University of West Bohemia
Faculty of Applied Sciences
Department of Computer Science and Engineering

Hardware Side-Channel
Attacks on Safety Critical
Devices

PhD Study Report

Enrico Pozzobon

It should be Plzen, 2020

Technical report No. DCSE/TR-2020-03
Distribution: public

Contents

1 Introduction 1
2 Side Channel Analysis 2
2.1 Timing 2
2.1.1 Memcmp Timing Attack 2

2.1.2 Spectre 3

2.2 Power Usage 5
2.2.1 Attack Setup 6

2.2.2 Simple Power Analysis 7

2.2.3 Differential Power Analysis. 8

2.2.4 Correlation Power Analysis 12

2.3 Electromagnetic Emissions 16
2.4 Acoustic Emissions 17
2.4.1 Acoustic Keyboard Snooping 17

2.4.2 Acoustic Cryptanalysis 17

25 Optical00 18
2.5.1 Photonic Emissions 18

2.5.2 Microimaging of Decapped Chips Emissions 18

2.5.3 Optical Random Access Memory (RAM) extraction . . 18

2.6 Data Remanence 19
2.6.1 Data Remanence on Persistent Storage 19

2.6.2 Cold Boot Attacks 19

3 Fault Injection Attacks 21
3.1 Glitching 21
3.1.1 Crowbar Glitching 21

3.1.2 Clock Glitching 23

3.1.3 Electromagnetic fault injection 25

3.1.4 Laser fault injection 26

3.2 Fault injection via software 27
3.21 Row hammer, 27

322 CLKscrew o 28

4 Conclusion 30
4.1 Aims of Doctoral Thesis 30

4.2 Title of Doctoral Thesis 31

Glossary

Acronyms

32

33

1 Introduction

Side-channel attack indicates any attack that is used to break a security algo-
rithm without exploiting a vulnerability intrinsic to the algorithm itself, but
rather by using the information leaked by its physical implementation. Some
examples of information that can be leaked from an algorithm implementa-
tion are execution time, power consumption, electromagnetic radiations and
even sound.

A fault injection attack instead attempts to break a security measure by
injecting faults in the environment where the algorithm is executed, bringing
the hardware outside of its operating conditions.

In modern software engineering, the need for secure algorithms using
strong cryptography is well understood and most developers are expected to
produce secure software. Though that is not always the case, it is overall
true that over the past decade, a stronger focus was put on software security.

With the advancements in the security domain, the attacks also became
more sophisticated, leading to the increase in popularity of side channel anal-
ysis and fault injections as attack methodology. Side channel and fault injec-
tion attacks are often the only practical way to break a correctly implemented
security algorithm. Because of the rising importance of these attacks, it is
crucial for a software engineer to be able to evaluate the risks originating not
only from the algorithm, but also by its implementation and by the hardware
that is executing it; to understand whether it is leaking information or it is
vulnerable to fault injection.

2 Side Channel Analysis

This section describes which types of side channels can leak secret information
even from a well designed algorithm. This list should be considered as an
overview, and aims to show the channels that have been studied and exploited
the most.

2.1 Timing

An attacker can obtain side channel information by examining how much time
it takes for the target device to complete a computation. Timing attacks on
some cryptographical functions have been studied already in 1996 in [1].

2.1.1 Memcmp Timing Attack

The simplest example about timing attacks is the standard C function memcmp
(or equivalently strcmp). This function compares sequentially the bytes in
two chunks of memory (or strings) for a specified length (at most N at a
time, where N depends on the word size of the Central Processing Unit
(CPU) architecture and on the alignment of the two memory chunks) and
returns 0 if all the bytes are identical. If a difference is found, memcmp returns
immediately a non-zero value. By examining how long it takes for a memcmp
invocation to return, an attacker can estimate the number of identical bytes
in the beginning of the two strings.

This so-called memcmp timing attack is especially useful if the attacker has
control on one of the two strings and is able to extract information about the
contents of the other, secret string. For example, suppose that the memcmp is
comparing the user input and a secret password, and only allows the user to
proceed if the input is equal to the password. Now, if the password is L bytes
long, and the bytes can be any value from 0 to 255, it would take up to 256%
attempts to guess the password by exhaustive search. If the attacker is able
to precisely measure the time between the submission of the password and
the reception of the “login failed” message (and assuming optimal conditions
for the attack, e.g. the two strings in memory are misaligned and have to be
compared byte by byte), he will be able to guess each byte of the password in
at most 256 attempts, by checking which of the 256 values results in a longer
execution time of the comparison. This leads to the cracking of the password
in just 256 - L attempts. Figure 1 shows how it is possible to easily measure

Figure 1: Logic Analyzer traces for two different passwords which are verified
by memcmp on a microcontroller. Channel 0 is the serial TX line where the
password is entered, and Channel 1 is the serial RX line where the result of
the comparison is received. Notice that the time between query and response
increases by 15us by providing the correct initial byte (uppercase 'P’ instead
of a lowercase 'p’).

the time of each comparison by using a logic analyzer on the communication
lines of a device.

Luckily, the memcmp timing attack is easily fixed by implementing a version
which executes in constant time like CRYPTO_memcmp [2] from the OpenSSL
library which doesn’t use conditional statements.

2.1.2 Spectre

Other than from the execution time of a function, timing side channel infor-
mation can also be extracted from internal behaviours of a processor, such
as cache misses. When an attacker is able to execute code on the victim’s
machine hardware, even though it is running in a different container or vir-
tual machine, he can extract precise time measurement using the functions
provided by the system, and use it to detect cache misses events. The Spec-
tre vulnerability [3], released in 2017, consists in exploiting the speculative

3

T W N =

if (index < simpleByteArray.length) {
index = simpleByteArray[index | 0];
index = (((index * 4096)|0) & (32%1024%1024—1))|0;
localJunk "= probeTable[index |0]]|0;

Figure 2: Javascript listing used to perform the Spectre exploit in a browser.
Initially, the branch predictor is trained with index=0 to always fulfill the
if condition. Then, the value of index is set to the offset of the target
memory location relative to simpleByteArray, causing it to fail the check
on line 1, while lines 2, 3 and 4 still get speculatively executed. Finally,
the attacker can check which index of probeTable was put in the cache by
measuring the time it takes to read from probeTable. This reveals the value
of simpleByteArray[index] for any value of index, even when it points to
memory outside of the javascript sandbox.

execution feature of a processor to load arbitrary segments of memory into
the cache, and then using accurate timing information to check whether a
cache miss happened.

The attacker can load segments pointed by memory he has no access to,
and then guess which segment was put into the cache by measuring whether
a cache miss happens or not when trying to load other segments into the
cache. This results in the attacker being able to read bytes from memory
which is not accessible to his process.

For example, Spectre allows a javascript advert running in a web page
to read all the data contained in the browser process, even outside of the
javascript sandbox, including passwords and session cookies.

3V
|JP
]]*0—0—0 Output

Input CG——

Figure 3: Typical schematic of a CMOS inverter used as an example to study
the leakage of a logic gate. When the input is switched high, current flows
from the supply through the P transistor into the load capacitor C. When
the input switches to low, current flows from the load capacitor to ground
through the transistor N. When the input stays constant, the output also
stays constant, and there is no current flow.

2.2 Power Usage

Every operation inside an electronic device requires energy to be executed.
This includes usage of the memory bus, mathematical calculations, usage of
peripherals, amongst others. By examining the amount of current flowing
from the power supply of the device into the processor, it is possible to
leak sensitive data even from cryptography algorithms that are normally
considered “secure”.

The energy necessary to switch a bit on the output of a CMOS logic gate
is often cited as the reason for information leakage, since this happens for
every register that is written during the execution of a program. In particular,
the Memory Data Register (MDR) is often considered the leakiest part of
any MicroController Unit (MCU) since it is connected to very long silicon
traces that connect to every word in the memory of the device, and therefore
needs a high amount of energy in order to transfer the word to and from the
memory.

As the amount of energy necessary to flip a bit from 0 to 1 and from 1 to

Power
Supply

Bypass Capacitor

~

—~— Power Traces
R (Shunt resistor) Oscilloscope

Known/Chosen Plaintext/Ciphertext

\/

Figure 4: Attack Setup for a precise power monitoring attack. Notice that the
shunt resistor is placed as close as possible to the target processor (possibly
after the bypass capacitors), and a differential probe is connected across the
shunt resistor.

0 is higher than the energy spent to keep a bit to its previous value, we can
say that the energy necessary to write a word in a register is proportional to
the hamming distance between the previous value and the new value.

2.2.1 Attack Setup

Most power analysis attacks are invasive and as such are typically used on
embedded devices to extract cryptographic information. This is because it is
necessary to place a current measurement device between the power supply
and the MCU in order to obtain high quality power traces.

Typically, the power trace of the target processor is cut and a shunt re-
sistor is placed in series with it. There is no fixed value to choose for the
resistance of the shunt, but it should be chosen to be as large as possible to
make current measurements easier, but small enough that the processor still
operates correctly. For example, on a low power ATmega328P, the shunt can
be 1202, while on a more powerful MPC5748G it should be around 1£2. To
remove an undesired low-pass effect form the capture, as many bypass capac-
itors should be removed from the Printed Circuit Board (PCB) as possible
while keeping the device stable and the shunt resistor should be put after
them, as close as possible to the target chip, as shown in Figure 4.

It is good practice to power the device using an external power supply with

Figure 5: Modifications made to a small STM32F103C8T6 development
board (“black pill”) in order to make power monitoring side-channel attacks
easier: the power supply trace was cut and a shunt resistor was placed in its
path (1), an SMA connector was soldered to the Voo pin (2), and all bypass
capacitors were removed from the PCB (3). An N-channel MOSFET was
also installed for crowbar glitching attacks (4), described in section 3.1.1.

low noise characteristics, as usually the switching power supplies included in
most devices have a high amount of ripple that would negatively affect the
measurements. After the shunt resistor has been put in place, a differential
probe from an oscilloscope is placed across it. Alternatively, if the power
supply is stable enough, it is sufficient to connect a single probe to the supply
pin of the device (Vpp/Vee) and then set the oscilloscope in AC coupling
mode in order to discard the DC offset of the power supply.

In order to allow the capture of as much information as possible, high
bandwidth connections should be used to connect the oscilloscope to the
target device. Figure 5 shows an SMA connector soldered on a development
board to allow high bandwidth traces to be acquired.

2.2.2 Simple Power Analysis

The simplest form of power analysis is leaking bits directly from visual anal-
ysis of the power trace. This is particularly useful on algorithms that operate
on individual bits sequentially, since the contribution of each bit is visible

““
p |

\“}“\h‘ W m \4\ N ‘f }H

| \

!v . /r\
Wi ‘./, i J "y 'R 1 M !

\ M ﬂ
‘ |

I n ‘m{«\f |
“\ \J‘ I J ‘W ‘“J} .'\“‘I!‘b W V l

square
square
square
square
square
square
square
square
square
square

multiply
multiply
multiply
multiply
multiply
multiply
multiply

Figure 6: Simple Power Analysis of a RSA power trace (detail). When a bit
of the secret exponent is 1, both the “multiply” and the “square” steps need
to be executed. When the bit of the secret exponent is 0, only the “square”
step is executed. Since the “square” and “multiply” operations have different
power signatures, it is possible to recover all bits of the secret exponent.

at a separate moment in time in the power trace. One example of such an
algorithm is the square-and-multiply operation used in RSA, for which the
multiply step is only executed when the examined bit of the exponent is 1
and not when it is 0.

2.2.3 Differential Power Analysis

More refined power consumption analysis can be executed by capturing mul-
tiple traces of the same algorithm being executed with different input data,
and then comparing the differences between the traces. This process is de-
fined as Differential Power Analysis (DPA) [4].

One example usage of DPA is breaking secure symmetric encryption,
like Advanced Encryption Standard (AES). In order to do this, an attacker
first needs to collect a large number of power traces of the target device
performing AES encryptions with the same key but with multiple different

8

Voltage [V]
N
©
%!

2.90 A
2.85 A
2.80 A
2.75 1
0.00 0.02 0.04 0.06 0.08 0.10 0.12
Time [ms]

Figure 7: Power trace acquired from running TinyAES with a 128-bit key on
an STM32F103C8T6, with the 10 rounds clearly visible.

plaintexts, possibly uniformly random. It is also necessary that the attacker
knows either the ciphertext or the plaintext associated with each trace he
acquired.

Trace Alignment

When executing DPA| it is important to align the different traces in a
way that the target algorithm is at the same time offset in all the traces
(also called synchronization). This alignment can be achieved with signal
processing techniques, such as cross-correlation of the traces.

In some traces, the target algorithm might be interrupted by either a
preemptive scheduler or any hardware interrupt. It can be useful to be able
to identify these defective traces and delete or fix them.

When the clock of the target processor changes over time, it is also neces-
sary to compensate this by “stretching” the power trace, for example using
resampling. This can happen both in high end targets (e.g. the Intel Turbo
Boost technology increases the clock dynamically) and on cheaper ones (e.g.
many MCU allow operation using an internal oscillator, which changes its

resonating frequency depending on the temperature).

Choice of an Intermediate Value and Point of Interest

Once the traces are aligned, the attacker needs to choose a sample or a
range of samples which leaks some material which can be used to recover
the secret key. As explained earlier, instructions that operate on the MDR
are particularly “leaky” and therefore “memory store” and “memory load”
instructions are preferred targets.

The sample where the attack will be performed is called the Point of
interest (Pol), and should be sampled at the point in time when some in-
termediate value of the cryptographic computation is stored or loaded from
memory.

The target intermediate value should be the result of a combination be-
tween some constant data unknown to the attacker (the secret key) and some
variable data which is known to the attacker (e.g. the ciphertext in a known
ciphertext attack). When possible, the target intermediate value should be
chosen to be the output of a nonlinear function, in a way that small errors in
the estimation of the key would be easily detectable with large changes in the
power consumption. As an example, the output of an Exclusive OR (XOR)
operation is a bad choice for a target intermediate value, because an error in
a single bit of a byte always results in a difference in power utilization of 1/8
(assuming the power consumption is proportional to the hamming distance
of the original value in the register and the new value). On the other hand,
the nonlinear SubBytes operation of AES is a good choice because an error of
a single bit in the input leads to random and uniformly distributed hamming
weights in the output.

When attacking AES, the attacked intermediate value is usually the out-
put of the first SubBytes operation of the encryption when performing a
known plaintext attack, or of the decryption when performing a known ci-
phertext attack. Assuming a known plaintext attack, and remembering that
the output of the first SubBytes of an AES encryption is:

intermediate = SubBytes(AddRoundKey(plaintext)) (1)

We can write the expression for every byte i of the intermediate state:

intermediate[i] = sbox[plaintext][i] & key[i]] (2)

There are different approaches for finding the moment in time when the

10

target intermediate value is written to memory (and therefore the Pol), for
example using timing information and emulating the execution time of each
instruction of the target algorithm (if the software is available to the at-
tacker); by visual inspection of the trace and knowledge of the working of
the algorithm; by correlating each “time slice” of all the traces with the data
known to the attacker; or simply by exhaustive search.

Differential Power Analysis using Least Significant Bit (LSB)

For performing DPA, the attacker needs to group the traces in two sets
according to some power utilization model and a selection function, and
compute the Difference of Means (DoM) between the two sets. A simple
selection function to use for this is the LSB model, which takes the last bit
of some intermediate value of the attacked algorithm. The LSB selection
function simply consists in performing an AND operation between the target
intermediate value and 1, which for the attack on AES introduced before is:

LSB(intermediate[i]) = 1 A sbox[plaintext[i] ® key[i]] (3)

This selection function assumes that the initial value of the register where
the target intermediate value is written (usually MDR) is the same for every
trace.

For any hypothesis k for byte key[i], we can group the traces into two
sets: one for which the LSB of the intermediate byte is 0, and the other for
which it is 1. For every possible value k from 0 to 255, the attacker computes
the value of LS B(intermediate[i]) and uses it to split the traces in two sets,
of which he computes the DoM. This can be represented as the following
binary matrix H, for which every element H,j represents the group (either
0 or 1) that trace d belongs to given that the key byte is k:

Hgy = 1 A sbox|plaintexty[i] ® k] (4)

Then, given D being the number of traces and T};; being the value of
trace d at sample t, the difference of mean matrix R can be represented as:

S Tue-Hape > Tup- (1— Hayp)
Rk,t _ d:lD _ d:lD (5>
> Hap > (1= Hag)
d=1 d=1

11

Then, the correct value of the examined key byte will be:

) (6)

because for wrong key bytes, the incorrect contributions of the LSB terms
in the DoM will average out to zero, while when k£ is the correct hypothesis,
the DoM will be maximized.

When attacking AES-128 (with a 128-bit, 16-byte key), it is sufficient
to repeat this computation 16 times on the first round of the encryption or
decryption algorithm. When attacking AES-192 or AES-256, the first 16
bytes of the key are leaked in the same way, while further bytes have to
be leaked from the successive rounds, keeping in mind to include the key
schedule algorithm into the calculation of the intermediate values.

Figure 8 and 9 show the empirical results of trying to perform a DPA
attack on TinyAES [5] with a 128 bit key on a STM32F103C8T6 MCU using
a Rigol DS10547 oscilloscope sampling at 500 Msps, in a known plaintext
scenario (the attacker knows the plaintext and wants to extract the key).
Both figures show results when trying to extract the first byte of the key, but
the results are similar for all bytes.

k = arg max (|Rk tpor
k I

2.2.4 Correlation Power Analysis

Correlation Power Analysis (CPA) differs from DPA in that the Pearson
Correlation Coefficient (PCC) is used to choose one of the hypothesized key
bytes instead of a simple difference, allowing to use much more accurate
power utilization models instead of binary models like the LSB used before.
Unlike DPA, CPA does not require splitting the traces in two groups and
considering the differences between the entire groups [6].

The first steps for performing a CPA attack are identical to a DPA attack,
meaning that the acquisition of power traces, their alignment, and the choice
of a target intermediate value and point of interest are performed in the same
way.

The attacker computes an expected power utilization at the Pol for each
trace and for each hypothesised value of the key byte, usually by using the
Hamming Weight of the value or its Hamming Distance from the previous
contents of the register. When attacking one key byte of AES, this leads to
a D x 256 matrix H, where D is the number of traces and 256 is obviously
the number of possible values that the examined key byte can take. For

12

0 250 500 750 1000 1250 1500 1750 2000
Number of traces

Figure 8: Maximum value of DoM of the groups created from the LSB se-
lection function with different number of traces. The correct key byte is
highlighted in red. The correct key byte starts becoming recognisable with
300 traces.

the previously considered AES known plaintext attack, using the Hamming
Weight function HW as power utilization model, H for the i-th byte of the
key is:

Hgyy = HW (sbox[plaintexty[i] & k]) (7)

Finally, assuming L is the length of each trace, and 7' is the D x L matrix
where each trace is a row, the PCC is computed between each column of T’
and column of H, resulting in the new matrix R which is 256 x L:

(8)

The correct value of the key byte k is then obtained by:

) (9)

k = arg max (|R;C tpor
k I

13

0.004

0.002

I ‘m w‘ \‘f\‘y“‘w\“\h‘ W
it
| 'J I

i

0.000

\

% —0.002

—0.004

—0.006

—0.008 | ‘

Figure 9: The Matrix Ry for both DPA (left) and CPA (right) seen as
several plots in the time domain, with each of the 256 lines representing one
value of k, and the index ¢ in the x-axis. Notice that the purple line shows a
much larger magnitude of the correlation compared to the others, indicating
that the value of k associated with that line is the correct one. Notice that
the line has negative correlation because the acquired traces measured the
voltage at the Voo pin, which is inversely proportional to the current across
the shunt resistor. The difference of the two plots also shows the superiority
of the CPA compared to the DPA, since the line associated to the correct
key is much more recognisable in the plot to the right.

14

1.0 1

0.8

0.6

PCC

\
0.4 4 i SR 1 J | H\‘ -
Ui/ A ““‘M 1| il |
AL Viw;;" bl

0.2

0 25 50 75 100 125 150 175 200
Number of traces

Figure 10: Maximum value of the PCC, using the same traces used in figure 8.
The attack extracts the correct key byte univocally already with 40 traces,
showing that CPA requires around one eight of the traces to work when
compared to DPA.

because for wrong key bytes, the incorrect Hamming Weights will not
correlate with the actual power usage at the Pol, while when k is the correct
hypothesis, the correlation is maximised. When attacking AES, the correla-
tion in CPA often works so well that the only sample that will correlate in
any relevant way is the Pol, so it is possible to skip the selection of the Pol
entirely and just assume the correct leaked key byte to be:

~

kzargmgx(mtax(|Rk7t‘)> (10)

Compared to DPA, CPA correctly guesses the bytes of the key with a
much lower number of traces, and needs less manual intervention to find the
Pol sample in the traces. The comparison between DPA and CPA can be
seen on Figures 8 and 10, which were realised from the same acquisitions,
but show that CPA can be successful with a much lower amount of collected
data.

15

2.3 Electromagnetic Emissions

The high frequency switching of logic gates in a MCU also causes information
to be leaked in the form of electromagnetic radiation. A magnetic field is
generated every time a charged particle (e.g. electron) travels through a
conductor, and it is possible to capture this magnetic field with accurate
probes. The usage of this side channel to eavesdrop is referred to as Van Eck
phreaking, and it can also be used to leak secret cryptographic material.

Similar to what was described for power consumption leakages, differ-
ent signal processing techniques can be used to analyse the captured data,
with either simple electromagnetic attacks Simple ElectroMagnetic Attack
(SEMA) looking to extract secret bits by analysing a single captured trace,
or Differential ElectroMagnetic Attack (DEMA) which operate of the dif-
ferences of multiple traces captured from the same algorithm. These attack
techniques use the exact same mathematical functions used by power analysis
attacks (Simple Power Analysis (SPA), DPA and CPA), since the magnetic
field is proportional to the current which itself is proportional to the power
consumption of the device.

Electromagnetic side-channel attacks can be made in a completely non-
invasive way by probing completely outside of the device, or they can be
executed closer to the silicon die by physically opening the processor pack-
age. Depending on the distance from the target (and therefore the degree of
invasiveness), data can be leaked more or less easily from the electromagnetic
field.

An example of non-invasive electromagnetic side-channel attack were the
first Van Eck phreaking attacks which were performed on computer Cathode
Ray Tube (CRT) monitors. These emit large amounts of radiation in normal
operation and are therefore easy to eavesdrop on. Even from behind a wall
and in another room, it is possible to reconstruct the image emitted by a
CRT monitor, making this form of side-channel attack an efficient way to
spy on the victim. Modern LCD computer monitors switch a much smaller
amount of current, limiting the amount of radiations leaked, but the attack
is still feasible as demonstrated by [7].

On the other end of the invasiveness spectrum, it is possible to use mi-
croscopic magnetic probes on the bare silicon die of an Integrated Circuit
(IC), in such a way to extract magnetic field traces out of specific areas of
the processor, like for example the memory, the power supply circuitry, or
some cryptographic hardware acceleration peripheral.

16

2.4 Acoustic Emissions

Acoustic Cryptanalysis is also a possible attack used to steal secret informa-
tion by analysing the sound waves coming from the target device, generated
by the mechanical vibrations of several components.

Such attacks can be performed in a non-invasive and undetectable way
either by using microphones in the proximity of the victim (such as using
a smartphone sitting on the same desk as the victim computer) or from a
distance using a laser microphone [8].

2.4.1 Acoustic Keyboard Snooping

One simple example of acoustic cryptanalysis is the recovery of a password
from the sound of a user typing it onto a keyboard, which can be achieved
through the small differences in sound of each key [9].

2.4.2 Acoustic Cryptanalysis

Similar to electromagnetic radiation, operation of a processor can also pro-
duce acoustic emission, for example due to the microphonic effects of ceramic
bypass capacitors, or due to the vibrations of the power supply coils. In these
cases, the emitted sounds are often related to the power consumption of the
device, and therefore the same simple and differential power analysis signal
processing can be used on these sound signals.

The sounds emitted by the vibrations of the components can be outside
of the human hearing range, and were demonstrated by [10] to allow leakage
of cryptographic material even from 4 meters away from the target device,
but generally the bandwidth of this side channel is much lower than other
techniques.

17

2.5 Optical

Side channel information can also be leaked optically through photons. One
simple example of this are LED indicators, like hard drive activity indica-
tors, the lighting patterns of which can directly leak information about what
activity is being executed on the PC.

2.5.1 Photonic Emissions

Picosecond imaging circuit analysis (PICA) devices are able to detect photons
which are emitted by transistors when a logic gate changes value, leading
effective optical attacks on naked silicon dies [11, 12].

2.5.2 Microimaging of Decapped Chips Emissions

Another way secret information can leak out of a processor “optically” is
through visual inspection of the silicon layers, using hydrofluoric acid to
strip one layer at a time and a microscope to obtain high resolution photos
of the logic gates [13]. While this attack is destructive, it allows an attacker
to reverse engineer the hardware of the device and visually read out the bits
of mask Read-only Memorys (ROMs) and flash memories.

2.5.3 Optical RAM extraction

By combining microimaging and Data Remanence (explained in the next
section), it is also possible to visually extract bits out of individual RAM
cells, as done by [14] using a laser microscope.

18

2.6 Data Remanence

Data remanence can happen whenever the hardware fails to ensure that data
is truly no longer accessible after it was marked as deleted by the software.

2.6.1 Data Remanence on Persistent Storage

Obviously, if an attacker can get in possession of a persistent storage device
like a hard drive or a flash memory, he can read out the entire content and any
sensitive information stored within. Less obviously, data that was believed
to be deleted can still be extracted using data recovery techniques. Firstly,
data that is deleted from the file system is still present in the partition, and
extracting a low level dump of the partition can recover the data. Data that
is overwritten in magnetic storage (hard drives, tape backups) still leaves a
trace of the previous contents which can be detected with a more sensitive
read head. A page deleted from a flash memory is often just relocated by the
wear-leveling algorithm of the device, and the data is therefore still present
in one of the pages that were marked as “empty”. One simple and effective
way to avoid the persistent storage of a stolen device to be extracted is to
encrypt the storage drive and either let the user memorize the decryption key
or store it in a Trusted Platform Module (TPM). It is important to remember
that encryption is not completely solving the problem, as it is just “moving”
the concern from securing the sensitive data itself to securing the decryption
key, and the decryption key could still be leaked using, for example, a Cold
Boot Attack.

2.6.2 Cold Boot Attacks

While storing unencrypted sensitive information in a hard drive or other
forms of persistent storage is well understood to be a bad practice and is
easy to avoid by the usage of encrypted storage, the same can’t be said
about volatile RAM. In most situations, it is necessary to store some secret
key in RAM before using it in a cryptographic algorithm, and this can lead
to the leakage of that key to an attacker if a cold boot attack is performed.

A cold boot attack involves the attacker interrupting the supply of power
to the target device at the moment in time where some secret key is stored in
RAM, and then quickly bringing the temperature of the RAM chips down to
a temperature where they retain the data even though they are not connected
to power anymore. In fact, while Static RAM (SRAM) necessitates a power

19

supply to maintain the data, and Dynamic RAM (DRAM) even requires the
data to be periodically refreshed in order to avoid losing it, the time that
it takes for the data to disappear without power grows longer the lower the
temperature of the device is.

Once the temperature is brought down, the attacker will then connect the
RAM chips to another device to extract the contents, or boot some custom
software on the device under attack which will read out the memory without
overwriting it (hence the name of the attack). This attack can be used to
break a Full Disk Encryption (FDE) setup by reading out the part of RAM
where the decryption key for the disk is stored.

The solution for Cold Boot Attacks is to use register-based key storage
to store a symmetric key to use for hardware accelerated encryption of the
entire RAM, but this requires the hardware to support RAM encryption.

20

3 Fault Injection Attacks

While side channel analysis focuses on extracting information from the hard-
ware and software side-effects of an algorithm implementation, fault injection
attacks try to disrupt the state of execution of the algorithm by making use
of many of the same side channels. This usually involves the attacker bring-
ing the target device outside of its operating range, for example changing the
supply to provide a lower voltage than what is specified in the datasheet.

While it is trivial to break or render temporarily unusable a device (denial
of service) with physical access, fault injection attacks are usually done in a
controlled fashion to purposefully break security algorithms and get access
to secret information within a device. One example usage of a fault injection
attack on a MCU would be to disable the debug interface protection to be
able to extract the firmware over a censored JTAG connection.

While this chapter examines only a few of the channels used for fault in-
jection, operating the target device outside of any of its operating conditions
could lead to faults which are desirable by an attacker. It is also possible
that combining multiple faults leads to a successful attack when the individ-
ual faults were useless (e.g. a voltage spike fault only achieving the desired
effect when the target device is below a specific temperature).

3.1 Glitching

A glitching setup involves physically connecting to the electric circuit of the
target device and injecting anomalies in the power supply or other electric
traces, or using electromagnetic fields to inject charges in the conductors
inside a processor.

3.1.1 Crowbar Glitching

Crowbar glitching is one of the easiest forms of fault injection, and consists in
connecting one of the device’s power supply lines to ground in a specific time
interval. The “crowbar” circuit which shorts the power supply is usually
a simple N-channel MOSFET controlled by an Field-Programmable Gate
Array (FPGA) which accurately activates and deactivates the crowbar at
specified points in time after a “trigger” signal [15].

Crowbar glitching is particularly effective at stopping the target processor
from correctly loading some contents of the volatile memory or persistent

21

Power
Supply

_"7 Bypass Capacitor

D Shunt Resistor

—_|_£ | Crowbar MOSFET FPGA

Trigger

Figure 11: Example attack setup for a crowbar glitching attack. Like in a
power analysis setup, it is desirable to place the circuitry necessary for the
attack between the bypass capacitors and the target processor, to reduce the
filtering effect.

storage. One typical example usage of crowbar glitching is preventing the
fetch of a branch assembly instruction. When successful, the processor loads
a NOP instruction instead and prevents the branch from being executed, thus
allowing the attacker to bypass a security check. Another usage of crowbar
glitches is preventing the load of some configuration from the storage, like
an authentication key, so that the processor loads a zero key instead.

The target preparation and attack setup for a crowbar glitch is similar
to what is done for power analysis, meaning the power supply trace is cut
between the anode of the bypass capacitors and the Voo pin of the target
processor, and a shunt resistor is placed on the cut trace. The crowbar
MOSFET is soldered as close as possible to the target processor with its
source connected to ground and its drain connected to the Voo pin. The
shunt resistor is optional but it prevents the capacitor from “compensating”
the voltage spike introduced by the crowbar. Figure 11 illustrates a schematic
of the setup, while figure 5 shows an implementation of that schematic.

To understand when to activate the crowbar, a rough knowledge of the
algorithm that is getting executed and its behaviour in time is necessary, but

22

simple and differential power analysis can usually help this. This is done by
giving different inputs to the algorithm and observing the differences in power
usage (as it is done in DPA) to understand where the input is processed.

Once the attacker has a rough guess on when in time the crowbar glitch
needs to be injected, he can then proceed with a search of the timing pa-
rameters of the glitch (offset from trigger and duration). If the glitch causes
the processor to reset, this indicates that the glitch duration was too long,
and it should be reduced, on the other hand, if the processor keeps work-
ing without any anomaly, it indicates that the duration was too short. For
estimating the correct time offset from the trigger of when to activate the
crowbar, the attacker can use exhaustive search combined with some sort
of feedback from the I/O or from trace analysis to understand if the glitch
was activated too early or too late. Further parameter search strategies for
glitching are explored in [16].

Crowbar glitching can be especially effective against MCUs which use
multiple power supply rails, like the MPC57xx family of devices which has
4 separate power supply domains: Core supply, Flash supply, Low power
supply and Analog to Digital Converter (ADC) supply. In such a device, the
attacker can choose to inject a glitch in one of the power domains without
affecting the others, allowing him to e.g. glitch a fetch from flash while letting
the execution of the code continue normally.

While the setup shown for crowbar glitching only allows the attacker to
inject a voltage spike to OV, more arbitrary waveforms are possible with
more complex setups, for example using a complementary MOSFETSs setup
to make the raising edge of the voltage spike faster, or using a P-channel
MOSFET to send a high voltage spike instead of a low voltage one. More
general glitches like these are usually referred to as power glitching.

3.1.2 Clock Glitching

Clock glitching involves injecting electrical glitches in the clock line of a
processor instead of its power supply line, causing extra raising and falling
edges to be received by the processor, thus violating the maximum clock
frequency specified by the datasheet for a brief time. This kind of attack is
not effective on processors that make use of internal oscillators or produce
an internal clock out by multiplying the external clock using PLL.

[17] shows the results of performing a clock glitching attack on an AT-
Megal63 MCU by injecting a single clock period of duration T, < 57ns on

23

Glitch offset Glitch duration
A
351 I \f |
3 |
25
2
>
g °f
°
>
15¢
1 |
Trigger
Crowbar Gate
0.5¢r Power Supply
O 1 L 1 1 L L 1 L
-50 0 50 100 150 200 250 300 350
Time [ns]

Figure 12: Plot of an oscilloscope trace of a crowbar glitch. The red line
represents the trigger signal which is used as an input to the FPGAs for
timing the activation of the glitch. The blue line represents the output of the
FPGAs which is connected to the gate of the crowbar N-channel MOSFETS.
Finally, the green line is the supply voltage as seen by the oscilloscope. The
shape of the glitch is dependent on the characteristics of the MOSFETSs and
of the supply circuitry.

24

Nominal Period Glitched Period
—_— -

ol [i

Instruction 1 —< Fetch X Execute }

Instruction 2 { Fetch \E
Instruction 3 F
Instruction 4 { Fetch X Execute

Figure 13: Example of clock glitch, together with the execution flow of the
attack presented in [17]. The ATmegal63 uses a 2-stage pipeline, where the
fetch of the next instruction is executed at the same time as the execution
of the current one. Introducing a clock glitch in the third period like shown
would disrupt the fetch of the opcode for instruction 3, causing the wrong
opcode to be executed in the fourth period.

a processor whose minimum nominal clock period is 7T;, = 125ns. On the
abnormally short clock period, the processor tends to execute a different
instruction than the one specified in the code with the executed opcodes
exhibiting a stuck-at-fault pattern, meaning the instruction that is actually
executed is encoded by an opcode where some bits are stuck at the value of
the previously executed opcode.

A typical usage of a clock glitch is for an attacker to “skip” a specific
instruction, for example by replacing a branch instruction that stops access
to some protected function of the firmware with a useless opcode.

3.1.3 Electromagnetic fault injection

Electromagnetic Fault Injection (EMFTI) is the technique of using electromag-
netic radiation to inject faults in a target hardware, which is possible without

25

making modifications to the circuitry or even touching the target device it-
self. Typically, it is performed by pulsing a large electric current through
an inductor in the close proximity of the target chip, which induces currents
within the circuit on the PCB and also inside the IC itself. Even when the
induced currents within the target are small, they can still be enough to
change the voltage on the gate of a transistor and therefore alter the flow of
a program or the state of some memory or register.

3.1.4 Laser fault injection

The same induction of current used in EMFI can also be achieved by using
light directly on a silicon die. The target die must be first decapped, then
a laser can be aimed precisely and glitches can be injected directly at the
individual transistors. [18] shows how it is possible to set the individual bits
on data that is being fetched from memory on a relatively modern ARM
Cortex-M3 MCU.

A simpler form of fault injection using light instead of a laser is described
on [19], which describes how the readout protection eFuses of a PIC18F1320
MCU can be reset simply by shining an ultraviolet light source at the right
angle on the bare die at the right angle while protecting the program flash
with electric tape. The same article also shows that flash memory, just like
old Erasable Programmable Read-Only Memorys (EPROMs), can also be
erased using UV light.

26

N OO W N

codela:
mov (X), %eax
mov (Y), %ebx
clflush (X)
clflush (Y)
mfence
jmp codela

Figure 14: Simple x86 assembly code snippet that causes the row hammer
effect [21]. X and Y are assumed to be memory locations in the two adjacent
rows to the memory row containing the target data. This code consists in a
loop (line 1, 7) that continuously reads data from locations X and Y (lines 2,
3) and then flushes the cache (lines 4, 5, 6) to make sure the next loop will
fetch X and Y from memory again instead of the cache.

3.2 Fault injection via software

Up until now, the shown kinds of fault injection required an hardware attack
setup that would bring the target outside of its absolute maximum rating
limits in some ways. However, fault injection on the hardware level has been
shown to also be possible from software.

3.2.1 Row hammer

Row hammer is an exploit that allows a malicious process to cause changes
in memory areas which it is not allowed to write. This is achieved by rapidly
activating rows that are adjacent to the target row, doing which induces a
small amount of electric charge causing some cells to flip despite not being
written to.

For the attack to work, the attacker needs to be able to execute low-level
code on the target machine. In particular, the most barebone x86 assembly
snippet that can induce errors to happen in adjacent memory rows is shown
in Figure 18. If the attack is successful, it can lead to privilege escalation
[20], because it allows a process to write to memory that the kernel did not
give it permission to change.

The reason why this attack works is the organization of how bits are
stored physically in a DRAM memory. Memory cells are packed extremely
close to each other, and operate on low amounts of current to reduce heat
and save energy, which results in low noise margins. Memory cells are phys-

27

ically organized in rows and columns, where each row is activated by the
address decoder and then each column reads (or writes) a single bit. The
value of each memory cell is stored as a voltage across a capacitor and needs
to be periodically refreshed because of the leakage of the capacitor. The
row hammer attack causes the voltage on a memory cell to leak faster than
expected by inducing currents from activating the adjacent memory rows.
While it would be easy to assume Error-Correcting Code (ECC) memory to
be immune to this attack, it was shown that the row hammer effect indeed
affects ECC memory too.

This vulnerability is extremely difficult to exploit in a real world attack
because it requires the malicious process to successfully allocate two rows
of memory exactly adjacent to the row which contains the target data, and
because it can cause a flip in any of the bits of the row and not only the target
one. Nevertheless, it demonstrates how an hardware fault can be injected
from the software, without the need of physical access and possibly on a
service which allows code execution to an attacker by design (for example a
Virtual Private Server (VPS) on a shared host machine).

3.2.2 CLKscrew

In order to achieve a long battery life, modern smartphones adapt the fre-
quency and voltage of their processors to match the required performance;
this is possible thanks to the Dynamic voltage and frequency scaling (DVFES)
registers that the hardware exposes to the software. Setting these registers to
certain values which are not recommended by the manufacturer, it is possible
to inject glitches in the hardware, causing anything from software crashes to
violations of a Trusted Execution Environment (TEE), as demonstrated by
the CLKscrew attack [22].

Effectively, setting an high frequency with a low voltage is similar to
performing a clock glitching attack without hardware access, because each
frequency requires a determined minimum voltage to operate stably, below
which electrical signals can’t activate logic gates and flip-flops fail to latch
properly.

While it does not need any physical alterations to the hardware, the
CLKscrew attack needs a malicious process running with elevated permis-
sions in the smartphone operating system in order to write to the DVFS
registers and disable the interrupts to achieve a precise timing. However,
this attack was performed successfully to leak secrets from the ARM Trust-

28

Zone TEE which are supposed to be completely inaccessible from even the
operating system.

29

4 Conclusion

As evidenced in the examples presented, security exploitation of software
and hardware implementations can lead to serious consequences even in the
absence of vulnerabilities in the algorithms used. This is especially true where
computers are used in safety critical environments, such as the automotive
field or industrial controllers.

While some software vulnerabilities can easily be fixed with software up-
dates within days from the discovery of the bug, this is not always the case
for devices which are not connected to the internet and therefore can’t be
updated remotely. Furthermore, correcting hardware vulnerabilities is im-
possible without physically replacing components, which comes at a great
cost both in labor and in downtime of the system. For example, if a hard-
ware vulnerability is found in an immobilizer system in a car (responsible for
making it impossible to start a car without the correct keyfob), the manu-
facturer would need to recall all cars of that series and replace the device or
suffer the consequence of having unhappy customers with an insecure car. If
a hardware vulnerability is found in a safety-critical system of the car, like
the Anti-lock braking system (ABS), it can be used by a malicious individual
to hurt the owner.

To combat the exploitation of side channel information leakage and fault
injection, it is necessary to discover these vulnerabilities before releasing
a product to the market, by developing tools and methodologies for the
assessment of the security of an implementation. After that, mitigations both
hardware and software can be developed to render these attacks impossible
or at the very least harder to execute.

4.1 Aims of Doctoral Thesis

e Evaluation of already existing side-channel attacks when performed on
safety-critical devices (e.g. automotive and power grid ECUs).

e Development of new methodologies and tools attest the vulnerability
to Side-Channel Attacks of an algorithm running on a safety-critical
processor.

e Research of software mitigations to limit the effectiveness of side-channel
attack and fault injection from the hardware layer.

30

4.2 Title of Doctoral Thesis

Hardware Side-Channel Attacks on Safety Critical Devices.

31

Glossary

AC Alternated Current. 7
DC Direct Current. 7

JTAG Joint Test Action Group, a standard for debugging electronic devices.
21

LCD Liquid Crystals Display. 16

LED Light Emitting Diode. 18
MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor. 7, 21-24
NOP No-OPeration, an assembly instruction that idles for one cycle. 22

PC Personal Computer. 18

PLL Phase-Locked Loop. 23

RSA RSA (Rivest-Shamir-Adleman) public cryptography algorithm. 8
RX Receive. 3

SMA SubMiniature version A connector, typically used in high bandwitdh
applications. 7

TX Transmit. 3

UV Ultra-violet. 26

32

Acronyms
ABS Anti-lock braking system. 30
ADC Analog to Digital Converter. 23

AES Advanced Encryption Standard. 8, 10-13, 15

CMOS Complementary Metal-Oxide Semiconductor. 5
CPA Correlation Power Analysis. 12, 14-16

CPU Central Processing Unit. 2

CRT Cathode Ray Tube. 16

DEMA Differential ElectroMagnetic Attack. 16

DoM Difference of Means. 11-13

DPA Differential Power Analysis. 8, 9, 11, 12, 14-16, 23
DRAM Dynamic RAM. 20, 27

DVFS Dynamic voltage and frequency scaling. 28

ECC Error-Correcting Code. 28
EMFI Electromagnetic Fault Injection. 25, 26

EPROM Erasable Programmable Read-Only Memory. 26

FDE Full Disk Encryption. 20

FPGA Field-Programmable Gate Array. 21, 24
IC Integrated Circuit. 16, 26
LSB Least Significant Bit. 11-13

MCU MicroController Unit. 5, 6, 9, 12, 16, 21, 23, 26

33

MDR Memory Data Register. 5, 10, 11

PCB Printed Circuit Board. 6, 7, 26
PCC Pearson Correlation Coefficient. 12, 13, 15
PICA Picosecond imaging circuit analysis. 18

Pol Point of interest. 10-12, 15

RAM Random Access Memory. 18-20
ROM Read-only Memory. 18

SEMA Simple ElectroMagnetic Attack. 16
SPA Simple Power Analysis. 16
SRAM Static RAM. 19

TEE Trusted Execution Environment. 28, 29

TPM Trusted Platform Module. 19
VPS Virtual Private Server. 28

XOR Exclusive OR. 10

34

References

1]

2]
3]

[7]

8]

[9]

[10]

[11]

[12]

Paul Kocher. Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems. Advances in Cryptology — CRYPTO 96, 1996.

OpenSSL CRYPTO-memcmp. Constant time memory comparison.

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom.
Spectre attacks: Exploiting speculative execution. In 2019 IEEE Sym-
posium on Security and Privacy (SP), pages 1-19, 2019.

Paul Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. Intro-
duction to differential power analysis. J. Cryptographic Engineering,
1:5-27, 04 2011.

Tiny AES C. A small and portable implementation of the AES ECB,
CTR and CBC encryption algorithms written in C.

Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power
analysis with a leakage model. Proc of Cryptographic Hardware and
Embedded Systems, 3156:16-29, 08 2004.

Markus Kuhn. Electromagnetic eavesdropping risks of flat-panel dis-
plays. LNCS, 3424, 07 2004.

Andrea Barisani and Daniele Bianco. Sniffing keystrokes with lasers/-
voltmeters. Black Hat USA 2009, 2009.

Li Zhuang, Feng Zhou, and J. D. Tygar. Keyboard acoustic emanations
revisited. ACM Trans. Inf. Syst. Secur., 13(1), November 2009.

Daniel Genkin, Adi Shamir, and Eran Tromer. Acoustic cryptanalysis.
Journal of Cryptology, 30, 02 2016.

J. Ferrigno and M. Hlavac. When aes blinks: Introducing optical side
channel. Information Security, IET, 2:94 — 98, 10 2008.

Alexander Schlosser, Dmitry Nedospasov, Juliane Kramer, Susanna Or-
lic, and Jean-Pierre Seifert. Simple photonic emission analysis of aes.
Journal of Cryptographic Engineering, 3, 04 2013.

35

[13]

[14]

[15]

[16]

[17]

[18]

[22]

Adam Laurie and Zac Franken. Decapping chips the easy hard way.
DEF CON 21, 2012.

David Samyde, Sergei Skorobogatov, Ross Anderson, and Jean-Jacques
Quisquater. On a new way to read data from memory. Proceedings of the
First International IEEE Security in Storage Workshop, pages 65-69, 12
2002.

Colin O’Flynn. Fault injection using crowbars on embedded systems.
IACR Cryptology ePrint Archive, 2016:810, 2016.

Rafael Carpi, Stjepan Picek, Lejla Batina, Federico Menarini, Domagoj
Jakobovic, and M. Golub. Glitch it if you can: Parameter search strate-
gies for successful fault injection. In CARDIS 2013: Smart Card Re-
search and Advanced Application, volume 8419, pages 236-252, 06 2014.

Josep Balasch, Benedikt Gierlichs, and Ingrid Verbauwhede. An in-
depth and black-box characterization of the effects of clock glitches on
8-bit mcus. pages 105-114, 09 2011.

Brice Colombier, Alexandre Menu, Jean-Max Dutertre, Pierre-Alain
Moellic, Jean-Baptiste Rigaud, and Jean-Luc Danger. Laser-induced
single-bit faults in flash memory: Instructions corruption on a 32-bit
microcontroller. pages 1-10, 05 2019.

Andrew Huang. Hacking the pic 18f1320. 2007.

Mark Seaborn and Thomas Dullien. Exploiting the dram rowhammer
bug to gain kernel privileges. 2015. Google Project Zero.

Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye, Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flip-
ping bits in memory without accessing them: An experimental study
of dram disturbance errors. Proceedings - International Symposium on
Computer Architecture, 06 2014.

Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. Clkscrew:
Exposing the perils of security-oblivious energy management. 08 2017.

36

