.3)

having over 131k of training records. The following schema (Figure 8.15) describes the

approach.

Figure 8.15: Self-feeding chatbot scheme

1. The chatbot is first trained on the Human-Human (HH) Dialogue (x, y)HH and

Satisfaction (x, s) data.

2. When the predicted satisfaction ŝ is above the threshold t, new Human-Bot (HB)

Dialogue (x, y)HB record data is extracted and the conversation continues with

y response. Otherwise, the chatbot asks about feedback via the question q and

extracts Feedback record (x, f) data.

3. The chatbot is periodically retrained on all the data.

The self-feeding chatbot is not only existing approach, there are other works using

deep active learning [386] or self-supervised feature learning [387], which more or less

follows the idea of online human-in-the-loop active learning.
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Ethics of Active Learning

With active learning dialogue systems, there is always a question of ethics because they

are purely dependent on user responses from which the records for training based on the

satisfaction and feedback from the user are extracted.

It can lead to the potential abuse of active training chains in favor of conversational

bias as it happened with Microsoft’s chatbot Tay (§6.14.3).

The approach to control the unwanted direction of conversation can follow various

Dialogue Policy (DP) implementations. DP controls harmful behavior and exclude bad

records from the retraining process.

8.6.5 Adversarial Learning (AL) Dialogue Systems

AL is a technique employed in the field of Machine Learning (ML) which attempts to fool

models through a malicious input.

It specifically aims at filling in the gap between potential train/test distribution mis-

match and revealing how models will perform under real-world inputs containing natural

or malicious noise [388].

In the dialogue systems the AL framework is used in recent research of multi-turn

Response Selection (RS) (§8.5.3) dialogue systems [389], [390] that are enhanced with

persona-based (§8.8.1) dialogue model [391].

The Adversarial Learning is also applicable to various pipeline methods (§8.7) based

dialogue system. It specifically improves Natural Language Understanding (NLU) [392]

and Natural Language Generation (NLG) [393], [394] pipeline components.

The research paper [388] discusses a comprehensive study about adversarial over-

sensitivity (request) and over-stability (response) strategies related to task-oriented di-

alogue models. The paper tests those strategies with three state of the art dialogue

models: Variational Hierarchical Recurrent Encoder-Decoder (VHRED) [395], Reinforce-

ment Learning (RL) [365], and Dynamic Knowledge Graph Network [396]) using AL in

order to assess dialogue system.

Diversity of dialogue system responses is a recurrent problem of Deep Learning (DL)

dialogue models [364]. AL can serve as an improvement method to generate informative

and diverse conversation [397]. And it can be used next to the Reinforcement Learning

(RL) (§8.6.2) and dialogue systems ensemble (§8.8.2).

8.6.6 Hybrid Dialogue Systems

The hybrid dialogue systems are based on the Hybrid Code Network (HCN), which com-

bines a RNN with domain-specific knowledge encoded as software and system action

templates.

HCN is a reaction on the fact that E2E RNN dialogue systems are data-intensive and

require thousands of dialogues to learn simple behaviors. HCN can be optimized with Su-

pervized Learning (SL), Reinforcement Learning (RL), or a mixture of both [Williams2017HybridLearningb].
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Figure 8.16: The Hybrid Code Network (HCN) model overview

At a high level, the four components of HCN (Figure 8.16) are:

• Conventional entity extraction module

• Recurrent Neural Network (RNN)

• Domain-specific software

• Domain-specific action templates

Both the RNN and the developer code (domain-specific software) maintain state.

The extension [398] (Figure 8.17) to the original work [Williams2017HybridLearningb]

(Figure 8.16) provides trainable parts to the entity tracker and the entity output module

which were designed with developer codes (originally hand-coded) in the original HCN.
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Figure 8.17: Overall structure of extended HCN

8.7 Pipeline Methods

The pipeline methods (§6.3.1) of the dialogue system consist of several pipeline com-

ponents include Natural Language Understanding (NLU) (§6.8), Dialogue Management

(DM) (§6.9) with Dialogue State Tracker (DST) and Dialogue Policy (DP), and Natural

Language Generation (NLG) (§6.10) (Figure 8.18).
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Figure 8.18: Dialogue System Pipeline

Plenty of different methods evolved during the years for each pipeline component;

these are described in the next sections below.

NLU (§8.7.1) and NLG (§8.7.3) components use in some cases delexicalization [399]–

[401] process (the values of attributes are replaced with placeholders), for example as it

is shown in Table 8.3.

Utterance find flights to new york tomorrow

Slot filling O O O B-Dest I-Dest B-Date

Delexicalization find flights to B-Dest I-Dest B-Date

Table 8.3: Slot filling and delexicalization example for

finding the flight corresponding to Table 6.1

It provides better results when compared to models without delexicalization because of

less sparse training data. Both pipeline parts (NLU and NLG) uses also opposite process

of lexicalization [400] (or relexicalization [401]). In such process the placeholders are

replaced back by the current values of attributes in the automatically generated (delexi-

calized) sentences.

DM (§8.7.2) is usually built as an End-to-End (E2E) component or consists of Dialogue

State Tracker (DST) and Dialogue Policy (DP) parts. In the recent works it is solved by

Reinforcement Learning (RL) (§8.6.2), especially the Dialogue Policy (DP) part.

8.7.1 Natural Language Understanding (NLU)

NLU (§6.8) aims to extract semantics from user utterances (§6.8.1). Specifically, it detects

intent (§6.8.2) and does the slot filling (§6.8.4) [402].

According to the task-oriented spoken language understanding review paper [19] the

classification (Figure 8.19) of NLU approaches is following.

The traditional NLU pipeline approach is to manage the two above mentioned tasks

separately. However, recent approaches tend to do it as a joint task.

Independent Slot filling Slot filling is considered as the sequence labeling task. Early

methods which dealt with slot filling were rule-based or dictionary-based. Later

statistical methods were taken into account. The popular approaches which do the

joint detection of intent and slot filling are for instance Support vector Machine

(SVM) [403] and Conditional Random Fields (CRF) [404].

With deep learning methods based on Artificial Neural Network (§8.1.2) the ap-

proaches for slot filling include, among others, Convolutional Neural Network (CNN) [405],

deep Long / Short Term Memory (LSTM) [406], Recurrent Neural Network (RNN)

extended with external memory [407], encoder-labeler for LSTM [408], and joint

pointer and attention [409].

Independent Intent detection Intent detection is usually solved as a semantic classi-

fication problem to predict the intent label.
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Figure 8.19: Review of NLU approaches classification

Deep Learning (DL) methods for intent classification can be done by various ANN

(§8.1.2) including CNN [410], [411], and LSTM [412].

It can be improved with attention mechanism (§8.2.3) by including attention-based

CNN [413], hierarchical attention networks [414]. It can be also part of various

multi-task solutions like multi-task Adversarial Learning (AL) [392]. Another im-

provement of CNN is intent detection via Capsule Neural Network (CapsNN) [415].

Joint Slot filling and Intent detection The pipeline of independent intent detection

and slot filling does not always bring the best performance due to error propagation,

so there is a tendency to develop a joint model.

Joint modeling approaches include CNN with Triangular CRF ([416]), RecNN [417],

joint RNN-LSTM [418], attention-based bidirectional RNN [162], slot-gated attention-

based model [419], and Capsule Neural Network (CapsNN) [420].

Recently, Pre-trained Language Models (PLMs) (§8.2.4) play an important role also

in NLU tasks, for instance BERT [421] and its multi-lingual usage [422].

8.7.2 Dialogue Management (DM)

According to Henderson et al. [20] and Williams et al. [21] the Dialogue Management

(DM) consists (Figure 8.20) of Dialogue State Tracker (DST) and Dialogue Policy (DP)

(also called Policy Learning).
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Figure 8.20: Review of DST approaches classification extended with DP approaches clas-
sification from other state of the art papers (§2.3)

Dialogue State Tracker (DST) Tracking dialogue states estimates the users goal at

every turn of the dialogue.

The first dialogue systems used hand-crafted rules for DST. With hand-written

rules DST can be solved by various approaches stored in a dialogue control ta-

ble [167], tracked via a rich data structure [168], or computed as scores for all

dialogue states [423], [424].

Modern methods used to deal with DST are based on Generative and Discrimi-

native models.

The generative approach can be modeled as a Bayesian Network. The early stages

of DST enumerated all possible dialogue states and then used a Bayesian Network

to score those states [425]–[427]; it leads to the enormous number of states. There

are two approximation processes: a beam (only most likely members of states) [187],

[428]–[430] or further factorization [170], [431], [432].

The Bayesian Network accounts for different factorizations of the hidden state. For

instance, it includes the variants of history accumulation [431] and separate random

variables for an unobserved dialogue action and underlying intention [428], [429].

Model parameters come either from labeled dialogues or are inferred from unlabeled

dialogues [169], [170].

The pioneers of discriminative DST are Bohus and Rudnicky [171] with hand-written
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rules which enumerate a set of k dialogue states. Other variations of such approach

include logistic regression [172], ranking algorithm [173] and deep learning [174].

When the dialogue is modeled as a sequential process other methods like the dis-

criminative Markov Model [175], [433], CRF [176] or RNN [177] can be applied.

With a small amount of data for training the target domain in DST, the multi-

domain learning [434] or unsupervised approach [435], [436] can be used.

Dialogue Policy (DP) It is learning to generate the next available Dialogue Act (DA)

based on the state representation from DST. The initial base data of DP can be

hand-crafted [437] and later used for Supervized Learning (SL) or Reinforcement

Learning (RL) to optimize DP learning [438].

The policy can be implemented as Supervized Learning (SL) [183] by use of ANN.

More specifically the following approaches can be used: Feed Forward Neural Net-

work (FFNN) [439], the Reinforcement Learning (RL) [186] optimized with Q-

learning [440], another RL [441] optimized with Natural Gradient [442], or Rein-

forcement Learning (RL) implementation [Williams2017HybridLearningb] uses

DP optimized with Simple Statistical Gradient [443].

Another possible approach is via Partially Observable Markov Decision Process

(POMDP) variation called Hidden Information State (HIS) [187], or POMDP with

Gaussian processes modeled DP [188]. The policy modeled with Gaussian processes

can be also in combination with RL [444].

8.7.3 Natural Language Generation (NLG)

The NLG goal is to express the components (attributes and values) of a meaning repre-

sentation as a fluent natural language text.

Typical tasks of NLG are text summarization, creative text generation, and dialogue

generation.

According to the comprehensive overview evaluating E2E NLG [25] by Dusek et al.

we can see several NLG approaches used in past years (Figure 8.21) with new trends

presented for instance at the NeuralGen 2019 workshop 20 with the topic Methods for

Optimizing and Evaluating Neural Language Generation.

20https://neuralgen.io
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Early approaches of NLG (also used today because of their simplicity) are rule-based

(structural types [445]). The rules are solved by different approaches, it can be phrase-

based generation with active learning [446], structure-based generation [447], combination

of template-based and grammar-based [448] generation.

Next to the rule-based and hand-crafted NLG methods the class-based [449] and plan-

based [450], [451] methods to generate the text were also proposed.

Later when the neural-based approaches (contextual types [228]) of NLG have come

into focus the various ANN with Seq2Seq (§8.2.3) approach have been used for imple-

mentation. More specifically, solutions with LSTM [452]–[454], Bidirectional LSTM or

CNN2LSTM [455], and GRU [401], [456] have been used.

The latest approaches in NLG field use Adversarial Learning (AL) [393] including

dual AL, which utilizes the duality between request and response generation to avoid safe

responses [394]. Also Reinforcement Learning (RL) [365], [457] and large-scale Transfer

Learning (TL) [362] are used for NLG. One of the latest contributions to NLG research is

TL based 17 billion parameters big Pre-trained Language Model (PLM) named Turing-

NLG [458] from Microsoft.

8.8 Various Improvements of Dialogue Systems

Achieve an attractive, long, and comprehensive conversation on multiple topics is not a

simple task. Researchers and developers use different approaches to do it.

One of the approaches which are rising within recent years is a personalized dialogue
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(§8.8.1). It includes, in the last two or three years, also empathy and emotions.

The dialogue system ensemble (§8.8.2) is the way to deal with a requirement to have

a long and comprehensive conversation. It allows reacting with different responses (gen-

erated by ensemble dialogue models) on multiple topics. It is usually implemented either

as a pipeline architecture (§6.3.1) with Dialogue Management (DM) which switches the

topic or as an End-to-End (E2E) architecture (§6.3.2) with combination of topic specific

training data.

8.8.1 Personalized Dialogue Systems

To provide more specific conversation, dialogue systems are becoming more personal. It

has happened in several ways.

The first one is that they are personalized. It means they collect user’s individual

data and use it (in the right way) in further conversation. Secondly, dialogue systems

have given themselves the personality with a few attributes (for instance, 22 year old

man, who draws the comics and works in the flower shop); this serves for grounding the

conversation. The last and most recent activity is to combine the dialogue with emotions

to provide more empathetic conversation and thus improve user experience.

Nevertheless, the borders between the personalized dialogue system that adapts itself

to user behavior, dialogue system having its own personality by given or learned personal

attributes, and empathetic ones are in many research papers thin or washed away.

Personalized It is difficult to train a personalized task-oriented dialogue system because

the data collected from each individual is often insufficient. Personalized dialogue

systems trained on a small dataset can overfit and it is difficult to adapt them to

different user needs [459].

Similarly, to the overall dialogue systems classification (§8.4) also the personalized

dialogue systems could be categorized either into rule-based [460], [461] dialogue

systems which utilize the memory or knowledge base for storing user’s personal

attributes and learning-based [459], [462], [463] dialogue systems which use Transfer

Learning (TL) (§8.6.3) and Reinforcement Learning (RL) (§8.6.2).

Recent research focuses on detail techniques related to diversified personal traits [220];

e.g. large-scale PersonalDialog (§7.2.2) dataset was collected. Two techniques,

persona-aware attention and persona-aware bias, were invented to capture

and address trait-related information.

Other recent research papers utilized for instance Reinforcement Learning (RL)

for personalized Dialogue Management (DM) [464] and meta-learning [465] like ex-

tended Model-Agnostic Meta-Learning (MAML) [466] to personalize dialogue learn-

ing without using any personal descriptions.

Persona-based When we are talking about persona-based dialogue systems, it is not

personalized for the user, but the dialogue system itself has its own personality. It

reflects the reality of human conversation; we each have a personality with various

attributes. Why not dialogue system?
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The chatbot dialogue personalizing approach is not new; it has been applied for

many years. The ELIZA [7] chatbot represents a simulation of a Rogerian psy-

chotherapist. The next chatbot, PARRY [8], simulates a person with paranoid

schizophrenia. The third example is the Eugene Goostman21 chatbot, which pre-

tends to be a 13-year-old boy from Odesa, Ukraine, who has a guinea pig pet and

father who is a gynecologist.

Most progress during recent years in personalising a dialogue system has been done

with establishing persona-chat [70] dataset (§7.2.3) during the second year of ConvAI

competition (§2.4.4) at NIPS 2018.

During last two years, for instance, Adversarial Learning (AL) [390], [391] in com-

bination with persona-based Seq2Seq (§8.2.3) dialogue model has been used. Pre-

trained Language Models (PLMs) (§8.2.4) are also popular and used for personalized

dialogue modelling [467].

The latest research related to persona-based dialogue systems is going deep into the

topic and deals with the issue that responses are not only natural, but also consistent

with the defined persona [468], [469], i.e., responses correlate with persona definition

and they are not contradictory.

Empathy Topic personalization goes even further and the latest research focuses on em-

pathy in a dialogue. It starts with designing chatbots [470] using new Empathetic-

Dialogues dataset22. Emphatic dialogue systems [471] utilize emotional embeddings

to generate emotional responses and even modeling empathy in a dialogue [472]

to understand user emotions and reply to them appropriately. It ends up with

HappyBot [473], the dialogue system that generates empathetic dialogue responses.

8.8.2 Ensemble Dialogue Systems

To keep the user entertain and focused on the conversation with the chit-chat dialogue

systems within the open domain (§6.5.1) is practically impossible. Dealing with any

conversation topic for an indefinite time cannot be done without planning or limiting

dialogue in some particular way.

Various limits are given to the user as the fact that needs to be accepted. From the

topic perspective, it is limited, for instance, to specific dialogue topics. What also helps is

dialogue system personalizing (§8.8.1) with a specific person-like attributes (gender, age,

place of living, occupation, hobbies, and interests). Another strict rule is to limit the

time which cannot be overreached or which is a criterion for chatbot success (for instance,

adjustment of Turing test (§10.2.1) as Turing time (§10.2.1)).

On the other hand, generative dialogue systems tend to generate highly generic re-

sponses such as I don’t know or I am OK regardless of the input [364]. So, next to

the Reinforcement Learning (RL) and Adversarial Learning (AL) the ensemble learning

is another approach to solve such issue.

21http://eugenegoostman.elasticbeanstalk.com
22https://github.com/facebookresearch/EmpatheticDialogues
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In 2017 Amazon established Alexa Prize Challenge (APC) (§2.4.2) with 20 minutes

conversation length criteria as the goal for success in contest. Analysis of all solutions

submitted to the competition reveals the fact that most of the solutions are ensemble-

based, i.e., they combine various techniques to satisfy diverse requirements like Question-

Answering (QA), news, weather information, personal questions, and others during the

conversation.

APC solutions introduce the following ensemble techniques, for instance: The MI-

LABOT chatbot works with 22 response modules [41] managed with the Dialogue Man-

agement which uses a reinforcement learning-based selection policy. The first version of

Alquist [32] combines top-level and topic-level dialogue managers. The top-level makes

a decision which module should be used, the topic-level switches between topics. The

second version [46] uses an ontology-based topic structure called topic nodes, which con-

sist of several sub-dialogues that are triggered based on the user intent or existing topic

hierarchy.

Most, if not all, of the APC related solutions use the dialogue management, which

serves as the correct topic selector to chose appropriate module, which provides the re-

sponse to the user. The fully generative approach has also been investigated as the

combination of task-oriented spoken dialog systems with chatting capability [474]. One of

the latest approaches to the generative model-based dialogue ensemble is Attention over

Parameters (AoP) [475] approach, which utilizes the Transformer architecture (§8.2.3) to

model multiple conversational skills in different dialogues domains (task-oriented hotel

booking, train reservation, chit-chat, etc.).

8.9 Pathologies of Generative Methods

Every system produces a specific type of errors related to the field of operation. Dialogue

systems are not an exception.

As we have already discussed in Introduction (§6) a dialogue system takes as the

request a sentence and returns a response sentence. Retrieval-based models (§6.4.1) are

implemented as deterministic. Then the measure of error is given by the translation of

the input sentence to output sentences. On the other hand, generative models (§6.4.2)

are implemented with uncertainty given by the model type and training data embedding.

It leads to potential dialogue system errors.

More specifically, we see these errors connected with a specific task, for instance,

Question-Answering (QA) or various machine translations tasks like Neural Machine

Translation (NMT) [476] or Statistical Machine Translation (SMT), image captioning

[477], text or sequence generation tasks that the dialogue system evolves from.

Errors generated during performing these or similar tasks can be the following ones:

Imaginary or made up words Not only humans have imagination to create new words,

also machines create new words (Code 8.3). It happens especially when the dialogue

or translation system work with letters or syllables, not with words. Then it is easy

to combine letters or syllables and create words which do not exist.

Expected Output: Carboxysomes are found in [lithoautotrophically] and
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mixotrophically grown cells. Carboxysomes aid carbon [fixation].

Output: Carboxysomes, which aid carbon [fixotrophically] and

mixotrophically grown cells.

Code 8.3: Imaginary or made up words

Repeated words or phrases It happens whenever the dialogue or translation system

does not correctly estimate the next word in the sentence and instead repeats the

word (Code 8.4) used recently based on the same or similar preceding word.

Expected Output: I am your employee, to serve on your company.

Output: I am your [company], to serve on your [company].

Code 8.4: Repeated words or phrases

Abrupt ending or premature end-of-sentence The output generation ends with a

fragment of the sentence (Code 8.5) which does not make sense or the sentence

makes sense, but its significant part is missing.

Expected Output: By the way, my favorite football team is Manchester

United, they are brilliant, they have an amazing football players, and

they are awesome.

Output: By the way, my favorite football team [is].

Code 8.5: Abrupt ending or premature end-of-sentence

Hallucination The outcome is wrong and does not have any signs of pathological be-

havior but reminds human hallucination behavior (Code 8.6).

Expected Output: If you are [interested], find me at 8 o’clock near the

cinema entrance.

Output: If you are [play], find me at 8 o’clock near the cinema entrance.

Code 8.6: Hallucination

Coreference issues Referencing a wrong subject or object (Code 8.7) with a pronoun

or directly in the sentence is another issue of generative methods.

Expected Output: She is the daughter of Alistair Crane [who] secretly

built...

Output: She is the daughter of Alistair Crane. [She] secretly built...

Code 8.7: Coreference issues

Misleading rephrasing Rephrasing or paraphrasing (Code 8.8) is a machine translation

problem similar to understanding the meaning and explaining it by other words. It

is not easy for the human being so then it could be a problem for the machine.
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Expected Output: The article proudly notes that the postal service

was [in no way responsible] for the 1996 crash of ...

Output: The article notes postal service [was responsible]

for the 1996 crash of...

Code 8.8: Misleading rephrasing

Lazy sentence splitting Splitting long sentences is sometimes necessary to keep the

text readable, but to split sentences to often (Code 8.9) when they should be rather

kept as one, is another language processing problem.

Expected Output: Homeworld of the Margiotta located in the Sagittarius Arm

Output: Homeworld of the Margiotta. [Located] in the Sagittarius Arm

Code 8.9: Lazy sentence splitting

With the evolution of embedding some of the errors are eliminated. For instance, all

the above examples except the last one (Code 8.9) can appear with usage of Sequence to

Sequence (Seq2Seq) (§8.2.3) embedding. Using Language - Agnostic SEntence Represen-

tations (LASER) [478] multi-lingual embedding the first three (Code 8.3, Code 8.4, Code

8.5) and last two are eliminated with high probability.

8.10 Conclusion! With AI, or without AI?

The previous overview of various dialogue system models gives the general idea of how

complex the dialogue ecosystem is. The paraphrase of classic author question can be

modified in the following way: With AI, or without AI? Furthermore, the answer does

not seem to be straightforward.

The simplest solution ever for dialogue systems influenced by external data is to use

retrieval based methods (§8.5). Easy manipulation of predefined responses to requests

gives us a full control over dialogue influencing. Especially the rule-based (§8.5.1) dialogue

systems can be good a starting point because of their simplicity.

On the other hand, generative methods (§8.6) are promising for the future. It would

be pity not to try to use at least one of these techniques. For instance, human-likeness

based [367] dialogue system or yes/no question experiment [372] are interesting applica-

tions of Reinforcement Learning (§8.6.2).

Another solution of this subgroup is represented by the Active Learning (AL) chatbot

(§8.6.4) and Hybrid Code Networks (HCNs) (§8.6.6).

Next to the purely Deep Learning (DL) solutions there are ensemble dialogue systems

(§8.8.2) represented by solutions under Alexa Prize Challenge (APC) (§2.4.2) or specific

approaches like Attention over Parameters (AoP) [475].

Adversarial Learning (AL) (§8.6.5) dialogue systems, memory networks [479] based

dialogue systems and last but not least personalized dialogue systems (§8.8.1) are equally

interesting and worth further research.
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The best practice would be to build all the above mentioned dialogue system examples

first as retrieval method (§8.5) based dialogue systems. Later, with more effort they can

be turned into generative methods (§8.6) based dialogue systems, which offer the potential

for further research and experiments.



Chapter 9

Dialogue System Influencing

The basic idea of dialogue system influencing presented in the Introduction (Figure 1.1)

can be extended (Figure 9.1) to the idea of particular dialogue system influencing tech-

nique (§9.3).

Influence

Device

Request Text

ResponseText

Influencing Data

Data Fusion

Dialogue System

Quantitative 
Measure

Qualitative 
Measure

Pipeline (NLU + DM + NLG)

End-to-End

or

Figure 9.1: Idea of dialogue system influencing technique

The dialogue system influence can be done by some influencing inputs (§9.1). Those

might be represented by various data. Based on the way the influencing data affects the

dialogue system we can talk about influencing approaches (§9.2) in foreground (§9.2.1) or

on background (§9.2.2).

Next to the influencing approaches influencing techniques can be discussed (§9.3); they

correspond to the dialogue system architecture (§6.3) and its horizontal and vertical divi-

sion. A particular influencing technique either affects a part of the pipeline architecture

(§6.3.1) or the whole End-to-End (E2E) architecture (§6.3.2) based dialogue system.

When we know what influencing approaches (§9.2) exist and which techniques (§9.3)

can be applied to influence the dialogue system we can introduce intervention methods

(§9.4) which are triggered right after the dialogue system is dealing with influence.

Last but not least, whenever there are peaks in influencing data smoothing (§9.5)

might be applied to reduce unwanted change of the conversational topic (§9.6).
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9.1 Influencing Inputs

There are several ways the conversation within a dialogue system is influenced (see Figure

9.2). The most basic one is the reaction to conversation. The topics for conversation is

obtained from the common local knowledge base and extended with an additional topic

(for instance, personal information (§8.8.1)) to make the conversation more fluent. The

next way is to get information online from the public on-line knowledge base and inform

the user, for instance, about the weather, traffic or answer the factual questions. However,

the influencing information could be also gathered from outside sensors. Those can be

wearables or other smart devices storing data in the private static physiological base.

Such base provides individual measured data and leads to the optimization of human

well-being.

Request
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Chatbot
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Base
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Intent Entity
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Decision  
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Base
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Data
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Figure 9.2: Dialogue system influencing logic

Influences are presented to the user in the conversation during the candidate response

generation. The real-time physiological base influences the response selection. The already

finalized response from multiple responses keeps the conversation unchanged or leads to

an immediate change in conversation direction.

The difficulty of the dialogue system conversation influenced with external data or

signal also depends on dialogue system complexity (§6.7).

9.2 Influencing Approaches

Going deeper into the issue of influencing we can recognize several existing influencing

approaches used in the various dialogue system implementations, especially within task-

oriented dialogue systems.
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9.2.1 In Foreground

A standard conversational approach for most of the dialogue system is to respond (answer)

to a particular request (question) as this is presented in Figure 9.3. It means that all pro-

vided information may influence the consumer behavior and leads to potential additional

requests or change in conversation.

weather?

hi

cloudy

traffic?

thank you!

bye

bye

Weather
API

Traffic
API

Figure 9.3: Dialogue system standard influencing approach

An extension to the standard conversational approach involves any collected or mea-

sured personal data which are not part of any users’ request (question) and are still a part

of the conversation as the response (answer). This approach is shown in Figure 9.4 either

as raw or summarized (aggregation, graph representation) information. Such additional

information may influence the dialogue system based on the results from measured data

and also influences the consumer behavior and leads potentially to additional requests or

change in conversation.

sensor

loading data

wau

good progress!

thanks

bye

bye

hi

Storage

hi

Figure 9.4: Dialogue system extended influencing approach
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9.2.2 On Background

A less standard conversational approach which is barely seen (Figure 9.5) is to provide

a response, not to the particular request only, but combine the request with additional

data, either implicit (extracted from the conversation) or explicit (provided additionally).

Such a combination of request and data may influence the dialogue system and therefore

consumer behavior.

hi!

hi!

how are you?

you don't feel 
good today

I feel good

are you sure?

It's better

my pleasure

thanks

Storage

sensor

Figure 9.5: Dialogue system real-time influencing approach

9.3 Influencing Techniques

To identify possible influencing of the dialogue system and define the influencing tech-

niques is necessary to consider both (in chapter §6 defined) architectures: the pipeline

(§6.3.1) and End-to-End (E2E) architectures (§6.3.2).

Moreover, the influencing data (§4) and its fusion (§5) acts like the switcher applied

to each pipeline component or the whole E2E where the horizontally divided architecture

offers an option to apply this switch and to choose between the standard or influenced

functionality.

The methods described in chapter §8 relevant to those architectures can be chosen

from all three options, i.e. retrieval (§8.5), generative (§8.6), pipeline (§8.7) or even the

dialogue systems or pipeline architecture modules ensemble (§8.8.2).

With all this in mind the following subsections present use cases of specific influencing

techniques to each and every part of the dialogue system.

9.3.1 Generated Intent

Intent (§6.8.2) detected together with entities extracted (§6.8.3) from utterance (§6.8.1)

serve as the main input for the Dialogue Management (DM) (§6.9) and Natural Language

Generation (NLG) (§6.10) modules. The influencing method impacts Natural Language
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Understanding (NLU) (§6.8) part (Figure 9.6). The same request (Input X) based on the

influencing signal classifies a new intent (Intent 1) or the new intent with an extension

(Intent 2) which reflects the influence and thus as well leads to various responses (Output

A/B).

NLGNLU Dialogue 
Manager

Intent 1

Intent 2

request response

Context

Output A

Output B

Input X

Influencing Data

Figure 9.6: Conditionally Generated Intent

9.3.2 Affecting Slot Filling

This method influences Dialogue Management (DM) (§6.9) which can be driven by slot

filling (Figure 9.7). This technique collects information about various subjects and objects

during the conversation, which allows to react on the user request (Input X) in context

and keep it as long as it is needed or makes sense.

NLGDialogue Manager

Slot 1

Slot 2

NLU

request response

Context

Input X

Slot 1

Output A

Output B

Influencing Data

Figure 9.7: Affecting the Slot Filling

So, there is an opportunity to use slot filling for keeping the information whether the

dialogue system could react differently based on the particular slot (Slot 1 + Slot 2) and

generate corresponding responses (Output A/B). It does not matter if the additional slot

is present only when influence exists or we work with a reserved place-holder which is by

default populated by non-influencing information and changes whenever the influencing

data comes.
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9.3.3 Conditionally Chosen Response

This method influences the Natural Language Generation (NLG) (§6.10) part (Figure 9.8).

It gives various responses (Output A/B) to the same request (Input X) based on the

influencing signal.

When external influencing data is taken into account, the reaction to the request is

chosen from the predefined responses, but we can define several options which are chosen

based on the condition which depends on this influencing external data.

NLGDialogue Manager

Output A

Output B

NLU

request response

Context

Input X

Influencing Data

Figure 9.8: Conditionally Chosen Response

9.3.4 Conditionally Trained Response

Influencing a dialogue system based on a generative model (§8.6) implemented by an

Artificial Neural Network (ANN) means to change its behavior by some additional input

layer fed by influencing data which serves as the influencing feature (Figure 9.9).

E2E

request responseOutput A

Output B

Input X

Influencing feature

Influencing Data

Figure 9.9: Conditionally Trained Response

For training, the End-to-End (E2E) model requires two corpora for translation of the

request to the response. This pair of corpora contains the same requests (questions) with

different responses (answers), and each corpus is related to a different value of influencing

feature (for instance 0 and 1) which switches the conditionally trained response.
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9.4 Intervention Methods

There are plenty of intervention methods which could be used to support or replace am-

bulatory treatment (§2.1). Some of them were already described in psychological and

psycho-social interventions (§2.6.1) or mentioned in cognitive strategies to regulate emo-

tions (§2.6.2).

Within teams that included psychologist or psychiatrist the chatbots like Woebot [6] or

Lark [80] (see §2.4.6) which utilize Cognitive Behavioral Therapy (CBT) were developed.

However, as it is mentioned in state of the art (§2), this therapeutic methods are too

complex.

Emotion Regulation (ER) is an ongoing process of the individual’s emotion patterns

concerning moment-by-moment contextual demands. These demands and the individual’s

resources for regulating related emotions vary [480].

Reappraisal, distraction and labeling are cognitive strategies [92]; together with em-

pathic paraphrasing [481] can be used to regulate emotions.

In the next section, definitions and applications distraction (§9.4.1), reappraisal (§9.4.2),

labeling (§9.4.3) and paraphrasing (§9.4.4) as the processes of Natural Language Process-

ing (NLP) suitable as intervention methods for the dialogue system are briefly described.

9.4.1 Distraction

Distraction, an example of attentional deployment, is an early selection strategy to regu-

late emotions. Distraction constitutes the deployment of attention away from a negative

aspect of a situation, to a neutral or positive aspect [482]

As opposed to reappraisal (§9.4.2), individuals show a relative preference to engage

in distraction when facing stimuli of high negative emotional intensity. This is because

distraction easily filters out high-intensity emotional content, which would otherwise be

relatively difficult to appraise and process [483].

When the distraction is applied through NLP there is a change of the conversation

topic. The whole conversational context remains. The original negative topic is prohibited

by the dialogue system (for instance slot filling (§6.8.4)) and negation techniques, see in

(§6.9); it means the dialogue system does not mention it, just distracts the user whenever

the dialogue comes to it.

The best way is to turn the conversation to the positive topic and evolve it (Code 9.1).

HUMAN: I have a fear of spiders.

BOT: What about ladybugs?

HUMAN: Ladybugs are nice.

BOT: Do you like to count the spots?

Code 9.1: Distraction conversation to deal with arachnophobia

9.4.2 Reappraisal

Reappraisal can be chosen as a late selection strategy from the cognitive change group

of Emotion Regulation (ER). It works with the cognitive change of the meaning, i.e.
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reinterpretation of an emotion eliciting-situation, in order to reduce negative feelings [482].

Successful reappraisal includes an underlying process of emotion recognition (that is part

of the appraisal process). Emotion recognition can be explicit (e.g.,labeling (§9.4.3)) or

implicit (e.g., awareness of the feeling) [92]

The NLP solution of reappraisal represents complex problem for Natural Language

Understanding (NLU) and Natural Language Generation (NLG). The dialogue system

needs to understand the whole topic from a broader perspective and have in the mind a

big picture which is closely related to full understanding.

The conversation may look like the following one (Code 9.2) where the conversation

contains reappraisal of the whole situation.

HUMAN: I have a fear of water.

BOT: What happened?

HUMAN: I was scuba diving and we had a problem with the high tide!

BOT: So , the problem is with scuba diving.

BOT: Was there an instructor?

HUMAN: No, just experienced friend.

BOT: Can you do your next scuba diving with the instructor?

HUMAN: Yes , but , the high tide ...

BOT: Can you and your instructor carefully choose the time for scuba

diving?

BOT: The low and high tide is happening in a specific time.

HUMAN: Yes , thank you , that sounds safer.

Code 9.2: Reappraisal the situation with water, scuba diving and related fears.

The reappraisal method works with the cognitive change of meaning, i.e. reinterpre-

tation, which represents a complex NLP problem. So, it is much easier to chose another

ER method. For instance, the paraphrasing (§9.4.4) method which is already subject of

NLP research for some time could be used.

9.4.3 Labeling

Labeling belongs to the linguistic processing group of Emotion Regulation (ER) and like

distraction (§9.4.1) is taken as an early selection strategy. It helps to decrease emotional

reactivity [484]. It might be that similarly to distraction labeling allows dealing with

highly intense emotional situations (e.g., exposure to phobic stimuli), but unlike distrac-

tion, it also allows learning, since the individual pays attention to the emotional stimulus

[92].

The complexity of labeling methods as the NLP is in Natural Language Understanding

(NLU) module. Even if it recognizes the emotional situation it needs to be annotated

by the commonly known label. As it is mentioned above labeling is good to use against

phobias when we recognize hundreds of them1. So, practically NLU relays on the manually

attached label to every emotional situation either it is a phobic stimulus or just broken

heart.

When the label for the particular recognized emotional situation is known then the

conversation can look like in the following example (Code 9.3)

1http://phobialist.com
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HUMAN: I am afraid of spiders.

BOT: Don ’t worry , a fear of spiders is one of the most common phobias.

BOT: We call it arachnophobia.

HUMAN: Ok, and what can I do about it?

BOT: Do you know someone who can provide you with psychological support?

Code 9.3: Giving the particular problem the label and method how to solve it helps.

9.4.4 Paraphrasing

Paraphrasing or active listening is a form of responding emphatically to the emotions of

another person by repeating in other words what this person said while focusing on the

essence of what they feel and what is important to them [481]

In NLP the paraphrasing problem is well known [485]. It includes proper understand-

ing of the input phrase (NLU) and generating the phrase with the same meaning by

other words using a paraphrase database [229], for instance the synonyms or the part of

the sentences which describe the main entity keyword. The most recent techniques are

embeddings [486] (§8.2), Reinforcement Learning (RL) [487] (§8.6.2) especially usage of

Recurrent Neural Network (RNN) [488] or Long / Short Term Memory (LSTM) [489] and

many other techniques.

To give someone the feeling of being understood and on the same page the paraphrasing

is perfect technique (Code 9.4) for it as the next example shows.

HUMAN: I have a fear of storm!

BOT: I know , the storm can be terrifying for you!

BOT: The storm is not what terrifies you...

BOT: ... it is a fear of something powerful , which you cannot control.

BOT: But if you understand the matter of storm , you can feel better.

Code 9.4: Describing the problem the same way with different words brings the comfort.

9.4.5 Disclaimer

All the simplification of all previously described Emotion Regulation (ER) methods and

their solution through NLP might and definitely have higher or lower measure of simplicity.

This is given by the fact that this work does not have as primary objective to bring

100% correct approach of emotion regulation ER but demonstrates the capability of such

methods.

9.5 Smoothing of Influencing Data

The influencing data like any data can have variations because they are based on the

fusion of measured Heart Rate (HR) (§4.3) data and extracted sentiment (§4.2) data.

If the dialogue system influence happens often we need to eliminate those variations

by some smoothing technique.
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For time-series techniques (e.g. exponential or moving average) smoothing techniques

are commonly known. However, in this case influencing data is represented by sequences,

so we need to come with other smoothing methods (§5).

9.6 Conversational Topic Change

Dialogue system influencing means a sudden change in the ongoing dialogue that happens

sooner or later. When the dialogue system starts to perform an intervention method

(§9.4), there is a change of conversational topic. Sometimes this change is not drastic,

but sometimes the Emotion Regulation (ER) technique requires such change (distraction

(§9.4.1)).

The main question is how the human participant perceives the conversation with the

dialogue system. Is it natural in the same way as the human to the human conversation

or is it artificial and too obvious?

We know, and we can easily observe that human conversation can stick to the topic for

a long time, but can also change topics several times during a few minutes. This change

could be even very substantial, especially when conversation participants are arguing or

external stimuli are coming.

The comparison between human to human and human to dialogue system conversation

found in [490] presents notable differences in the content (exhibited greater profanity)

and quality of conversation based on the statistical evidence. The duration of human to

chatbot conversation lasts longer but contains shorter messages. Moreover, conversation

richness and the vocabulary occurring during human to the human conversation is missing.

Since the human to human dialogue significantly differs from human to dialogue system

dialogue, it seems that it does not matter if conversation due to ER method suddenly

changes. Or on the contrary, it is maybe more expected especially when the subject knows

that the dialogue system leads the dialogue.

9.7 Conclusion! Leadership is influence.

The dialogue system influencing consists of two independent parts: influencing techniques

(§9.3) and intervention methods (§9.4). The potential combination of those two groups

gives us theoretically up to sixteen combinations of methods to influence dialogue system

on background (§9.2.2).

From four described intervention methods (§9.4) the paraphrasing (§9.4.4) method is

the most broadly known NLP problem. Moreover, there exist resources (Paraphrase DB2

[229]) and various methods (for instance Statistical Machine Translation (SMT) or Neural

Machine Translation (NMT)) to implement such a method.

By limiting the intervention methods (§9.4) to paraphrasing (§9.4.4) we can narrow

down the methods to just four combinations. The paraphrasing (§9.4.4) method is most

suitable because it is not only natural to rephrase sentence as the help to understand

someone else, but also it is interesting from the increasing research in this fields and it

2http://paraphrase.org/#/download
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is becoming the commonly solved NLP problem applied in different research dialogue

systems included.

Comparing to standard conversation chit-chat it is (from the intervention methods

(§9.4) examples) evident that the dialogue system needs to lead the ER conversation and

release this leadership back to the human when the intervention ends.



Chapter 10

Dialogue System Testing and

Evaluation

Every system needs to be subject to testing and evaluation, especially when the system

is complex. Till the expected outcome of the test either matches or not, the behavior of

the system is a subject of the postulated hypothesis. By testing and evaluation, we can

prove validity or invalidity of the hypothesis as the desired conclusion.

First of all, let us introduce dialogue system testing and evaluation (§10.1). We con-

tinue with the quick overview of the historical development of dialogue system testing

(§10.2) from Alan Turing (§10.2.1) up to contemporary testing approaches. Hand in hand

with that, we would like to evaluate a dialogue system (§10.3) model technically with met-

rics (§10.3.2) based on the various benchmarks (§10.3.3) and also touch its explainability

(§10.3.4).

Last but not least, psychological feedback questionnaires (§10.4.1) are important.

They give participating users a chance to evaluate the conversational process of inter-

vention (§10.4) with the dialogue system subjectively.

10.1 Introduction to Testing and Evaluation

The difference between the test and evaluation is in its outcome. Of course, these two

activities are joined vessels. Without the test, there cannot be results and evaluation,

and without evaluation, we do not know how to interpret the test.

10.1.1 Introduction to Testing

The testing is either a manual or automated activity, which leads to the confirmation that

a particular part of the system or the system overall represents desired functionality by

expected outcome.

Based on this definition, we know that people or software are involved in the dialogue

system testing. With the massive people participation, it is usually a crowd-funding

activity, which helps with a small volume of human-base data collection establishing a

human-baseline. On the other hand, software involvement helps automate to get vast

volumes of data collections under various setups.
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10.1.2 Introduction to Evaluation

Evaluation is the exact measurement activity where the outcome of a particular test is

compared with the expected measure set either theoretically or empirically.

If it is possible to get them, human-baseline measures are usually taken into account

first. If not, or if it does not make sense, then vanilla-based1 solution is taken into account

as the second one.

10.2 Dialogue Systems Testing

Among plenty of approaches how to test the dialogue system we can distinguish a few

main groups.

The first group involves the human into the process and utilize the classical Turing

test (§10.2.1), which has been lately better specified as the Turing time (§10.2.1). Next

to the Turing test the broadly used and well known A-B test stands (§10.2.2).

The second group involves automated testing. It does not need the presence of humans

in the testing process. It provides the functionality for example locally as the virtual

container (§10.2.3) or as the service in the cloud (§10.2.4).

10.2.1 Turing Test

In 1950 Alan Turing published his well know article Computing Machinery and Intelligence

[28]. In this article, he proposes how to test AI machines if they can think.

This test is called the Turing Test (Figure 10.1) and represents the ultimate goal of

how to test the AI. A tester determines whether he/she chats with a dialogue system

(chatbot) or human.

Human

Chatbot

Tester Evaluation

Figure 10.1: Dialogue system (chatbot) Turing test

The idea of the test is widely discussed again, attacked, and defended. With the rise

of AI it becomes popular again [491].

1the simplest version of something, without any optional extras, the essential or ordinary
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Turing Time

The Turing test is the test defined without any limitation criteria. However, in the real-

life, the conversation is not endless; it has its time window. From this perspective, we

can turn the Turing test into Turing time [492], which makes the test easier achievable.

Passing the Turing Test

There are several examples in the evolution of dialogue systems (§2.2) that show the

possibility of passing the Turing test.

The ELIZA [7] chatbot is claimed by some to be one of the programs (perhaps the

first) able to pass the Turing test [493].

The First known dialogue system is PARRY [8]. It passed the Turing test in 1972

when the psychiatrists cannot distinguish whether the transcripts of interviews come

from PARRY or interview with real paranoids [494].

Another chatbot that, in some regard, passed the Turing test is Eugene Goostman2.

Eugene Goostman pretends to be a 13-year-old boy from Odesa, Ukraine, who has a pet

guinea pig and a father who is a gynecologist. It was implemented in 2001 and tested on

7 June 2014, at a contest marking the 60th anniversary of Turing’s death.

On the other hand, AI researchers argue that trying to pass the Turing test is merely

a distraction from more fruitful research [495] So, they have devoted little attention to

passing the Turing test [496].

10.2.2 A/B Testing

A/B testing (Figure 10.2) is beneficial for a controlled experiment with two variants (A

and B). For a dialogue system application this testing can be used whenever we have a

variant with tested functionality (A) and without tested functionality (B) as the control

group.

Tester A Standard 
chatbot

Tester B Modified 
chatbot

Evaluation

Figure 10.2: Dialogue system (chatbot) A/B testing

2http://eugenegoostman.elasticbeanstalk.com
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10.2.3 Botium

In the software development world, we have several testing tools used as a standard in

a particular field. From this group of testing tools, we can consider Selenium as de-

facto-standard for testing web applications. Appium is the de-facto-standard for testing

smartphone applications. Botium3 can be considered as the standard for testing dialogue

system applications.

Botium Core

Test Data

Chatbot

Evaluation

Botium Box

Figure 10.3: Dialogue system (chatbot) testing with Botium

Botium runs as a virtual container (Docker) and consists of two modules (Figure 10.3).

Botium Core automates the conversation with a dialogue system based on the testing data.

Those are prepared in the Botium Box, which also allows evaluating conversation with

the dialogue system. Moreover, it enables the management of the whole testing process.

10.2.4 Google Chatbase

Primarily the Google Chatbase4 is an automated testing tool. It is provided as a cloud

service accessible through API and by libraries for various programming languages.

The Chatbase offers products for designing, analyzing, and optimizing dialogue sys-

tems. It provides detailed information about metrics, chat session flow, information of

not-handled messages, suggests intents (§6.8.2) for missed and misunderstood messages,

and other functionality.

Chatbot EvaluationTester Chatbase

Figure 10.4: Dialogue system (chatbot) testing with chatbase

The main functionality idea of the Chatbase is the integration into the dialogue system

(Figure 10.4). So, the dialogue system sends (during the dialogue with the user) the

3https://www.botium.at
4https://chatbase.com
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dialogue parts into Chatbase via API calls. Furthermore, the Chatbase provides analysis

and recommendations about the dialogue.

10.3 Dialogue System Evaluation

Deciding about the dialogue system testing approach and applying it to the dialogue

system is only one aspect of overall testing. The outcome of the testing needs to be

evaluated.

The dialogue system evaluation includes several approaches which are not such co-

herent as it is in the previous chapter about testing, but they correspond to various

perspectives on how to evaluate such complicated thing like a dialogue system.

Dialogue systems are usually judged by a human and any individual evaluation serves

as the baseline measure. The human evaluation is about various evaluation aspects

(§10.3.1) which people perceive.

In purely technical evaluation those aspects are represented by a single measure which

we are trying to reach or even overcome. It has to be as close as possible to this per-

ception. The quantitative comparison of the performance defined by evaluation metrics

(§10.3.2) allows comparing dialogue system models (§8). For objectivity purposes the

benchmark datasets (§10.3.3) has been established to enable dialogue models compar-

isons when trained on the same datasets.

10.3.1 Evaluation Aspects

The common evaluation introduction (§10.1.2) presented in the previous section can be

turn to the particular evaluation aspects which are later presented as exactly measured

activities via metrics (§10.3.2) and benchmarks (§10.3.3).

One of the comprehensive publications on this topic, Evaluating Quality of Chat-

bots and Intelligent Conversational Agents [81], extracted quality attributes from

32 papers and ten articles. They found they can be aligned into three main groups:

efficiency, effectiveness, and satisfaction:

• Efficiency

– Performance. It expects to avoid inappropriate utterances, robustness against

manipulation and unexpected input.

• Effectiveness

– Functionality Linguistic accuracy (syntactically and semantically correct sen-

tences) is the criteria of the correct functionality next to the execution of the

requested task and easy to use.

– Humanity. Ambiguity about the Turing Test (§10.2.1) is one of the criteria

as well as dialogue system transparency and disclose identity. Amongst many

others criteria natural interaction with the ability to respond to the input and

maintain themed discussion belong.
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• Satisfaction

– Affect. The conversation with the dialogue system can be interesting and

provide a fun. It could help to make conversation active with appropriate

mood and tone.

– Ethics and Behavior. The dialogue system should, during the conversation,

act ethically (§6.14) and with cultural knowledge. It is necessary to secure the

conversation. Moreover, the privacy of the user needs to be taken into account.

– Accessibility. Meaning or intent detection (§6.8.2) is a natural attribute of

dialogue system behavior.

The specific examples of mapping the dialogue system (respective Natural Language

Generation (NLG)) to evaluation aspects, we can find even earlier in [183]. This work

considers three evaluation aspects:

• Fluency — Linguistic fluency (syntactically and semantically correct sentences).

• Adequacy — Correct meaning.

• Readability — Fluency in the dialogue context.

Each of those are evaluated by the metrics like Simple String Accuracy (SSA) [497],

National Institute of Standards and Technology (NIST) [498], BiLingual Evaluation Un-

derstudy (BLEU) [82], F-measure and Latent Semantic Analysis (LSA) [266] described

later in the evaluation metrics (§10.3.2) section.

10.3.2 Evaluation Metrics

Quantitative evaluation of the performance of any model can be done by plenty of metrics.

Well-known and broadly accepted [489], [499] metrics for comparing parallel corpora (re-

spective comparing candidate and reference responses) are usually used for deep learning

models.

• Word Overlap-based Metrics — It evaluates the amount of word-overlap be-

tween the candidate and the reference response.

– BiLingual Evaluation Understudy (BLEU)) [82] — It works with n-grams

and shows similarity of candidate and reference response between 0 and 1,

where 1 represents identical responses.

BLEU has been shown to correlate well with human judgment on the response

generation task [500], [501].

– National Institute of Standards and Technology (NIST)) [498] — It

improves the BLEU metric to consider the response structure and how infor-

mative the particular n-gram is. The rarer the n-gram occurrence is, the higher

weight it gets.
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– Metric for Evaluation of Translation with Explicit ORdering (ME-

TEOR) [502] — It scores the text similarity based on the explicit word-to-word

(unigram) matches and calculates the harmonic mean of unigram precision and

recall, with recall weighted higher than precision.

It significantly outperforms the more commonly used BLEU metric [503].

– Recall-Oriented Understudy for Gisting Evaluation (ROUGE) [504]

— It is a package of four different measures: ROUGE-N (overlap of n-grams

between the candidate and reference responses) [505], ROUGE-L (identifies

longest co-occurring in sequence n-grams between the candidate and reference

responses), ROUGE-W is weighted ROUGE-L, and ROUGE-S (Skip-bigram

based co-occurrence statistics)[506]

• Embedding-based Metrics — It evaluates the candidate and reference responses

with the measure of cosine distance with the consideration that a vector is assigned

to the meaning of each word, i.e., word embedding (§8.2.2), for instance Word2Vec

[275].

– Greedy Matching [499], [507] — It does not compute sentence-level embed-

dings. It greedily matches one token from the first sequence with another token

from another sequence based on the cosine similarity of their word embeddings.

The total score is then averaged across all words. It favors candidate responses

with key-words that are semantically similar to those in the reference responses.

– Embedding Average [499], [508] — It calculates sentence-level embeddings

by computing the meaning of phrases by averaging the vector representations

of their constituent words. For comparison of reference response and candidate

response the cosine similarity between their respective sentence level embed-

dings is computed.

– Vector Extrema [499], [509] — It calculates the sentence-level embeddings

measure. For each dimension of the word vectors it takes the most extreme

value amongst all word vectors in the sentence, and uses that value in the

sentence-level embedding. The similarity between candidate and reference re-

sponse vectors is again computed using cosine distance.

• Other Metrics - Various metrics without any particular classification into the

above two groups are described below.

– Simple String Accuracy (SSA) [497] — It is another NIST metric that

scores the candidate response by counting the number of operations (word sub-

stitutions, insertions, and deletions) for conversion the reference to candidate

responses divided by the length of candidate response.

– Latent Semantic Analysis (LSA) [266] — This metric computes the seman-

tic similarity of reference and candidate responses based on the measurement

the semantic similarities of the words in the compared texts.
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– Lexical diversity (distinct-n) [510] — It represents one of the aspects of

lexical richness. Lexical diversity is quantitatively calculated using numerous

different measures. In this case, the metrics is calculated as a count of dif-

ferent unique n-grams in the reference response to the total number of words

(generated tokens) in the candidate response.

– Average Response Length [511], [512] — The length of an utterance (§6.8.1)

is an objective metrics that reflects the substance of a candidate response.

– Entropy [511], [512] — It represents another objective metrics, which shows

the serendipity of a candidate response by measuring the amount of information

contained in the utterance (§6.8.1).

– Response Perplexity [70], [346] — Perplexity is an indicator of the model

capability to account for the syntactic structure of the dialogue (e.g., turn-

taking) and the syntactic structure of each utterance (e.g., punctuation marks).

Lower perplexity is an indicator of a better model.

– Word Error Rate (WER) [346] — It is also known as a word classification

error. It is defined as the number of words in the dataset that the model has

mispredicted. Furthermore, it is divided by the total number of words in the

dataset.

– Automatic Dialogue Evaluation Model (ADEM) [513] was presented by

Lowe as the replacement of Word Overlap-based Metrics like BLEU. It

captures semantic similarity to overcame word overlap measures and exploits

the context and the reference response to calculate the score for the model

response.

– Conversation-turns Per Session (CPS) [10], [514] is the metrics for social

chatbots sufficient to measure the success of long-term, emotional engagement

with users. It is the average number of conversation-turns between the chatbot

and the user in a conversational session. The larger the CPS is, the better

engaged the social chatbot is.

– Sensibleness and Specificity Average (SSA) [12] SSA combines two fun-

damental aspects of a human-like chatbots: making sense and being specific.

It is a human evaluation metrics received from the human judges who label

every model response on these two criteria.

The correlation was R2 = 0.93 for static sensibleness vs perplexity and R2 =

0.94 for static specificity vs perplexity. It is taken as indication that it might

be a good automatic metrics for measuring sensibleness and specificity. Overall

static SSA vs perplexity has R2 = 0.94.

The work How NOT To Evaluate Your Dialogue System: An Empirical

Study of Unsupervised Evaluation Metrics for Dialogue Response Genera-

tion [499] criticizes some of the metrics above. It presents the evidence why not to use

them and by what metrics (also above) to replace those existing ones taken broadly as the

standards. There is still no official standardization about the dialogue system evaluation

yet, so the golden standard of broadly used metrics is what is used now.
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10.3.3 Evaluation Benchmarks

The standardization is always good approach to highlight the best datasets, methods or

processes. From this perspective it is necessary for any Natural Language Processing

(NLP) technique to have common standard datasets to perform various universal bench-

marks (§10.3.3).

Additionally, it is also good to test and evaluate specific modules of dialogue system

pipeline architecture (6.3.1). It inherits specific datasets for performing Natural Language

Understanding (NLU) benchmarks (§10.3.3), Dialogue Management (DM) benchmarks

(§10.3.3), and Natural Language Generation (NLG) benchmarks (§10.3.3). Those module

specific datasets focus on the specific test requirements in connection with particular NLP

module functionality.

Universal Benchmarks

Various generative models can be compared only when there is a standardized benchmark

over normalized data sources. It does not matter which model (language model, predictive

model, classification model, or other) we talk about.

Amongst many available datasources there are few datasets which are considered to

be the best ones for universal benchmark evaluation:

• Stanford Question Answering Dataset (SQuAD) [83], [84]. SQuAD was al-

ready presented in the corpora introduction chapter (§7). It is a single reading

comprehension dataset used as the benchmark dataset for comparison of various

NLP models. The leaderboard with comparisons is available online5.

• ReAding Comprehension Examinations (RACE) [212] was already intro-

duced in the chapter about corpora (§7). The RACE is a single dataset used for

various NLP models comparisons with a publicly available leaderboard6.

• General Language Understanding Evaluation (GLUE) [85] represents a col-

lection of tools for evaluating performance of models across a diverse set of existing

NLU tasks. The evaluation is done through eleven various datasets and corre-

sponding metrics, for instance, sentiment via The Stanford Sentiment Treebank

[128], Questions Natural Language Inference (NLI) via Stanford Question Answer-

ing Dataset (SQuAD). The GLUE benchmark leaderboard is presented online7.

• Super General Language Understanding Evaluation (SuperGLUE) [86]

Due to notable progress across many Natural Language Processing (NLP) tasks

SuperGLUE has been established. The collection reflects the NLP evolution. The

new corresponding tools evaluate the performance of models, for instance Multi-

Sentence Reading Comprehension [515] or Words in Context [516] and eight others.

The leader-board can be found online8.

5https://rajpurkar.github.io/SQuAD-explorer/
6http://www.qizhexie.com/data/RACE leaderboard.html
7https://gluebenchmark.com/leaderboard
8https://super.gluebenchmark.com/leaderboard
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These single (SQuAD, RACE) or sets (GLUE, SuperGLUE) of datasets represent the

evolution of benchmark tasks. This corresponds to the rapid development of NLP and its

constantly changing requirements to the evaluation.

Natural Language Understanding (NLU) Benchmarks

The Natural Language Understanding (NLU) component benchmark compares the recog-

nition of entities (§6.8.3) (Named Entity Recognition (NER)) and user intent (§6.8.2) in

the input utterance (§6.8.1).

For such purposes, we need to have datasets including multiple domains, various

(highly diversified) intents with entities representing many entity types.

All of the benchmarks focus on the particular NLU online using cloud services like

Microsoft LUIS, Google DialogFlow, IBM Watson or NLU libraries like RASA.

• NLU Evaluation Corpora9. It is the mixture of three datasets (Ask Ubuntu

Corpus, Web Applications Corpus, Chatbot Corpus), i.e., three domains with overall

450 questions and answers with identified 15 intents and 11 entity types. It does

the benchmark for the RASA library, and except the DialogFlow, Watson and LUIS

adds Facebook Wit.ai and Amazon Lex [517]. It compares precision, recall, and F1

measures for intent and also for entity types recognition per particular system.

• NLU Benchmark10 is a benchmark performed on the previous NLU Evaluation

Corpora and includes previously tested services plus the Snips library [197]. The

authors of the Snips library performed the benchmark, so there can be potential

bias.

• NLU Evaluation Data11 is a large NLU dataset containing real user data collected

with Amazon Mechanical Turk (AMT). It covers 21 domains with 64 intents and 54

entity types. It compares RASA, Google DialogFlow, IBM Watson, and Microsoft

LUIS services and libraries [518] and provides precision, recall, and F1 measures for

intent and entity types recognition.

Dialogue Management (DM) Benchmarks

Since beginning The Conversational Intelligence Challenge (ConvAI) (§2.4.4) focuses on

standardizing chatbot models evaluation. It includes human evaluation (for instance

Turing test (§10.2.1)) followed then by computerized evaluation (for example measured

by metrics (§10.3.2)).

For this purpose the collected ConvAI persona-chat dataset [70] which is already pre-

sented in the chapter about corpora (§7) should help to deal with common chatbot model

issues which include:

• Missing consistency in the chatbot personality [519] because the training datasets

contain dialogues from various speakers.

9https://github.com/sebischair/NLU-Evaluation-Corpora
10https://github.com/snipsco/nlu-benchmark
11https://github.com/xliuhw/NLU-Evaluation-Data
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• The chatbot training on the recent dialogue history [76] to produce the utterance

causes the lack of explicit long-term memory.

• Tendency to produce I do not know answers [520].

The ConvAI competition works towards to find the models that address these specific

issues. The results of ConvAI indicate that there is a promise to make progress in this

activity.

Natural Language Generation (NLG) Benchmarks

When the Natural Language Generation (NLG) benchmark is going to be done, there

are several ways to do so. The evaluation of text generation has much more freedom to

choose the task which can be used for the baseline.

The standard way the text is generated is using a computer understandable form.

Another approach is to generate captions for images.

• E2E Dataset12. The dataset is released as open and it is a part of E2E NLG

Challenge13 [25]. It contains crowdsourced data of 50k instances in the restaurant

domain. The benchmark [521] was openly realized against another datasets like

BAGEL [446], and SF Hotels/Restaurants [452] with defined metrics14 including

BLEU [82], NIST [498], METEOR [502], ROUGE-L [504], and CIDEr [522].

• Microsoft COCO Caption15 [523] is an image caption dataset with over 1.5 mil-

lion captions describing over 330 000 images. The generated captions are evaluated

using several popular metrics, like BLEU, METEOR, ROUGE and CIDEr. The

benchmark is available through the evaluation server16 [524].

10.3.4 Evaluation Explainability

The question about transparency and explainability of Artificial Neural Network (ANN)

pops much often these days and resonates with abusive or harmful exceptional behavior

of systems based on Artificial Intelligence (AI). Thus more and more research groups

and companies are trying to explain AI behavior, and for such effort the technical term

Explainable AI (XAI) [525], [526] has been established.

Common Explainability

In the standard way, an explanation of any Machine Learning (ML) or Artificial Intel-

ligence (AI) model is a complicated task. Tools, libraries, and methods used for model

explanation present results to users mostly in a human-readable and easily understandable

graphical way. Some algorithms of models explanation even exceed the original methods

implemented, so their code served for original method improvement.

12https://github.com/tuetschek/e2e-dataset
13http://www.macs.hw.ac.uk/InteractionLab/E2E/
14https://github.com/tuetschek/e2e-metrics
15http://cocodataset.org
16http://cocodataset.org/#captions-leaderboard
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• Local Interpretable Model-agnostic Explanations (LIME)17 [527] is a tech-

nique that explains predictions of any classifier in an interpretable and faithful

manner, by learning an interpretable model locally around the prediction. It is flex-

ible to explain different models, for instance, the random forest used for text and

ANN for image classification.

• SHapley Additive exPlanations (SHAP)18 [528]. The SHAP approach inter-

prets predictions from tree ensemble methods (gradient boosting, random forests).

The game theory is applied. The interpretation is made through the visualization

of individual feature attributions. The study showed better agreement the visual-

ization corresponds to human intuition over the classic attribution summaries and

partial dependence plots.

• AIX36019 [529]. The AI Explainability 360 is not a particular explanation tech-

nique but an open-source toolkit consisting of diverse state-of-the-art explainabil-

ity methods: ProtoDash [530], Disentangled Inferred Prior VAE [531], Contrastive

Explanations Method [532], Contrastive Explanations Method with Monotonic At-

tribute Functions [533], LIME [527], SHAP [528], TED [534], Boolean Decision

Rules via Column Generation [535], Generalized Linear Rule Models [536], and

ProfWeight [532]. Next to the explainability it provides also two evaluation metrics:

Faithfulness [537] and Monotonicity [533].

Dialogue System Explainability

The same question about transparency and explainability raises for the dialogue system.

With more and more complex models which step into the dialogue system design and

especially when the dialogue system is built on top of the generative model (§6.4.2) it is

necessary to know what is happening under the hood. We would like to know why and

how the dialogue system model generating responses based on human requests works.

The retrieval-based model (§6.4.1) known as rule-based model is self explanatory. The

questions-answers pairs or combinations are strictly given and the reason for particular

response based on the request is simply possible to review from the rule definition source.

The generative based model (§6.4.2) also known as corpus based model consists of

several layers of design which include for instance embedding (§8.7) on which the Sequence

to Sequence (Seq2Seq) architecture (§8.2.3) various transformer architectures are built.

All these parts can be taken into account when explainability comes to the discussion.

There are just a few tools or publications related to the dialogue system explanation

since the field is mostly focusing on the common AI explainability or explainability of the

particular ANN.

For instance, the explanation and visualization of the embedding based models can be

done with exBERT20 tool [538]. It serves for the explanation of transformers based models

17https://github.com/marcotcr/lime
18https://github.com/slundberg/shap
19https://github.com/IBM/AIX360
20http://exbert.net
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with a particular focus on the Bidirectional Encoder Representations from Transformers

(BERT) (§8.2.3).

Another example is the paper [539], which focuses on the transparency of chatbots

implemented for recruitment.

An explainable, transparent, and auditable dialogue system or respectively AI itself is

not a simple task. Thus we need to look forward to more relevant research and practical

business applications which narrow down the rules on how the generative model (§6.4.2)

based dialogue system models can/cannot work.

10.4 Intervention Evaluation

Dialogue system evaluation and testing is just one part of functionality testing, the tech-

nical one. If the dialogue system based on the influencing data provides the intervention

method like in this case, the emotion regulation, it has to be evaluated as well. The

complexity of such a task lies in the interaction with people.

So, the more complex evaluation will be used the more problematic would be to make

conclusions from results. For such purposes, clinical psychology and psychiatry developed

various questionnaires (§10.4.1) which would be present in the next section. Moreover,

the standardization and reliability (§10.4.2) of such evaluation next to the simplicity are

crucial.

10.4.1 Questionnaires

To determine weather particular treatment technique works or for comparison (see A/B

testing §10.2.2) the following diagnostic systems and rating scales for various problems

are used in clinical psychology and psychiatry.

• Depression, anxiety & stress

– Hamilton Rating Scale for Depression (HRSD) [540], [541]. Multi-item

(original version contained 17 items) questionnaire, which helps with an indica-

tion of depression, and as a guide to evaluating recovery. The questionnaire is

designed for adults and is used to rate the severity of their depression by prob-

ing mood, feelings of guilt, suicide ideas, insomnia, agitation or retardation,

anxiety, weight loss, and somatic symptoms.

– Patient Health Questionnaire (PHQ) [542], [543] is family (PHQ-2, PHQ-

4, PHQ-8, PHQ-9 and PHQ-15 and also GAD-7) of multiple-choice self-report

questionnaires which are used as screening and diagnostic tools for mental

health disorders, such as depression, anxiety, alcohol, eating, and somatoform

disorders. Answers to the questions are evaluated by the same four categories

described in GAD-7.

– Generalized Anxiety Disorder 7 (GAD-7) [544]. The questionnaire was

designed to do self-reported screening and severity measurement of general-

ized anxiety disorder. It contains seven questions answered by four categories
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with assigned points. The total score of answers sum up together gives us an

assessment indication.

– Perceived Stress Scale (PSS-10) [545], [546]. A questionnaire with 14,

10, or 4 items was developed to measure psychological stress. This test has

become the most widely used as the psychological instrument for measuring

nonspecific perceived stress in studies assessing the stressfulness of situations,

the effectiveness of stress-reducing interventions, and the extent to which there

are associations between psychological stress and psychiatric and physical dis-

orders. The higher perceived stress levels correspond to the higher PSS score,

which tends to increase the risk of diseases.

– The Depression Anxiety Stress Scales (DASS) [547]. The questionnaire

contains a set of three self-report scales designed to measure the negative emo-

tional states of depression, anxiety, and stress. Each of the three DASS scales

contains 14 items. Subjects are asked to use 4-point severity/frequency scales

to rate the extent to which they have experienced each state over the past

week. Scores for depression, anxiety, and stress are calculated by summing the

scores for the relevant items.

• Well-being

– Flourishing Scale (FS-8) [546], [548]. A brief 8 item summary measure of

the respondent’s self-perceived success. It analyzes the topics which include

relationships, self-esteem, purpose, and optimism. The summary corresponds

to a single psychological well-being score.

– Satisfaction With Life Scale (SWLS-5) [546], [549]. This questionnaire is

built as a small 5-item one. It is designed to measure global cognitive judgments

of satisfaction with participated person life. The cut-off scores are calculated

from the questions, and when the higher the score is, then life satisfaction is

better.

– Scale of Positive and Negative Experience (SPANE) [548]. The 12

item questionnaire is divided into two parts by six items. These two parts

assess positive/negative feelings. The positive and negative items contain three

general items and three more specific (e.g., joyful, sad).

– Positive and Negative Affect Schedule (PANAS) [6], [550]. A question-

naire with two 10 item scales to measure both positive and negative affect.

Each item is rated on a 5-point scale similar to GAD-7.

The researchers extracted 60 terms from the factor analyses of Zevon and Telle-

gen [551] shown to be relatively accurate markers of either positive or negative

affect, but not both. The researchers arrived at ten terms for each of the two

scales, as follows. Positive affect is presented by terms like attentive, active,

alert, excited, enthusiastic, determined, inspired, proud, interested, strong.

Negative affect is presented by terms hostile, irritable, ashamed, guilty, dis-

tressed, upset, scared, afraid, jittery, nervous.
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– The Discrete Emotions Questionnaire (DEQ) [552]. The DEQ is pre-

sented as a new tool for measuring state self-reported emotions. It focuses on

eight distinct state emotions: anger, disgust, fear, anxiety, sadness, happiness,

relaxation, and desire, which are evaluated by the participant on a 7-point

scale (1 = Not at all and 7 = An extreme amount).

10.4.2 Reliability and Validity

Questionnaire reliability and validity as the tool used in clinical practice is criticized and

contradicted over the years of existence. As any human activity also assessment of this

part of human feelings and actions is evolving. New and new questionnaires are created

by renowned psychological and psychiatric departments to improve the existing ones and

by comparison, under the various clinical experiments proof better results and relevance

to particular use and findings.

If we take a look at the specific questionnaires, for example, The Hamilton Rating

Scale for Depression (HRSD) [540], [541] which has been considered as the golden stan-

dard amongst questionnaires [553]. However, it has been criticized for use in psychological

clinical practice [554] because it represents the questionnaire, which is more oriented to-

wards identification emphasis on insomnia than on feelings of hopelessness, self-destructive

thoughts, suicidal cognitions, and actions. Also, the author claimed that his scale should

not be used as a diagnostic instrument [555].

On the other hand, well-being tests are considered to be reliable and valid instruments

in the assessment of positive and negative affects in clinical and non-clinical studies [550],

[556].

10.5 Conclusion! What Is Tested May Never Fail

Testing any software is a complex discipline. With the growing complexity of software

systems requirements for testing grow as well. The dialogue system, no matter what

approach is used, represents one of the most complex systems. Based on this and on the

overview of the previous chapters, it is obvious that dialogue system testing and evaluation

cannot be easily defined and performed.

Current methods focus on dialogue system testing (§10.2) from the perspective of

usability, User Experience (UX) and Customer Experience (CX). Those are correct re-

quirements whenever the chatbot is purely used for customer care or customer support in

the task-oriented closed domains (§6.5.2). Whenever the dialogue system is used as the

chatbot in an open domain, fluency, length and richness of the conversation are the main

considered factors of success.

The second part of testing, evaluation (§10.3), is purely technical and dedicated to

End-to-End (E2E) generative models (§6.4.2) evaluation.

The feedback from users related to dialogue system capabilities or influence is usually

not measured at all. From this perspective psychological feedback questionnaires (§10.4.1)

were considered to measure dialogue system intervention and emotion regulation success

(§10.4).
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There is still a potential for various improvements. Testing and evaluation methods

are evolving as it is possible to see from the development of testing methods and criticism

of metrics. The benchmark support and explanation of ML/AI models are going forward

with the most current research.

Standard questionnaires inspired by psychological feedback questionnaires can be used

for the feedback from users regarding dialogue system functionality and approach satis-

faction.



Chapter 11

Research Proposal

With all the parts described in the previous chapters, we can finally come up with the

research proposal.

It begins with authors’ existing research (§11.1) where he was experimenting with

wearable devices and soft and hard data and follows up with the collected two sets of

data (§11.2), published in [124] and used also in diploma thesis [2].

Two vastly different use-cases are presented (§11.3): Emotion Regulation (§11.3.1) and

Arm Rehabilitation (§11.3.2) which are built on top of the experience from the systematic

review of existing research presented in the previous chapters.

The remaining sections define the dissertation thesis goal (§11.4) via the Research

Objective (RO) (§11.4.1) and specify specific Research Questions (RQs) (§11.4.2). This

work can be enclosed with an overall conclusion (§11.5).

11.1 Existing Research

At the beginning, there was an idea to utilize wearables which came at that time to the

market together with social media and to gain the value that could be used in many

applications by information fusion.

Wearables provided only steps measurements in 2014, so the first research was tar-

geting this way [557]. However, except the experience how to design and process the

experiment and what to expect about the data gained from the first manuscript, it is

evident that this is the dead end.

With development on the market, more sophisticated devices have come; they provide

more value and allow to measure the heart rate on top of other measurements. Heart rate

is an independent value which could be broadly in various research projects and practical

applications. It is also considered to have a better relation to human mood and behavior.

Two experiments followed and resulted in the open data publication [124] which can

be considered rather unique from many aspects even though the idea of combination of

such types of data was not original at all. The data was collected not only to describe

and publish them but to use them for further research. The latest manuscript deals with

data analysis and performs stress dichotomy identification [145] via data fusion.

146
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11.1.1 Journal Papers

• Salamon J. and Mouček R. (2017). ”Heart rate and sentiment experimental data

with common timeline”. In Data in Brief, Volume 15, ISSN 2352-3409, pages 851-

861. DOI: 10.1016/j.dib.2017.10.037.

11.1.2 Conference Papers

• Salamon J., Černá K. and Mouček R. (2018). ”Stress Dichotomy using Heart Rate

and Tweet Sentiment.” In Proceedings of the 11th International Joint Conference on

Biomedical Engineering Systems and Technologies, ISBN 978-989-758-281-3, pages

527-532. DOI: 10.5220/0006650105270532

• Salamon J. and Moucek R. (2016). ”Link between Sentiment and Human Activ-

ity Represented by Footsteps - Experiment Exploiting IoT Devices and Social Net-

works”. In Proceedings of the 9th International Joint Conference on Biomedical En-

gineering Systems and Technologies, ISBN 978-989-758-170-0, pages 450-457. DOI:

10.5220/0005818204500457

11.2 Data Collection

When performing experiments which combine soft and hard data (§3) with the common

timeline (§3.3) it was necessary either to find existing data or create a new data collection.

Based on an extensive search, the decision was made to collect data as a part of the

research.

Data collection went through two stages: Pilot experiment (PX) (§11.2.1) and Quasi-

experiment (QX) (§11.2.2). Both collections are described in the sections below, the high

level description of experiments can be found in §3.6, particularly for PX (§3.6.1) and QX

(§3.6.2).

11.2.1 Data collected during Pilot experiment (PX)

The following sections describe the design, recruitment, and ethics related to the PX held

by a single participant.

Design of Experiment

The experiment was designed to take two-time fifty days. During both of these periods

Heart Rate (HR) and textual data were collected simultaneously.

• Heart rate data collection

– Two different wearables (devices) were used, specifically Fitbit Charge HR and

Basis Peak

– The devices measured heart rate 24x7 except breaks for charging
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– The average output data of heart rate sampling frequency was higher or equal

to one minute.

• Sentiment data collection

– Sentiment was expressed in English using short texts (140 characters) - tweets.

– The relevant sentiment at the time the tweet was written was expressed by a

subject via a hashtag being a part of the tweet (#p for positive and #n for

negative feeling).

– Tweets were written each 45 minutes, i.e. a maximum of 21 tweets during a

weekend (from 9 AM to midnight) and 23 tweets during a weekday (from 7:30

AM to midnight).

– However, only 20 tweets per day were required.

Recruitment

The participant was a 35-year healthy man with a treated high blood pressure.

Ethics

Considering a single person participating in the Pilot experiment (PX) and the fact that

the subject was the author himself means that this trial meets all the ethical aspects; it

is not necessary to have an explicitly written and signed consent.

11.2.2 Data collected during Quasi-experiment (QX)

Based on the experience with the PX the QX performed the next sections describe its

design, recruitment, and ethics.

Design of Experiment

14 days14 days 14 days

week 2 week 3week 1

Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa SuMo Tu We

Part of the day, e.g. Friday 12:00 - 20:00, for Monday 8:00 - 12:00

Full day, i.e. 8:00 - 20:00

Figure 11.1: Quasi-experiment time-frame

• Common part

– The QX lasted 10 days within 14 days time-frame (Figure 11.1)
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– The QX was taken two-times in different time-frames to recruit as much sub-

jects as possible

• Heart rate collection

– Four wearables (devices) were used, specifically Fitbit Charge HR (the same

device as in the PX)

– Four technical accounts were attached to these devices (bodyinnumbers01-04)

– The devices measured heart rate 24x7 except for breaks for charging (the time

frame between 8 AM and 10 PM was minimally required)

• Sentiment collection

– Sentiment was expressed in the Czech language through short texts (2801 char-

acters) - tweets

– Four technical Twitter accounts were created (bodyinnumbers01-04)

– The relevant sentiment at the time the tweet was written was recorded by a

subject via hashtags directly in the tweet (#p for positive and #n for negative

feeling)

– The text recording was done every 60 minutes between 8:00 AM and 10 PM.

– 15 tweets per day were required.

Recruitment

The recruitment was done among the students within the same study group:

• Seven healthy subjects [4 female; age: µ = 20, σ = 0.8 and 3 male; age: µ = 23, σ

= 1.7] participated in this study.

• All participants were native Czech speakers

The following personal attributes for each subject were recorded: gender, age, weight,

height, Twitter/Fitbit account, wearable serial number, and start date of the experiment.

Ethics

All QX participants were handled as anonymous with ID (101-104,201-203) consisting of

the number of the experiment time-frame (1 or 2) and two digits number of the subject

(01-04 and 01-03).

11.3 Research Use Cases (RUCs)

The thesis is written to propose Research Objective (RO). However, all the commonly

designed approaches are necessary to validate by practical RUCs. Several RUCs are

presented in the next sections. These are supported by their schematic overviews where

orange signals are input (measured) signals and green signal is an output (feedback) signal.

1Twitter extended the limit of the tweet from 140 to 280 characters
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11.3.1 Emotion Regulation (ER)

The original idea was to design and implement an emotion regulation use-case utilized in

a chatbot. It stands on the three main pillars:

Stress identification through data fusion (§5)

Design chatbot which is possible to influence (§8)

Regulate emotions identified by stress used for chatbot influence (§9)

This all has to be done during the dialogue with the chatbot, which means to switch

the context (§6.6) from chit-chat to Emotion Regulation whenever the negative stress is

identified.

The following phases of this RUC correspond to the numbers in circles in Figure 11.2:

Application

chatbot 
(NLG)
chatbot 
(NLG)

chatbot 
(NLU)

Subject

BT/ANT+HR

text 
input

text feedback

1

2

1
text

3
text

text

Figure 11.2: Research Use Case - Emotion Regulation

1. The wearable which measures the physiological signals provides HR as one of the

stress identifiers. In the beginning, the decreasing and increasing HR itself or the

value of HR at the particular break-point can be the trigger. The feedback on

the stress identified is given by the chatbot using a Natural Language Generation

(NLG) alternatively synthesized voice via Text to Speech (TTS). It provides a simple

textual feedback, e.g. ”take a breath, calm down, close your eyes and relax”.

2. The pipeline can be completed by allowing a user to communicate with the chatbot

via a textual input (Natural Language Understanding (NLU)). It provides a chance

to enrich chatbot conversational complexity with its ability to keep the dialogue

context. Still, it can be at the beginning simplified enough to cover a basic input:

”I feel ok, I am ok, I am not under pressure” and some others.
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3. Use the text content of the conversation as the add on to HR leads to the complex

influencing data via the signal fusion and better stress identification.

Correct identification of stress would lead to better application results in counseling

during the emotion regulation process.

Potential issues:

• Based on the experience with the Pilot experiment (PX) data processing during the

diploma thesis [2] we have learned that the sentiment extracted from the conversa-

tion could be inconclusive because it is mostly neutral. Such sentiment value then

does not help to identify stress.

• The excitement, which can lead to an increase of Heart Rate (HR), can be relatively

stable (either mild or unrecognizable) during the conversation with a chatbot. Hence

the HR trend (§5.3.1) can be identified problematically or not at all.

11.3.2 Arm Rehabilitation

Another idea is to design and implement a rehabilitation system which utilizes a chatbot

influenced by various data. The application should work as a rehabilitation tool in case

of difficulties with shoulder momentum or muscle problems.

There are two alternatives presented in the next sections. The first one is built on top

of the sensors; these provide a signal turned into data influencing the chatbot. The second

one works with pictures (respective video) as sources of data influencing the chatbot.

Signal Influenced Arm Rehabilitation

Figure 11.3 illustrates the phases (represented by the numbered circles) of this particular

Research Use Case (RUC).
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ApplicationSubject

move

text

gyroscopic 
sensor

chatbot 
(NLG)

EEG focus 
measurement

rehabilitation

chatbot 
(NLU)

text

voice 
response

1

1

3

2

focus

voice 
feedback

Figure 11.3: Research Use Case - Arm Rehabilitation with gyroscopic sensor

1. Movements of the arm during the rehabilitation are measured with the attached

gyroscopic sensor. The feedback on the process and corrections of the rehabilitation

are provided by the chatbot (Natural Language Generation (NLG)) influenced by

the gyroscopic signal. The chatbot interaction is implemented by a synthesized voice

via Text to Speech (TTS). A simple output voice feedback could be the following:

”make it slower, do it more precise, move the arm a bit left/right/down/up”.

2. To build the complete pipeline the enhancement of the chatbot (Natural Language

Understanding (NLU)) to the voice response given by a user through Automatic

Speech Recognition (ASR) is implemented. Mostly the pure users’ voice commands

as additional inputs are considered, e.g. ”it is ok, it hurts, it helps, I am fresh, I am

tired”. Completion of the chatbot pipeline allows enriched conversation with a user

with a single signal influence from phase 1.

3. The rehabilitation process is enhanced by the measurement of the Electroencephalo-

gram (EEG) signal. The right focus on the procedure is significant to perform a

good rehabilitation exercise of the arm.

The combination of two signals, e.g. previous gyroscopic data and focus data can be

done by a simple combination of the data sources or smart data fusion. It depends

on which approach leads to better application results.

Potential issues:

• The voice response (phase 2) can have a negative influence on measured EEG data

(phase 3).

Video Influenced Arm Rehabilitation

In this case (Figure 11.4) we consider the following phases (the numbered circles) of RUC.
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ApplicationSubject

move

text

arm 
movement

chatbot 
(NLG)

facial emotion

rehabilitation

chatbot 
(NLU)

text

voice 
response

1

1

3

2

emotion

voice 
feedback

Figure 11.4: Research Use Case - Arm Rehabilitation with camera

1. A camera takes a video in which movements of the arm during the rehabilitation are

identified. The feedback on the process and corrections of rehabilitation is provided

by a chatbot (Natural Language Generation (NLG)). It is influenced by movements

detected in the video and synthesizes its answer to the voice via Text to Speech

(TTS). A simple output voice feedback can be given: ”make it slower, do it more

precise, move the arm a bit left/right/down/up”.

2. To build the complete pipeline the enhancement of chatbot (Natural Language Un-

derstanding (NLU)) to the voice response given by a user through Automatic Speech

Recognition (ASR) is implemented. Again the same or similar pure voice commands

of the user (additional inputs) are processed: ”it is ok, it hurts, it helps, I am fresh,

I am tired” and so on. The complete chatbot pipeline allows us to keep the conver-

sation fluent when it is influenced by a single data source from phase 1.

3. The previous rehabilitation process is enhanced by the measurement of emotions

(identification of facial emotions) from the video. The correct identification of emo-

tions is essential to perform good rehabilitation exercise related to the particular

part of the arm. In this case, we might return to the basics seven emotions [558]:

anger, disgust, fear, happiness (joy), sadness, surprise, and contempt — alterna-

tively, some more suitable facial emotion schema based on the relevant studies can

be used.

The second influencing signal (emotions) leads to a more complex influencing ap-

proach which might use any data fusion or simple combination of data.

Potential issues:

• The voice response (phase 2) can have a negative influence on emotion recognition

from the video (phase 3).
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• The movements of the arm (phase 1) and emotion recognition (phase 3) identified

both from the video can interfere if taken by the same camera, so most likely two

independent cameras are needed.

Notes

• For Text to Speech (TTS) and Automatic Speech Recognition (ASR) Alexa, Google

Home, or another assistant can be used. It allows accessing its functionality via API.

These personal assistants recognize the voice, offer text hypothesis and also can do

the TTS synthesis.

11.4 Goals of the Thesis

The goals of the thesis are defined through one Research Objective, which is then covered

by several Research Questions.

11.4.1 Research Objective (RO)

Based on the topic described in the introduction and author’s publication the author of

this thesis sets the following RO that identifies (or may not) the method or process which

improves a chatbot as a digital coach:

RO: To propose and validate a method to influence a chatbot (or its part) by external

data to achieve the change in its conversational behavior. For such data the measured

signal from the external device(s) is used alone or in combination with the conversation

content itself.

11.4.2 Research Questions (RQs)

Research Questions (RQs) help to identify, split, narrow down, and organize the main

Research Objective (RO) in smaller parts. The particular parts of the thesis can cover

such RQs.

• RQ1: Is there a way to influence a chatbot with external data?

• RQ2: What type of chatbot concept is possible to use?

• RQ3: What corpus (corpora) or model(s) need to be used to build a chatbot?

• RQ4: What source(s) or approach(es) could be used to collect data (or its fusion)

suitable for influencing a chatbot?

• RQ5: How to identify, test and explain such a change of behavior of particular

chatbot implementation?
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11.5 Conclusion

This thesis contains several topics that form the whole. Each of these topics seems to be

sophisticated enough to become a separate research project.

All of these together with well-described particular details and approaches serve as de-

cent rudiments for future research, realistic outcomes and forthcoming dissertation thesis

in the field where the dialogue systems (chatbots) serve as the psycho-social intervention

tools.

All the methods related to a replacement or support of ambulatory treatment (§2.1)

have common aspect. They expect the consumer or patient to start to use them when he

or she needs some help. Most of the people who need the treatment do not admit or may

not realize they need some.

On the other hand, many people like to have a private conversation with a chatbot

[7] and even share intimate details with it. So potentially, chatbots dedicated for health

respectively well-being (§2.4.6) are the right choice to motivate people to use them even

they think they do not need them.

However, many approaches to achieve the Research Objective (RO) (§11.4.1) and get

the answers to the Research Questions (RQs) (§11.4.2) seem to be promising.

To avoid potential non-determinism of stress identification by inconclusive sentiment

and mild or unrecognizable trend of Heart Rate (HR) (described as potential problems in

emotion regulation Research Use Case (RUC) (§11.3.1)), another RUC was proposed to

overtake the role of the validation use case, the arm rehabilitation (§11.3.2).

This use case includes two variants, one driven by information given by signals, another

one driven by the information extracted from a video. Both of them, despite potential

problems described in the section above (§11.3.2), present the deterministically defined

control over the influencing signal. This signal can be used for the dialogue system

influencing in the potential practical application.



Appendix A

Practical Experience

During writing this thesis the author reviewed many materials and found many applica-

tions and implementations related to dialogue systems. So, the most exciting experience

is briefly recorded here.

The first topic is a practical experience with two existing chatbots for health or well-

being (§A.1). The second section (§A.2) lists the chatbot implementations; it includes

the papers turned into a code by authors or someone else and also Github repositories

which provide examples of particular libraries or dialogue languages used for chatbot

implementation.

A.1 Chatbots Experience

During several weeks two of the previously mentioned chatbots for health or well-being

(§2.4.6) were tested by the author. He has been interested in how state-of-the-art appli-

cations with the interaction based on the Cognitive Behavioral Therapy (CBT) work.

A.1.1 Woebot Chatbot

Woebot [6] is a psycho-social intervention chatbot (Figure A.1). It uses various standard-

ized questionnaires (§10.4.1), which utilize CBT (Figure A.2) to treat young adults with

symptoms of depression and anxiety.

The following screenshots show its occasional use and interaction:

156
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Figure A.1: Woebot - a) chatbot introduction, b) introduction to therapy, and c) reminder
to the user

Figure A.2: Woebot - a) introduction to CBT, b) questionnaire, c) treatment reward

The Woebot is trying to be funny sometimes in a silly way. It is definitely that kind

of chatbot personality (§8.8.1) that imitates a friendly entertaining buddy. Anyway, it

leads the user to the point to give him/her required treatment and subsequent reward.

A.1.2 Lark Chatbot

Lark [80] is a chatbot which tracks daily movement (Figure A.3), weight (once a week),

sleep and food (Figure A.4). It is an AI based chatbot that incorporates interactive

elements of Cognitive Behavioral Therapy (CBT).

The following figures show screenshots taken during several weeks of interaction:
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Figure A.3: Lark - a) activity tracking comparison, b) tracking the walk activity, c)
tracking the bike activity

Figure A.4: Lark - a) tracking the weight, b) providing the advises related to sleep and
c) giving the advises related to food

Compare to the Woebot Lark is much more rigid in communication. It definitely tar-

gets different and more mature audience with the functionality different from the Woebot.

The talk here is explanatory, sometimes it looks like a discussion of a teacher with a stu-

dent that contains a lot of annoying notes.

A.2 Dialogue System Implementations

Modern research should be transparent and open to allow reproduction of results. This

can be achieved by openly provided data if not these are publicly available yet and also

an open code to reproduce the same or similar results.

There are researchers who not only publish papers but also a code (written directly in
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paper or in an online repository). It has become more common that someone reproduces

the implementation and published code.

There are also websites like Papers with code1 or NLP Progress2 which provide a

catalogue of papers and related code.

Here are few examples of dialogue system implementations:

Simple ALICE [9] ALICE ia a retrieval-based (§6.4.1) chatbot implemented in Artifi-

cial Intelligence Markup Language (AIML) and Python with a minimally modified

AIML starter set3

KB-InfoBot [351] Another End-to-End (E2E) approach is a multi-turn dialogue agent

with Knowledge Base (KB)4 showing that KB lookup helps the reinforcement learner

(§8.6.2) discover a suitable Dialogue Policy (DP).

SimpleDS [371] A Simple Deep Reinforcement Learning (RL) Dialogue System5 uses a

raw, noisy text without any engineered features to represent the dialogue state and

bypass the Natural Language Understanding (NLU) component with DP learning.

TC-Bot [74], [350] is an implementation of the E2E task-completion neural dialogue

systems and a user simulator6 for task-completion7 dialogue research papers.

Voicy.AI [184] is a Hybrid Code Network (HCN) (§8.6.6) implementation based chatbot.

The Voicy.AI8 is the pioneering implementation of research papers from Dialog

System Technology Challenge (DSTC) (§2.4.3).

Adversarial dialogue 9 It uses Adversarial Learning (AL) together with three state of

the art task-oriented dialogue models: Variational Hierarchical Recurrent Encoder-

Decoder (VHRED) [395], RL [365], and Dynamic Knowledge Graph Network [396]

to assess dialogue system sensitivity on request and stability in response.

Memory-to-sequence (Mem2Seq) dialogue system [354]10 It is an implementation

of an E2E task-oriented dialog system with MEM2Seq memory to sequence model

composed of two components: the MemN2N [353] encoder and the memory decoder.

The Self-feeding Chatbot [385] It is an interesting example of Active Learning (AL)

(§8.6.4). Its code is available under the ParlAI [195] (§6.12) GitHub11.

1https://paperswithcode.com
2http://nlpprogress.com
3https://github.com/datenhahn/python-aiml-chatbot
4https://github.com/MiuLab/KB-InfoBot
5https://github.com/cuayahuitl/SimpleDS
6https://github.com/MiuLab/UserSimulator
7https://github.com/MiuLab/TC-Bot
8https://github.com/voicy-ai/DialogStateTracking
9https://github.com/WolfNiu/AdversarialDialogue

10https://github.com/HLTCHKUST/Mem2Seq
11https://github.com/facebookresearch/ParlAI/tree/master/projects/self feeding
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DialoGPT (Dialogue Generative Pre-Training (GPT)) [347] is a large, tune-able

neural conversational response generation model12 (§8.6.1). It extends the Hugging

Face PyTorch transformer (§8.2.4) to gain a performance close to human in terms of

automatic and human evaluation when a single-turn dialogue setting is considered.

12https://github.com/microsoft/DialoGPT
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Online Courses

The last few years have been significant for Massive Open Online Course (MOOC). It

has been practically a boom with a contribution from universities and individuals who

prepared first single teaching courses, which turn lately into specializations or programs

under the educational path.

Some courses were not created in an academic environment. Some of them have

replaced standard education at universities. When you finish some of them, you get

either a simple certificate of completion or some of them contain also grading (usually

with percentage pass of the course).

Just a few of them are considered to be full-fledged courses; they include semifinal and

final tests comparable to a classic subject exam.

This all together means that education is heading to a new era. The number of courses

is growing, the volume of participants is enormous (dozens of thousands studying at the

same moment), educational platforms become even more sophisticated, and courses are

prepared by recognizable experts (professors or experts from academia) in a particular

field.

It means they have become recognizable as well as classic daily or distant education

at universities. Even not yet on the same level, some of them are becoming preliminary

conditions to study daily programs where the students graduate with a diploma.

B.1 Educational Platforms

With a growth of MOOC popularity many educational platforms have been established.

The most popular are Coursera1, edX2, Udemy3, DataCamp4, and Codecademy5. Each

of them offers many courses of various complexity and quality.

1https://www.coursera.org
2https://www.edx.org
3https://www.udemy.com
4https://www.datacamp.com
5https://www.codecademy.com

161
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B.2 Chatbots and Dialogue Assistants Courses

A common course about building a chatbot is based on two approaches. Either it is a ser-

vice within the cloud environment, which provides complete or partial Natural Language

Processing (NLP) (especially Natural Language Understanding (NLU)) functionality. Al-

ternatively, it is the course of how to implement an End-to-End (E2E) chatbot from

scratch.

The courses related to a cloud service are usually based on a specific technology de-

veloped by significant companies in the field like IBM, Amazon, or others:

• Coursera — Building AI Powered Chatbots Without Programming (IBM) 6

• edX — Microsoft Bot Framework and Conversation as a Platform (Microsoft)7

• Codecademy — Introduction to Alexa (Amazon)8

• Codecademy — Conversational Design with Alexa (Amazon)9

• Codecademy — Learn the Watson API (IBM)10

• Udemy — Building a Google Home bot! (With SpaceX knowledge) (Google)11

• Udemy — Building Apps Using Amazon’s Alexa and Lex (Amazon)12

The next group of courses is more technologically independent (even though not en-

tirely) and try to show advantages and disadvantages of various solutions:

• Coursera — Sequence Models13

• Udemy — Deep Learning and NLP A-Z™: How to create a ChatBot14

• Udemy — Build Incredible Chatbots15

• DataCamp — Building Chatbots in Python16

• DataCamp — Natural Language Generation in Python17

6https://www.coursera.org/learn/building-ai-powered-chatbots
7https://www.edx.org/course/conversation-as-a-platform-with-the-microsoft-bot-framework
8https://www.codecademy.com/learn/learn-alexa
9https://www.codecademy.com/learn/alexa-conversational-design

10https://www.codecademy.com/learn/ibm-watson
11https://www.udemy.com/course/building-your-own-action-on-google
12https://www.udemy.com/course/actions-on-google-app-google-assistant
13https://www.coursera.org/learn/nlp-sequence-models
14https://www.udemy.com/chatbot
15https://www.udemy.com/course/build-incredible-chatbots
16https://www.datacamp.com/courses/building-chatbots-in-python
17https://www.datacamp.com/courses/natural-language-generation-in-python
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B.3 Time Series Courses

Processing of time-series includes pre-processing of influencing data (§4) and data fusion

(§5). There are several courses from basic to advance ones; some advanced courses require

more knowledge or even experience with this type of data.

Amongst plenty of time series related courses (for instance Udemy offers at least 20

relevant courses for time series analysis search) here are some examples:

• Coursera — Sequences, Time Series and Prediction18

• DataCamp — Introduction to Time Series Analysis in Python19

• Udemy — Python for Time Series Data Analysis20

B.4 Artificial Intelligence Courses

When building End-to-End (E2E) chatbot models (§8) we usually utilize Artificial In-

telligence (AI) and thus an Artificial Neural Network (ANN). Knowledge of various AI

models including Long / Short Term Memory (LSTM), Recurrent Neural Network (RNN)

and Generative Adversarial Network (GAN) is crucial for further understanding and im-

provement of chatbots.

The next courses examples fit such criteria:

• Coursera — Deep Learning Specialization21

• Coursera — TensorFlow in Practice Specialization22

• edX — Introduction to Artificial Intelligence (AI)23

• edX — Deep Learning with Python and PyTorch24

• Udemy — Practical Deep Learning with PyTorch25

18https://www.coursera.org/learn/tensorflow-sequences-time-series-and-prediction
19https://www.datacamp.com/courses/introduction-to-time-series-analysis-in-python
20https://www.udemy.com/course/python-for-time-series-data-analysis
21https://www.coursera.org/specializations/deep-learning
22https://www.coursera.org/specializations/tensorflow-in-practice
23https://www.edx.org/course/introduction-artificial-intelligence-3
24https://www.edx.org/course/deep-learning-with-python-and-pytorch-2
25https://www.udemy.com/course/practical-deep-learning-with-pytorch/



Bibliography
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[25] O. Dušek, J. Novikova, and V. Rieser, “Evaluating the state-of-the-art of End-to-
End Natural Language Generation: The E2E NLG challenge”, Computer Speech
and Language, 2020, issn: 10958363. doi: 10.1016/j.csl.2019.06.009.

[26] I. V. Serban, R. Lowe, P. Henderson, L. Charlin, and J. Pineau, “A Survey of
Available Corpora for Building Data-Driven Dialogue Systems”, 2017. [Online].
Available: https://arxiv.org/pdf/1512.05742.pdf.

[27] J. Deriu, A. Rodrigo, A. Otegi, G. Echegoyen, S. Rosset, E. Agirre, and M.
Cieliebak, “Survey on Evaluation Methods for Dialogue Systems”, May 2019. [On-
line]. Available: http://arxiv.org/abs/1905.04071.

[28] A. M. Turing, “COMPUTING MACHINERY AND INTELLIGENCE”, Mind,
vol. 49, pp. 433–460, 1950. [Online]. Available: https://www.csee.umbc.edu/
courses/471/papers/turing.pdf.

[29] S. A. Abdul-Kader and J. Woods, “Survey on Chatbot Design Techniques in Speech
Conversation Systems”, Tech. Rep. 7, 2015. [Online]. Available: www . ijacsa .

thesai.org.

[30] S. Prabhumoye, F. Botros, K. Chandu, S. Choudhary, E. Keni, C. Malaviya, T.
Manzini, R. Pasumarthi, S. Poddar, A. Ravichander, Z. Yu, and A. Black, “Build-
ing CMU Magnus from User Feedback”, in 1st Proceedings of Alexa Prize (Alexa
Prize 2017), 2017. [Online]. Available: https://s3.amazonaws.com/alexaprize/
2017/technical-article/magnus.pdf.

[31] H. Liu, T. Lin, H. Sun, W. Lin, C.-W. Chang, T. Zhong, and A. Rudnicky,
“RubyStar: A Non-Task-Oriented Mixture Model Dialog System”, Tech. Rep.,
2017. [Online]. Available: https : / / developer . amazon . com / alexa - voice -

service.

[32] J. Pichl, P. Marek, J. Konrád, M. Matuĺık, H. L. Nguyen, and J. Šedivý, “Alquist:
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