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Abstract
The ubiquitous internetworking of embedded devices in all areas of life is thrived by
various trends e.g. the Internet of Things and the advent of disruptive technologies
such as Artificial Intelligence or Quantum Computing. However, adversaries also
benefit from these developments. Not only the too fast development of the rapidly
advancing and pervading technologies lead to a broad spectrum of security problems
but also to an increase of capabilities for adversaries in terms of tools, methods and
technologies which place great demands on innovative security solutions. The identi-
fication of network-based attacks or unknown behavior through Intrusion Detection
Systems has established itself as a conducive and mandatory mechanism apart from
the protection by cryptographic schemes. However, these systems show various lim-
itations when it comes to reliably identifying and reacting to cyber attacks. This
report provides an overview of the state of the art of incident handling in the do-
main of network communication security including incident detection, analysis and
response. Open research questions and challenges are pointed out and fundamental
concepts of the future Ph.D. thesis towards an improved incident handling leveraging
anomaly-based detection algorithms are sketched out.
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1 Introduction
This report is an attempt at capturing the state of the art in the domain
of network communication protection by leveraging techniques of incident
detection, analysis and response. In this section the motivation of the re-
search work is provided driven by upcoming next generation threats and
the great demand towards a comprehensive and automated security solution
even when cryptography has been overcome. Research challenges towards in-
trusion detection are stated, requiring the application of new methods from
other disciplines. The section further contains the overall research objective
in anticipation of Section 5 and is finalized by an outline of the report.

1.1 Motivation
The constantly growing number of computer components, the spatial ex-
tent of networks, their interaction with their environment (e.g. automo-
tive: “Always and Everywhere On”) boosted by trends such as Internet of
Things/Everything (IoT/E), Connected Cars, Smart Cities, Industrie 4.0,
5G or Software-Defined Everything and the use of new technologies, e.g.
Artificial Intelligence (AI), not only lead to the improvement of processes
or customer comfort, but also increase system complexity and create new
hazard potentials and risks with regard to the information and operational
security of these systems. This also offers adversaries a broad spectrum of
attack vectors and capabilities such as the usage of cloud or distributed com-
puting, quantum computation for breaking contemporary public-key cryp-
tography [1] or smart AI-powered malware that enables highly sophisticated
and stealth attacks. The rise of next generation threats demands “adopting
new methods of automated prevention methods” stated by John Samuel,
senior vice president and global chief information officer at CGS [2].

Constant monitoring of components, early detection and handling of at-
tacks as well as comprehensive continuous assessments of the security level
of the overall system are therefore unavoidable for securing future-oriented
IT-systems. Especially, security mechanisms are needed that can dynami-
cally and flexibly detect and respond to network attacks. Methods, for in-
stance, that use already known attack patterns for the detection of incidents
are no longer sufficient to secure network infrastructures. Further problems
are stated with respect to two possible fields of applications. Problems in
the automotive sector primarily comprise the integration of IT security so-
lutions to detect anomalies in the vehicle and the interaction to forward
this information to the backend in order to gain added value across fleets,
e.g. by analyzing alarm data from several vehicles. In the industrial sec-
tor, many companies already use standard IT security solutions such as
firewalls, Intrusion Detection/Prevention/Response Systems (IDSs / IPSs
/ IRSs) or anti-virus software. However, these produce an unmanageable
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number of events that cannot be handled by the employees of a Secure
Operations Center (SOC) with available capacities/resources. According to
Michael Roytman, chief data scientist at Kenna Security, “automation is the
name of the game in security” and “machine learning will help filter out the
noise” [2]. Automation not only benefits the analysis of alerts but also to
select and execute appropriate responses without human intervention. Espe-
cially variants of IDSs using anomaly-based machine learning methods have
crystallized themselves as a fundamental part in a holistic security solution
by identifying new attacks even when cryptography has been broken.

1.2 Research Challenges and Objective
The ever-increasing and more advanced attack capabilities and strategies
pose an enormous challenge to classical IDSs and demand more sophisticated
and comprehensive solutions in the near future. Referring to [3], current
IDSs only cover 25% of their threat taxonomy. The actual percentage might
even be lower considering the multitude of degrees of freedom mentioned
in this report. A selection of major challenges and open issues in the field
of network communication protection, in particular the detection, analysis
and response to cyber attacks (using among others anomaly-based machine
learning algorithms) are listed in the following (cf. [4, 5, 6, 7]):

∙ insufficient performance of applied detection systems, especially with
regard to anomaly-based IDSs, by

– missing ability in handling a massive amount of throughput e.g.
due to high computational complexity

– lack of internetworking in a decentralized/distributed fashion;
limited scalability, interoperability

– producing miserable predictive values with respect to the binary
classification (e.g. too many false positives and false negatives)

– no dynamic and adaptive learning working on minimum know-
ledge for novel attack classification in real-time

– inefficient pre-processing and poor feature selection
– limited protection against attacks e.g. IoT-based DDoS

∙ novel (zero-day exploits) and high sophisticated (distributed, stealth,
more targeted, long-term, multi-step) attacks, e.g. Advanced Persistent
Threats (APT) can not reliably be detected

∙ increasing amount of alerts (alert flooding) produced by various de-
tection methods with multiple formats can’t reliably be analyzed or
today’s applied analysis methods are very limited to e.g. simple corre-
lation methods

∙ safe (with respect to functional safety) implementation of static and
dynamic response measures such that always a defined and secure sys-
tem state remains in order to avoid hazards to life and limb (e.g. attack
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when driving a vehicle) or high financial losses (industrial plant is par-
alyzed) even when using cyber defence mechanisms

∙ lack of incorporation of anomaly-based IDS outputs into new attack
identification, classical systems assume nearly 100% confidence of alerts
to map an attack

∙ proactive (predictive) and immediate (real-time) response to cyber at-
tacks instead of reactive and “a posteriori” response

∙ lack of automation since often still a high degree of human interaction
is necessary, e.g. system administrators analyze (i.e. verify, correlate)
alerts, update signatures, etc.

∙ contextual information often not taken into account e.g. type of sys-
tems, applications, users, networks, etc.

∙ lack of finding the actual root cause of the incident
∙ inherent resource limitations in terms of memory size, processing speed

as well as energy consumption in the embedded domain restrict the
usage of complex machine learning based methods

The novel principle “cyber resilience” goes far beyond pure cyber secu-
rity and takes a comprehensive approach to protect IT infrastructures from
cyber attacks by securing and restarting operations after attacks have oc-
curred. IDSs are not sufficient anymore to fulfill the needs and the stated
challenges demand for a more holistic solution. The measures and concepts
of cyber security, computer forensics, information security, disaster recov-
ery and business continuity management are components of this approach.
Cyber resilience bridges the gap for a desired (semi-)automated incident han-
dling with the topics around detection, prevention, prediction and response
apart from the protection via cryptography. The term incident, hereinafter,
includes intrusions or failures and is an event that negatively affects the pro-
tection goals of a system. An event is an observed or detected change to the
normal behavior of a system which typically leads to the generation of an
alert. It notifies about a particular event or a series of them sent to responsi-
ble parties. For a detailed definition of an information security event and an
information security incident refer to ISO/IEC 27000 [8]. A further goal is
the reaction to incidents based on available knowledge within networks and
related incidents (expert knowledge, risk analysis, etc.). This also comprises
the output of incident detection systems based on a common format. Espe-
cially with regard to anomaly-based detection methods, the output of such
do not provide much context to single anomalies, which makes the identifica-
tion of attacks difficult. Information from multiple detection mechanisms in
conjunction with historical data and expert knowledge creates a framework
from the detection, to the prediction towards appropriate proactive/reactive
reactions. In the context of anomaly-based detection mechanisms such re-
actions could include the proper adjustment of features or parameters in
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order to reduce false positives or to prevent even highly sophisticated multi-
staged attacks. Thus, the overall research objective discussed in Section 5 is
defined as: How to increase the network communication security of
computer networks with a focus on future-oriented automotive in-
frastructure by establishing an anomaly-based incident detection
to mitigate/counteract novel malicious activity propagation?

1.3 Report Outline
The rest of this report is structured in accordance with the most impor-
tant stages of a cyber defense life cycle [9, 10, 11, 12], e.g. shown in Fig-
ure 1, namely incident detection, incident analysis and incident response.
Section 2 provides an overview of incident detection mechanisms including
classical IDSs with their various characteristics, methods and specificities
in order to detect security-relevant incidents. A focus in this section lies on
anomaly-based machine learning methods which are mandatory in order to
detect novel malicious behavior. Two examples for network-based anomaly
detection methods, Isolation Forest and Loda, are presented which satisfy
requirements stated. Furthermore, the combination of learning methods is
discussed which also intersects with the proceeding Section 3 which mainly
deals with the analysis of detected incidents. Apart from a taxonomy of
alert analysis fields, the section deals with alert pre-processing including the
discussion of appropriate alert exchange formats, processing by e.g. present-
ing alert correlation techniques and post-processing covering among others
the prediction of malicious activity. Section 4 discusses incident response
systems including their taxonomy, appropriate exchange formats and possi-
ble response measures. For those, again two examples are provided focusing
on the adaptability of IDSs and the reconfiguration of the network infras-
tructure applying Software-Defined Networking (SDN). The fundamental
concepts of the future Ph.D. thesis are sketched out in Section 5 pointing
out some requirements. A short conclusion and a glance at the future work
with respect to the preliminary ideas to ongoing developments that imply
the aims of the doctoral thesis are finalizing the report in Section 6.

Figure 1: Cyber defense life cycle [4]
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2 Incident Detection
Cryptographic mechanisms alone cannot provide a holistic security solution
for network communication protection in the future. For instance, if an ad-
versary compromises a sensor node, it is easy to inject malicious data. A
possibility to detect attacks is to apply an IDS which is a component that
monitors the events occurring in a computer system and/or network such
that malicious actions attempting to compromise security primitives can
be detected. At the beginning of the 1990s, Todd Herlein was invited to
an IEEE conference in Oakland where he first introduced an IDS that was
based on network traffic [13]. Since then, some progress has been made with
regard to IDSs. Especially in the embedded sector, there has been an enor-
mous increase in research activities in recent years. This is due to (1) the
increasing networking of systems, (2) the development of more powerful and
complex embedded systems and (3) an increasing demand due to an almost
uncountable number of new and high sophisticated attacks. The permeation
of connecting everything in various fields, inspired by the so-called “IoT-
ification”, can not only be seen in the industrial automation and avionics
sectors but also in the automotive domain which are common application
fields for embedded IDSs.

2.1 Taxonomy of IDSs
An overview and summary of a taxonomy of IDSs is depicted in Figure 2 and
can be found in [3]. In the following subsections, details on the taxonomy
are provided including architectures, detection methods and other typical
characteristics for IDSs.

2.1.1 Architectures

The research and solutions for attack detection mechanisms are wide-ranging
and manifold. However, from a higher perspective there are two main archi-
tectures of IDSs: Host-based IDS (HIDS) and Network-based IDS (NIDS).
HIDSs are applied on a single host to monitor all events for malicious actions
for instance event logs, system logs, file access, running processes. In [14] an
example of a distributed denial-of-service attack detection in cloud com-
puting utilizing a HIDS is presented. To detect network-based attacks in a
network consisting of multiple computers, a HIDS must be installed on each
of them. If a computer has been compromised or disabled by an attacker, the
attack detection system is no longer trustworthy. Monitoring mainly takes
place via four types of parameters. Those are the file system, the log files,
the operating system kernel and the network connections. For systems that
monitor changes to the file system, an attempt is made to detect when an at-
tacker wants to gain control over the file system. For this purpose, changes to
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Figure 2: Taxonomy and survey of IDSs [3]

file sizes or file permissions are checked and evaluated cyclically. This method
becomes problematic if the file system often undergoes changes, for example
through the installation of software. Another possibility is to monitor log
files of installed programs. If these reports contain information about pos-
sible attacks, the responsible administrators or users of the affected device
can be warned. In addition, attacks can be detected directly at the operat-
ing system kernel level. The kernel has the ability to monitor all activities
of a computer, so it can draw conclusions about malicious activities based
on system calls and their parameters. As a countermeasure, the operating
system can terminate the affected processes and thus render them harmless.
In contrast to a NIDS, the content of network packets is not taken into ac-
count by HIDSs. Instead, connections to unauthorized ports are monitored
and reported. In addition, port scans and an excessive number of connection
attempts can be detected.

NIDSs, in contrast, reside on the network level to monitor and analyze
the network traffic or application protocol activity. Those can either be de-
ployed as dedicated sensors/agents either leveraged as specialized hardware
or applied as software on a networking element. They record network packets
and evaluate them according to e.g. previously described rules or patterns.
The former is called Blacklisting. Here, rules are defined that describe the
properties of network traffic during an attack. In contrast, the other ap-
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proach, Whitelisting, defines a set of rules containing information about the
usual network traffic. If a rule applies, the network traffic in question is not
evaluated as an attack. In contrast to host-based attack detection systems,
attacks can still be detected if several computers in a network have failed or
have been taken over. Since today’s networks are built with switches that
send incoming network packets only to dedicated ports, the sensors of an
NIDS must be connected to the mirroring port. In addition to connecting
the target device, all network packets are sent to this port. Another dif-
ficulty is the maximum bandwidth of the sensor. The data throughput of
modern networks can exceed the processing capability of a sensor and it
must discard network packets. This means that a complete monitoring of
the network traffic is no longer possible. If these two disadvantages do not
occur, an entire computer network can be monitored with a single sensor.
The main attention over the past years focused on the application of NIDSs,
due to the advent of Anomaly-based NIDSs (A-NIDSs) [15] which can be
placed either centralized, decentralized or distributed within networks on
either network switching entities (router, gateway, etc.) or dedicated hosts.

2.1.2 Detection Methods

Detection methods for IDSs can be categorized into anomaly-, signature-,
hybrid-, and specification-based approaches [16, 17, 18] as shown in Figure 3.
However, one may distinguish between two major ones: misuse-based and
anomaly-based.

The misuse-based method, also called signature- or knowledge-based,
refers to the detection of attacks whose patterns are already known, such
as byte sequences in network traffic. Thus, it is founded on a set of rules or
patterns describing network attacks which are either pre-configured by the
system or manually by an administrator. Although signature-based IDSs eas-
ily detect known attacks, it is impossible to detect unknown attacks whose
patterns are not available. Therefore, a main drawback is the lack of sig-
natures that describe all possible variations and non-intrusive activities in
network environments [19]. The anomaly-based detection method creates a
model of trusted activity from collected data samples and then compares
new behavior with that model. Although it allows to detect novel, unknown
attacks, it could lead to false negative and false positive alarms, in which
trusted but previously unknown activities could be classified as malicious.

Both approaches have their merits and demerits for instance anomaly-
based IDSs have a great potential in detecting novel attacks but they tend
to be computationally intensive and are prone to false alarm generation.
In contrast, misuse-based IDSs are fast in detecting known attacks with a
very high accuracy and low false alarm rate but are limited in detecting new
attacks. Thus, in recent years, hybrid approaches, e.g. in [20], have crystal-
lized as the trend towards sophisticated IDS solutions. Hybrid IDSs usually
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Figure 3: Taxonomy of detection approaches for IDSs [16]

combine the properties of anomaly- and misuse-based IDSs. Thus the advan-
tages of both systems can be used by combining the methods sequentially or
in parallel. Another possibility is to combine several anomaly-based meth-
ods in order to achieve better detection rates and reduce the number of false
alarms. Various techniques have been proposed for detecting incidents based
on misuse- and anomaly-based methods, e.g. discussed in [21]. A comprehen-
sive overview of anomaly-based techniques with a focus on statistical tech-
niques and systems, classification-based techniques and systems, clustering
and outlier-based techniques and systems, soft computing-based techniques
and systems, knowledge-based techniques and systems, and techniques and
systems based on combination learners can be found in [7].

Misuse-based Techniques
Techniques for misuse-based IDSs can, according to [22], be based on

∙ signatures (monitored events are matched against a database of known
attack signatures),
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∙ rules (set of “if-then” implication rules to characterize attacks),
∙ transitions (IDS is composed of a finite state machine where state

transitions are used to monitor the system behavior) or
∙ data mining methods (learning algorithm is trained over a set of la-

belled “normal” or “intrusive” data).

Anomaly-based Techniques
Techniques for anomaly-based IDSs can, according to [7, 22], be based on

∙ statistical methods (measure certain system variables over time and
derive statistical values e.g. average, standard deviation),

∙ rules (normal behavior is summarized by a set of rules and anomalous
behavior as a deviation from them),

∙ knowledge-based approaches (rule and expert systems, ontology and
logic based),

∙ soft computing (e.g. genetic algorithms, fuzzy sets),
∙ distance-based approaches (attempt to overcome limitations of statis-

tical outlier detection approaches in higher dimensional spaces where
it becomes increasingly difficult and inaccurate to estimate the multi-
dimensional distributions of the data points and detecting outliers by
computing distances among points),

∙ model/classification-based approaches (anomalies are detected as de-
viations from a model that represents the normal behavior by using
data mining / machine learning techniques e.g. Neural Networks) or

∙ profiling methods (profiles of normal behavior are built for different
types of network traffic, users, programs, etc., and deviations from
them are considered as intrusions utilizing data mining techniques or
heuristic-based approaches).

2.1.3 Modes and Placement

Operating modes of IDSs can either be online (system learns and/or detects
anomalies online [close] to real-time) or offline (system learns and/or de-
tects anomalies offline) by working passively (system is configured to only
monitor and analyze network traffic and alert an operator to vulnerabili-
ties and attacks) or reactively (system works as in the passive mode and
additionally takes pre-defined proactive actions to respond to the threat).
If an IDS is operated in online mode, it can detect anomalies during oper-
ation and can be partially updated at runtime to create new models. This
is a mandatory requirement for systems that are used in real scenarios. In
some areas, even real-time recording of incidents is desirable. Systems that
work offline are usually applied to existing data sets. By evaluating an IDS
solution using existing data sets, one has better comparability with other
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(competing) ones. This is particularly popular for scientific work. According
to [3, 23, 18], IDSs can be categorized as follows. This especially applies to
NIDSs placed in network environments.

∙ Centralized: The centralized computation location works on data col-
lected from the whole network. In the centralized IDS placement, the
IDS is placed in a centralized component, for example, in the border
router or a dedicated host. A disadvantage of this architecture is that
it is difficult (especially with larger networks) to collect all important
data at a central instance. This makes a systemic approach almost
impossible to implement.

∙ Distributed: Unlike the centralized, the stand-alone computation lo-
cation works on local data, disregarding decisions from other nodes.
In this placement strategy, IDSs are placed in every physical object of
the network.

∙ Decentralized: Similar to distributed but the placement follows a
certain strategy, e.g. the network topology/hierarchy. An advantage
here is that all important data can be captured. Disadvantage can be
that not all participants in the network have enough resources available
in order to have a complete distributed approach of the methods and
to leave certain parts out of the overall system.

∙ Hybrid: Hybrid IDS placement combines concepts of centralized and
distributed or decentralized placement to take advantage of their strong
points and avoid their drawbacks. A combination of both, centralized
and stand-alone, can be achieved through cooperative computation,
such that each node can detect an intrusion on its own but also con-
tributes to the overall decision. Here, more powerful components are
used at central locations, e.g. to create models, which usually requires
more resources. The generated models are then distributed in the net-
work to perform detection. These tests can also be performed by weaker
systems, as they require far fewer resources.

Approaches which analyze the data traffic of an entire network with a
central component are not target-oriented, since the amount of data to be
considered requires a high computing power and thus binds resources. In
addition, it is necessary to forward the data to be analyzed to the anal-
ysis component, which leads to an additional network load. Furthermore,
networks are divided into subnets and an analysis of this kind initially pro-
vides little information about the network area in which an anomaly occurs.
An alternative, novel concept is the decentralized use of anomaly detection
systems. Here network sensors are used which are placed in the subnets of
a network. Instead of analyzing the entire network traffic, the data traffic
within each subnet is considered separately and only the anomalous alarms
are passed on to a central component that correlates them. In addition,
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having more and more distributively connected devices, collaborative IDSs
therefore promise to even detect highly advanced distributed attacks. Es-
pecially decentralized NIDSs are popular and a selection of research work
dedicated to them is presented in the following. Already in 2001, an architec-
ture is proposed in [24] that collects decentralized network traffic and sends
it to a central server which classifies it. The drawback of this approach is
the increased network overhead. Statistical methods are first applied to the
monitored data sets in order to classify the outputs with a Neural Network.

Jahnke [25] defines requirements for a decentralized attack detection ar-
chitecture. These include the ability to work continuously without human
interaction, to detect attacks on the IDS itself, or to adapt the IDS to the
system or network behavior over time. Jahnke also proposes the use of the
Intrusion Detection Message Exchange Format (IDMEF) [26], a data for-
mat based on the eXtensilble Markup Language (XML), as a structure for
communication between the components of his architecture. Six components
are proposed: The sensor is defined as a process that collects or generates
measurement data. For each sensor, an adapter is required that monitors
the work of the sensor and processes the aggregated data and transforms
it into the required form of the IDS. The message distributor is required
to receive or send command messages. This is done via the communication
channels, of which there are basically two, on the one hand the already ad-
dressed command messages, on the other hand one for special events, such
as a detected attack. Event processing evaluates the events and determines
the behavior of the last component, the reaction unit. However, there is no
separation of command and event messages. Even a proposed response mea-
sure is not part of this work. A response action requires knowledge of the
underlying network and the available response units. Lupu et al. [27] de-
veloped a decentralized architecture for attack detection and implemented
a communication framework based on IDMEF. The existing libraries for
IDMEF, libprelude-dev and libidmef, has been discussed but an improved
software library adapted to the decentralized architecture has been devel-
oped. In order to define the reaction to received alarms, an own syntax is
used which is based on the developed functions. A programmer is offered
the possibility to register his own callbacks which are called at every event,
i.e. an incoming message. Thus, a programmer can influence the role of a
client himself. The use of IDMEF as an alarm format is suggested because of
the suitable structure and the meaningful definition of fields. The presented
architecture, however, mostly refers to the evaluation of these alarms and
less defines the structure of the sensors. Nevertheless, it represents a suit-
able basis for the evaluation of generated alarms in a decentralized structure.
Hu et al. in [28] presented a method for detecting anomalies in network traf-
fic. They are specifically designed to address the problem of the frequently
changing structures of today’s computer networks. In addition to the inves-
tigation of several different algorithms for the detection of anomalies, a new
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architecture of NIDSs is presented. The data of each packet passes through
several stages of anomaly detection. First, a local model is used that is only
locally present in the respective node. Then further global models, which
are present in all nodes of the network, are applied. The approach demands
many computing resources. However, those are divided between sensors and
a server.

2.2 Anomaly Detection with Machine Learning
An essential focus in current research is anomaly detection using machine
learning (and data mining methods), which makes it possible to detect both
previously known and unknown attacks [29, 30]. An advantage of anomaly
detection is the ability to detect impending failures, as they cause a behavior
that deviates from the standard of a system. With machine learning meth-
ods, various problems can be solved and is also preferably used in the field
of anomaly detection. There are a number of algorithms that serve these ap-
plication areas. In principle, however, a data set is required for each method,
which is used in the training phase for parameterization.

2.2.1 Aspects of Machine Learning

A data set is a set of m data points with n dimensions in which a dimension is
also called a feature. In addition to the actual data, a label, i.e. the expected
result value for the data point can also be available. These labels are required
for some algorithms in the training phase. The data set used for the training
phase is called the training data set. A data set normally contains raw data
which must be translated into an understandable format for a downstream
applied algorithm. The corresponding procedure is called pre-processing.

Pre-processing is a significant part of machine learning and essential in
order to enable an efficient data analysis and to improve the performance
of the algorithm [31, 32]. Data must first be collected and corresponding
information must be extracted from the raw data (feature extraction). Fur-
thermore, a selection of the relevant data for the analysis must be carried
out. This is followed by the actual pre-processing of the data. Possible goals
of the data pre-processing are, for example, to convert the data into an opti-
mal form for the analysis in order to increase the performance of the anomaly
detection or to reduce the amount of data to be analyzed and thus to pre-
serve resources. Data pre-processing and analysis must take place during the
operation of the underlying network with the intention of detecting anoma-
lies promptly. In general data pre-processing describes the necessary steps
before an analysis of data can occur. Data pre-processing methods (with
their respective functions) can be divided into the categories data cleaning
(handling of anomalous, missing, erroneous, inconsistent data), data integra-
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tion (merging of multiple data sources, handling of redundant data), data
transformation (scaling, normalization and categorization of data) and data
reduction (dimensionality and quantity reduction, discretization, compres-
sion of data) [33, 34]. Methods for data scaling or normalization are among
others [35] the min-max or unit scaling (L1- or L2-norm). Two popular meth-
ods exist for dimensionality reduction [36]: Principal Component Analysis
(PCA) and Random Projections. PCA originates from statistics and is used
to locate patterns in high-dimensional data. After such a pattern has been
found in a set of data, its dimension can be reduced (compression). Decisive
is that with the reduction, the information represented by the data is largely
preserved. Due to the Johnson-Lindenstrauss lemma described in [37] several
possibilities were developed to map higher order matrices into lower dimen-
sions. This lemma states that at data points in a high dimension only a small
distortion occurs by mapping into a lower dimension with a certain proba-
bility. Random projection is taking advantage of this lemma. Clustering is
another method of pre-processing data. Here, data is assigned to clusters
according to its nature, such that the data is categorized. This classification
can be used as a pre-processing measure to implement various measures: (1)
The categorization of data may assist the analytic process in the classifi-
cation of data. (2) The type of further processing can be selected on the
basis of the cluster membership of data. (3) Depending on the cluster, data
sampling is possible. (4) Each cluster can be further processed by a separate
algorithm which allows a detailed analysis of the data. Sampling in statis-
tics refers to the selection of a subset of instances from within a statistical
population in order to estimate characteristics of the whole population. In
pre-processing, sampling selects a subset, a representative, of a set to allow
an analysis of only the subset while loosing as little information as possible.
By this measure, the amount of data for analysis is reduced, and therefore
fewer resources are required. For a discussion on various sampling methods
refer to Subsection 4.3.1.

Before features can be extracted from the data, they have to be identi-
fied. This process is called feature selection. “Feature Engineering” [38] and
“Feature Learning” [39] plays an important role in building machine learning
based IDSs since the chosen feature set (the collection of selected features)
highly affects the performance of the IDS. For network-based features, one
may distinguish basic features (derived from packet headers [meta data]
without inspecting the payload, e.g. ports, MAC or IP addresses), content-
based features (derived from payload assessment having domain knowledge
e.g. protocol specification), time-based features (temporal features obtained
from e.g. message transmission frequency, sliding window approaches) and
connection-based features (obtained from a historical window incorporating
the last 𝑛 packets) [7, 40]. For instance, Wang et al. propose an automated
feature learning approach in [41]. They abstract network traffic such that
for spatial features traffic is transformed into “traffic images” to exploit the
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advantages of image processing e.g. image classification based on geomet-
ric features to classify the traffic images, which also indirectly achieves the
goal of identifying malicious traffic. For temporal features, the time series
analysis method is applied to detect malicious behavior on extracted tem-
poral features. The so-called Hierarchical Spatial-Temporal Features-based
IDS is divided into two major steps: first the low-level spatial features of
network traffic are learned using deep convolutional neural networks and
then high-level temporal features are learned using long term short memory
networks. For dimensionality reduction instead of the well-known PCA, the
t-SNE algorithm is used. Different feature representations can be used to
address different fields of anomaly detection. Some of them are considered
naive when they contain basic information about the software or network
(e.g. IP source and destination address of a data packet), while others are
considered rich when they represent deeper details (e.g. temporal relations
of payload content) [38]. According to [3], features can be obtained by the
following processes: feature construction creates new features by mining ex-
isting ones by finding missing relations within features. While extraction
works on raw data and/or features and apply mapping functions to extract
new ones. Selection works on getting a significant subset of features. This
helps reduce the feature space and reduce the computational power [3]. “Un-
supervised Feature Selection” tries to find a relevant subset of features that
preserves the inherent structure as much as possible [42]. This means that
it tries to reduce the number of features without complicating the detection
of anomalies. Since feature selection is an NP-hard problem [43], there are
many approximation solution methods. Luo et al. [44] follows a way to select
features based on “Adaptive Reconstruction Graphs”. This led to the real-
ization that omitting features can improve the result. If some features can
be ignored, the calculation time is also reduced. Wieland et al. [43] follows
an approach based on a Support Vector Machine (SVM). This is used to
model the relationship between the distribution of a particularly invasive
mosquito species. The work was able to identify new features that improve
the underlying detector. However, the method used is extremely computa-
tionally demanding and therefore not suitable for the usage on low-powered
devices. Aljawarneh et al. [45] developed a hybrid model using the follow-
ing classifiers: J48, Meta Pagging, RandomTree, REPTree, AdaBoostM1,
DecisionStump and NaiveBayes. An information gain detector based on mu-
tual information was used to assign an information score to all possible
features. The hybrid model was then applied to the best eight features. The
calculation of the information gain detector is unfortunately dependent on
information that is not always available when using unsupervised learning.

Many algorithms used in machine learning work in two (or three) phases,
the training phase, (the verification phase) and the evaluation phase. In the
training phase, a state or model is build by the selected algorithm. This
model is then used by the algorithm in the evaluation phase to obtain the
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result. An additional verification phase might help to verify and optimize a
built model before the actual operating (evaluation) phase. However, there
are also algorithms that work in one step. In most cases, this involves ob-
taining information from the existing training data set (data mining). Basi-
cally, machine learning based algorithms can be classified into three learning
methods. The biggest difference can be seen in the already known basis of
information. The learning method can already provide information about
which problem the algorithm can solve, e.g. labels for the classification prob-
lem. In supervised learning (1), e.g. [46], the labels for the training data set
are required. These are included in the models during the training phase.
This means that the algorithm adapts the values of the model to the known
labels. The goal is to approximate an unknown function 𝑓(𝑥) with the re-
sulting value 𝑌 . Here 𝑥 are the data points and 𝑌 are the known labels. If
the function 𝑓(𝑥) is approximated, the resulting value can be calculated for
each additional data point. The unsupervised learning (2), e.g. [47], is clas-
sified by algorithms that do not require labels in the training phase. Mostly,
these algorithms are used to analyze the data set more precisely and to
model it. Clustering, i.e. the division of similar data points into groups, is a
well-known representative of this learning method. Semi-supervised learning
(3), e.g. [48], is a trade-off between supervised learning and unsupervised
learning. Here a label is only available for a subset of the data points. This
procedure is used if there are many data points and a label cannot be as-
signed to them completely manually. Hybrid approaches, e.g. [49], try to
exploit the benefits of the aforementioned for instance the better detection
rate when having labelled training data and mitigate their demerits e.g. hav-
ing a false alarm rate when assuming that normal data points are far more
frequent than anomalies.

Furthermore, in machine learning different types of problems, that should
be solved with methods of machine learning or data mining, are distin-
guished. In classification, data should be divided into already known classes
or groups. The regression problem is very similar to the classification prob-
lem, but the result is not a class but a numerical value. With clustering, a
set of data points shall be divided into classes. Each class should only con-
tain points that are similar. Here it can be further differentiated whether the
number of contained classes is already known before or an unknown number
of classes are contained in the data set. The task outlier detection belongs
to the class of algorithms which can detect anomalies with the properties
that these are few compared to the normal data and differ substantially
from it. Such algorithms detect outliers during the evaluation phase without
previously known information about the data e.g. clusters.
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2.2.2 Example of Two Outlier Detection Algorithms

Anomaly detection is a subcategory of classification since there are only two
classes: the anomaly and the normal data class. Often it is also desired to
get not only the class but also a value indicating how likely a data point is
an anomaly, thus assigning scoring values to data points. Bhuyan in [7] cat-
egorizes anomalies into performance-related (caused by network or system
failures or performance degradation e.g. broadcast storm, babbling idiots,
transient congestion, vulnerabilities) and security-related (disagreement of
normal and expected network traffic) ones. According to [50], three kind of
security-related anomalies exist: (1) point anomalies, if a single event can be
considered anomalous given a notation of normality, (2) contextual anoma-
lies when an event can be considered anomalous in respect to a given context
deduced from an event’s behavioral attributes (the same attributes might
not be considered anomalous in another context), and (3) collective anoma-
lies, if a series of events is considered anomalous (even if single events are
not considered anomalous their collective relation might be [51]). Context-
aware IDSs are able to include particular context e.g. network topology,
protocols, system configuration when trying to identify malicious activity.
A categorization of four classes into network-related context, target config-
uration, vulnerability assessment and attack side effects is shortly discussed
in [5]. In the following two representative examples (Isolation Forest [52] and
Loda [53]) for anomaly detection algorithms based on unsupervised outlier
detection algorithms are presented which have been chosen according to the
following criteria for the application as a NIDS:

∙ operation without knowledge of data labels
∙ possibility of online (real-time) detection of anomalies
∙ detection of previously unknown, distributed and advanced attacks

(e.g. APT)
∙ detection of point and context anomalies
∙ modelling and operation in environments which might contain anoma-

lous data
∙ applicability on lightweight devices with little available resources
∙ scalability and flexibility in use
∙ coping with high dimensional data sets

The Isolation Forest algorithm is predestined for anomaly detection
because it does not use distance or density methods which makes it much
less computational intensive compared to methods such as KNN [54] and also
because it is well suited for real-time usage unlike most algorithms [53]. In
addition, it belongs to unsupervised learning and does not require a labelled
training data set, such as Hoeffding Trees [55], as it recognizes patterns and
does not sort out packets based on their label. Furthermore, it is independent
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of the scaling of the data set dimensions since its threshold for determining
anomalies is based on the tree depth [56]. This algorithm attempts to sepa-
rate outliers from other data points by isolating them by taking advantage
of the fact that data points that differ from other data points require fewer
steps to be isolated from them as shown in Figure 4 (a). In addition, the
algorithm uses the observation that when a data set is represented in a bi-
nary search tree, anomalies are inserted in a tree at a shallower depth than
normal values as depicted in Figure 4 (b).

Figure 4: (a) Isolating an outlier, (b) Representation of a tree model [56]

The Isolation Forest algorithm forms several Isolation Trees in the train-
ing phase. These Isolation Trees are then the model for classification in the
evaluation phase. Each tree is a real binary tree, whose nodes are provided
with different information. In the training phase, the training data set 𝑋 is
available with 𝑛 data points. The training data set is divided into 𝑡 subsets
𝑋 ′ and 𝑋. It applies 𝑋 ′ ⊂ 𝑋. Each subset 𝑋 ′ contains 𝜓 data points. An
Isolation Tree is formed from each 𝑋 ′. This is done by recursively dividing
𝑋 ′ by randomly choosing a feature 𝑞 and a value 𝑝. 𝑝 is a random value
between the minimum and the maximum of the feature 𝑞 of all data points
at a node of the tree. New child nodes are formed by processing all data
points for which 𝑝𝑞 < 𝑝 applies, where 𝑝𝑞 is the value of the feature 𝑞 of a
data point, in the left child node. All data points to which 𝑝𝑞 ≥ 𝑝 applies
are processed further in the right child node. The recursion ends when fewer
than two data points have arrived in a node or all data points are equal.
The values 𝑞 and 𝑝 become attributes of the current node. Each node of a
tree has either no child nodes or two. This is repeated for each 𝑋 ′. After the
training phase, 𝑡 Isolation Trees exist.

To classify a data point 𝑥, all Isolation Trees are traversed from the
data point during the evaluation phase. The data point travels through the
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nodes to the previously trained values for 𝑞 and 𝑝. If the data point 𝑝𝑞 <
𝑝 applies, if 𝑝𝑞 is the value of the feature 𝑞 of the data point, the data
point moves to the left child node. If 𝑝𝑞 ≥ 𝑝 applies, the data point moves
to the right child node. This happens until an end node is reached. The
result of this migration is the tree depth. From all reached depths ℎ(𝑥)
the average 𝐸(ℎ(𝑥)) is computed. The calculation of the resulting 𝑠𝑐𝑜𝑟𝑒
is shown in Equation 1. First, 𝑐(𝜓) must be calculated. This equation is
borrowed from the number of unsuccessful searches in a binary search tree.
It represents the average depth reached by a binary tree when it contains
𝜓 data points. 𝑛 is the number of data points used to build a model. 𝐻
represents the “𝜓−1”-th subsequent element of the harmonic sequence. This
can be calculated approximately by Equation 3. The variable 𝛾 represents the
Euler-Mascheroni constant (≈ 0, 57721). The main advantage of the Isolation
Forest algorithm is its low time complexity. This is 𝑂(𝑡𝜓2) in the training
phase and 𝑂(𝑛𝑡𝜓) in the evaluation phase. It should be noted in particular
that 𝜓 can and should be kept small to avoid the effect of swamping.

𝑠𝑐𝑜𝑟𝑒(𝑥, 𝜓) = 2−𝐸(ℎ(𝑥)))
𝑐(𝜓) (1)

𝑐(𝜓) =

⎧⎪⎪⎨⎪⎪⎩
2𝐻(𝜓 − 1) − 2(𝜓−1)

𝑛
for 𝜓 > 2,

1 for 𝜓 = 2,
0 for 𝜓 < 2

(2)

𝐻(𝑛) ≈ 𝑙𝑛(𝑛) − 𝛾 (3)

Loda [53] is presented as another algorithm besides Isolation Forest with
similar properties. It belongs to the outlier detection algorithms with unsu-
pervised learning as well and consists of a collection of 𝑘 one-dimensional
histograms, each histogram approximates the probability density of the in-
put data projected onto a single projection vector. Projection vectors di-
versify individual histograms which is a necessary condition to improve the
performance of individual classifiers. To train the algorithm, projection vec-
tors 𝑤𝑖 are first generated and histograms initialized. Each projection vector
is generated during the initialization of the associated histogram by first
randomly selecting 𝑑− 1

2 , different from zero, features and then randomly
generating non-zero values according to 𝒩 (0, 1). The histograms of each
projection vector are updated with 𝑧𝑖 = 𝑥𝑇𝑗 𝑤𝑖, where 𝑥𝑇 is the transposed
sample vector. The features used must be of approximately the same order
of magnitude. Loda’s output 𝑓(𝑥) on a sample 𝑥 is the average of the loga-
rithm of probabilities estimated on a single projection vector (Equation 4).

𝑓(𝑥) = −1
𝑘

𝑘∑︁
𝑖=1

log 𝑝𝑖(𝑥𝑇𝑤𝑖) (4)
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Loda is especially useful in domains where a large amount of samples
have to be processed because its design achieves a very good weighting be-
tween accuracy and complexity. The algorithm exists in different variants
for batch and online learning. With the batch variant, data instances are
collected and collectively used in the training routine. In this routine the
projection vectors and the histograms are generated. In the online version,
a histogram is continuously updated which makes it possible to use even
on devices with very low resources and thus eliminates the splitting of the
modelling phase and evaluation phase (as necessary with Isolation Forest).
However, in the early running time of the online variant, the algorithm will
probably produce more false positives than the batch version, since the his-
tograms need a certain amount of time to be fully updated. Loda can handle
missing variables and can sort features according to their contribution to the
anomaly score. Also the anomaly detection does not fail completely if single
sensors are missing. In its original form, the algorithm returns a score value.
The larger the value, the more likely it is an indication of an anomaly. How-
ever, this score value can be reduced to a probability by Equation 5). Here
𝑓(𝑥) is the score value of Loda from Equation 4.

𝑝(𝑥) = 1 − 𝑒−𝑓(𝑥) (5)

The complexity theory provides a measure for the representation of the
differences between Isolation Forest and Loda. Table 1 shows the effort of
resources (time and memory complexity) for the execution of both anomaly
detection algorithms according to [53]. In the table, 𝑛 denotes the number of
samples for the training phase, 𝑑 the number of features (dimensions), 𝑘 the
number of trees (Isolation Forest) or the number of histograms (Loda), 𝑙 the
number of samples for the construction of a single tree (Isolation Forest) or
the length of an observation window for the continuous histograms (Loda)
and 𝑏 the number of histogram classes (Histogram bins) for Loda. In Table 1
a distinction is made between Loda with two alternating histograms (1)
and the implementation with a continuously updated histogram (2). The
construct of a binary tree contained in the Isolation Forest can be created
in two ways. If all elements for the creation are not known in advance, then
each element of the 𝑙 elements must be added one after another. In the worst
case, the complexity of the insertion is 𝒪(𝑙) and so 𝒪(𝑙2) results. In the more
likely case (also called average case), all 𝑙 elements are known in advance
and could be sorted by 𝒪(𝑙 log 𝑙) and inserted afterwards. For this, one takes
the middle element, insert it as root node and proceed recursively for the
remaining elements. At the end one gets a so-called “balanced” tree, where
𝑙 elements were inserted with log 𝑙. Thus, a time complexity of 𝒪(𝑙 log 𝑙) can
also be achieved for the creation. The memory complexity when learning
the model is 𝒪(𝑛), where 𝑛 is the number of elements in the data set to
be learned. Once the model has been trained, the memory complexity is
reduced to the number of memory complexities per binary tree 𝒪(𝑘 log 𝑙)
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and is significantly less than 𝒪(𝑛). In contrast to the learning phase, the
time complexity of the classification is reduced by the number of subsamples
𝑙 and results for a binary tree in 𝒪(𝑙) in the worst case and 𝒪(log 𝑙) in the
average case. Thus, the number of 𝑘 trees for the time complexity is 𝒪(𝑘𝑙) in
the worst case and 𝒪(𝑘 log 𝑙) in the average case. For the Loda variant (2),
the time complexity for the training phase is 𝒪(𝑛𝑘𝑑−1/2). The complexity
results mainly from the nested loops with the limits 𝑛 and 𝑘. The use of
“Very Sparse Random Projection” [57] yields a speedup of

√
𝑑 from which

the factor 𝑑−1/2 results.

Time complexity Space complexity
Training Classification

Isolation Forest 𝒪(𝑘𝑙 log 𝑙) 𝒪(𝑘 log 𝑙) 𝒪(𝑘𝑙)
Loda (1) 𝒪(𝑛𝑘𝑑−1/2) 𝒪(𝑘(𝑑−1/2 + 𝑏)) 𝒪(𝑘(𝑑−1/2 + 𝑏))
Loda (2) 𝒪(𝑛𝑘𝑑−1/2) 𝒪(𝑘𝑑−1/2) 𝒪(𝑘(𝑑−1/2 + 𝑏+ 𝑙))

Table 1: Time/space complexity of Isolation Forest and Loda (cf. [53])

2.2.3 Combining Classifiers

Apart from an incident analysis (refer to Section 3 - aggregation, alert
fusion), which combines the alarms of different detection measures (algo-
rithm external combination), there are also mechanisms that can be used
for consensus finding within an algorithm (algorithm internal combination).
The combination of learners is categorized by Bhuyan in [7] to ensemble-
based techniques (algorithm internal) utilizing bagging, boosting and stack
generalization, fusion-based techniques (algorithm external) combining sev-
eral disparate data sources at the data level, feature level or decision level.
Sadighian in [5] categorizes fusion approaches into Winner-take-all approaches
(final decision over the outputs from various IDSs is made based on the deci-
sion of the IDS that has the highest measurement value, e.g. majority vote,
weighted majority vote, behavior knowledge space, naive-Bayes combination,
and Dempster-Shafer combination) and Weight-based approaches (assigning
weights to each IDS as its importance indicator on the final decision which
is then made based on the weighted sum of the measurement values of all
the IDSs, e.g. using Neural Networks or weighted average).

The concept of ensemble-based approaches combining several “weak”
classifiers in order to gain a “strong” one is becoming more and more popular.
These methods weigh the individual outputs and combine them (ensemble)
to obtain a better results. Loda, as well as Isolation Forest, are based on the
principle of producing a strong classifier by combining multiple weak ones
(trees/histograms). However, there exist further work exploiting this con-
cept. Amudha et al. [58] investigates bagging and boosting as two possible
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methods for ensemble learning methods. Bagging performs random sam-
pling, whereas boosting performs sampling based on a continuously updated
distribution. Hu et al. introduced the AdaBoost algorithm in [59], which like
Loda, generates a strong classifier from weak classifiers (decision stumps).
Kitsune uses an ensemble of simple neural networks to distinguish between
anomalies and normal behavior. The research of Mirsky et al. [60] shows
that Kitsune works comparably to offline anomaly detectors and uses few
resources. All this research work show that an ensemble of weak classifiers
provides better results than individual classifiers and works at the same level
as strong classifiers, while even preserving resources.

Kittler et al. [61] present many basic considerations for the combination
of classifiers. These include many rules, such as the product, sum, minimum,
maximum and median rules, as well as majority voting. A surprising finding
is that the comparatively restrictive sum rule even produced better results
than other rules. Voting, in general, is used to generate a collective decision.
The four main components of a voting algorithm are input data, output data,
input votes and output votes. Exact and inexact in this context indicates
whether input objects are regarded as inflexible values or flexible neighbor-
hoods, i.e. whether discrete or non-discrete values exist. There are different
types of voting algorithms, e.g. consensus and compromise voting. Compro-
mise are mainly voting variants based on the median or mean. Preset and
adaptive indicate whether weightings are set or can change over runtime.
Other variants are called threshold and plurality. Threshold voting means
that the output weight exceeds a value, where plurality identifies an output
that has maximum support from the inputs. [62]

With consensus voting, an anomaly is only recognized if all classifiers
recognize it. In majority voting, an anomaly is detected when the majority
detects an anomaly. Consensus voting prefers false negatives compared to
false positives [63]. Gao et al. [64] describe the use of consensus voting for
multiple atomic detectors to improve detection rates. Lin et al. [65] describe
a creditability-based weighted voting system that assesses the creditability
of each anomaly detection algorithm. This is done by comparing the results
of the algorithms with known results of the network trace, in particular
the information of the confusion matrix parameters. Unfortunately this is
not compatible with unsupervised learning. Thus, a way must be found to
obtain information whether an anomaly has been correctly detected or not.
This is difficult to be achieved with unsupervised learning as there is no
such information available. Based on this comparison, the weightings of the
individual algorithms are then determined. Giacinto et al. [66] investigate
different approaches of disparate classification to obtain a single result. They
judge the “Dynamic Classifier Selection” algorithm as the best one. It selects
for each pattern the classifier that finds the correct classification, if such a
classifier exists. Aburomman et al. [67] introduce several ways to combine
different classifiers and state that voting-based systems are the common
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method. Errors introduced by one classifier can be corrected by another if all
classifiers have a similar performance. If the reliability of each classifier can
be estimated in advance, it is possible to increase the accuracy by weighted
voting. Weighted voting can be used more generally than simple majority
voting and is therefore useful in a broader context. If all weightings are
set to 1, simple unweighted voting results. It is important to note that the
classifiers must be sufficiently different, otherwise there will be no significant
improvements.

Many recent publications deal with the use of machine learning algo-
rithms for anomaly detection. In [68, 69, 70] different algorithms and meth-
ods are tested. In some cases, multi-stage methods are presented. Several
algorithms are concatenated to achieve better results. Disadvantage is that
the computational complexity of this method is higher by the application of
several algorithms than with single-staged ones. Therefore, this approach is
less suitable in environments characterized by less available resources with-
out any modification or combination with other methods like sampling. The
doctoral thesis of Taylor [20] presents a hybrid automotive anomaly-based
IDS with a two-staged detector. Special attention is paid to frequency-based
and sequence-based detection, which are specified for their application in
order to identify CAN-frames which deviate from their normal transmis-
sion frequency or from their order in transmission (sequence). A so called
anomaly score is calculated for consensus finding of the different systems and
as a decisive feature for alarm generation. The authors of [71, 72] proposed
a lightweight IDS for wireless sensor networks based on the combination of
the anomaly- and misuse-based technique to offer a high detection rate. The
approach is integrated in a cluster-based topology, to reduce communication
costs, which leads to improving the lifetime of the network. The incoming
data is first provided to the faster signature-based component and if indi-
cated abnormal provided to the anomaly-based SVM. A decision making
model combines then the outputs of both techniques, determines whether
an intrusion occurred and classifies the type of the attack. The incident
is then reported to an administrator for supervision. Guo et al. present
a two-staged hybrid approach in [73] that deploys an anomaly detection
component in the first stage and its output in a second stage either for-
warded to a second anomaly detection component (in the abnormal case of
stage 1) or forwarded to a misuse detection component (in the normal case of
stage 1). The misuse-based component is able to classify between an attack
or not and the anomaly-based component between normal and abnormal
connections. Since misuse-based techniques are typically less complex than
anomaly-based ones a better approach would be to apply the misuse-based
component in stage 1 similarly to the work in [74]. Thus, static checks are
used which correspond to misuse-based (specification-based) detection by
applying simple rules based on known communication matrices used in the
automotive sector (CAN message catalogue). Those filter out inappropriate

22



communication e.g. exceeding payload values in a first place before features
are extracted for a common basis to apply anomaly-based machine learning
algorithms. A simple anomaly analyzer evaluates the outputs of e.g. recur-
rent neural networks, One-Class SVM (OCSVM) and Loda in order to filter
out false positives before logging detected anomalies.

Maglaras et al. propose IT-OCSVM in [75], a distributed intrusion detec-
tion system in a SCADA network characterized by a three layer hierarchical
abstraction into field network, operation network and IT network. It uses a
central OCSVM and a cluster of automatically produced ones, one for each
source that induces significant traffic in the system, an embedded ensem-
ble mechanism, an aggregation method and a k-means clustering procedure
that categorizes aggregated alerts using IDMEF messages. The detection
functionality of the IT-OCSVM is composed of pre-processing (feature ex-
traction from raw data containing all forms: continuous, discrete and sym-
bolic and mapping to numeric-values), the selection of the most appropriate
features (divided into content and time-based features), the creation of clus-
ter of OCSVM models (trained on discrete sources), testing of the traffic
dataset (containing malicious attacks), the ensemble of classifiers (combin-
ing the output of the different OCSVM modules using mean majority vot-
ing), social analysis (technique using Spearman rank correlation coefficient to
add weight to alerts produces from different sources, e.g. difference between
mainly used protocols during normal and abnormal operation of a node),
the fusion of information/alarms (multiple anomaly outcomes are gathered
and classified in terms of importance by k-mean clustering; groups alerts per
source node and gives final scores to aggregated alerts based on the initial
values and the number of similar initial alerts) and communication of the
mechanism (IDMEF file exchange for alerts in terms of e.g. importance, po-
sition, time). The ensemble based mechanism for the outcome of the central
and the split OCSVMs is computed with 𝑞𝑒(𝑖, 𝑗) = ∑︀𝑁

𝑛=1 𝑤𝑖𝑑𝑡(𝑖, 𝑗) where
𝑑𝑡(𝑖, 𝑗) is the outcome of each classifier 𝑛 for sample data 𝑖 originating from
node 𝑗 with assigned weight 𝑤𝑖.

2.3 IDS Evaluation Metrics
According to [7], metrics for IDS evaluation can be divided into data quality
(quality, reliability, validity, completeness of e.g. data source, selection of
samples, sample size, time of data), correctness and efficiency as shown in
the taxonomy of Figure 5.

Evaluation metrics to compare performance (efficiency) and effectiveness
(correctness) can be generally classified into cost-based metrics, information-
theoretical metrics [76], binary classification and resulting from binary clas-
sification, Receiver Operating Characteristic (ROC) [5, 77]. Efficiency deals
with the resources needed by the system executing the IDS including e.g.
CPU cycles or memory demands. Further the timeliness is a metric that
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Figure 5: Taxonomy of evaluation measures [7]

defines how quickly a response is performed after an incident has been de-
tected. Correctness represents the ability of the system to distinguish be-
tween malicious and non-malicious behavior (classification performance) by
measures such as ROC curve, Area Under the Curve (AUC), precision, recall,
F-measure, confusion matrix, misclassification rate, sensitivity, and speci-
ficity. Cost-based metrics assign a cost measure to weight false positive and
false negative rate to consider a trade-off between the cost of a damage
by a successful attack and the costs for impacts of false alarms. Especially
for machine learning based IDSs, a high detection rate is essential. How-
ever, when measuring the accuracy of IDSs, particularly for the problem of
statistical classification, different characteristic values are used. A so-called
confusion matrix is utilized to compare the performance of such algorithms.
The focus of the performance lies on the predictive power of a model and
not on the speed the model performs classification into normal or abnormal
classes (binary classification). The confusion matrix is represented by Ta-
ble 2, in which each row represents the instances of a predicted class, while
each column represents an actual class.

Actual Non-Anomaly Actual Anomaly
Predicted
Non-Anomaly

True Negative (TN) False Negative (FN)

Predicted
Anomaly

False Positive (FP) True Positive (TP)

Table 2: Confusion matrix for IDS evaluation

Where:
TN: normal event/behavior classified as a normal event/behavior
FN: intrusion/anomaly classified as a normal event/behavior
FP: normal event/behavior classified as an intrusion/anomaly
TP: intrusion/anomaly classified as an intrusion/anomaly
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Many other characteristic values (sensitivity, specificity, positive/negative
predictive value, etc. [5, 7, 78]) can be derived from the parameters of Ta-
ble 2. Two examples, the False Positive Rate (FPR) and the True Positive
Rate (TPR) computed by 𝐹𝑃𝑅 = 𝐹𝑃

𝐹𝑃+𝑇𝑁 and 𝑇𝑃𝑅 = 𝑇𝑃
𝑇𝑃+𝐹𝑁 are used to

derive the ROC metric. The ROC-curve is a visual representation of the di-
agnostic ability of a binary classifier. An example of a ROC-curve is shown in
Figure 6 in which the blue curve represents a random classifier whose output
is completely random. The curve of a well-performing IDS is above the blue
curve. This means that the top left corner of the plot is the “ideal” point
with a FPR of zero, and a TPR of one. This is not very realistic but it does
mean that a larger AUC is usually better. The “steepness” of ROC-curves is
also important, since it is ideal to maximize the TPR while minimizing the
FPR. With the help of such metrics results of different anomaly detection
algorithms can be reliably compared or the anomaly detection algorithm
under test can be optimized.
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Figure 6: Example of an ROC-curve

Further performance metrics and capabilities that typically characterize
IDSs are listed in the following.

∙ Resource requirements (efficiency): Resources needed to be allo-
cated by the system including memory usage, CPU load/cycles and
disk space.

∙ Overhead: Computation and communication overhead - especially
considering collaborative IDSs, a reasonable overhead of communica-
tion effort and computation must be achieved.

25



∙ Throughput: This metric defines the level of traffic up to which the
IDS performs without dropping any data instance e.g. a packet.

∙ Timeliness: Average/maximal time between an intrusion’s occurrence
and its reporting.

∙ Resilience: States how resistant an IDS is to an attacker’s attempt
to disrupt the correct operation of the IDS or malfunctions of the
component.

∙ Ability to correlate event: States how well an IDS correlates attack
events from e.g. routers, firewalls, application logs. This already refers
to incident analysis functionality.

∙ Detection of “zero-day” intrusions
∙ Capacity verification for NIDSs: Ability of inspection into deeper

levels of e.g. network packets.
∙ Stress Handling: The point of breakdown is defined as the level of

network or host traffic that results in a shutdown or malfunction of
IDSs.

∙ Depth/Coverage of detection capability: It is defined as the num-
ber of attack signature patterns and/or behavior models known to it.
(Which attacks can be detected?)

∙ Reliability of attack detection: It is defined as the ratio of false
positives to total alarms raised - accuracy.

∙ Error reporting and recovery: The ability of an IDS to correctly
report errors and recover from them.

∙ Self-configuration: Ability to automatically adjust itself without
manual intervention.

∙ Interaction capability with other systems: The ability of an IDS
to interact with other systems such as firewalls or anti-virus systems.

∙ Attack analysis/identification: It is the ability to report the extent
of damage and compromise due to intrusions and to identify an attack
based on common names or exploits (assumes 100% confidence).
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3 Incident Analysis
Many works, e.g. [79], make the assumption for response planning that each
raised alarm (output of an IDS) is treated as one attack (100% confidence of
the alerts). However, this might be true when applying misuse-based IDSs
which commonly have a high true positive and low false negative rate. In
order to detect new attacks with high accuracy, the input of various de-
tection mechanism (including anomaly-based ones) might be important but
operating for instance in safety-critical environments, cross-evaluation or
plausibility checks of various inputs is essential before performing a reaction
in order to reduce false positives to a minimum. A comparison of super-
vised, semi-supervised and unsupervised learning methods for A-NIDSs has
been examined in [80], each having its particular strengths but their detec-
tion capability differ significantly. Not only this circumstance but also (1)
the handling of a massive amount of alerts from various applied detection
sources is a requirement towards incident analysis and (2) the safe selection
and execution of a following incident response measure. Hence, according
to [81], IDSs are not enough to detect complex attacks over a network. Even
they are able to detect some basic attacks, e.g. fabrication and suspension
attack, they fail to detect more sophisticated ones such as the masquerade
attack [82]. An intelligent incident (alert) analysis is therefore necessary in
order to

∙ gain knowledge of multiple detection sources by using a unified format,
∙ identify the root cause of an incident,
∙ recognize pattern between the alerts and historic events,
∙ reduce the number of alerts, cluster and correlate them in order to

prepare the essential information for an administrator,
∙ predict the propagation of malicious action (in this context referred to

malware and cyber attacks).

Alert analysis techniques and methods help to manage and diagnose e.g.
to deal with (a huge amount of) alerts gathered from (various) incident de-
tection components by filtering out alerts, grouping and correlating them or
prioritize important ones. Alerts typically incorporate information (alert fea-
ture) regarding the creation/detection time of an attack or suspicious event,
its description and severity, etc. which is defined by the alert format used.
According to [7], alert management contains three major components: alert
correlation, alert merging (aggregation) and alert clustering. For the sake of
generalization, alert analysis can be broken down into three main fields [6]
as shown in Figure 7: pre-processing (e.g. alert normalization, redundancy
elimination, false positive reduction), processing (e.g. alert correlation tech-
niques, new attack scenario detection) and post-processing (e.g. alert priori-
tization metrics and intention recognition, prediction). For further literature
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to each component in Figure 7 refer to [6]. It is noted that the boundaries of
the categorization into pre-processing, processing and post-processing might
become blurred since for instance a system incorporating alert correlation
might feature prediction capability as a processing and only visualization as
post-processing functionality.

Alert Analysis

Prediction

Prioritization

Impact Analysis

Visualization

Post-ProcessingPre-Processing

Verification

Syntax Semantic

Normalization

Heterogenous

Processing

Aggregation
New Attack 

Scenario Detection
Correlation

Missed Attack 
Hypothesizing

Homogeneous

Sequential-
based Methods

Similarity-
based Methods

Case-
based Methods

Statistical-
based Methods Root Cause Finding

Figure 7: Taxonomy of alert analysis fields (cf. [6])

3.1 Pre-Processing
Pre-processing is the process performed before attack scenario construction.
It is composed of normalization and verification which are fundamental steps
before e.g. a correlation can be accomplished.

3.1.1 Normalization

Security Information and Event Management (SIEM) systems are designed
to help network administrators, typically working in a SOC, to manage se-
curity tools e.g. IDSs operating in the network infrastructure. Typically, the
work of SIEM systems is to aggregate, standardize and correlate alarms.
Today, SIEM systems mainly use internal proprietary formats to describe
alerts. Most of those are inspired of log management tools such as Splunk
and based on syslog with a simple but limited key-value paradigm. However,
the heterogeneity and diversity of existing security tools pose a significant
challenge to SIEM and SOC due to the multitude and diversity of alert
sources demanding the need for a common format. Normalization is used
for the translation of a raw alert into a standardized alert format, e.g. ID-
MEF as proposed by [7]. With the growth of semantic technology and the
inability of e.g. IDMEF only presenting a syntax for formatting, new studies
try to introduce new data models for handling alerts semantically in order
to provide a robust solution [6]. A structured overview of various existing
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exchange formats (“describes a structure for the processing, storage, or dis-
play of data” [83]) and protocols (“a set of rules defining how to interconnect
network devices and establish a channel to transmit network datagrams, rep-
resenting exchange formats, across a computer network” [84, 85]) targeted
to the IDS domain is provided in [83, 86]. Application domains of other ex-
change formats in IT security is depicted in Figure 8. For a comprehensive
overview of standardization attempts for security automation refer to [4].

Figure 8: Application domains of exchange formats [83]

Koch et al. in [86] state several technical requirements for data formats
and exchange procedures for sharing information of interest to IDSs, re-
sponse systems and to management systems including vendor independence,
near real-time capability and scalability e.g. for decentralized approaches.
Message exchange protocols discussed are (1) proprietary protocols, (2) Sim-
ple Network Management Protocol (SNMP), (3) Common Intrusion Detec-
tion Framework (CIDF), (4) Intrusion Detection Message Exchange Format
(IDMEF) including IDMEF Communication Protocol (IDP) and the newer
and recommended Intrusion Detection eXchange Protocol (IDXP), (5) In-
cident Object Description and Exchange Format (IODEF), (6) Format for
Incident Report Exchange (FINE) and (7) Intruder Detection and Isolation
Protocol (IDIP). However, the authors of [83] state that Koch et al. do not
differentiate between a high-level description of functional requirements, an
exchange format or an exchange protocol. Thus, Steinberger et al. in [83]
reviewed 10 exchange formats and 7 exchange protocols that can be used
to share security event related information in context of intrusion detection
and incident handling with respect to their use-case scenario. They further
provided inter alia an assessment of the exchange formats for the interop-
erability and a qualitative evaluation and comparison of the formats and
protocols in context of high-speed networks. Apart from the aforementioned
formats and protocols, the authors introduce further formats (8) Common
Announcement Interchange Format (CAIF), (9) Common Event Expression
(CEE), (10) Messaging Abuse Reporting Format (ARF), (11) x-arf, (12)
Syslog Message Format - IETF RFC 3164 and further protocols (13) Real-
time Inter-network Defense (RID), (14) Extensible Messaging and Presence
Protocol (XMPP), (15) CEE Log Transport Protocol (CLT), (16) Simple
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Mail Transfer Protocol (SMTP) and (17) Syslog protocol. The results of
the evaluation carried out by the authors regarding the discussed exchange
formats and exchange protocols are depicted in Figures 9 and 10.

Figure 9: Evaluation summary of exchange formats [83]

Figure 10: Evaluation summary of exchange protocols [83]

Even if Steinberger et al. provided a comprehensive survey, they did not
mention IDIP which seems a promising candidate for automated incident
response execution and a few other recent formats e.g. the JavaScript Object
Notation (JSON) serialized Intrusion Detection Extensible Alert (IDEA).
According to [86], IDMEF and IDXP can have a likewise effect on research
and deployment of intrusion detection technology what HTML and HTTP
did for the Internet growth. However, Steinberger et al. conclude that it is
still a challenge to find a standardized exchange format and protocol that is
thoroughly validated and tested in full scale of industry trials [83].

A significant drawback of IDMEF is the usage of XML which makes it
easier to develop and deploy, but it comes with a performance cost. Due to
the structure of XML, the data encoded is typically very large (for instance
in comparison to JSON), mainly because of XML’s closing tags. Therefore
parsing XML messages is still a relatively slow task today [86]. The War-
den [87] and MISP [88] projects also bring further interesting approaches.
Warden uses a client-server architecture and offers two different types of
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clients: the receiving-client and the sending-client. With the sending-client
events can be sent to the Warden server, with the receiving-client events
received at the Warden server are also sent to the client side. The Warden
team designed the IDEA format for the transmission of events. It is based on
already existing data formats for the transmission of security relevant infor-
mation (mainly IDMEF) and aims to eliminate weaknesses that these data
formats bring to their system. For example, messages in the AbuseHelper
format consist of any number of keys and associated values which makes this
format easily extensible but can lead to inconsistencies in automated mes-
sage processing. The IDEA format should lie between the complexity and
depth of IDMEF and the loose structure of the AbuseHelper format [89].

3.1.2 Verification

Verification or alert validation is necessary since many problems can occur,
such as misconfiguration, low accuracy of applied detection methods, and
lack of attention to contextual information during the alerts analysis [90].
Therefore verification tries to recognize if any changes have been taken place
in the system monitored since when any new device has been installed in the
system it may produce irrelevant alerts. It helps to filter out alerts with low-
interest, irrelevant alerts or some known false positives. Validation can also
refer to post-processing. In [91] an approach is presented that defines three
major dimensions to recognize attacks and identify the target by validation
of alert correlation systems: prioritization (assigning weight to each alert
based on the probability that it may indicate an attack and dispensation of
the target), multi-step correlation (alert correlator can reconstruct a multi-
step attack scenario by correlating different individual attack steps which is
important to infer attack intention and their effective response) and multi-
sensor correlation (combines multiple alerts received from different sensors
to create an overall picture of the system) [7].

3.2 Processing
Processing mainly copes with the attack scenario construction and contains
aggregation, correlation, new attack scenario detection and missed attack hy-
pothesizing. The outcome of processing serves as a basis, for instance, to rec-
ognize the intention of an adversary which is performed in post-processing.

3.2.1 Aggregation

Aggregation or alert merging, respectively alert fusion, refers to the reduc-
tion of alerts by combining multiple (and possibly heterogeneous sources) of
them to yield a more precise and descriptive result of IDSs. Alert fusion is a
special case (sometimes a sub-process) of alert correlation that collects and
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analyzes alerts independently generated from the same potentially malicious
event by different IDSs, in order to make an appropriate final decision about
the event [92]. The main idea behind aggregation is to provide clustering
and grouping similar alerts based on their features in order to eradicate
duplicates having the same root cause. Especially by the application of dis-
tributed or decentralized IDSs, the exploitation of alert fusion enhances the
overall detection efficiency, improves detection accuracy, fault-tolerance, sta-
bility, and reliability of IDSs and helps to make appropriate decisions [5].
The process is closely related to Subsection 2.2.3 (algorithm external combi-
nation). Finally, with the aggregation of duplicate and redundant alerts, the
uninteresting ones are eliminated and a big view of the security situation
is provided by fusing the same events [6]. Weng et al. for instance propose
an alarm reduction for distributed IDSs using edge computing in [93] ex-
ploiting the strengths of cloud computation while offloading only a limited
amount of information by processing data at the edge for shorter response
time and energy saving. Their proposed framework consists of three layers
which are structured hierarchically from the infrastructure to the cloud side:
IDS layer (performs traffic inspection and false alarm reduction by exploit-
ing the strengths of distributed IDSs), Edge layer (aggregate data from IDS
layer and select most appropriate machine learning algorithm from a pre-
defined pool), Cloud layer (providing sufficient computation resources for
deploying intelligent alarm filters).

3.2.2 Correlation

The homogeneous alert correlation refers to a case that each of the mon-
itoring devices like IDSs examine the same type of data, whereas in the
other one, various deployed sensors examine different types of events and
raw data sources [5]. Salah et al. [94] and Hubballi et al. [95] provide a
comprehensive overview in the field of alert correlation which is defined as
a measure of the relation between multiple alarms such that new meanings
can be assigned to them. Thus, not only the verification of the alerts’ va-
lidity can be verified but also complex attack scenarios can be identified.
The alert correlation process comprises different approaches available in the
literature [95, 96, 97, 98, 99, 100] and has been classified in [7, 101, 102].
However, it must be noted that due to different types of attacks with dif-
ferent sophistication level, there might be limitations in the handling of the
multitude of alerts with equal importance. Hence, it might not be sufficient
to rely on a single component but rather on different ones to concentrate
on various aspects of the general correlation problem. Several factors that
can be used to assess correlation algorithms are stated in [102] composed
of algorithm capability (e.g. alert verification, attack sequence detection),
algorithm accuracy, algorithm computation power, required knowledge base
and algorithm extendibility and flexibility.
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Alert correlation techniques try to reconstruct the attack scenarios from
alerts which may exhibit an attack that involves multiple stages in compro-
mising a network [7]. A taxonomy of alert correlation techniques is provided
by [94] (Figure 12) including types of application and architecture for the
correlation process. In [94, 103] alert correlation architectures are categorized
into centralized (data collection performed locally and reported as alerts to a
central server executing correlation analysis), distributed (alerts or high-level
meta-alerts are exchanged, aggregated, and correlated in a completely coop-
erative and distributed fashion between equally weighted agents; communi-
cation is performed using a peer-to-peer protocol) and hierarchical (referred
to as decentralized by the author of this work; separated correlation into
hierarchical layers of local analysis, regional analysis and global analysis)
and shown in Figure 11.

Figure 11: Different alert correlation architectures - centralized (left), dis-
tributed (right) and hierarchical (bottom) [103]

The number of data sources - single or multiple - with respect to Fig-
ure 12 state that the alert correlation method is sourced either by a sin-
gle data source, e.g. a database or a single security measure, or by a col-
laborative set which allows a more precise and coherent view about the
observed system. The authors further subdivide the correlation methods
into similarity-based, sequential-based and case-based methods, whereas the
authors of [7, 102] introduce apart from similarity-based and case-based
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(referred to as knowledge-based) statistical-based methods and hybrid ap-
proaches (both not shown in Figure 12). However, it must be noted that the
categorization is not completely precise and methods from each class may
show similar behavior or rely on comparable mechanisms.

Figure 12: Taxonomy of alert correlation techniques [94]

Similarity-based methods correlate alerts based on similarities of se-
lected features such as source/destination IP address, time or protocol in-
formation and are designed to reduce the total number of alarms through
aggregation or clustering [94]. Therefore, they can be further subdivided
into attribute-based (similarities between attributes/features) and temporal-
based (temporal time relations) techniques. Mirheidari et al. categorize simi-
larity-based algorithms into ones that are based on simple rules, hierarchical
rules or machine learning [102]. Usually, similarity functions are defined for
the individual alarm attributes and applied to two alarms. Together with
appropriate attribute weightings, a similarity value is determined that re-
flects how well two alarms match. These values are useful because it can be
assumed that alarms with high similarity can be part of the same attack
or suspicious event. The resulting similarity between two alerts can be cal-
culated according to Equation 6 in which 𝑋 𝑖 is the candidate meta alert 𝑖
for matching; 𝑌 is the new alert; 𝑗 is the index over the alert features; 𝐸𝑗
is the expectation of similarity for feature 𝑗; and 𝑋𝑗 as well as 𝑌𝑗 are the
values for feature 𝑗 in alerts 𝑋 and 𝑌 [7]. Further, attribute-based similarity
measures can be computed using metrics such as Euclidean, Mahalanobis,
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Minkowski and/or Manhatten distance functions [94]. Temporal-based meth-
ods, in order to find temporal relationships between alerts, typically rely on
time-windows such that only alerts observed in a short time are to be cor-
related. A benefit is to reduce the number of alerts generated by the same
event in a certain period of time [94].

𝑆𝑖𝑚(𝑋 𝑖, 𝑌 ) =
∑︀
𝑗 𝐸𝑗𝑆𝑖𝑚(𝑋 𝑖

𝑗, 𝑌𝑗)∑︀
𝑗 𝐸𝑗

(6)

Valdes and Skinner presented a probabilistic approach in [104] that falls
into the area of similarity-based methods which extends the idea of multi-
sensor data fusion for alert correlation. This method shall find its use in
the handling of alarms generated by heterogeneous sensors. The correla-
tion algorithm expects features from reported alarms in a self-defined alert
template. For comparable features, suitable similarity functions are defined,
whereby the features of incoming alarms will be compared with a list of al-
ready existing meta-alerts and result in values between 0 (mismatch) and 1
(exact match). The similarity value is composed of a weighted average of the
features, but if one does not exceed the minimum similarity threshold, the
complete alarm is not considered similar. The alarm is correlated with the
most similar meta-alert, otherwise the alarm forms a new meta-alert thread.
The alert fusion considers feature overlap (new and existing alerts may share
some common features), feature similarity (value of similarity scores of same
type of feature), minimum similarity and the expectation of similarity. Since
sensors can classify attacks differently, a matrix of similarities between at-
tack classes is used to compare them. The correlator checks whether the
sensor identification and the incident class match exactly. Then it checks if
all overlapping features at least match the minimal similarity and calculates
the similarity values. If this is the case, the overall similarity is calculated.

Zhuang et al. [105] rely on the work of [104] and extend it with a rule-
based knowledge base. A correlation system architecture consisting of alert
collection, alert verification, data fusion and correlation is proposed and ex-
plained. The correlation process takes into account the features IP addresses,
port numbers and time stamps. Alarms from different sources are collected
by the alert collection module and the features are passed on to the alert
verification. In order to support heterogeneous sensors, different plugins are
used which process the respective alarms, e.g. Snort alarm → Snort plugin).
The alarm information is additionally appended with information about the
plugin that processed it. The transmitted alarms are checked for false pos-
itives by the alert verification based on information regarding the network
topology as well as the hosts and a confidence value is determined. Legiti-
mate alarms are then grouped by the data fusion component using similarity
functions. Using the knowledge base, the last step in the correlation process
is to classify the alarms into an attack scenario, which is also referred to as
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a schema. A schema consists of a number of rules which use the information
from the previous steps such as the confidence value to describe the state of
the monitored system. The description of a schema by the rules resembles
a tree structure and attacks are detected if the rules of a schema are met
from root to leaf. Similarity-based methods prove to be suitable for alert
clustering and reducing the number of alarms as well as discovering simple
attacks with a small number of features. In addition, they are easy to imple-
ment and work well for a known set of alerts with a known feature set, but
find their weakness in recognizing causal and other statistical relationships
between alarms, limited to known alerts only and incapable of identifying
complicated attacks [7, 94, 103].

Statistical-based methods, according to [5, 7, 102], rely on statistical
causality analysis to correlate alerts that are related to some specific attacks
in order to reconstruct attack scenarios. Similar attacks have similar sta-
tistical attributes, and so, they can be categorized easily corresponding to
different attack stages. Statistical computation can be categorized into (1)
detection of repeated and repetition patterns; (2) estimation of causal rela-
tionships between alerts, predicting next alert occurrence, and detecting at-
tacks; and (3) combining reliability by mixing completely similar alerts. Since
these methods are based on statistics, pre-defined knowledge about attacks
scenarios is not required. However, they lack in discovering dependencies,
structural cause relationships between alerts and it is difficult to estimate
correlation parameters. Exemplary work using statistical-based methods is
provided in [100, 106].

Sequential-based methods attempt to determine causal relationships
between alarms using defined preconditions and consequences. This is done
by describing events or states, which are necessary for an attack step, as
preconditions and describing the respective effects or states, which result
from successful execution of this attack step, as consequences. Thus, they
are not limited to known attacks but the correlation may result in many false
correlations due to the misconfiguration of the relationships mainly repre-
sented as logical operators such as AND/OR or the inadequate quality of
sensors. According to [94], they can further be subdivided into e.g. pre/post
conditions (using the concept of hyper-/meta-alerts as a tuple of prerequi-
sites and consequences), graphs (directed acyclic graphs in which the set
of nodes represent alarms and the edges represent the temporal relation),
codebook (matrix representation of alerts (rows) and problem symptoms
as columns), Markov models (stochastic model composed of discrete states
and a matrix of state transition probabilities trained by sequence of events),
Bayesian networks (probabilistic directed acyclic graphical model of alerts
representing their probabilistic inference), Neural Networks (a collection of
connected units or nodes called neurons working interconnected to perform
alert correlation).
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Ning et al. [107] present a possibility to reconstruct attack scenarios based
on prerequisites and consequences by correlating alarms. For the represen-
tation of prerequisites and consequences, the use of predicates is suggested
which can be linked by logical combinations if necessary. The prerequisites
and consequences of an event are represented by so called hyper alerts which
encode the knowledge about an attack. A hyper alert consists of three com-
ponents: fact, prerequisite and consequence. Fact states what information is
reported with the alert. This consists of a set of attributes, each with its own
range of possible values. Prerequisite is a logical combination of predicates
whose variables occur in fact and specify which criteria must be met for
an attack to be successful. Consequence describes the effects if the attack
is actually successful. A correlation occurs when the consequences of one
hyper alert fulfill the prerequisites of another one. This is also referred to
intuitively as a “prepares-for” relationship, since two hyper alerts h1 and h2
are correlated if h1 is prepared for the following hyper alert h2. By describing
a hyper alert type, hyper alert instances are created when events occur that
are described in the prerequisites of the hyper alert types. From the prepare-
for relationship and thus the relationships between hyper alerts, the authors
create an Alert Correlation Graph (ACG) based on hyper alerts to represent
attack scenarios step by step. The ACGs consist of a number of nodes (hyper
alerts) and edges, which represent the connection between nodes and thus
the relation. The result is a directed acyclic graph that corresponds to the
detected scenario. Zhu and Ghorbani also use the concept of hyper alerts to
determine attack scenarios in [108]. Their correlation engine is based on neu-
ral networks using Multilayer Perceptrons (MLP) and SVM. MLP and SVM
learn the desired behavior with one training set, using a total of 6 features.
The networks are used to decide whether two alarms should be correlated
and, if so, provide a correlation value between 0 and 1. Determined correla-
tion values between two alarms are stored in an alert correlation matrix and
later updated by the correlation engine. In addition, alarms with the best
matching alarms are grouped into hyper-alerts using thresholds. Based on
this, graphs are created to show the attacker’s approach.

The authors of [109] present an approach to reconstruct attack scenarios
from alarms coming from heterogeneous sensors. The process is divided into
two steps: semantic-based alert clustering and causality-based attack anal-
ysis. For the semantic analysis of alarms, an ontology is introduced using
classes and explicitly defined relationships that contain relevant information
regarding the intrusion detection environment. The emerging relationships
between intrusion alerts can be used to determine how relevant semantic
alarms are. Semantically related alarms are converted into ACGs. The ACG
is a non-directed weighted graph with nodes representing alarms and edges
representing the relationships between alarms based on the previously de-
termined semantic relevance with numerical values ([0,1]). Groups of nodes
are determined from the created ACG, whereby all nodes of a group are
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connected to each other by edges. In graph theory such groups are called
cliques, here cliques are regarded as candidate attack scenarios. Based on the
time stamp information from the alarms, the sequence of the individual steps
of the attack is determined. If the dependencies between preconditions and
consequences are clearly defined, sequential-based methods are well suited
for detecting known but also unknown attack scenarios allowing to detect
zero-day and multi-step attacks. However, the weak point here is that in-
dividual steps of an attack can be overlooked by the applied IDSs which
would not lead to the fulfillment of a consequence (refer also to hypothe-
sizing). Furthermore, in a network with heterogeneous sensors describing an
attack differently but with the same meaning, the alarms must be described
for each sensor. A combined approach with a similarity-based method for
clustering and normalizing alarms would be well suited here.

Case-/Knowledge-based methods, also referred to as alert correlation
based on known scenarios, usually rely on well-described attack definitions
in a knowledge base. The knowledge can be based on either prerequisites
and consequences, attack scenarios or case-based reasoning which is defined
as the process of solving new problems based on the solutions of similar past
problems [102, 110]. Those are typically described by rules such as in [111] or
a correlation language such as LAMBDA [112], STATL [113] or CAML [114].
Methods from correlation languages, from data mining or machine learning
search the knowledge base for the best fitting case and update it if the case is
successfully solved. According to [94], examples for case matching algorithms
are nearest neighbor, inductive, and knowledge-based indexing and case-
based methods can be further subdivided into expert-based (knowledge base
is build by human using expert rules or predefined scenarios) and inferred
knowledge (symbolic classification rules are automatically constructed from
some training cases - alerts or meta-alerts whose classification is known - by
machine learning). According to [7], the main drawbacks of these methods
are the manual definition of prerequisites, the limitation to deal with new
pattern, the difficulty in updating the correlation knowledge, the inability
to discover structure and statistical relationships and their impracticability
for the use in large scale or real time environments due high computational
expense.

To exploit the benefits of the different techniques, hybrid approaches are
often proposed. Ahmadinejad et al. [115], for instance, present a model con-
sisting of two modules for alarm correlation. Received alerts are passed to
the first module to check if it can be placed in an already known attack sce-
nario. The analysis is done using attack graphs, here called “queue graph”,
by checking for incoming alarms whether a prepares-for relationship can be
identified with already existing alarms. Using a depth search in the queue
graph, alarms or steps of a known attack can be found that have been over-
looked by the IDS. A threshold value is used to decide whether this belongs
to a known attack scenario with missing detected steps or whether a po-
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tentially unknown scenario exists. Alarms that cannot be classified in the
queue graph by the first module are forwarded to the second module of the
model for similarity-based analysis. Selected features are taken into account
and a similarity vector with values [0,1] is formed on the basis of similarity
functions. Based on the similarity vector and the existing hyper alert, a “Cor-
relationThreshold” is used to decide with which hyper alert the new alarm
should be correlated. The authors of [116] propose a hybrid approach that
is based on hierarchical clustering composed of an offline correlator (aggre-
gates historical data, extracts attack strategy graphs and uses hierarchical
clustering to group similar attack strategy graphs – the attack character-
istics of each cluster is then identified) and an online correlator (generates
hyper-alerts which contain useful attributes for security analysts, hyper-
alerts are composed of different low-level alerts and are updated in real-time
as the upcoming low-level alerts are triggered, hyper-alerts are associated to
the clusters generated by the offline correlator in order to understand the
characteristic of an attack). Since the approach correlates historical alerts
into clusters using data mining techniques and associates upcoming alerts to
these clusters in real time, an efficient security alert analysis technique could
be achieved and useful information from historical data can be discovered to
assist the analysis of new alerts that reduces the time between the detection
and response to an incident.

3.2.3 New Attack Scenario Detection

New attack strategy detection copes with the discovery of novel attack sce-
narios from the sequence of events and tries to overcome limitations of cor-
relation methods that are typically unable to extract unknown malicious
behavior of intruders [117]. This includes finding new multi-step attack sce-
narios from the analysis of alerts to which no “template” is available. Simple
changes to those templates (or attack patterns) might result in a failure
of attack detection. Especially, with the application of anomaly-based IDSs
which output either simple classification values - anomaly or not - or scoring
values representing only indicators of malicious activity it is more difficult
to analyze alerts than with misuse-based ones. Those are able to interpret
events/indicators due to their existing knowledge base and provide more
detailed information. Soleimani and Ghorbani present an approach in [118]
that aggregates alerts and generates episodes which represent a sequence or
a partially ordered collection of events. After a learning phase that includes
learning real multi-step attacks, the framework is able to either filter criti-
cal episodes predicting future steps of attacks or to filter uncritical episodes
which might correspond to new attack strategies. A three-phase alert cor-
relation framework called 3PAC is proposed by Ramaki and Rasoolzadegan
in [119] which processes real-time alerts, correlates them utilizing causal
knowledge discovery, constructs attack scenarios via the Bayesian network
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concept and is able to predict next attack steps. The authors state that
Bayesian inference model in conjunction with statistical data mining tech-
niques has several merits for alert analysis e.g. processing speed, incorporat-
ing expert knowledge, computation of a correlation output probability in-
stead of a binary result. New attack strategies are extracted from the attack
tree construction phase based on classified benign episodes. Those serve as a
basis for the presented causal knowledge analysis algorithm to identify criti-
cal new episodes. ZePro [120] by Sun et al. is an approach targeted towards
zero-day attack path identification. The approach assumes that a chain of at-
tack actions, typically composed of both zero-day and non-zero-day exploits,
forming an attack path is necessary by adversaries to achieve their malicious
goal. ZePro builds a comprehensive network-wide graph based upon system
calls from which it effectively and automatically identifies zero-day attacks.

3.2.4 Missed Attack Hypothesizing

Missed attack hypothesizing is dealing with the problem of false negatives
that might occur with IDSs which does not lead to the generation of an alert.
Alert analysis, especially considering multi-step attack detection relying on
each alert, must be able to cope with the missing ones. However, this func-
tionality poses still a major problem in the field of alert analysis. According
to [6], hypothesizing can be categorized into approaches with or without any
predefined knowledge about attacks. The former require knowledge e.g. in
form of attack templates to compare the received attack types with existing
attack patterns. Exemplary work is provided in [121, 122]. The more inter-
esting and innovative hypothesizing approach uses data-mining techniques
that can generate some artificial clusters that represent attack classes which
are then validated whether the quality of the cluster is higher than a certain
threshold representing a missed attack. According to [123], three main steps
are necessary for the hypothesis process: cluster generation, cluster valida-
tion, and cluster tuning. Fatma and Limam present a two-staged approach
in [124] that firstly deals with false positive alerts aggregated from multi-
ple IDSs and secondly tries to identify potential false negatives representing
missed attacks. Therefore, the first stage clusters IDS alerts into a set of
meta-alerts based on several attributes and identifies false positives using
binary optimization. The second stage discards meta-alerts that have been
created by the majority of IDSs. Remaining alerts are grouped and yield
the set of potential false negatives from which via a binary classification
algorithm the set of false negatives is identified.

3.3 Post-Processing
Post-processing is performed after alert correlation, in particular attack sce-
nario construction, and is composed of intention recognition, (propagation)
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prediction, alert prioritization, impact analysis and visualization (presenta-
tion, representation and visualization of detected security events or corre-
sponding attack scenarios in a SIEM and/or to a SOC).

3.3.1 Intention Recognition

Intention recognition is mainly a forensics topic and deals with the deriva-
tion of an adversaries’ intention (typically unpredictable) caused by a ma-
licious activity by analyzing the alert analysis results. It deals with the in-
terpretation and judgment of the purpose, vision and intention of attack-
ers according to their behavior and network environment by analyzing the
alert information. However, in a broader spectrum, it tries to give a rea-
sonable explanation of the real purpose of malicious activity and predicts
the subsequent attack steps which is, according to [125], the premise and
foundation of threat analysis and the important part of network security
situation awareness. Malicious activity in this work is either referred to as
(self-propagating) malware as it is mainly discussed in the literature and rep-
resented by Worm/Virus software, by a human-controlled or an AI-driven
attack. However, with the advent of artificial intelligence for cyber attacks
the boundaries blur which might makes it difficult to strictly distinguish
between them. Malicious activity may contain parts of the attack phases
(sometimes referred to as kill chain) itemized and summarized below. The
main goal of malicious activity is, however, to infect/compromise victim
systems even if the motivation/intention behind may differ.

∙ Planning and Discovery: Social Engineering, Permission/Autho-
rization, Information Gathering, Scoping and Exploration, Service Iden-
tification, Scanning and Fingerprinting

∙ Exploitation and Assessment: Vulnerability Identification, Vulner-
ability Assessment, Enumeration, Gaining Access, Exploitation (Ex-
ternal vs. Internal)

∙ Post-Exploitation and Reporting: Discovery and Forensics, Find-
ing Analysis, Data Collection, Maintaining Access, Covering/Cleaning
Tracks, Placing Rootkits/Backdoors, (Network) Spreading, Privilege
Escalation, Reporting

A kill chain describes the ability to disrupt the sequence of events an
attacker must perform in order to achieve success during an attack. Thus, it
breaks down attacks into levels which represent the structure and procedure
of an attack. For each level, the model indicates which activities attackers
undertake, so that one can set up the defense including reaction mechanisms
accordingly. Although the cyber kill chain is already several years old, it can
not only be applied to classic malware attacks. APTs can also be mapped
to it and broken down into steps. While the attacker has to go through the
complete process to reach the target according to the model, the defense
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can try at any level to interrupt the kill chain and thus stop the attack.
However, it is necessary to build up the defense in several levels, because at
each level the attacker can already do damage. The earlier the attack can be
detected and stopped, the less damage can be expected. Several existing kill
chain models are discussed and a new kill chain model is proposed in [126]
for remote security log analysis with SIEM software.

Malware are meant to be programs that self-propagate across a network
exploiting security flaws having the ability to propagate from host/network
to host/network. The program first explores vulnerabilities in the network by
utilizing various discovery techniques and infects entities by exploiting them.
The infected entity serves then to spread itself automatically or through hu-
man triggering. Typical properties are the fast and various different auto-
mated scanning techniques, the functional range of either targeted to one or
more (limited) number of vulnerabilities to exploit and spread as well as the
aim of infecting as much vulnerable victims as possible (dedicated for large-
scale networks). However, if vulnerabilities are once fixed, the certain type of
self-propagating malware is no threat anymore. In contrast to an automated
malware, the human-controlled attack performing the above listed attack
phases has different properties. Scanning, especially in the sense of APTs,
could take more time when performed stealthy. They have a large number
of tools at their disposal with a broad spectrum of attack vectors to gain
access. If a vulnerability has been fixed, it might exist various others such
that the host can be reinfected again. Further, the latent time between the
initial possible low-privileged access to gain system privileges which might
be necessary to further reach other networks (e.g. pivoting on dual-homed
machines or gateways) can be longer. Hacker might adapt the exploits for
gaining access or privilege escalation which often results in a crash of a sys-
tem depending whether the attacker has not tried the exploit in advance.
This could translate into a slightly higher death rate of machines compared
to the malware case. The goal differs from malware since maybe only certain
targets are tried to be compromised, e.g. high value administrating machines,
or all machines should be compromised depending on the initiator of the ma-
licious activity (script kiddie, expert hacker, hacker organization) with their
motivation in mind. However, from the information gained from analysis it
might be possible to draw conclusions on the initiator. With a dedicated
motivation in mind the human-controlled attack is more targeted for small-
scale networks e.g. inside a companies industrial site. Hui and Kun proposed
a dynamic real-time network attack intention recognition method based on
attack route graphs [125]. By correlating real-time network attacks and vul-
nerabilities in their framework, shown in Figure 13, the method determines
spread routes and stages of an attack based on graph theory and probability
theory. They are then able to dynamically reason the possible intrusion in-
tention and its probability according to the attack behavior characteristics
and the network environment.
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Figure 13: Framework of real-time network attack intention recognition [125]

3.3.2 Prediction

Intention recognition is closely related to prediction (or attack forecasting,
attack projection) which tries to predict the next step of malicious activity
during an ongoing (multi-step) attack with reference to the killchain model
and how likely a next step will occur. Abdlhamed et al. categorize the pre-
diction of cyber-attacks into three major methodologies alerts correlation,
system call sequences as well as statistical methods and discuss prediction
methods including hidden Markov models, Bayesian networks and genetic
algorithms [127]. They state that the type of prediction is an important fac-
tor, for instance, solutions dedicated to predict attacks usually use hidden
Markov models, while devoted for forecasting the intentions or the abnor-
mal events mostly exploit the Bayesian networks. Anumol in [128] proposes
an IPS which performs event analysis and predicts future probable multi-
step attacks using a SVM based on network log files collected in the OSSIM
SIEM solution. Features consisting of e.g. number of packets, number of
bytes or packet rate are subject to formulas for information gain in order to
get the best features with maximum gain ratio. However, the information
provided by the article is quite sparse and its title therefore misleading in
terms of predicting multi-step attacks based on raised alerts. As a proac-
tive approach targeting to prevent attackers from reaching their malicious
goals, Ramaki and Atani provide a survey of early warning systems which
act beyond the scope of IDSs or IPSs in [129]. In order to proactively coun-
teract new emerging high sophisticated threats, the aim of early warning
systems complementary to intrusion detection/response is to detect poten-
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tial malicious behavior in a system, evaluating its scope and implementing
appropriate response mechanism as early as possible (Figure 14). According
to [130], the term early has two different meanings: (1) starting on-time to
prevent or minimize the damage or damages and (2) the ability to process
incomplete information. A discussion of characteristics (e.g. functionality,
detection scope, challenges, data collection), architectures (centralized, hier-
archical, distributed) and a comprehensive overview of existing early warning
systems as well as those under research and development is provided by [129].
Further work of Ramaki et al. [131, 119] intensively deals with real-time alert
correlation and prediction using e.g. Bayesian networks.

Figure 14: Operation of a generic early warning system [129]

In [101] Ghasemigol et al. present an attack forecasting approach in form
of an extended attack graph which is able to predict future network attacks
based on information such as intrusion alerts, active responses, and service
dependencies. Therefore, they combine the information acquired from an
uncertainty-aware attack graph, a hyper-alerts graph, a multi-level response
graph and a dependency graph into their proposed forecasting attack graph
which increases its accuracy for predicting future attacks based on the addi-
tional information. The problem of a real-time multi-step attack prediction
has been targeted by Holgado et al. in [132]. In this work, IDSs send their
alerts using IDMEF to the system which turns them into hidden Markov
model capable observations utilizing a clusterization process that incorpo-
rates a tag (inferred by matching the significant words in the alert descrip-
tion with the words occurrence frequency in the CVE reports) and a severity
(corresponding to the alerts severity parameter). The hidden Markov model
states represent the chain of different attack steps. By computing the mean
number of alerts for each state, a final attack probability can be computed.
The training of the hidden Markov model is performed by applying a su-
pervised and an unsupervised (Baum-Welch) algorithm. An evaluation is
performed using the LLDDOS1.0 attack scenario of the DARPA dataset
and the alerts provided by a Snort IDS. The authors of [133] are modelling
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vehicle states, e.g. door open/closed, vehicle moving/stationary, using a hid-
den Markov model extracted from the CAN network traffic. Considering the
movement of a vehicle as a sequence of states that depend on the previous
ones, the model can be derived and anomaly detection is performed within a
sliding window of 𝑛 previous observations that slide over the various states.
If the posterior probability is 0 or less than a defined threshold, an alert is
generated indicating an anomaly. In each case an observation would be a
vector of different sensor values that generates a set of probabilities corre-
sponding to each observation. The proposed approach seems quite promising
for detecting anomalies in time series data. However, it could be seen as a
utility for further appliances to work beside low-level detection mechanisms
on a higher level of abstraction for cross-evaluation. Thus, for instance if
the car is driving with an implausible speed and the applied IDS sensors
detect a huge number of alerts, the security state of the vehicle is critical
and immediate interaction by the driver needs to be taken. The prediction
system of Abdlhamed et al. in [127] incorporates multiple sources of in-
formation and different methodologies. There are two modes of operation:
if there are little security incidents, prediction is done by using statistical
methods; if the information is sufficient, the system builds attack scenarios
and constructs profiles for suspected users. A risk assessment is dynami-
cally calculated when there is abnormal behavior affecting the system. The
prediction is produced when the profiled user actions and the dynamic risk
assessment indicates specific stages on the security master plan. However,
the system predicts attacks over multiple days as shown in the evaluation
which does not satisfy real-time requirements.

Apart from the selection of aforementioned prediction approaches, mal-
ware propagation (prediction) models can be exploited to forecast the further
network spreading of malicious activity. Not only attacks controlled by hu-
mans but also unassisted malware gains more sophistication. The classical
separation of malware in the categories with their different flavours, e.g.
fuzzers, backdoors, denial-of-services, exploits, shellcode execution, worms,
viruses, trojans, is not possible anymore since new malware show various
characteristics or functionality of other. Therefore classical Worms can show
behavior/characteristics/functionality (e.g. stealthiness, polymorphism, con-
text awareness) of other malware and turn into self-spreading programs.
Their propagation characterized by random effects can be modeled using
a stochastic process. Those effects can be malware-related (e.g. scanning
strategy), network-related (e.g. bandwidth, topology), system-related (e.g.
vulnerable hosts), policy-related (e.g. intrusion prevention) or human-related
(e.g. removal, patching, isolating, restoring) and leads to an overall complex-
ity. Especially when considering the human-related portion which mainly
affects the response/reaction to malware, their actions could be performed
(semi-)automated. By understanding the behavior (propagation) of mali-
cious activity which inside an IT-network could help incident management
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to be a step ahead. The model of malicious propagation based on infor-
mation gained from detection and analysis components could help to indi-
viduate and describe symptoms of malicious activity such that useful data
could be provided to trigger emergency responses or the implementation
of automatic reactions. Mathematical models in general can be categorized
into three different characteristics [134]: (1) deterministic or stochastic, (2)
continuous or discrete, and (3) global or individual. Those models depend
on whether the variables (and parameters) are random or not, if the vari-
ables take an infinite or finite number of values and aims either to simu-
late the behavior of a complex system providing the global evolution or, in
contrast, only focuses on the dynamics of individual nodes. Malware prop-
agation models are based on those initially developed for the spreading of
infectious diseases. The epidemiological models are compartmental, that is,
the population (through which the infectious disease is propagated) is di-
vided into different types of behavior bearing in mind the characteristics
of the disease: susceptible, exposed (with or without symptoms), infectious,
recovered, quarantined, vaccinated, isolated, and so on [134]. Possible states
and interactions of the compartment models, on which e.g. Susceptible-
Infected (SI), Susceptible-Infected-Recovered (SIR), or Susceptible-Exposed-
Infectious-Recovered (SEIR) are based, are shown in Figure 15.

Figure 15: Different types of behavior in compartmental models [134]

Epidemic models in general can be classified into deterministic ones
e.g. [135], stochastic ones e.g. [136] which typically refer to global mod-
els representing the dynamic of the overall population without taking into
account the local interactions between individuals and, according to [137],
spatial-temporal ones considering individual-based models e.g. cellular au-
tomata [138] or agent-based [139]. Deterministic models are usually based
on Ordinary Differential Equations (ODE) or difference equations and per-
form better in large-scale networks. Stochastic models can be subdivided
into three types differing in their underlying assumptions regarding time and
state variables: Markov chains (discrete time with discrete state variable),
Markov chains (continuous time with discrete state variable) and Stochas-
tic Differential Equations (SDE) with continuous time and discrete state
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variables. Stochastic models show their strength considering small-scale net-
works. However, both global models offer a good insight in the dynamics
of networks providing characteristics e.g. stability or equilibrium [140] but
do not consider individualized infections because the global parameters are
fixed. Thus, changes of individual computers by e.g. updated anti-virus soft-
ware are not taken into account. Furthermore, global models assume a ho-
mogeneous distribution of malware in a network meaning that each system is
connected to another. This is true considering large-scale networks e.g. mal-
ware spreading in the Internet but in microscopic environments e.g. local
networks the results are less reliable since the dynamics strongly depend on
individual interactions. Individual-based systems overcome those drawbacks
by including other information e.g. update policy, applied operating systems
and the topology by e.g. utilizing directed or undirected graphs, but demand
a high computational cost when considering large-scale networks or require
a comprehensive gathering of information from the system components. A
comprehensive introduction in the field of graph theory, network topologies,
community structures and diffusion models with regard to malicious attack
propagation is given by [141].

A selection of research activities regarding the use of SDE for malware
propagation is presented in the following. The authors of [142] provide a sur-
vey and comparison of worm propagation models by categorizing them into
scan-based (propagation without dependence on topology possible by vari-
ous scanning techniques) and topology-based (spreading through topological
neighbors)) worms based on their characteristics. The authors provide infor-
mation about propagation models on these categories but, however, they do
not consider stochastic models e.g. in form of SDE. In the first part of the
dissertation [143], stochastic epidemic models and inference for the propaga-
tion of computer viruses are studied. A comprehensive literature review on
deterministic and stochastic models is provided with a focus on Markovian-
and SDE-based SEIR models. With respect to SDE, the author developed
a new model for multi-group stochastic SEIR. It is stated that although
ODEs can be safely used to approximate a stochastic process when the pop-
ulation size is large, no probabilistic event is considered. Moreover, the ODEs
only describe the average tendency of virus propagation. Thus, determinis-
tic models cannot represent rare events such as saturation and extinction of
malicious activity. The two main findings of the work in [143] considering
the multi-group based SDE approach is that a SEIR framework including
a latent period is superior to other models and the impact of the network
structure can be explored via multi-group variants with different param-
eterization within subnets/subgroups clustered of individuals which differ
substantially in communication activity profiles and in their purposes. For
future work, the authors propose to consider the integration of human coun-
termeasures in the model since appropriately including the effects of such
countermeasures can substantially further improve such a models’s predic-
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tive ability and the impact of the malicious activity propagation. Another
point is to consider the infection rate which is normally constant as a func-
tion of time. This can especially be the case when an adversary is invading
deeper inside a network trying to reach a high value target such as a domain
admin machine. The author also states the investigation of the effects of
the network topology on computer malware propagation must be included
in further work for instance by tying together the ideas and tools of ran-
dom graph dynamics to describe the stochastic behavior of the topological
structure of large computer network.

In [136], the authors build on a stochastic worm propagation model based
on SDEs modeling random effects during worm spreading. Derived from the
paper, the essential SDE for the modeling of infected hosts is given by Equa-
tion 7 in Itô notation in which 𝐼(𝑡) is the function representing the infected
hosts. 𝑁 are the unique hosts in a network scanned by the worm where 𝑁𝑆 is
the number that could potentially become infected. < 𝛽 > is the mean of the
total infection rate incorporating randomness including the worm’s decisions
e.g. scanning strategy, scan rate or changes in the network environment e.g.
bandwidth, congestion. Using the Euler-Maruyama method, Figure 16 shows
10 plotted paths in red including the computed mean (500 simulated paths)
for the infection function 𝐼(𝑡) of Equation 7 where 𝑁 = 254, 𝑁𝑠 = 100,
< 𝛽 >= 1.4 and 𝐼0 = 5.

𝑑𝐼(𝑡) = < 𝛽 >

𝑁
(𝑁𝑆 − 𝐼(𝑡)) · 𝐼(𝑡) · 𝑑𝑡+ 1

𝑁
(𝑁𝑆 − 𝐼(𝑡)) · 𝐼(𝑡) · 𝑑𝐵(𝑡) (7)

The authors state that the size of the network, small-scale or large-scale,
e.g. Internet, needs to be considered since a small network size reduces the
time for early detection but increases false alarms because large-scale net-
works will diffuse the network heterogeneity’s and better describe the phe-
nomenon. In order to counteract this, the authors provide a theoretical es-
timation of a critical network size which is sufficient to be monitored. For
network monitoring and intrusion detection this information for critical size
in subnetworks can be useful. Thus, worm projection basically involves col-
lecting data and then estimating the infection rate and expected damage
caused by the worm. Early projection results, paired with a well-established
early warning policy, may lead to robust response strategies against fast-
spreading, unknown worms. Since, in an unknown network the size could
either be far smaller, far greater or close to the critical size, a hierarchical
distributed early warning system is proposed by the authors. Each network
domain 𝑘 monitors 𝑛 subnetworks with variable sizes and internal charac-
teristics (e.g. bandwidth, topology). An early detection component which is
able to detect the presence of a fast-spreading worm and is able to define
the worm propagation model parameters. Each domain is locally monitored
by one Local Monitoring Center (LMC). A local agent runs in each LMC
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and is programmed to act as a communication interface between the LMC
and the root of the hierarchy, namely a Global Monitoring Center (GMC).
The operation of the local agent is practically the basic requirement in or-
der to participate in the warning system. Finally, the GMC receives infec-
tion information from the LMCs and sends back warning information for an
emergency response. The LMCs could, as a response measure, adapt their
network or host-level firewall policies, automatic quarantine policies or dis-
connect/isolate particular hosts or services. The authors state that an early
warning system is meant to complement current systems and they suggest
the deployment of an anomaly-based IDS that will collect preliminary data
from default locations, analyzes it and makes a decision on whether the
examined traffic contains potential scanning worm behavior.
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Figure 16: Simulation of an SDE for malware propagation (cf. [136])

3.3.3 Impact Analysis

The characteristics of the malicious activities’ impact may also be differ-
ent (impact analysis) apart from the stated above. For instance, a malware
exploiting a certain discovered vulnerability that effects all models of a se-
ries (either a certain vehicle [automotive] or Programmable Logic Controller
(PLC) [industrial] type) has a more devastating impact on the whole vehicle
fleet [automotive] or various companies applying the PLC type [industrial]
than a single hacked/compromised vehicle [automotive] or compromised in-
dustrial plant [industrial] by an adversary. Along with this, the topology of
single compromisable entities and reachability with others, e.g. Electronic
Control Units (ECU) inside a vehicle and their connection between them
vs. the vehicles of a whole fleet and their communication among them and
their infrastructure, plays a major role and has to be considered. Apart from
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the close relation of impact analysis with topics such as incident response
and forensics analysis, the most inferred is threat and risk assessment. Its
main goal is to identify the consequences of malicious activity which helps
administrators to find out the implicit and explicit relations between the
attacks and the assets of an organization using information sources such as
asset database, topology database, and vulnerability database for analyzing
the impacts [144]. Risk management describes the process of the consider-
ation of potential risks in a certain domain. It is further composed of risk
assessment and risk mitigation. The former is the process of determining,
analyzing, and interpreting the risk analysis results, and risk mitigation is
the process of selecting and implementing security controls to reduce risks
to an acceptable level [101]. Especially in the automotive domain, the Haz-
ard and Risk Analysis (HARA) targeted for safety as well as the Threat
and Risk Analysis (TARA) targeted for security are widespread. Network
risk assessment approaches can be categorized into network risk assessment
based on (1) attack graphs, (2) dependency graphs and (3) on non-graph
approaches e.g. hidden Markov models or fuzzy logic [145]. An overview and
discussion of available literature on these categories can be found in [101].

3.3.4 Prioritization

Prioritization focuses on categorizing and ranking alerts based on their
importance since generated alerts by security components do, according
to [146], not have equal importance. Salah et al. state that for analyzing
the significance of suspicious events, a prioritization component needs to
be added to the correlation system [94] such that it can be distinguished
between moderate and devastating threats/attacks. Porras et al. propose
an alert correlation and ranking technique called M-Correlator [147] which
ranks alerts based on the likelihood of the attack to succeed, the importance
of the targeted asset, and the amount of interest in the type of attack [148].
Alsubhi et al. state in their work that these techniques are promising in the
evaluation of alerts generated by signature-based IDSs, but cannot evaluate
alerts raised by anomaly-based IDSs, since they heavily rely on the vulner-
ability knowledge base. Thus, in their work [148] they extend Porras et al.’s
approach by offering a technique which works with both signature-based and
anomaly-based IDSs and makes use of additional criteria, such as the sensor
sensitivity, relationship between alerts, service stability, and social activity
between source and target for a more accurate evaluation of the alerts. A few
alert prioritization score metrics from [148] are categorized in [7] to applica-
bility metric (applicability of a raised alert to the current environment based
on information from various knowledge bases, e.g. vulnerability knowledge
base), victim metric (specifying the properties of critical machines, services,
applications, accounts, and directories in the current network environment),
sensor status metric (based on Bayesian detection rate formula estimating
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true positive probability that an alert is raised when an attack is detected),
attack security metric (measuring the risk level of a vulnerability based on
known attack metrics such as MITRE or CVE), service vulnerability metric
(representing the strengths and weaknesses of a host based on the targeted
services) and social activity metric (exploiting features of a social network
to find hidden participants in a communication session). McElwee et al. pro-
pose a deep learning based approach for prioritizing and responding to alerts
in [149]. Their FASTT (Federated Analysis Security Triage Tool) concept
uses a TensorFlow Deep Neural Network classifier to automatically catego-
rize IDS alerts and determine which type of security analyst should review
the alerts. In addition, FASTT uses an Elasticsearch indexed data store to
speed the retrieval of IDS alerts and a Kibana user interface to allow flex-
ible display of visualizations and dashboards that can be tailored to meet
the security analysts’ workflow. ACSAnIA (A Comprehensive System for
Analysing Intrusion Alerts) is proposed by Shittu et al. in [150] which is a
post-correlation framework that consists of seven components. Offline Cor-
relation uses a set of historic alerts to build a correlation model which gets
updated periodically by the Online Correlation module. This module, for
every incoming alert, analyzes it against a set of past alerts of a certain time
window. Meta-alert Comparison measures differences between meta-alerts
that are produced by the correlation process and Meta-alert Prioritisation
maps a prioritizing value to each meta-alert based on the degree to which
it is an outlier computed by the local outlier factor algorithm. Meta-alert
Clustering receives the set of meta-alerts and groups them into clusters. The
Attack Pattern Discovery receives the clusters of meta-alerts and attempts
to extract a set of representative features for each cluster using frequent pat-
tern mining. The Reporting System receives the outputs and prepares them
for human interaction. The results of alert prioritization are useful for coun-
termeasure selection, where the system is able choose a suitable response
automatically based on the assigned values for detected attacks (Section 4).

3.3.5 Root Cause Finding

Alerts typically are indicators of problems representing the symptoms of inci-
dents but do not provide explicit information regarding the actual root cause
of them. However, identifying the “culprit” of malicious activity is not only
important for forensic purposes but also for finding the causation as quickly
as possible to establish countermeasures as nearly located as possible. Sim-
ple mechanisms such as IP traceback, a method for identifying the origin of
a packet on the Internet based on its source address, seem insufficient for
root cause finding since for the propagation of malicious activity, the source
of packets is almost never the source of it but just one of the many prop-
agation hops. Furthermore, IP-spoofing prevents its application. Even the
detection of stepping-stones, by techniques stated and discussed by Kumar
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and Gupta [151], only focuses on the IP level of packets which make the root
cause finding difficult. Furthermore, they are vulnerable to time delays, chaff
perturbation, and have a high false positive rate. Root cause finding methods
are tractable estimators performing on multiple topologies to find propaga-
tion sources in higher level, e.g. application level to find logical structures, of
networks. Approaches of identifying malicious attack sources can be divided
into three main categories: the complete observation based source detection
(requires a complete observation of the attacked network after a certain time
of the malicious propagation), the snapshot based source detection (requires
a partial observation of the attacked network at a certain time), and the de-
tector/sensor based source detection (requires the observation of a small set
of nodes but all the time in the attacked network) [141]. Figure 17 illustrates
the three categories and Figure 18 a taxonomy of source identification meth-
ods based on this categorization. For a detailed description of the following
refer to [141].

Figure 17: Illustration of three categories of observation in networks.
(a) Complete observation; (b) Snapshot; (c) Sensor observation [141]

Examples for the former are the Rumor Center of the work in [152]
or Dynamic Age of [153]. In their works [152, 154, 155], Shah and Zaman
provided models for rumor spreading in a network based on the SI model
and then constructed an estimator for the rumor source based on a novel
topological quantity, called rumor centrality. They established a maximum
likelihood estimator for a class of graphs: regular tree graph, general tree
graph, and general graph. The second category deals with the problem that
in real-world networks a complete observation might not be possible, thus,
a given snapshot at a certain time serves as a basis for source identification.
A representative of this class is the work of Zhu and Ying [156] which base
their solution on the SIR model and provide a reverse infection algorithm
based on a given network snapshot. A node with the minimum infection
eccentricity, called Jordan center, is the estimated source node by the al-
gorithm. Approaches using sensor observations are, among others, based on
Bayesian [157], Gaussian [158] or Moon-Walk [159] (Figure 18).
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Figure 18: Taxonomy of current source identification methods [141]

The aforementioned approaches for root cause identification mentioned
in [141] are, however, not relying on the output of IDSs in form of alerts.
Julisch [160] initially proposed a different approach for source identification
using a set of unlabeled NIDS alerts and generating clusters of similar types.
The work discusses alarm clustering as a method that supports the discov-
ery of root causes. Another clustering based approach is Y-AOI [161] that
bases on the Y-means anomaly detection method [162] and uses an attribute-
oriented induction algorithm. Firstly, Y-means divides the alerts into several
clusters based on their occurrence time and secondly an adopted oriented
induction algorithm inducts the clusters into short, highly comprehensible
and more informative summary tables which help administrators to more
easily find the root cause. Al-Mamory and Zhang use root cause analysis
in [163] to discover the sources that make IDSs trigger a large number of
alerts by supposing that most of the root causes are no attacks. Similar
alarms are clustered by their semi-automated clustering system, also basing
on the attribute-oriented induction algorithm, helping the security analyst in
specifying the root causes behind these false alarms and in writing accurate
filtering rules. Kechadi et al. present an approach called Behavioral Proxim-
ity Discovery which is a framework for root cause analysis that consists of
three complementary clustering algorithms based on alarm behaviors. The
first algorithm (SM) identifies periodic alarm behaviors. The two other algo-
rithms (FECk and CUFRES) correlate events leading to the identification
of faults by the network operator [164]. An automated root cause identifi-
cation approach is proposed by Cotroneo et al. in [165]. Their framework
(Figure 19) consists of a filter and a decision tree to address large num-
ber of alerts and to support the automated identification of root causes by
adopting term weighting and conceptional clustering approaches to fill the
gap between the unstructured textual alerts and the formalization of the
decision tree.
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Figure 19: Root cause identification framework [165]

Another promising possibility for identifying the root cause comes from
the field of exploiting the physical properties of network participants. Phys-
ical device fingerprinting builds fingerprints to uniquely identify a machine
by e.g. measuring the differences in machine internal clock signals. In [166]
a time-based device fingerprinting technique is proposed that is generic and
can work with different functions, making the method adaptable to differ-
ent environments. Cho and Shin proposed an anomaly detection approach
called Clock-based IDS (CIDS) that is based on the unique clock skews of
an ECU in [167]. Since the CAN frame in an in-vehicle communication does
not deliver any information about its source ECU, the downside of many
IDS approaches is that anomalies cannot be traced back to its source. By
associating a clock skew to each ECU in the CAN network, every message
can be backtracked to its source ECU. CIDS first creates a norm baseline
based on clock skews which is done by measuring the intervals of periodic
messages constructed on the recursive least squares technique. After the con-
struction of the norm baseline, each ECU is associated with its own clock
behavior or fingerprint. The detection of anomalies is conducted from us-
ing the cumulative sum method which is used to detect abnormal shifts
in identification errors. With Viden (Voltage-based attacker identification),
Cho and Shin provide another possibility in [168] to identify the attacker
ECU by measuring and utilizing voltages on the in-vehicle network. Viden
exploits the voltage measurements to construct and update the transmitter
ECUs’ voltage profiles as their fingerprints and uses these profiles to pin-
point the attacker ECU with a low false identification rate. A major benefit
of Viden compared to CIDS is the ability to function even in the presence of
event-triggered messages. CIDS rely on the timing information from periodic
messages but since Viden determines the transmitter ECU based on volt-
ages, it is able to pinpoint attacker ECU regardless of the communication
technique.
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4 Incident Response
Incident response or reaction implies the set of actions a system executes
after security-relevant incidents have been identified. An IPS, as a proactive
solution, work as an IDS but in the case of an detection it drops malicious
traffic automatically before it causes any harm to the network rather than
raising an alarm afterward. Similar to the term countermeasure defined in
RFC 2828 [169] as “an action, device, procedure, or technique that reduces
a threat, a vulnerability, or an attack by eliminating or preventing it, by
minimizing the harm it can cause, or by discovering and reporting it so
that corrective action can be taken”, a response refers to a specific action
that is triggered by an alert or an alert analysis after an intrusion detection
phase (reactive). Evaluating the severity of attacks, identifying the cause
of incidents, and selecting an appropriate response under considerations of
e.g. the correct time or the available resources are typical tasks of an IRS.
Intrusion risk assessment is closely related to the field of IRSs. This process
helps to determine the probability that a detected incident is a valid, action
demanding attack towards an important compromised target that requires
a certain form of a response. Properties and characteristics that influences
the response model e.g. incident response time are provided in [170].

4.1 Taxonomy of Intrusion Response Systems
A taxonomy for IRSs is provided by Shameli-Sendi et al. in [11] and shown
in Figure 20. The characteristics and criteria of their taxonomy resulted
from a comprehensive literature review and are listed in the following. Some
additional requirements that should be fulfilled for the development of an
IRS stated by [170, 171] are added in italics below.

∙ Activity: The activity of a triggered response can be categorized into
passive (do not attempt to minimize damage already caused by the
attack or prevent further attacks - main goal is notification) and active
(aim to minimize the damage done by the attacker and/or attempt to
locate or harm the attacker).

∙ Level of Automation: An important feature of an IRS is whether
it can be fully automated or requires administrator intervention after
each incident. Therefore, the level of automation can be categorized
into notification systems (alert information is used by an administrator
to select applicable response measures), manual response systems (pre-
configured set of responses based on the type of attack that an admin-
istrator has to trigger) and automated response systems (automated
execution of responses without human intervention). Cooperation and
autonomy for response systems are two features used respectively in
network and host intrusion detection system. Thus, it is necessary to
have both features in a single system to be more accurate. According
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to [16], automated IRSs can further be divided: adaptive (feedback loop
to evaluate previous response), expert (response decisions are based on
one or more metrics) and association (simple decision table approach
in which a specific response is associated with a specific attack).

∙ Response Cost: Knowing the power of responses to attune the re-
sponse cost with attack cost plays a critical role in IRSs. The evaluation
of the positive effects and negative impacts of responses are very im-
portant to identify response cost. Thus, the selected response should
not be more costly than the attack.

∙ Response Time: This criterion refers to whether the response can
be applied with some delay after an intrusion is detected (delayed,
reactive) or before the attack affects the target by applying an intru-
sion prediction mechanism or IPS (proactive). Thus, proactive response
mechanisms should be included within the intrusion response system to
enable early response to intrusions.

∙ Adjustment Ability (Adaptiveness): Usually, an IRS framework
is run with a number of pre-estimated responses. It is very important
to readjust the strength of the responses depending on the attacks.
Adaptiveness is a powerful feature required to ensure normal function-
ality while still providing effective defense against intrusive behavior,
and to automatically deploy different responses on the basis of the state
of the current system. Adjustment models can be categorized into non-
adaptive and adaptive. The former keeps the order of responses during
the life of the IRS, whereas the adaptive has the ability to adjust the
order based on their history. Non-adaptive adjustment models can be
converted into adaptive ones. Response goodness refers to the history
of success and failures of each response mitigated over time.

∙ Response Selection (Effectiveness): The task of an IRS is to
choose the best possible response. Existing techniques vary in the way
response selection is achieved. The response should be tailored to the
type of attack and incident context. In fact, the response could be dif-
ferent for the same attack affecting two kinds of resources.

∙ Applying Location: There are different locations in the network to
mitigate attacks. Using information from an “attack path” (consisting
of (1) adversary’s start point, (2) firewalls/routers, (3) intermediary
devices and (4) target device) appropriate locations with the lowest
penalty cost for implementing response measures can be identified.

∙ Deactivation Ability: Another distinguishing feature that separates
IRSs is response deactivation (response lifetime), which can take into
account users’ needs in terms of Quality of Service (QoS). Most coun-
termeasures are temporary actions which have an intrinsic cost or in-
duce side effects on the monitored system, or both. Thus, there must
be an ability to deactivate response measures.
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Figure 20: Taxonomy of intrusion response systems [11]

A phylogenetic tree showing the history and advancement of intrusion
response approaches is provided by [16]. The authors further propose char-
acteristics (adaptive nature, cost-sensitive, semantic coherence, manage false
alarm, and response metrics policy) for designing proper response systems
since poorly designed ones may lead to a generation of a large number of
false alarms and degrade the performance of the system. They state that ex-
isting IRSs are unable to provide a real-time optimum response because of
the absence of semantic coherence and dynamic response metrics features. A
survey of research activities with respect to IRSs highlighting their novelty
and core characteristics of relevant ones is provided in [4]. Challenges and
future direction of IRSs are discussed in [4, 16] and a selection illustrated
in Figure 21. Further, open issues and some proposed solutions in the field
of IRSs in general and with respect to cloud-environments for smart mobile
devices are provided in [9, 10].

4.1.1 Response Cost

Response cost describes the impact of implementing responses on the sys-
tem’s protection goals. This may not only include security-relevant ones, such
as data confidentiality, integrity and authenticity, but also safety-critical
ones e.g. availability or performance. For instance, switching off a service to
mitigate an attack results in the loss of its function. An evaluation of the
response cost makes only sense when considering possible attack scenarios.
A dynamic response model (static cost, static evaluated cost, dynamic eval-
uated cost) offers the best response based on the current situation of the
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Figure 21: Challenges for IRSs [16]

network, and so the positive effects and negative impacts of the responses
must be evaluated online at the time of the attack [11]. For the static cost
model an expert assigns a static value to a response (𝑅𝑠

𝑐𝑜𝑠𝑡 = 𝑐𝑜𝑛𝑠𝑡.). If
an evaluation function is applied, typically incorporating the impacts on the
protection goals, associated with each response, a statically evaluated cost is
obtained (𝑅𝑠𝑒

𝑐𝑜𝑠𝑡 = 𝑓(𝑥)). In the dynamic evaluated cost (𝑅𝑑𝑒
𝑐𝑜𝑠𝑡) the systems’

situation is evaluated in an online fashion such that certain responses are
only implemented if other entities e.g. other services, processes, resources
are not threatened.

Herold presents possibilities to assess the costs of a response as well as
the potential damage of a security incident in [170]. The author categorizes
them into basic approaches, e.g. [172, 173, 174, 175], that select a response
if the cost of it is lower or equal to the damage cost, approaches includ-
ing system importance, e.g. [176, 177, 178], approaches using probabilities
based on the success likelihood of an ongoing attack, e.g. [178, 179], and
approaches including IDS capabilities e.g. [180, 181, 182]. Fessi et al. for
example present an approach for automated reaction measures with a multi-
attribute decision model and a cost-benefit analysis of the selected reaction
in [183]. They present an intrusion response architecture composed of a col-
lection module, a detection module and a response module, with the actual
focus of the paper on the response module. The response module contains
information regarding the known intrusions, possible reaction measures in
case of an intrusion and a response mechanism for deciding on a suitable
reaction measure. The problem of finding a suitable response to an intrusion
is defined as a muti-attribute decision making problem. It is based on the
three parameters: financial cost (loss for the company in financial terms),
enterprise reputation loss (reputation of the company which is related to
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its survival and existence), processing resources (regarding personnel and
information assets). These attributes are normalized using a weighted linear
combination method such that the values can be used later in the evolution-
ary algorithm’s fitness function. Using the evolutionary algorithm, the best
possible response measure for intrusion is then determined by a cost-benefit
analysis. A matrix with n columns, which represent the resources in the sys-
tem, and m rows, representing the reaction measures, is used. This means
that one row indicates the effects of the reaction measure m on the overall
system and is regarded as a chromosome for the algorithm. The evolutionary
algorithm follows the usual operations (random initial population, selection,
crossover, mutation, natural selection) and, after scheduling, provides the
optimal reaction measure in terms of cost-benefit for the overall system.
Shameli-Sendi and Dagenais proposed a practical framework in [173] for on-
line response cost evaluation to encounter the problem that typically a good
response decreases the service quality. Thus, a balance between response
cost and the cost for an attack in a cost-sensitive fashion can be achieved.
A service dependency graph is utilized to consider the negative effects that
consist of impacts on e.g. the network or hosts. Their framework includes
information of affected resources determined by an expert’s opinion.

4.1.2 Response Selection

Security administrators often face multi-criteria decision making problems
when it comes to select an optimal response in a timely and cost-effective
fashion. According to [11], there are three response selection models namely
static mapping (an alert is mapped to a predefined response), dynamic map-
ping (response mapping to an attack differs depending on e.g. system state,
attack metrics such as frequency or severity, or network policy) and cost-
sensitive mapping. Static mapping itself can be exploitable since an attacker
may predict response measures. Dynamic mapping lacks on intelligence by
improving itself with every new responded attack without any dedicated
upgrade. Cost-sensitive mapping attempts to attune intrusion damage cost
which represents the amount of damage to an attack target when the IDS is
either unavailable or ineffective. It is closely related to risk assessment which
itself can be categorized into static and dynamic. Dynamic (real-time) risk
assessment approaches can subdivided into (1) attack graph-based (referring
to Chapter 3 by constructing attack steps based on correlation methods),
(2) service dependency graph-based (impact on confidentiality, integrity, and
availability on a service interacting with or depending on others), and (3)
non graph-based (risk assessment carried out independent of the attack by
performing risk analysis on alert statistics and other information provided by
alerts) [11, 101]. An overview of attack modeling techniques including their
strengths and weaknesses is presented in [4] structured into attack graph, at-
tack tree, service dependency graph and Markov decision process models. A
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method for risk assessment based on the dynamic Bayesian network (static
Bayesian network extended in time) is proposed by Wang et al. in [184].

Already in 2000, Schackenberg and Djahandari proposed an architecture
based on the Intruder Detection and Isolation Protocol (IDIP) in [185] which
represents an early work in the area of automated intrusion response. IDIP’s
objective is to track intrusions by sharing information between neighboring
devices to attempt responding or tracing back the attack along it’s path.
Local IDIP agents are equipped with detection, audit or response function-
ality and reports are not only distributed among each neighboring agent for
local decision making but also sent to a discovery coordinator which is able
to correlate reports and to gain a better overview. For response functions,
IDIP defines trace messages (including a description of the anomaly, a value
indicating how certain the detector is of this attack, a severity value based
on the potential services lost from this attack, and a requested response)
and directives (messages sending “do” and “undo” messages in order to e.g.
block or unblock network traffic). With the Cooperative Intrusion Trace-
back and Response Architecture (CITRA) presented in [186], the authors
extended their work to trace attacks to their source and block them as close
as possible to it. CITRA allows to use immediate responses and utilizes a
simple cost model to select a limited number of responses which is based on
thresholds and can not be adapted. However, CITRA’s main focus is on the
traceback of an attacker to the source of the security incident.

Zonouz et al. propose a game-theoretic intrusion response engine in [187],
called the Response and Recovery Engine, which allows to analyze security
incidents and taking their optimal countermeasures using attack-response
trees modelling a two-player Stackelberg stochastic game. The engine consid-
ers inaccuracies associated with IDS alerts and chooses an optimal response
action by solving a partially observable competitive Markov decision process
derived from the attack-response trees. An extraordinary approach has been
presented by Sharma et al. in [188, 189] proposing an intrusion response
mechanism inspired by plant-based biology. The PIRIDS (Plant-based In-
spiration of Response in IDS) is a three-layered bioinspired detection and
a response method composed of the layers PRR (Pattern Recognition Re-
ceptors), Guard Agent & SAR (Systematic Acquired Resistance) and HR
(Hypersensitive Response). With their approach the authors were able to
cope with known attacks, zero-day ones and the infection spread of mali-
cious activities could be stopped.

Kholidy et al. present ACIRS (Autonomous Cloud Intrusion Response
System) in [190], an effective attack and vulnerability detection and response
framework to accurately identify the attacks targeted to cloud environments.
Its architecture integrates both, behavior and knowledge based techniques,
and considers different service models and user requirements, collects and
correlates security events and user behaviors from all environments in the
cloud system. It provides a security measure to assess the system risk to
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select an appropriate response to mitigate the risk consequences. Alert inte-
gration, correlation and risk assessment is based on IDMEF to include multi-
ple detection mechanisms such as Snort (network-based) and OSSEC (host-
based) for instance. Thus, as normalization process, all alerts are brought
into IDMEF to simplify their analysis and correlation in the next layer. A
prioritization process ensures that each detector (analyzer/sensor) has its
own prioritization system. Alert correlation and summarization correlates a
large number of normalized alerts from different detectors to highlight the
few critical ones. This technique looks for evidences of an alert to discover
if it signals a true attack and it correlates logically related alerts. Logically
related alerts denote the same attack signature, have the same source and
destination addresses and are close in time. These alerts may also denote
a step of a multi-stage or compound attack that consists of a set of steps
performed by one attacker. Beside reducing false positives alerts and sum-
marizing the huge number of alerts to the cloud administrator, this results
in a correlation process that deals efficiently with multi-stage attacks and
facilitates the risk assessment and mitigation processes. The authors propose
to use OSSIM, an open source correlation engine that uses a tree of logical
conditions (rules) or AND/OR tree in the correlation process. In each corre-
lation level of the correlation tree (or respective to a “tree” of hyper-alerts)
a risk value is updated according to an equation in the paper. The respec-
tive correlation and risk assessment flowchart with 𝑁 correlation levels, each
with different number of rules, is shown in the publication.

In [176], Ossenbühl et al. present REASSESS (Response Effectiveness As-
sessment), a response selection model that evaluates negative and positive
impacts associated for countermeasures to mitigate network-based attacks.
Requirements are automatic deployment, scalability, adaptability, system in-
dependency, calculation efficiency, usability and protection preventing unau-
thorized access by deploying security mechanisms. The negative effects lead
from possible service degradation, penalty costs can occur from service level
agreement violations. Furthermore, alert priorities are taken into account.
REASSESS is based on several stages related to the NIST incident response
cycle for the response selection process as shown in Figure 22 and follows a
sequential execution. The assumptions, namely aggregation and confidence
which assume that each alert raised by a detection engine is treated as one
attack and a strong confidence with a hundred percent certainty of alerts,
however, strongly mitigate the usage of anomaly-based IDSs which might
raise a large number of false alerts. Furthermore, REASSESS in its current
state is working sequential, not able to cope with multiple IDS nodes, does
not use common standards for the exchange of incident related information
and is not capable of coping with more advanced attack scenarios due to the
lack of an alert correlation mechanism.

An optimal metric-aware response selection strategy using mixed integer
linear programming to obtain an optimal subset of responses is presented
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Figure 22: Response selection process of REASSESS [176]

by Herold et al. in [191]. Thus, they were able to provide response strategies
much faster and with higher quality than using simplistic heuristics allowing
e.g. a larger number of responses or entities. GhasemiGol et al. proposed a
network attack forecasting strategy in [101] by using an attack graph and a
dependency graph approach enriched by analyzed IDS alerts (hyper-alerts
graph) to identify possible risky nodes and IRS activated responses (multi-
level response graph). The utilized attack graph handles the uncertainty
of an attack probability by measuring the probability of vulnerability ex-
ploitation. Instead of using IDMEF for alert analysis, the authors use their
E-correlator, which is a similarity correlation system that functions on raw
alerts and outputs a directed hyper-alert graph. They define a response
graph with eight levels (refer to Figure 25). By the combination of various
graph-based approaches, the authors were able to handle uncertainties of
current attack graphs and predict future network attacks by the inclusion of
additional information. In their consecutive article [192], GhasemiGol et al.
extended their work to a foresight model for intrusion response management
that includes a response cost estimation based on whether the impact of a
response is negative or positive on each level of their multi-level model con-
sidering the confidentiality, integrity, and availability parameters. In a recent
work, Shameli-Sendi et al. propose a framework for selecting and deploying
optimal countermeasures to intrusions dynamically in [193]. Therefore, an
optimal countermeasure is identified by evaluating the current and potential
damage cost, the accuracy of the countermeasure risk reduction, the impact
on QoS and the balance between countermeasure and attack damage cost.
An advantage of this framework is that countermeasures are not predictable
for an adversary since they are not statically defined.

62



4.2 Intrusion Response Representation
With respect to Herold [170], responses may be reconfigurations of hosts or
network elements. Targeting the implementation of reactions on network ele-
ments, Herold presents Simple Network Management Protocol (SNMP) and
Network Configuration Protocol (NETCONF) defined in RFC 6241 [194].
NETCONF makes it possible to read out, install and manipulate the config-
uration of devices and is based on a simple RPC layer (Remote Procedure
Call). It uses XML-based encryption to transfer both configuration data and
protocol messages. Among the advantages are the human readable represen-
tation of the data, the reusability of the message structures as well as the
easy extensibility. The data model belonging to NETCONF is called YANG
(Yet Another Next Generation). This model explicitly and unambiguously
defines the structure, syntax and semantics of the configuration and oper-
ational data of network devices. It thus offers a uniform interface to their
manipulable and operational data. NETCONF has not been defined to in-
herit information of intrusion responses. However, it could be applied when
it comes to network device reconfiguration triggered by an IRS.

The IDIP application and message layer is defined in [195] providing de-
tails on the objectives, specification and operations of IDIP and has been
used by [185, 186]. IDIP applications use trace messages to describe network-
based intrusions which are passed to neighboring devices to trace the path
of the intrusion and provide the information necessary for each device along
this path to determine an appropriate response. Other IDIP application mes-
sages are used to support this tracing and response mechanism. As stated
in the specification, IDIP is designed to minimize the size and number of
messages required to support intrusion response. Application layer messages
are primarily sent only after an intrusion has been detected. Once the re-
sponse has been initiated, the protocol attempts to only send messages to
components that potentially could have witnessed parts of the attack. In
addition, IDIP components send reports of the responses to a centralized
management component called the discovery coordinator. [195]

Since IDMEF does lack in messages for specifying responses, Klein et al.
introduce the Intrusion Response Message Exchange Format (IRMEF) in [196].
It extends IDMEF as shown in Figure 23 by a response class that use el-
ements that are already defined in the IDMEF message class. Those are
the CreateTime, set to the time the response message is created, the De-
tectTime to schedule the time of response execution, the Source issuing the
response, the Target(s) to which the response should be applied, an Assess-
ment field containing the action that should be performed e.g. kill process
and an AdditionalData field containing optional elements e.g. parameters for
the response e.g. process ID for the process to be killed. The proposed com-
munication protocol between those agents and a console is SNMP in version
3. This scheme does not allow to schedule more actions in an appropriate
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manner, for example, neither sequential or otherwise timed actions or the
interconnection of multiple actions are possible nor the specification of the
control flow in more detail [170].

Figure 23: Intrusion response message format - IRMEF [196]

An intrusion response message format similar to the IDMEF is proposed
in [192] and represented by XML based on the multi-level model informa-
tion from [101]. Figure 24 shows the corresponding data model consisting
of the Intrusion Response Message (IR-Message) and its subclasses provid-
ing further response information. The attributes of the IR-Message are a
response identification number (Response-ID), a Response-status indicating
the response condition being active or inactive and a Response-cost contain-
ing the impact of the response on the network entities. The Response-Target
contains information about the target with respect to the authors’ multi-level
response model. Response-Type indicates the kind of responses in terms of
impact level and Response-Location the place of applying responses such as
Firewall. The Response-Action shows the kind of actions that can be applied
by responses e.g. shutdown, reset, block, notify.

4.3 Possible Response Measures
Table 3 illustrates different classes of response actions with examples that
might be applicable, depending on the type of consequence and the involved
assets. Those measures are used to neutralize an individual attack or exe-
cute preventive measures to secure the system against future attacks of the
same type. GhasemiGol et al. define different levels in [192], as shown in
Figure 25, that can also be applied to map response measures to different
levels. Those are composed of notification-level (generation of a report or
alarm), attacker-level (targeting the attacker machine by e.g. blocking the
attacker IP), vulnerability-level (patching or updating software to remove
vulnerabilities e.g. CVE countermeasures), file-level (block file or change file

64



Figure 24: Intrusion response message format - IR-Message [192]

permissions), user-level (block user or reduce user privilege), service-level
(block affected processes, services or ports), host-level (affects victim ma-
chine by e.g. shutting it down), and unclassified-level.

According to [198], responses with respect to virtual cloud systems can
be categorized into filtering (e.g. updating upstream filters to block traffic),
rate limiting (attempts to relieve the pressures on bottlenecks), adapting the
use of virtual machines (e.g. increase or decrease its number) and identifying
the attack source (using trace-back techniques). A more generic categoriza-
tion into passive and active responses with lists of common responses per
category based on the work of [10, 171, 199] and inspired by the multi-level
categorization of [192] is illustrated in Figure 26. The dotted arrow indicates
that some response measures (unclassified-level) categorized under passive
might also be active ones depending on their interpretation and level of au-
tomation. In the following sections, two examples for response mechanisms
are presented: adapting IDS components by changing its sampling rate as
well as self-regulation and the reconfiguration of a network infrastructure to
enhance security applying SDN.
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Figure 25: Different intrusion response levels [192]

4.3.1 Adaptive IDS

Note: This subsection has been published by the author in [200] and states
two possibilities, sampling and self-regulation, that can be used to adapt IDSs
as a response measure. In this report the work can be categorized into the field
of adaptive IRSs. This is because the presented Uncoupled MAC algorithm,
a cryptographic scheme that applies message authentication codes decapsu-
lated from the original packet, is able to dynamically adjust its sampling
parameters depending on the detection of both a message’s data integrity as
well as its authenticity violation. The term adaptive in the context of this
work describes techniques of sampling and self-regulation. To cope with the
increasing amount of traffic within networks while reducing large memory
and CPU processing requirements, sampling turned out to be a promising
scalable data aggregation technology for IDSs since the processing capacity
of such systems are typically much smaller than the amount of data to be
inspected. Because sampled traffic is an incomplete approximation of the
actual one, multiple mechanisms for sampling data exist.

Sampling In [201] a difference between packet- and flow-based sampling,
crucial for the working of NIDSs, together with deterministic and non-deter-
ministic methods is made. Packet-based sampling is simple to implement
with low CPU power and memory requirements but is inaccurate for infer-
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Action class Description Examples
Rollback bring the component back to a

saved secure state
restart virtual ma-
chine or software

Rollforward find a new state from which the
component can operate

restore or update
process

Isolation perform physical/logical exclu-
sion of the “faulty” components

block attacker’s
IP address

Reconfiguration reconfiguring a system, compo-
nent or reassign tasks to others,
activate spare components

reconfigure net-
work routing

Reinitialization check/record new configuration
and update system tables

restart a TCP
connection

Table 3: Response and recovery action classification (cf. [197])

ence of flow statistics like size distribution of the original flows. In contrast,
flow-based sampling overcomes the limitations of packet-based sampling but
suffers from prohibitive memory and CPU power requirements and is still too
complex to implement [202]. The flow-size based sampling technique in [201]
assumes that network attacks usually use small flows as traffic source. With
the proposed selective sampling strategy such flows are sampled with a con-
stant probability. Other related work evaluated that packet sampling has a
negative impact on the efficiency of anomaly-based IDSs increasing the false
positives but performs best when using a random flow sampling strategy.
However, it is possible to maintain a high level of security while selectively
inspecting packets with a minimal amount of processing overhead. An an-
alytic and statistical model for the process of network intrusions has been
introduced in [203] supporting the experimental results of [201] demonstrat-
ing that it is sufficient to inspect only a small number of sampled packets.
In [204] a packet- and time-driven traffic sampling strategy for an IDS in
a SDN is proposed that fully utilizes the inspection capability of malicious
traffic, while maintaining the total aggregate volume of the sampled traffic
below the inspection processing capacity of the IDS. The packet-driven ap-
proach inspects a packet every 1/𝑥 packets for a sampling rate 𝑥 and the
time-driven inspects all the packets within a time window of sampling rate
𝑥 each sampling interval. The time-driven mechanism has the advantage of
detecting stateful attacks because it captures all the packets for a certain
time duration. However, if packets are mainly sent event-triggered, the time-
driven approach is not feasible since there could be phases of sampling in
which no packets are inspected. This could easily happen in networks with
high fluctuations of the bandwidth. If an intruder is able to compromise the
IDS or might know the sampling rate, he could exploit this knowledge by
performing malicious activities outside the sampling interval. By increasing
a sampled injection of malicious packets, he could also extract the sam-
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Passive

Unclassified-
level

Notification-
level

Active

Host-based 
response

Network-based 
response

 enable additional IDS
 enable local/remote/network 

activity logging
 enable intrusion analysis tools
 backup files, machines, etc.
 trace connection for information 

gathering purposes

 generate alarm             
(e.g. Email, SMS)

 generate report             
(e.g. contains infor-
mation about intrusion)

Service(Vulnerability)-level
 restart suspicious service
 terminate suspicious process
 disable compromised services
 abort/delay suspicious system calls
 update or patch vulnerability of 

compromised software
User(Attacker)-level
 restrict/disable user account
 force additional authentication
 warn/inform intruder
File-level
 deny full/selective access to file
 delete tampered file
 restore tampered file from backup
Host-level
 shutdown compromised host
 restart suspicious host

Attacker-level
 host isolation/quarantine
 traffic filtering (block suspicious 

incoming/outgoing network 
connection e.g. by blocking ports  
or ip addresses)

 remotely restart targeted system
Unclassified-level
 enable/disable additional     

firewall or IDS rules
 create remote decoy
 traffic redirection
 adjust/adapt parameters of 

detection systems
 increase/decrease rates of 

sampling systems
 QoS adjustment

Common response 
measures

Figure 26: List of common response measures (cf. [171, 10, 192, 199])

pling rate information by observing the reaction of the IDS in a trial and
error fashion. Thus, a combination of a packet- and time-driven mechanism
could mitigate such problems by applying a random chosen sampling interval
within fixed boundaries.

Self-Regulation Self-regulating sampling mechanisms have been presented
in [205], for instance a method managing the processor usage in a network
device through adaptive sampling in network security applications. The au-
thors state that a wide range of common network anomalies only require a
single sample in order to provide 100% accuracy of detection but there are
also other network anomalies which cannot be detected with a single sam-
ple. An example is an anomaly which misuses a protocol for purposes which
were not meant for it. This requires more advanced techniques than a sim-
ple signature check. Cryptographic mechanisms could be used to overcome
such limitations. In [206] an adaptive packet-level sampling method on dif-
ferent traffic fluctuations and burst scales has been introduced. The method
can dynamically adjust each packet sampling probability depending on the
magnitude of traffic fluctuation. This approach achieves higher accuracy in
contrast to random sampling methods. Another adaptive sampling method
for anomaly detection algorithms has been presented in [207]. The adaptive
sampling described is a promising general sampling technique that preserves
well the traffic feature distributions and at the same time is able to improve
the detection capabilities of the system. A hybrid sampling algorithm com-
bining both flow statistics and feedback to intelligently choose the packets to
sample is presented in [208] in order to achieve self-regulation. The sampling
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rate is determined by the current workload in the cloud, and thus minimizing
the effects to normal workload. By the cloud-based IDS framework defined,
an off-the-shelf IDS can be utilized in a cloud environment by reducing and
balancing the data collection (packet capturing, filtering, sampling rate) and
computation workload dynamically according to the resource utilizations in
the cloud. Another example of adaptive sampling systems is the work pre-
sented in [209] that aims to effectively reduce the volume of traffic that
Peer-to-Peer (P2P) botnet detectors need to process while not degrading
their detection accuracy. The system first identifies a small number of po-
tential P2P in high-speed networks for botnet detection. In a 2-step approach
first a suspicious host identification is performed by roughly sampling the
traffic in order to detect potential P2P bots quickly. Second an in-depth
analysis with more fine-grained detectors achieve an accurate detection on
the identified hosts.

Applying sampling techniques in conjunction with a self-regulating IDS
helps to reduce the measurement overhead for an IDS in terms of CPU,
memory or bandwidth enabling the application of a partial IDS in future
connected embedded systems. Similar to the concept of partial networking,
the IDS components regulate their activeness such that in times of higher
detection of malicious actions within the network more packets will be sam-
pled leading to a higher resource consumption. On the other hand, in times
of less or no detection, the IDS components lower their sampling or might
even partially turn off completely. Furthermore, by using adaptive techniques
that regulate, for instance, IDS relevant parameters or the sampling rate,
the security level of a system can be adjusted by preserving a controllable
overhead on resources.

4.3.2 Network Reconfiguration Leveraging SDN

Note: The following paragraph has been published by the author in [12] pre-
senting a generic incident handling framework. Exploiting SDN technology
to reconfigure the networking environment is a further reaction possibility.
Controlling network flows dynamically enables to separate malicious (or sus-
picious) network flows from benign ones dynamically. For example, supposed
that a NIDS detects some suspected flows, the flows can be rerouted for in-
depth investigation, e.g., in a honeypot [210]. Further firewall functionality
can be implemented using SDN. When a switch receives a new packet and
there is no rule matching this packet in the flow table, it reports it to the
SDN controller which forwards the packet to the firewall application. The
firewall checks whether the incoming packet violates security policies or not
and enforces a new flow rule accordingly. This rule is delivered to the switch
by the controller and all future packets from the flow of the first packet
would be handled directly in the switch without the need to interact with
the controller again [211]. Another possibility applying SDN to respond to a
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specific incident is through network separation. In traditional networks, the
common way to separate a network is employing Virtual LAN (VLAN) tech-
nique, which adds specific IDs in a packet header (12-bits VLAN ID field).
However, VLAN technology incurs scalability limits in large-scale networks,
since it can only assign 4,096 different virtual networks. SDN-based sepa-
ration solutions provide the capability of different level abstractions with
desired security properties, which not only separates the network segments
efficiently at scale, but also veils the physical view of networks to users [212].

A “pluggable” software platform aimed to provide centralized administra-
tion and experimentation for anomaly detection techniques in software de-
fined data centers is provided by [213]. The proposed SDN-PANDA consists
of three controller-centric application modules responsible for (1) data col-
lection and pre-processing of switch aggregated flow statistics, (2) anomaly
detection based on a flexible interface and (3) performing response actions
defined on standard policies independent of the anomaly detection method.
The response policies must be accurately defined such that they only mit-
igate the identified attack and not cause a loss of service by e.g. dropping
packets. To address this issue they propose to apply redundant services in
different spots of the infrastructure and reroute the traffic in the case of
incidents which allows e.g. the investigation of the compromised host while
still guaranteeing the availability of the service. In [214] the authors leverage
SDN and Network Function Virtualization (NFV) technologies for incident
response in industrial control systems. They provide potential response use
cases including rerouting attacker traffic to a honeypot, changing forwarding
rules to drop communications or transfer services from compromised devices
to redundant ones using virtualized resources. In a proof of concept they
are extending MiniCPS providing SDN functionality and deploy an IDS in
the SDN controller which is working threshold-based and compares actual
and estimated sensor values. Incident response functionality is quite limited
following preconfigured policies such as discarding packets from the com-
promised sensor and replacing them with the estimated values of the IDS.
Afterwards, the SDN controller modifies the flow table of the SDN-capable
switch to leverage the response. The authors state that although their ap-
plication is simple, the model can be extended to include different detection
mechanisms and various incident-response policies for different types of at-
tacks. A similar work [215], utilizing SDN and NFV, proactively detects
(low-level deep packet inspection) and mitigates botnets in 5G mobile net-
works by dynamic reconfiguration (isolating botnet communication).
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5 Aims of the Ph.D. Thesis
Referring to the challenges stated in Subsection 1.2 and the overall research
objective “How to increase the network communication security of
computer networks with a focus on future-oriented automotive in-
frastructure by establishing an anomaly-based incident detection
to mitigate/counteract novel malicious activity propagation?”, this
section deals with the aims of the future Ph.D. thesis. Most of the state of the
art research are targeted towards the office IT or cloud environments having
a large amount of resources available. However, to the best of the authors
knowledge, no system with the focus of this work is aimed to automotive
environments which poses special requirements towards e.g. resource-saving
and safety. Novel attack detection based on the output of anomaly-based
methods is still an unsatisfactory solved problem and will be targeted in
the thesis. Furthermore, most of the aforementioned frameworks designed
for incident detection, analysis and response cover various fields but each
solution has its merits and demerits such that an adaption of one of them
is not feasible. However, building a complete new framework is not efficient
such that in the Ph.D. thesis existing works are evaluated against the re-
quirements and integral parts are combined and extended. The resulting
generic Anomaly-based Incident Detection and Response System, called
ANDERS (subject to change), consists of components that are, depending
on their application level with respect to an abstracted system hierarchy
(as shown in Figure 27 - cf. mist-fog-cloud hierarchy [216, 217]), leveraging
different capability in terms of incident detection, analysis and response. In
the Ph.D. thesis, the conceptional design and interactions of the components
will be provided according to requirements defined. Exemplary properties of
ANDERS are listed below (subject to change).

∙ Property 1: Modularity/Flexibility/Interoperability - generic frame-
work application with different capability; interfaces allowing to exchange
modules/components e.g. lightweight IDMEF/IRMEF; various techniques
can be applied to provide security incidents

∙ Property 2: Scalability - local or decentralized appliance
∙ Property 3: Determinism - timeliness; fast response for real time sys-

tems; online detection in time-efficient manner within a temporal win-
dow adequate for the underlying system; on-the-fly analysis and proac-
tive/reactive response during malicious activity propagation

∙ Property 4: Effectiveness/Correctness - detection of attacks based
on detected anomalies; decrease false positives / negatives and increase
detection accuracy

∙ Property 5: Efficiency - resource conservation by e.g. partial working and
sampling aimed for embedded use; saving computation and communication
cost; preventing flooding of alert information
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∙ Property 6: Preciseness - recognition of anomalies/attacks near the ori-
gin when considering the hierarchical location of modules (root cause)

∙ Property 7: Predictability - predicting the spread of malicious activity
and forecast the next steps of an adversary; next steps of a multi-staged
attack; stochastic propagation prediction to forecast the boundary level
with respect to the abstracted hierarchy; for response techniques considering
small- and large-scale environments

∙ Property 8: Robustness - stability; noise in the data should not affect the
output e.g. in the presence of attacks they should be detected as well; coping
with high dimensional data; reliable operation facing high throughput

∙ Property 9: Adaptability - each module can be self-regulating or regu-
lated by other modules e.g. the adjustment of sampling rates in order to
lower the resource consumption linked to the detection of incidents; con-
sideration of QoS; “hyperparameter” adjustment e.g. the algorithm-specific
parameter or feature set; response activation and deactivation by consider-
ing the rate of attack or network risk tolerance

∙ Property 10: Advancement - detection of high sophisticated attack sce-
narios e.g. APTs; understanding attack behavior/actions (kill chain); detect-
ing zero day exploits, new attack strategies and dealing with hypothesizing

∙ Property 11: Responsiveness - (semi-)automatic reaction to incidents
or attacks; combining proactive IPS and reactive IRS capability; attack
context-aware response selection

∙ Property 12: Safeness - safety-conform response cost computation and
response execution selection; consideration and combination of automotive
HARA and TARA information

∙ Property 13: Interdisciplinarity - possibility to include various other
disciplines, e.g. risk assessment, vulnerability information, social analysis
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Figure 27: Abstracted next generation automotive network infrastructure
with exemplary placed ANDERS components
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An exemplary architecture for a generic ANDERS component is shown
in Figure 28. A detailed description will be given in the Ph.D. thesis. How-
ever, a focus with respect to the overall research objective lies in an adap-
tive A-NIDS and the derivation of (multi-staged)(novel) attack identification
utilizing methods among others from alert correlation as well as predicting
the propagation of malicious activity in order to select a suitable response.
Applying methods for root cause identification and response cost, e.g. risk
assessment, helps to select appropriate countermeasures. Since ANDERS
components might have different capability stages, the communication with
e.g. human experts (security administrator), the infrastructure or other AN-
DERS components is a core feature.
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Figure 28: Architecture of a generic ANDERS component

The resulting prototype system will be embedded in a SDN-infrastructure,
similar to [214], since it allows an immediate and scalable implementation of
the next generation incident handling framework in the network infrastruc-
ture by integrating an ANDERS component directly in the network forward-
ing elements as a kind of NFV-function for detection, analysis and response.
SDN is a key future technology and can not only be used for future in-
vehicle network communication, e.g. [218, 219, 220], or for vehicular ad-hoc
networks [221, 222, 223, 224, 225, 226] but also in combination with other
trends or benefiting from them such as IoT, 5G, Industry 4.0 [217, 227, 228].
A possible use case for the application of ANDERS components in a hier-
archical SDN-based vehicular ad-hoc network communication is shown in
Figure 29. There, a novel malicious hacker activity propagating over various
network hops will be detected by a low-level ANDERS component utilizing
anomaly-based methods which provide alert information to the next AN-
DERS components in the hierarchical topology. Those are then performing
attack strategy identification, predict the propagation and identify the root
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cause in order that, at latest, the ANDERS component close to the victim
is able to respond to the attack. It is desired that the ANDERS framework
is mitigating malicious activity as close as possible to the root cause.

generic ANDERS Component

Capability

Malicious Activity 
Mitigation

Propagation 
Prediction

Anomaly 
Detection

(New) Attack 
Strategy 

Identification

Root Cause 
Identification

Figure 29: Possible ANDERS use case of malicious activity propagation in
a SDN-based vehicular ad-hoc network (cf. [226])

To achieve the aims of the Ph.D., the overall objective needs to be broken
down into research questions that will be discussed in the thesis. Candidate
(exemplary) research questions are listed as follows (subject to change).

∙ Research Question 1: How must the (non-)functional requirements of the
proposed next generation incident handling framework be formulated?

∙ Research Question 2: How do the integral parts of the system design,
satisfying the requirements, look like?

∙ Research Question 3: How can adaptive A-NIDSs be improved over run-
time by the incorporation of feedback?

∙ Research Question 4: How can the performance of a (new) attack iden-
tification method based on A-NIDSs reliably be evaluated considering the
characteristic that real-life alerts are cursed with false positives and false
negatives and do not map to a certain attack (100% confidence)?

∙ Research Question 5: How does exchanged propagation information look
like (cf. IDIP) and can be used to improve micro- and macroscopig propa-
gation prediction?

∙ Research Question 6: How can intra- and inter-network root cause anal-
ysis be leveraged to improve the overall system functionality?

∙ Research Question 7: How does a safety-tailored response cost and selec-
tion look like and be leveraged for proactive/reactive response execution?

∙ Research Question 8: How does network topology information benefit
the individual components with respect to their different capability stages
in a centralized and decentralized orchestration?
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6 Conclusion & Future Work
Future IT systems will be exposed to increasing risks due to new emerging
technologies and trends with blurring borders (keyword “IoT-ification”) as-
sociated with novel and highly advanced attack possibilities, e.g. AI-driven
malware. Cryptography alone can not postulate protection for network com-
munication in the future wherefore advanced and intelligent mechanisms
need to be developed for cyber defense. In this report comprehensive state-
of-the-art knowledge on (automated) incident handling including detection,
analysis and response has been provided as well as open issues pointed out
for proactive/reactive security in network communication protection. The
stated fields contain various and diverse disciplines each and discussed work
aimed towards unified incident handling frameworks do not cover all aspects
sufficiently. Thus, the overall objective has and exemplary research questions
of the future Ph.D. thesis have been proposed including requirements and a
conceptional illustration of the application for ANDERS.

As part of future work, the overall objective need to be sharpened and
the research questions formulated. Since this research field is highly dynamic,
the state of the art must continuously be tracked besides. The framework’s
requirements, derived from the properties, must by sharpened and evaluated
against the comprehensive state-of-the-art work (cf. [94, 102, 229, 230]) such
that the elementary components and benefits of the novel concept crystallize
out. Future work needs to broken down in the following research tasks to
achieve the goal (which might result in individual publications).

∙ Future Work 1: Improving adaptive A-NIDS components over run-
time using a weighting-based approach being still efficient to achieve
e.g. the best feature, parameter or algorithm set for the underlying net-
work incorporating feedback from an analysis component (Exemplary
architecture with A-NIDS components is shown in Figure 30).

∙ Future Work 2: On-the-fly malicious activity propagation prediction
in small- and large-scale environments using online parameter estima-
tion to update e.g. agent/graph-based parameters (small-scale view)
or (stochastic) differential equations (large-scale view).

∙ Future Work 3: Implementation of a (new) attack strategy identi-
fication module tailored to A-NIDS by comparing patterns to known
ones under consideration of hypothesizing.

∙ Future Work 4: Realizing a testbed for the evaluation of (new) attack
strategy identification modules based on the output and impact of
various A-NIDS utilizing common data sets (Exemplary architecture
is shown in Figure 31).

∙ Future Work 5: Response cost computation under consideration of
(automotive) HARA/TARA and response selection based on identified
root cause (intra- and inter-network).
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∙ Future Work 6: Establishing an evaluation environment, e.g. sim-
ulated using Mininet, for SDN-based in-vehicle networking [219, 220]
and extended with a vehicular ad-hoc networking infrastructure [226,
231] that can be used to integrate the framework’s components, simi-
larly to MiniCPS [214], in order to comprehensively test the detection,
analysis and reaction functionality.

Detection

Alerts e.g. IDMEF

A-NIDS n-1 A-NIDS n A-NIDS n+1

Feature Set n-1 Feature Set n Feature Set n+1

Hyper Parameter Set n-1 Hyper Parameter Set n Hyper Parameter Set n+1

                 Weighting Matrix   

......

W
ei

g
h

ti
n

g
M

a
tr

ix
 F

ee
d

b
a

ck

Pre-Processing Input Data

ANDERS

Capability Stage: Detection

Attack Pattern 
Generator

Attack Pattern 
Database

Pre-Processing Engine

Sampling Feature Extraction

Misuse Detection
IDS 1

IDS 2

IDS n

...

Anomaly Detection
IDS 1

IDS 2

IDS n

...

Capability Stage: Response

Prevention
(Pro-active Response)

R1 R2 Rn...

Intrusion

"|0da?b5XX|"

Response Database

......

R11 R12 R1n...

Rn1 Rn2 Rnn...

R21 R22 R2n...

Alert Fusion & 
Reduction

AlertAlert Generation

Score, 
Classification

Alert

Fe
a

tu
re

 E
xt

ra
ct

io
n

New Attack Strategy 
 Identification

Capability Stage: Analysis

Root Cause
Identification

Alert Correlation
Similarity-based

Sequential-based

Statistical-based

Knowledge-based

Communication & Interface Module

COM (H) COM (I) COM (A) COM ...

COM (H)

COM (H)

COM (H)

Re-active Response 
Selection & Execution

Activation Deactivation

R1 R2 Rn...

Response Cost Computation

QoSTARA/HARAAttack (Propagation) Prediction

Small-Scale Large-Scale

Network Topology

COM (H,I)

Incident Notifier
COM (H)

ANDERS

Figure 30: Improving anomaly-based detection results over runtime using a
feedback approach

AnalysisDetection

Resulting binary classification per 
data instance from various A-IDS

A-NIDS n

A-NIDS n+1

Feature Set n

Feature Set n+1

Hyper Parameter Set n

Hyper Parameter Set n+1

Knowledge about
attack scenarios and binary 

classification per data instance

...

Log n
Log n+1
...

Reduced Alerts,
Attack Scenarios

Performance regarding attack 
scenario identification, reduced 

alerts, hypothesizing, ...
Evaluation

Data set
Capability Stage: Detection

Attack Pattern 
Generator

Attack Pattern 
Database

Pre-Processing Engine

Sampling Feature Extraction

Misuse Detection
IDS 1

IDS 2

IDS n

...

Anomaly Detection
IDS 1

IDS 2

IDS n

...

Capability Stage: Response

Prevention
(Pro-active Response)

R1 R2 Rn...

Intrusion

"|0da?b5XX|"

Response Database

......

R11 R12 R1n...

Rn1 Rn2 Rnn...

R21 R22 R2n...

Alert Fusion & 
Reduction

AlertAlert Generation

Score, 
Classification

Alert

Fe
a

tu
re

 E
xt

ra
ct

io
n

New Attack Strategy 
 Identification

Capability Stage: Analysis

Root Cause
Identification

Alert Correlation
Similarity-based

Sequential-based

Statistical-based

Knowledge-based

Communication & Interface Module

COM (H) COM (I) COM (A) COM ...

COM (H)

COM (H)

COM (H)

Re-active Response 
Selection & Execution

Activation Deactivation

R1 R2 Rn...

Response Cost Computation

QoSTARA/HARAAttack (Propagation) Prediction

Small-Scale Large-Scale

Network Topology

COM (H,I)

Incident Notifier
COM (H)

ANDERS

Figure 31: Conception of the proposed testbed for (new) attack identification
based on anomaly detection algorithms

76



Author’s Publications

Talks
Karl Leidl, Martin Aman, Michael Heigl, Andreas Grzemba, Intrusion De-
tection Sensoren für industrielle Netzwerke, CYBICS - Cyber Security for
Industrial Control Systems, Würzburg, Germany, June 2016

Laurin Doerr, Michael Heigl, Andreas Grzemba, Christian Boiger, IT-Security-
Architektur für Next-Generation Kommunikationssysteme im Automobil,
VDI/VW-Gemeinschaftstagung: Fahrerassistenzsysteme und automatisiertes
Fahren, Wolfsburg, Germany, November 2016

Michael Heigl, Karl Leidl, An Approach to an Embedded Anomaly-Based IDS
on the Example of SOME/IP, 3rd Vector Testing Symposium, Stuttgart,
Germany, Mai 2017

Michael Heigl, Distributed Embedded Incident Detection and Response Mech-
anisms, ProtectIT Security Convention 2017 (ProSecCon’17), Technische
Hochschule Deggendorf, Deggendorf, Germany, July 2017

Michael Heigl, Decentralized Anomaly Detection, Tag der Forschung 2018,
Technische Hochschule Deggendorf, Deggendorf, Germany, March 2018

Conference Papers
Michael Heigl, Martin Aman, Andreas Fuchs, Andreas Grzemba, Securing
Industrial Legacy System Communication Through Interconnected Embed-
ded Plug-In Devices, Applied Research Conference, pp. 501-508, ISBN 978-
3-86460-494-2, Pro BUSINESS GmbH, Augsburg, Germany, June 2016

Michael Heigl, Martin Schramm, Laurin Doerr, Andreas Grzemba, Embed-
ded Plug-In Devices to Secure Industrial Network Communications, 2016
International Conference on Applied Electronics (AE), pp. 85-88, https:
//doi.org/10.1109/AE.2016.7577247, Pilsen, September 2016

Martin Schramm, Reiner Dojen, Michael Heigl, Experimental Assessment
of FIRO- and GARO-based Noise Sources for Digital TRNG Designs on
FPGAs, 2017 International Conference on Applied Electronics (AE), pp. 221-
226, https://doi.org/10.23919/AE.2017.8053618, Pilsen, September 2017

Laurin Doerr, Michael Heigl, Dalibor Fiala, Martin Schramm, Assessment
Simulation Model for Uncoupled Message Authentication, 2017 International
Conference on Applied Electronics (AE), pp. 45-48, https://doi.org/10.
23919/AE.2017.8053580, Pilsen, September 2017

i

https://doi.org/10.1109/AE.2016.7577247
https://doi.org/10.1109/AE.2016.7577247
https://doi.org/10.23919/AE.2017.8053618
https://doi.org/10.23919/AE.2017.8053580
https://doi.org/10.23919/AE.2017.8053580


Michael Heigl, Laurin Doerr, Amar Almaini, Dalibor Fiala, Martin Schramm,
Incident Reaction Based on Intrusion Detections’ Alert Analysis, 2018 In-
ternational Conference on Applied Electronics (AE), pp. 45-50, https://
doi.org/10.23919/AE.2018.8501419, Pilsen, September 2018

Michael Heigl, Martin Schramm, Dalibor Fiala, A Lightweight Quantum-
Safe Security Concept for Wireless Sensor Network Communication, 2019
IEEE International Conference on Pervasive Computing and Communica-
tions Workshops (PerCom Workshops), pp. 906-911, https://doi.org/10.
1109/PERCOMW.2019.8730749, Kyoto, Japan, March 2019

Michael Heigl, Laurin Doerr, Martin Schramm, Dalibor Fiala, On the Energy
Consumption of Quantum-Resistant Cryptographic Implementations Suit-
able for Wireless Sensor Networks, Proceedings of the International Confer-
ence on Security and Cryptography - SECRYPT, Prague, Czech Republic,
July 2019 [accepted]

Laurin Doerr, Michael Heigl, Dalibor Fiala, Martin Schramm, Comparison of
Energy-Efficient Key Management Protocols for Wireless Sensor Networks,
2019 International Electronics Communication Conference (IECC 2019),
ISBN 978-1-4503-7177-3, Okinawa, Japan, July 2019 [accepted]

Journal Articles
Nari S. Arunraj, Robert Hable, Michael Fernandes, Karl Leidl, Michael
Heigl, Comparison of Supervised, Semi-supervised and Unsupervised Learn-
ing Methods in Network Intrusion Detection System (NIDS) Application,
Anwendungen und Konzepte der Wirtschaftsinformatik (AKWI), [S.l.], n. 6,
pp. 10-19, ISSN 2296-4592, November 2017. https://ojs-hslu.ch/ojs302/
index.php/AKWI/article/view/89.

Martin Schramm, Reiner Dojen, and Michael Heigl, A Vendor-Neutral Uni-
fied Core for Cryptographic Operations in GF(p) and GF(2m) Based on
Montgomery Arithmetic, Security and Communication Networks, vol. 2018,
Article ID 4983404, June 2018. https://doi.org/10.1155/2018/4983404.

Michael Heigl, Laurin Doerr, Nicolas Tiefnig, Dalibor Fiala, Martin Schramm,
A resource-preserving self-regulating Uncoupled MAC algorithm to be applied
in incident detection, Computers & Security, Volume 85, pp. 270-287, ISSN
0167-4048, Mai 2019, https://doi.org/10.1016/j.cose.2019.05.010.

ii

https://doi.org/10.23919/AE.2018.8501419
https://doi.org/10.23919/AE.2018.8501419
https://doi.org/10.1109/PERCOMW.2019.8730749
https://doi.org/10.1109/PERCOMW.2019.8730749
https://ojs-hslu.ch/ojs302/index.php/AKWI/article/view/89
https://ojs-hslu.ch/ojs302/index.php/AKWI/article/view/89
https://doi.org/10.1155/2018/4983404
https://doi.org/10.1016/j.cose.2019.05.010


References
[1] T. R. Vittor, T. Sukumara, S. D. Sudarsan, and J. Starck, “Cyber

security - security strategy for distribution management system and
security architecture considerations,” 2017 70th Annual Conference for
Protective Relay Engineers (CPRE), pp. 1–6, 2017.

[2] G. Press, “60 cybersecurity predictions for 2019,” Forbes,
[online] https://www.forbes.com/sites/gilpress/2018/12/03/
60-cybersecurity-predictions-for-2019 , [22.07.2019].

[3] H. Hindy, D. Brosset, E. Bayne, A. Seeam, C. Tachtatzis, R. C. Atkin-
son, and X. J. A. Bellekens, “A taxonomy and survey of intrusion
detection system design techniques, network threats and datasets,”
arXiv preprint arXiv:1806.03517, vol. abs/1806.03517, 2018.

[4] P. Nespoli, D. Papamartzivanos, F. G. Mármol, and G. Kambourakis,
“Optimal countermeasures selection against cyber attacks: A compre-
hensive survey on reaction frameworks,” IEEE Communications Sur-
veys Tutorials, vol. 20, no. 2, pp. 1361–1396, 2018.

[5] A. Sadighian, “Intrusion detection from heterogenous sensors,” Ph.D.
thesis, Polytechnique Montreal, https://publications.polymtl.ca/1702/
1/2015_AlirezaSadighian.pdf , 2015.

[6] A. A. Ramaki, A. Rasoolzadegan, and A. G. Bafghi, “A systematic
mapping study on intrusion alert analysis in intrusion detection sys-
tems,” ACM Computing Surveys, vol. 51, no. 3, pp. 1–41, 2018.

[7] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Network traffic
anomaly detection techniques and systems,” Network Traffic Anomaly
Detection and Prevention, pp. 115–169, 2017.

[8] ISO/IEC 27000:2018, “Information technology – security techniques –
information security management systems – overview and vocabulary,”
International Organization for Standardization, [online] https://www.
iso.org/ standard/73906.html, [15.06.2019].

[9] Z. Inayat, A. Gani, N. B. Anuar, S. Anwar, and M. K. Khan, “Cloud-
based intrusion detection and response system: Open research issues,
and solutions,” Arabian Journal for Science and Engineering, vol. 42,
no. 2, pp. 399–423, 2017.

[10] S. Anwar, J. Mohamad Zain, M. F. Zolkipli, Z. Inayat, S. Khan, B. An-
thony, and V. Chang, “From intrusion detection to an intrusion re-
sponse system: Fundamentals, requirements, and future directions,”
Algorithms, vol. 10, no. 2, 2017.

[11] A. Shameli-Sendi, M. Cheriet, and A. Hamou-Lhadj, “Taxonomy of
intrusion risk assessment and response system,” Computers & Security,
vol. 45, pp. 1–16, 2014.

[12] M. Heigl, L. Doerr, A. Almaini, D. Fiala, and M. Schramm, “Incident
reaction based on intrusion detections’ alert analysis,” 2018 Interna-
tional Conference on Applied Electronics (AE), pp. 1–6, 2018.

iii

https://www.forbes.com/sites/gilpress/2018/12/03/60-cybersecurity-predictions-for-2019
https://www.forbes.com/sites/gilpress/2018/12/03/60-cybersecurity-predictions-for-2019
https://publications.polymtl.ca/1702/1/2015_AlirezaSadighian.pdf
https://publications.polymtl.ca/1702/1/2015_AlirezaSadighian.pdf
https://www.iso.org/standard/73906.html
https://www.iso.org/standard/73906.html


[13] L. T. Heberlein, G. V. Dias, K. N. Levitt, B. Mukherjee, J. Wood,
and D. Wolber, “A network security monitor,” 1990 IEEE Computer
Society Symposium on Research in Security and Privacy, pp. 296–304,
1990.

[14] A. N. Jaber, M. F. Zolkipli, H. A. Shakir, and M. R. Jassim, “Host
based intrusion detection and prevention model against DDoS attack
in cloud computing,” Advances on P2P, Parallel, Grid, Cloud and
Internet Computing, pp. 241–252, 2018.

[15] D. Fallstrand and V. Lindstroem, “Applicability analysis of intru-
sion detection and prevention in automotive systems,” Master’s the-
sis, Computer Systems and Networks, Chalmers University of Tech-
nology Goteborg, http://publications.lib.chalmers.se/ records/ fulltext/
219075/219075.pdf , 2015.

[16] Z. Inayat, A. Gani, N. B. Anuar, M. K. Khan, and S. Anwar, “Intru-
sion response systems: Foundations, design, and challenges,” Journal
of Network and Computer Applications, vol. 62, pp. 53–74, 2016.

[17] M.-Y. Su, “Using clustering to improve the KNN-based classifiers for
online anomaly network traffic identification,” Journal of Network and
Computer Applications, vol. 34, no. 2, pp. 722–730, 2011.

[18] B. B. Zarpelão, R. S. Miani, C. T. Kawakani, and S. C. de Alvarenga,
“A survey of intrusion detection in internet of things,” Journal of Net-
work and Computer Applications, vol. 84, no. January, pp. 25–37, 2017.

[19] R. A. R. Ashfaq, X.-Z. Wang, J. Z. Huang, H. Abbas, and Y.-L. He,
“Fuzziness based semi-supervised learning approach for intrusion de-
tection system,” Information Sciences, vol. 378, pp. 484–497, 2017.

[20] A. Taylor, “Anomaly-based detection of malicious activity in in-vehicle
networks,” University of Ottawa, https:// ruor.uottawa.ca/bitstream/
10393/36120/3/Taylor_Adrian_2017_thesis.pdf , 2017.

[21] I. Butun, S. D. Morgera, and R. Sankar, “A survey of intrusion de-
tection systems in wireless sensor networks,” IEEE Communications
Surveys Tutorials, vol. 16, no. 1, pp. 266–282, 2014.

[22] A. M. Ahmed, “Online network intrusion detection system using
temporal logic and stream data processing,” Ph.D. thesis, Uni-
versity of Liverpool, https:// livrepository.liverpool.ac.uk/12153/1/
AbdulbasitAhmed_June2013_12153.pdf , 2013.

[23] E. Vasilomanolakis, S. Karuppayah, M. Mühlhäuser, and M. Fischer,
“Taxonomy and survey of collaborative intrusion detection,” ACM
Comput. Surv., vol. 47, no. 4, pp. 55:1–55:33, 2015.

[24] Z. Zhang, J. Li, C. Manikopoulos, J. Jorgenson, and J. Ucles, “HIDE:
a hierarchical network intrusion detection system using statistical pre-
processing and neural network classification,” In Proc. IEEE Workshop
on Information Assurance and Security, pp. 85–90, 2001.

iv

http://publications.lib.chalmers.se/records/fulltext/219075/219075.pdf
http://publications.lib.chalmers.se/records/fulltext/219075/219075.pdf
https://ruor.uottawa.ca/bitstream/10393/36120/3/Taylor_Adrian_2017_thesis.pdf
https://ruor.uottawa.ca/bitstream/10393/36120/3/Taylor_Adrian_2017_thesis.pdf
https://livrepository.liverpool.ac.uk/12153/1/AbdulbasitAhmed_June2013_12153.pdf
https://livrepository.liverpool.ac.uk/12153/1/AbdulbasitAhmed_June2013_12153.pdf


[25] M. Jahnke, “An open and secure infrastructure for distributed intru-
sion detection sensors,” In Proceedings of the NATO Regional Con-
ference on Communication and Information Systems (RCMCIS’02),
Zegrze, Poland, 2002.

[26] H. Debar, D. Curry, and B. Feinstein, “The intrusion detection message
exchange format (IDMEF),” RFC 4765, RFC Editor, https://www.
ietf.org/ rfc/ rfc4765.txt, 2007.

[27] R. Lupu, R. Badea, and I. Cosmin Mihai, “Agent-based IDMEF alert-
ing infrastructure for distributed intrusion detection and prevention
systems: Design and validation,” In 2016 International Conference on
Communications (COMM), pp. 281–284, 2016.

[28] W. Hu, J. Gao, Y. Wang, O. Wu, and S. Maybank, “Online adaboost-
based parameterized methods for dynamic distributed network intru-
sion detection,” IEEE Transactions on Cybernetics, pp. 66–82, 2014.

[29] J. D. Parmar and J. T. Patel, “Anomaly detection in data mining:
A review,” International Journal of Advanced Research in Computer
Science and Software Engineering, vol. 7, no. 4, pp. 32–40, 2017.

[30] S. Omar, A. Ngadi, and H. H. Jebur, “Machine learning techniques for
anomaly detection: An overview,” International Journal of Computer
Applications, vol. 79, no. 2, pp. 33–41, 2013.

[31] K. Kuźniar and M. Zaja̧c, “Some methods of pre-processing input data
for neural networks,” Computer Assisted Methods in Engineering and
Science, vol. 22, pp. 141–151, 2015.

[32] S. Ramírez-Gallego, B. Krawczyk, S. García, M. Woźniak, and F. Her-
rera, “A survey on data preprocessing for data stream mining: Current
status and future directions,” Neurocomputing, vol. 239, pp. 39–57,
2017.

[33] J. Singh Malik, P. Goyal, and M. K. Sharma, “A comprehensive ap-
proach towards data preprocessing techniques, & association rules,”
Proceedings of the 4th National Conference INDIACom, pp. 12–21,
2010.

[34] D. Tomar and S. Agarwal, “A survey on pre-processing and post-
processing techniques in data mining,” International Journal of
Database Theory and Application, vol. 7, no. 4, pp. 99–128, 2014.

[35] B. K. Singh, K. Verma, and A. S. Thoke, “Investigations on impact of
feature normalization techniques on classifier’s performance in breast
tumor classification,” International Journal of Computer Applications,
vol. 116, no. 19, pp. 11–15, 2015.

[36] H. Xie, J. Li, and H. Xue, “A survey of dimensionality reduction tech-
niques based on random projection,” arXiv preprint arXiv:1706.04371,
vol. abs/1706.04371, 2017.

[37] N. Lim, R. J. Durrant, and N. Zealand, “Linear dimensionality reduc-
tion in linear time: Johnson-Lindenstrauss-type guarantees for random
subspace,” arXiv preprint arXiv:1705.06408v1, 2017.

v

https://www.ietf.org/rfc/rfc4765.txt
https://www.ietf.org/rfc/rfc4765.txt


[38] S. M. Ghaffarian and H. R. Shahriari, “Software vulnerability analysis
and discovery using machine-learning and data-mining techniques: A
survey,” ACM Computing Surveys, vol. 50, no. 4, pp. 56:1–56:36, 2017.

[39] M. E. Aminanto, R. Choia, H. C. Tanuwidjaja, P. D. Yoo, and K. Kim,
“Deep abstraction and weighted feature selection for Wi-Fi imperson-
ation detection,” IEEE Transactions on Information Forensics and
Security 13, pp. 621–636, 2018.

[40] F. Iglesias and T. Zseby, “Analysis of network traffic features for
anomaly detection,” Machine Learning, vol. 101, no. 1, pp. 59–84, 2015.

[41] W. Wang, Y. Sheng, J. Wang, X. Zeng, X. Ye, Y. Huang, and
M. Zhu, “HAST-IDS: Learning hierarchical spatial-temporal features
using deep neural networks to improve intrusion detection,” IEEE Ac-
cess, vol. 6, pp. 1792–1806, 2018.

[42] X. He, D. Cai, and P. Niyogi, “Laplacian score for feature selection,”
Advances in neural information processing systems, pp. 507–514, 2006.

[43] R. Wieland, A. Kerkow, L. Früh, H. Kampen, and D. Walther, “Auto-
mated feature selection for a machine learning approach toward mod-
eling a mosquito distribution,” Ecological Modelling, vol. 352, pp. 108–
112, 2017.

[44] M. Luo, F. Nie, X. Chang, Y. Yang, A. G. Hauptmann, and Q. Zheng,
“Adaptive unsupervised feature selection with structure regulariza-
tion,” IEEE transactions on neural networks and learning systems,
vol. 29, no. 4, pp. 944–956, 2018.

[45] S. Aljawarneh, M. Aldwairi, and M. B. Yassein, “Anomaly-based intru-
sion detection system through feature selection analysis and building
hybrid efficient model,” Journal of Computational Science, vol. 25, pp.
152–160, 2018.

[46] W. Khreich, E. Granger, A. Miri, and R. Sabourin, “Adaptive ROC-
based ensembles of HMMs applied to anomaly detection,” Pattern
Recognition, vol. 45, no. 1, pp. 208–230, 2012.

[47] P. Casas, J. Mazel, and P. Owezarski, “Unsupervised network intru-
sion detection systems: Detecting the unknown without knowledge,”
Computer Communications, vol. 35, no. 7, pp. 772–783, 2012.

[48] J. Zhang, C. Chen, Y. Xiang, and W. Zhou, “Semi-supervised and
compound classification of network traffic,” 32nd International Con-
ference on Distributed Computing Systems Workshops, vol. 7, no. 4,
pp. 252–261, 2012.

[49] J. Zhang and M. Zulkernine, “A hybrid network intrusion detection
technique using random forests,” First International Conference on
Availability, Reliability and Security (ARES’06), pp. 262–269, 2006.

[50] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM Comput. Surv., vol. 41, no. 3, pp. 15:1–15:58, 2009.

vi



[51] I. Friedberg, F. Skopik, G. Settanni, and R. Fiedler, “Combating ad-
vanced persistent threats: From network event correlation to incident
detection,” Computers & Security, vol. 48, pp. 35–57, 2015.

[52] F. T. Liu, K. M. Ting, and Z. Zhou, “Isolation forest,” 2008 Eighth
IEEE International Conference on Data Mining, pp. 413–422, 2008.

[53] T. Pevný, “Loda: Lightweight on-line detector of anomalies,” Machine
Learning, vol. 102, no. 2, pp. 275–304, 2016.

[54] Z. Ding and M. Fei, “An anomaly detection approach based on isola-
tion forest algorithm for streaming data using sliding window,” IFAC
Proceedings Volumes, vol. 46, pp. 12–17, 2013.

[55] B. Pfahringer, G. Holmes, and R. Kirkby, “New Options for Hoeffding
Trees,” AI 2007: Advances in Artificial Intelligence, pp. 90–99, 2007.

[56] L. Sun, S. Versteeg, S. Boztas, and A. Rao, “Detecting anomalous user
behavior using an extended isolation forest algorithm: An enterprise
case study,” arXiv preprint arXiv:1609.06676, vol. abs/1609.06676,
2016.

[57] P. Li, T. J. Hastie, and K. W. Church, “Very sparse random projec-
tions,” Proceedings of the 12th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pp. 287–296, 2006.

[58] P. Amudha, S. Karthik, and S. Sivakumari, “Classification techniques
for intrusion detection - an overview,” International Journal of Com-
puter Applications, vol. 76, no. 16, pp. 33–40, 2013.

[59] W. Hu, W. Hu, and S. Maybank, “Adaboost-based algorithm for net-
work intrusion detection,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), vol. 38, no. 2, pp. 577–583, 2008.

[60] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: an en-
semble of autoencoders for online network intrusion detection,” arXiv
preprint arXiv:1802.09089, 2018.

[61] J. Kittler, M. Hatef, R. P. Duin, and J. Matas, “On combining classi-
fiers,” IEEE transactions on pattern analysis and machine intelligence,
vol. 20, no. 3, pp. 226–239, 1998.

[62] B. Parhami, “Voting algorithms,” IEEE Transactions on reliability,
vol. 43, no. 4, pp. 617–629, 1994.

[63] V. Hodge and J. Austin, “A survey of outlier detection methodologies,”
Artificial intelligence review, vol. 22, no. 2, pp. 85–126, 2004.

[64] J. Gao, W. Fan, D. Turaga, O. Verscheure, X. Meng, L. Su, and J. Han,
“Consensus extraction from heterogeneous detectors to improve per-
formance over network traffic anomaly detection,” INFOCOM, 2011
Proceedings IEEE, pp. 181–185, 2011.

[65] Y.-D. Lin, Y.-C. Lai, C.-Y. Ho, and W.-H. Tai, “Creditability-based
weighted voting for reducing false positives and negatives in intrusion
detection,” Computers & Security, vol. 39, pp. 460–474, 2013.

vii



[66] G. Giacinto, F. Roli, and L. Didaci, “Fusion of multiple classifiers for
intrusion detection in computer networks,” Pattern recognition letters,
vol. 24, no. 12, pp. 1795–1803, 2003.

[67] A. A. Aburomman and M. B. I. Reaz, “A survey of intrusion detec-
tion systems based on ensemble and hybrid classifiers,” Computers &
Security, vol. 65, pp. 135–152, 2017.

[68] F. Cheng and X. Qiu, “Network anomaly detection based on frequent
sub-graph mining approach and association analysis,” 2016 IEEE In-
ternational Conference on Network Infrastructure and Digital Content
(IC-NIDC), pp. 12–16, 2016.

[69] Y. Liu, H. Xu, H. Yi, Z. Lin, J. Kang, W. Xia, Q. Shi, Y. Liao, and
Y. Ying, “Network anomaly detection based on dynamic hierarchical
clustering of cross domain data,” 2017 IEEE International Conference
on Software Quality, Reliability and Security Companion (QRS-C),
pp. 200–204, 2017.

[70] X. Zhao, G. Wang, and Z. Li, “Unsupervised network anomaly detec-
tion based on abnormality weights and subspace clustering,” In 2016
Sixth International Conference on Information Science and Technol-
ogy (ICIST), pp. 482–486, 2016.

[71] Y. Maleh, A. Ezzati, Y. Qasmaoui, and M. Mbida, “A global hybrid in-
trusion detection system for wireless sensor networks,” Procedia Com-
puter Science, vol. 52, pp. 1047–1052, 2015.

[72] M. Yassine and A. Ezzati, “Lightweight intrusion detection scheme for
wireless sensor networks,” IAENG International Journal of Computer
Science, vol. 42, pp. 347–354, 2015.

[73] C. Guo, Y. Ping, N. Liu, and S.-S. Luo, “A two-level hybrid approach
for intrusion detection,” Neurocomputing, vol. 214, pp. 391–400, 2016.

[74] M. Weber, S. Klug, E. Sax, and B. Zimmer, “Embedded hybrid
anomaly detection for automotive can communication,” 9th European
Congress on Embedded Real Time Software and Systems (ERTS 2018),
2018.

[75] L. A. Maglaras, J. Jiang, and T. J. Cruz, “Combining ensemble meth-
ods and social network metrics for improving accuracy of OCSVM
on intrusion detection in SCADA systems,” Journal of Information
Security and Applications, vol. 30, pp. 15–26, 2016.

[76] G. Gu, P. Fogla, D. Dagon, W. Lee, and B. Skorić, “Measuring intru-
sion detection capability: An information-theoretic approach,” Pro-
ceedings of the 2006 ACM Symposium on Information, Computer and
Communications Security, pp. 90–101, 2006.

[77] T. Holz, “Security measurements and metrics for networks,” Depend-
ability Metrics: Advanced Lectures, Springer Berlin Heidelberg, pp.
157–165, 2008.

viii



[78] D. Ashok Kumar and S. R. Venugopalan, “A novel algorithm for net-
work anomaly detection using adaptive machine learning,” Progress in
Advanced Computing and Intelligent Engineering, pp. 59–69, 2018.

[79] S. Ossenbuehl, J. Steinberger, and H. Baier, “Towards automated
incident handling: How to select an appropriate response against a
network-based attack?” 2015 Ninth International Conference on IT
Security Incident Management IT Forensics, pp. 51–67, 2015.

[80] N. S. Arunraj, R. Hable, M. Fernandes, K. Leidl, and M. Heigl,
“Comparison of Supervised, Semi-supervised and Unsupervised Learn-
ing Methods in Network Intrusion Detection System (NIDS) Ap-
plication,” Anwendungen und Konzepte der Wirtschaftsinformatik
(AKWI), vol. 6, pp. 10–19, 2017.

[81] G. Suarez-Tangil, E. Palomar, J. M. de Fuentes, J. Blasco, and A. Rib-
agorda, “Automatic rule generation based on genetic programming for
event correlation,” Computational Intelligence in Security for Infor-
mation Systems, pp. 127–134, 2009.

[82] K.-T. Cho and K. G. Shin, “Fingerprinting electronic control units
for vehicle intrusion detection,” 25th USENIX Security Symposium
(USENIX Security 16), pp. 911–927, 2016.

[83] J. Steinberger, A. Sperotto, M. Golling, and H. Baier, “How to ex-
change security events? overview and evaluation of formats and pro-
tocols,” Proceedings of the 2015 IFIP/IEEE International Symposium
on Integrated Network Management, IM 2015, pp. 261–269, 2015.

[84] M. Kerrisk, “The linux programming interface,” Muenchen: No Starch-
Press, 2010.

[85] J. Postel, “Internet protocol,” RFC 791, RFC Editor, https://www.
ietf.org/ rfc/ rfc791.txt, 1981.

[86] R. Koch, M. Golling, and G. Dreo, “Evaluation of state of the art IDS
message exchange protocols,” International Journal of Computer and
Systems Engineering, vol. 7, pp. 1017–1026, 2013.

[87] CESNET, “Warden - a system for efficient sharing information
about detected events (threats),” [online] https://warden.cesnet.cz/
en/ index , [22.07.2019].

[88] MISP-Project, “MISP - Malware Information Sharing Platform,” [on-
line] https://www.misp-project.org/ , [22.07.2019].

[89] CESNET, “IDEA - Intrusion Detection Extensible Alert,” [online]
https:// idea.cesnet.cz/ en/ index , [22.07.2019].

[90] A. AlEroud and G. Karabatis, “Beyond data: Contextual information
fusion for cyber security analytics,” Proceedings of the 31st Annual
ACM Symposium on Applied Computing, pp. 73–79, 2016.

[91] J. Haines, D. K. Ryder, L. Tinnel, and S. Taylor, “Validation of sensor
alert correlators,” IEEE Security & Privacy, vol. 99, no. 1, pp. 46–56,
2003.

ix

https://www.ietf.org/rfc/rfc791.txt
https://www.ietf.org/rfc/rfc791.txt
https://warden.cesnet.cz/en/index
https://warden.cesnet.cz/en/index
https://www.misp-project.org/
https://idea.cesnet.cz/en/index


[92] G. Gu, A. A. Cárdenas, and W. Lee, “Principled reasoning and prac-
tical applications of alert fusion in intrusion detection systems,” Pro-
ceedings of the 2008 ACM Symposium on Information, Computer and
Communications Security, pp. 136–147, 2008.

[93] W. Meng, Y. Wang, W. Li, Z. Liu, J. Li, and C. W. Probst, “Enhancing
intelligent alarm reduction for distributed intrusion detection systems
via edge computing,” Information Security and Privacy, pp. 759–767,
2018.

[94] S. Salah, G. Maciá-Fernández, and J. E. Díaz-Verdejo, “A model-based
survey of alert correlation techniques,” Computer Networks, vol. 57,
no. 5, pp. 1289–1317, 2013.

[95] N. Hubballi and V. Suryanarayanan, “False alarm minimization tech-
niques in signature-based intrusion detection systems: A survey,” Com-
puter Communications, vol. 49, pp. 1–17, 2014.

[96] F. Valeur, G. Vigna, C. Kruegel, and R. A. Kemmerer, “Comprehen-
sive approach to intrusion detection alert correlation,” IEEE Transac-
tions on dependable and secure computing, vol. 1, no. 3, pp. 146–169,
2004.

[97] A. Siraj, “A unified alert fusion model for intelligent analysis of sensor
data in an intrusion detection environment,” Ph.D. thesis, Mississippi
State University, 2006.

[98] H. T. Elshoush and I. M. Osman, “An improved framework for in-
trusion alert correlation,” Proceedings of the World Congress on Engi-
neering, vol. 1, pp. 1–6, 2012.

[99] P. Ning, Y. Cui, and D. S. Reeves, “Analyzing intensive intrusion alerts
via correlation,” International Workshop on Recent Advances in Intru-
sion Detection, pp. 74–94, 2002.

[100] F. Maggi and S. Zanero, “On the use of different statistical tests for
alert correlation,” International Workshop on Recent Advances in In-
trusion Detection, pp. 167–177, 2007.

[101] M. GhasemiGol, A. Ghaemi-Bafghi, and H. Takabi, “A comprehen-
sive approach for network attack forecasting,” Computers & Security,
vol. 58, pp. 83–105, 2016.

[102] S. A. Mirheidari, S. Arshad, and R. Jalili, “Alert correlation algo-
rithms: A survey and taxonomy,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 8300 LNCS, pp. 183–197, 2013.

[103] H. T. Elshoush and I. M. Osman, “Alert correlation in collaborative
intelligent intrusion detection systems - a survey,” Applied Soft Com-
puting, vol. 11, no. 7, pp. 4349–4365, 2011.

[104] A. Valdes and K. Skinner, “Probabilistic alert correlation,” Interna-
tional Workshop on Recent Advances in Intrusion Detection, pp. 54–68,
2001.

x



[105] X. Zhuang, D. Xiao, X. Liu, and Y. Zhang, “Applying data fusion
in collaborative alerts correlation,” 2008 International Symposium on
Computer Science and Computational Technology, vol. 2, pp. 124–127,
2008.

[106] W. N. Thurman, M. E. Fisher et al., “Chickens, eggs, and causality, or
which came first,” American journal of agricultural economics, vol. 70,
no. 2, pp. 237–238, 1988.

[107] P. Ning, Y. Cui, D. S. Reeves, and D. Xu, “Towards automating intru-
sion alert analysis,” 2003 Workshop on Statistical and Machine Learn-
ing Techniques in Computer Intrusion Detection, pp. 1–19, 2003.

[108] B. Zhu and A. A. Ghorbani, “Alert correlation for extracting attack
strategies,” IJ Network Security, vol. 3, no. 3, pp. 244–258, 2006.

[109] S. Saad and I. Traore, “Extracting attack scenarios using intrusion
semantics,” International Symposium on Foundations and Practice of
Security, pp. 278–292, 2012.

[110] J. M. Vidal, A. L. S. Orozco, and L. J. G. Villalba, “Alert correlation
framework for malware detection by anomaly-based packet payload
analysis,” Journal of Network and Computer Applications, vol. 97, pp.
11–22, 2017.

[111] X. Zhuang, D. Xiao, X. Liu, and Y. Zhang, “Applying data fusion
in collaborative alerts correlation,” 2008 International Symposium on
Computer Science and Computational Technology, vol. 2, pp. 124–127,
2008.

[112] F. Cuppens and R. Ortalo, “Lambda: A language to model a database
for detection of attacks,” International Workshop on Recent Advances
in Intrusion Detection, pp. 197–216, 2000.

[113] S. T. Eckmann, G. Vigna, and R. A. Kemmerer, “STATL: An attack
language for state-based intrusion detection,” Journal of computer se-
curity, vol. 10, no. 1-2, pp. 71–103, 2002.

[114] S. Cheung, U. Lindqvist, and M. W. Fong, “Modeling multistep cy-
ber attacks for scenario recognition,” Proceedings DARPA Information
Survivability Conference And Exposition, vol. 1, pp. 284–292, 2003.

[115] S. H. Ahmadinejad, S. Jalili, and M. Abadi, “A hybrid model for cor-
relating alerts of known and unknown attack scenarios and updating
attack graphs,” Computer Networks, vol. 55, no. 9, pp. 2221–2240,
2011.

[116] C. T. Kawakani, S. B. Junior, R. S. Miani, M. Cukier, and B. B.
Zarpelão, “Intrusion alert correlation to support security manage-
ment,” XII Brazilian Symposium on Information Systems-Information
Systems in the Cloud Computing Era, pp. 313–320, 2016.

[117] G. Suarez-Tangil, E. Palomar, A. Ribagorda, and I. Sanz, “Providing
siem systems with self-adaptation,” Information Fusion, vol. 21, pp.
145–158, 2015.

xi



[118] M. Soleimani and A. A. Ghorbani, “Multi-layer episode filtering for
the multi-step attack detection,” Computer Communications, vol. 35,
no. 11, pp. 1368–1379, 2012.

[119] A. Ahmadian Ramaki and A. Rasoolzadegan, “Causal knowledge anal-
ysis for detecting and modeling multi-step attacks,” Security and Com-
munication Networks, vol. 9, no. 18, pp. 6042–6065, 2016.

[120] X. Sun, J. Dai, P. Liu, A. Singhal, and J. Yen, “Using bayesian net-
works for probabilistic identification of zero-day attack paths,” IEEE
Transactions on Information Forensics and Security, vol. 13, no. 10,
pp. 2506–2521, 2018.

[121] P. Ning and D. Xu, “Hypothesizing and reasoning about attacks missed
by intrusion detection systems,” ACM Transactions on Information
and System Security, vol. 7, no. 4, pp. 591–627, 2004.

[122] G. Tedesco and U. Aickelin, “Real-time alert correlation with type
graphs,” arXiv preprint arXiv:1004.4089, vol. abs/1004.4089, 2010.

[123] G. P. Spathoulas and S. K. Katsikas, “Enhancing IDS performance
through comprehensive alert post-processing,” Computers & Security,
vol. 37, pp. 176–196, 2013.

[124] H. Fatma and M. Limam, “A two-stage process based on data mining
and optimization to identify false positives and false negatives gener-
ated by intrusion detection systems,” 2015 11th International Confer-
ence on Computational Intelligence and Security, pp. 308–311, 2015.

[125] Q. Hui and W. Kun, “Real-time network attack intention recogni-
tion algorithm,” International Journal of Security and its Applications,
vol. 10, no. 4, pp. 51–62, 2016.

[126] B. D. Bryant and H. Saiedian, “A novel kill-chain framework for re-
mote security log analysis with SIEM software,” Computers & Secu-
rity, vol. 67, pp. 198–210, 2017.

[127] M. Abdlhamed, K. Kifayat, Q. Shi, and W. Hurst, “A system for intru-
sion prediction in cloud computing,” Proceedings of the International
Conference on Internet of Things and Cloud Computing, pp. 35:1–35:9,
2016.

[128] E. T. Anumol, “Use of machine learning algorithms with SIEM for at-
tack prediction,” Intelligent Computing, Communication and Devices,
pp. 231–235, 2015.

[129] A. A. Ramaki and R. E. Atani, “A survey of IT early warning systems:
architectures, challenges, and solutions,” Security and Communication
Networks, vol. 9, no. 17, pp. 4751–4776, 2016.

[130] M. Apel, J. Biskup, U. Flegel, and M. Meier, “Towards early warning
systems – challenges, technologies and architecture,” Critical Informa-
tion Infrastructures Security, pp. 151–164, 2010.

[131] A. A. Ramaki, M. Khosravi-Farmad, and A. G. Bafghi, “Real time
alert correlation and prediction using bayesian networks,” 2015 12th

xii



International Iranian Society of Cryptology Conference on Information
Security and Cryptology (ISCISC), pp. 98–103, 2015.

[132] P. Holgado, V. A. VILLAGRA, and L. Vazquez, “Real-time multistep
attack prediction based on hidden Markov models,” IEEE Transac-
tions on Dependable and Secure Computing, 2018.

[133] S. N. Narayanan, S. Mittal, and A. Joshi, “Using data analytics to
detect anomalous states in vehicles,” arXiv preprint arXiv:1512.08048,
vol. abs/1512.08048, 2015.

[134] A. M. del Rey, “Mathematical modeling of the propagation of malware:
a review,” Security and Communication Networks, vol. 8, no. 15, pp.
2561–2579, 2015.

[135] M. Trawicki, “Deterministic SEIRS epidemic model for modeling vi-
tal dynamics, vaccinations, and temporary immunity,” Mathematics,
vol. 5, no. 1, 2017.

[136] E. Magkos, M. Avlonitis, P. Kotzanikolaou, and M. Stefanidakis, “To-
ward early warning against internet worms based on critical-sized net-
works,” Security and Communication Networks, vol. 6, no. 1, pp. 78–
88, 2013.

[137] S. Peng, S. Yu, and A. Yang, “Smartphone malware and its propaga-
tion modeling: A survey,” IEEE Communications Surveys & Tutorials,
vol. 16, no. 2, pp. 925–941, 2013.

[138] S. H. White, A. M. Del Rey, and G. R. Sánchez, “Modeling epidemics
using cellular automata,” Applied Mathematics and Computation, vol.
186, no. 1, pp. 193–202, 2007.

[139] J. Pan and C. C. Fung, “An agent-based model to simulate coordinated
response to malware outbreak within an organisation,” International
Journal of Information and Computer Security, vol. 5, no. 2, pp. 115–
131, 2012.

[140] Y. El Ansari, A. El Myr, and L. Omari, “Deterministic and stochastic
study for an infected computer network model powered by a system
of antivirus programs,” Discrete Dynamics in Nature and Society, vol.
2017, 2017.

[141] J. Jiang, S. Wen, B. Liu, S. Yu, Y. Xiang, and W. Zhou, Malicious
attack propagation and source identification. Springer, 2019, vol. 73.

[142] Y. Wang, S. Wen, Y. Xiang, and W. Zhou, “Modeling the propaga-
tion of worms in networks: A survey,” IEEE Communications Surveys
Tutorials, vol. 16, no. 2, pp. 942–960, 2014.

[143] L. Xu, “Markovian and stochastic differential equation based ap-
proaches to computer virus propagation dynamics and some models
for survival distributions,” Ph.D. thesis, Department of Mathemat-
ics and Computer Science, Faculty of New Jersey Institute of Tech-
nology and Rutgers, http://archives.njit.edu/vol01/etd/2010s/2011/
njit-etd2011-064/njit-etd2011-064.pdf , 2011.

xiii

http://archives.njit.edu/vol01/etd/2010s/2011/njit-etd2011-064/njit-etd2011-064.pdf
http://archives.njit.edu/vol01/etd/2010s/2011/njit-etd2011-064/njit-etd2011-064.pdf


[144] R.-r. Xi, X.-c. Yun, Z.-y. Hao, and Y.-z. Zhang, “Quantitative threat
situation assessment based on alert verification,” Security and Com-
munication Networks, vol. 9, no. 13, pp. 2135–2142, 2016.

[145] A. Shameli-Sendi, M. Cheriet, and A. Hamou-Lhadj, “Taxonomy of
intrusion risk assessment and response system,” Computers & Security,
vol. 45, pp. 1–16, 2014.

[146] G. Apruzzese, M. Marchetti, M. Colajanni, G. G. Zoccoli, and
A. Guido, “Identifying malicious hosts involved in periodic communi-
cations,” 2017 IEEE 16th International Symposium on Network Com-
puting and Applications (NCA), pp. 1–8, 2017.

[147] P. A. Porras, M. W. Fong, and A. Valdes, “A mission-impact-based ap-
proach to INFOSEC alarm correlation,” Recent Advances in Intrusion
Detection, pp. 95–114, 2002.

[148] K. Alsubhi, E. Al-Shaer, and R. Boutaba, “Alert prioritization in intru-
sion detection systems,” NOMS 2008 - 2008 IEEE Network Operations
and Management Symposium, pp. 33–40, 2008.

[149] S. McElwee, J. Heaton, J. Fraley, and J. Cannady, “Deep learning for
prioritizing and responding to intrusion detection alerts,” MILCOM
2017 - 2017 IEEE Military Communications Conference (MILCOM),
pp. 1–5, 2017.

[150] R. Shittu, A. Healing, R. Ghanea-Hercock, R. Bloomfield, and M. Ra-
jarajan, “Intrusion alert prioritisation and attack detection using post-
correlation analysis,” Computers & Security, vol. 50, pp. 1–15, 2015.

[151] R. Kumar and B. B. Gupta, “Stepping stone detection techniques:
Classification and state-of-the-art,” Proceedings of the International
Conference on Recent Cognizance in Wireless Communication & Im-
age Processing, pp. 523–533, 2016.

[152] D. Shah and T. Zaman, “Detecting sources of computer viruses in
networks: Theory and experiment,” Proceedings of the ACM SIG-
METRICS International Conference on Measurement and Modeling
of Computer Systems, pp. 203–214, 2010.

[153] M. C. V. Fioriti and J. Palomo, “Predicting the sources of an outbreak
with a spectral technique,” Applied Mathematical Sciences, vol. 8(135),
pp. 6775–6782, 2014.

[154] D. Shah and T. Zaman, “Rumors in a network: Who’s the culprit?”
IEEE Transactions on Information Theory, vol. 57, no. 8, pp. 5163–
5181, 2011.

[155] D. Shah and T. Zaman, “Rumor centrality: A universal source detec-
tor,” Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE
Joint International Conference on Measurement and Modeling of Com-
puter Systems, pp. 199–210, 2012.

[156] K. Zhu and L. Ying, “A robust information source estimator with
sparse observations,” Computational Social Networks, vol. 1, no. 1,
p. 3, 2014.

xiv



[157] F. Altarelli, A. Braunstein, L. Dall’Asta, A. Lage-Castellanos, and
R. Zecchina, “Bayesian inference of epidemics on networks via belief
propagation,” Physical review letters, vol. 112, p. 118701, 2014.

[158] P. C. Pinto, P. Thiran, and M. Vetterli, “Locating the source of dif-
fusion in large-scale networks,” arXiv preprint arXiv:1208.2534, vol.
abs/1208.2534, 2012.

[159] Y. Xie, V. Sekar, D. A. Maltz, M. K. Reiter, and H. Zhang, “Worm
origin identification using random moonwalks,” 2005 IEEE Symposium
on Security and Privacy (SP’05), pp. 242–256, 2005.

[160] K. Julisch, “Clustering intrusion detection alarms to support root
cause analysis,” ACM transactions on information and system security
(TISSEC), vol. 6, no. 4, pp. 443–471, 2003.

[161] J. Kim, G. Lee, J.-t. Seo, E.-k. Park, C.-s. Park, and D.-k. Kim,
“Y-AOI: Y-means based attribute oriented induction identifying root
cause for IDSs,” Fuzzy Systems and Knowledge Discovery, pp. 205–214,
2005.

[162] Y. Guan, A. A. Ghorbani, and N. Belacel, “Y-means: a clustering
method for intrusion detection,” CCECE 2003 - Canadian Conference
on Electrical and Computer Engineering, vol. 2, pp. 1083–1086, 2003.

[163] S. O. Al-Mamory and H. Zhang, “Intrusion detection alarms reduction
using root cause analysis and clustering,” Computer Communications,
vol. 32, no. 2, pp. 419–430, 2009.

[164] M. Kechadi, J. H. Bellec, A. Tari et al., “Behavioural proximity dis-
covery: an adaptive approach for root cause analysis,” International
Journal of Business Intelligence and Data Mining, vol. 6, no. 3, pp.
259–282, 2011.

[165] D. Cotroneo, A. Paudice, and A. Pecchia, “Automated root cause iden-
tification of security alerts,” Future Generation Computer Systems,
vol. 56, no. C, pp. 375–387, 2016.

[166] I. Sanchez-Rola, I. Santos, and D. Balzarotti, “Clock around the
clock: Time-based device fingerprinting,” Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, pp.
1502–1514, 2018.

[167] K.-T. Cho and K. G. Shin, “Fingerprinting electronic control units for
vehicle intrusion detection,” 25th USENIX Security Symposium, pp.
911–927, 2016.

[168] K. Cho and K. Shin, “Viden: Attacker identification on in-vehicle net-
works,” Proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security, pp. 1109–1123, 2017.

[169] R. Shirey, “Internet security glossary,” RFC 2828, RFC Editor, https:
// rfc-editor.org/ rfc/ rfc2828.txt, 2000.

[170] N. Herold, “Incident handling systems with automated intrusion re-
sponse,” Ph.D. thesis, Technical University Munich, Germany, https:
//dblp.org/ rec/bib/phd/dnb/Herold17 , 2017.

xv

https://rfc-editor.org/rfc/rfc2828.txt
https://rfc-editor.org/rfc/rfc2828.txt
https://dblp.org/rec/bib/phd/dnb/Herold17
https://dblp.org/rec/bib/phd/dnb/Herold17


[171] N. Stakhanova, S. Basu, and J. Wong, “A taxonomy of intrusion re-
sponse systems,” International Journal of Information and Computer
Security (IJICS), vol. 1, 2007.

[172] C. Strasburg, N. Stakhanova, S. Basu, and J. S. Wong, “Intrusion
response cost assessment methodology,” Proceedings of the 4th Inter-
national Symposium on Information, Computer, and Communications
Security, pp. 388–391, 2009.

[173] A. Shameli-Sendi and M. Dagenais, “Orcef: Online response cost eval-
uation framework for intrusion response system,” Journal of Network
and Computer Applications, vol. 55, pp. 89–107, 2015.

[174] G. Gonzalez Granadillo, H. Débar, G. Jacob, C. Gaber, and M. Achem-
lal, “Individual countermeasure selection based on the return on re-
sponse investment index,” Computer Network Security, pp. 156–170,
2012.

[175] A. Fawaz, R. Berthier, and W. H. Sanders, “Cost modeling of re-
sponse actions for automated response and recovery in ami,” 2012
IEEE Third International Conference on Smart Grid Communications
(SmartGridComm), pp. 348–353, 2012.

[176] S. Ossenbühl, J. Steinberger, and H. Baier, “Towards automated in-
cident handling: How to select an appropriate response against a
network-based attack?” 2015 Ninth International Conference on IT
Security Incident Management IT Forensics, pp. 51–67, 2015.

[177] V. Mateos, V. A. Villagrá, F. Romero, and J. Berrocal, “Definition of
response metrics for an ontology-based automated intrusion response
systems,” Computers & Electrical Engineering, vol. 38, no. 5, pp. 1102–
1114, 2012.

[178] N. Stakhanova, S. Basu, and J. Wong, “A cost-sensitive model for
preemptive intrusion response systems,” 21st International Conference
on Advanced Information Networking and Applications (AINA ’07),
pp. 428–435, 2007.

[179] W. Kanoun, N. Cuppens-Boulahia, F. Cuppens, S. Dubus, and A. Mar-
tin, “Intelligent response system to mitigate the success likelihood of
ongoing attacks,” 2010 Sixth International Conference on Information
Assurance and Security, pp. 99–105, 2010.

[180] J. Baayer and B. Regragui, “New cost-sensitive model for intrusion
response systems minimizing false positive,” IJMER - International
Journal of Modern Engineering Research 2, 2012.

[181] Z. Zhang, P.-H. Ho, and L. He, “Measuring IDS-estimated attack im-
pacts for rational incident response: A decision theoretic approach,”
Computers & Security, vol. 28, no. 7, pp. 605–614, 2009.

[182] W. T. Yue and M. Çakanyıldırım, “A cost-based analysis of intru-
sion detection system configuration under active or passive response,”
Decision Support Systems, vol. 50, no. 1, pp. 21–31, 2010.

xvi



[183] B. Fessi, S. Benabdallah, N. Boudriga, and M. Hamdi, “A multi-
attribute decision model for intrusion response system,” Information
Sciences, vol. 270, pp. 237–254, 2014.

[184] J. Wang, K. Fan, W. Mo, and D. Xu, “A method for information
security risk assessment based on the dynamic bayesian network,”
2016 International Conference on Networking and Network Applica-
tions (NaNA), pp. 279–283, 2016.

[185] D. Schnackenberg, K. Djahandari, and D. Sterne, “Infrastructure for
intrusion detection and response,” Proceedings DARPA Information
Survivability Conference and Exposition. DISCEX’00, vol. 2, pp. 3–
11, 2000.

[186] D. Schnackengerg, H. Holliday, R. Smith, K. Djahandari, and
D. Sterne, “Cooperative intrusion traceback and response architecture
(CITRA),” Proceedings DARPA Information Survivability Conference
and Exposition II. DISCEX’01, vol. 1, pp. 56–68, 2001.

[187] S. A. Zonouz, H. Khurana, W. H. Sanders, and T. M. Yardley, “RRE: A
game-theoretic intrusion response and recovery engine,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 25, no. 2, pp. 395–406,
2014.

[188] R. Sharma, H. Kalita, and B. Issac, “Plant based biologically inspired
intrusion response mechanism : An insight into the proposed model
PIRIDS,” Journal of Information Assurance and Security, vol. 11,
no. 6, pp. 340–347, 2016.

[189] R. K. Sharma, B. Issac, and H. K. Kalita, “Intrusion detection and
response system inspired by the defense mechanism of plants,” IEEE
Access, vol. 7, pp. 52 427–52 439, 2019.

[190] H. A. Kholidy, A. Erradi, S. Abdelwahed, and F. Baiardi, “A risk
mitigation approach for autonomous cloud intrusion response system,”
Computing, vol. 98, no. 11, pp. 1111–1135, 2016.

[191] N. Herold, M. Wachs, S.-A. Posselt, and G. Carle, “An optimal metric-
aware response selection strategy for intrusion response systems,”
Foundations and Practice of Security, pp. 68–84, 2017.

[192] M. GhasemiGol, H. Takabi, and A. Ghaemi-Bafghi, “A foresight model
for intrusion response management,” Computers & Security, vol. 62,
pp. 73–94, 2016.

[193] A. Shameli-Sendi, H. Louafi, W. He, and M. Cheriet, “Dynamic op-
timal countermeasure selection for intrusion response system,” IEEE
Transactions on Dependable and Secure Computing, vol. 15, no. 5, pp.
755–770, 2018.

[194] R. Enns, M. Björklund, A. Bierman, and J. Schönwälder, “Network
configuration protocol (NETCONF),” RFC 6241, RFC Editor, https:
//www.ietf.org/ rfc/ rfc6241.txt, 2011.

[195] K. Djahandari and D. Schnackenberg, “Intruder detection and iso-
lation protocol (IDIP) application layer protocol definition,” Active

xvii

https://www.ietf.org/rfc/rfc6241.txt
https://www.ietf.org/rfc/rfc6241.txt


Networks Intrusion Detection and Response Program Technical Infor-
mation Report, vol. Prepared Under Contract N66001-00-C-8602 for
SPAWARSYSCEN San Diego, 2002.

[196] G. Klein, H. Rogge, F. Schneider, J. Toelle, M. Jahnke, and S. Karsch,
“Response initiation in distributed intrusion response systems for tac-
tical MANETs,” 2010 European Conference on Computer Network De-
fense, pp. 55–62, 2010.

[197] A. Avizienis, J. . Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Transac-
tions on Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33,
2004.

[198] A. Carlin, M. Hammoudeh, and O. Aldabbas, “Intrusion detection and
countermeasure of virtual cloud systems - state of the art and current
challenges,” International Journal of Advanced Computer Science and
Applications, vol. 6, no. 6, 2015.

[199] T. Xing, Z. Xiong, D. Huang, and D. Medhi, “SDNIPS: Enabling
software-defined networking based intrusion prevention system in
clouds,” 10th International Conference on Network and Service Man-
agement (CNSM) and Workshop, pp. 308–311, 2014.

[200] M. Heigl, L. Doerr, N. Tiefnig, D. Fiala, and M. Schramm, “A resource-
preserving self-regulating Uncoupled MAC algorithm to be applied in
incident detection,” Computers & Security, vol. 85, pp. 270–287, 2019.

[201] G. Androulidakis and S. Papavassiliou, “Improving network anomaly
detection via selective flow-based sampling,” IET Communications,
vol. 2, no. 3, pp. 399–409, 2008.

[202] J. Mai, A. Sridharan, C. N. Chuah, H. Zang, and T. Ye, “Impact of
packet sampling on portscan detection,” IEEE Journal on Selected
Areas in Communications, vol. 24, no. 12, pp. 2285–2298, 2006.

[203] E. G. Bakhoum, “Intrusion detection model based on selective packet
sampling,” EURASIP Journal on Information Security, 2011.

[204] T. Ha, S. Kim, N. An, J. Narantuya, C. Jeong, J. Kim, and H. Lim,
“Suspicious traffic sampling for intrusion detection in software-defined
networks,” Computer Networks, vol. 109, pp. 172–182, 2016.

[205] R. E. Jurga and M. M. Hulboj, “Technical report - packet
sampling for network monitoring,” CERN openlab report,
https://openlab-mu-internal.web.cern.ch/openlab-mu-internal/
03_documents/3_technical_documents/ technical_reports/2007/
rj-mm_samplingreport.pdf , 2007.

[206] L.-B. Xu, G.-X. Wu, and J.-F. Li, “Packet-level adaptive sampling
on multi-fluctuation scale traffic,” 2005 International Conference on
Communications, Circuits and Systems, vol. 1, pp. 604–608, 2005.

[207] K. Bartos, M. Rehak, and V. Krmicek, “Optimizing flow sampling for
network anomaly detection,” 2011 7th International Wireless Commu-
nications and Mobile Computing Conference, pp. 1304–1309, 2011.

xviii

https://openlab-mu-internal.web.cern.ch/openlab-mu-internal/03_documents/3_technical_documents/technical_reports/2007/rj-mm_samplingreport.pdf
https://openlab-mu-internal.web.cern.ch/openlab-mu-internal/03_documents/3_technical_documents/technical_reports/2007/rj-mm_samplingreport.pdf
https://openlab-mu-internal.web.cern.ch/openlab-mu-internal/03_documents/3_technical_documents/technical_reports/2007/rj-mm_samplingreport.pdf


[208] Q. Xia, T. Chen, and W. Xu, “CIDS: Adapting legacy intrusion de-
tection systems to the cloud with hybrid sampling,” 2016 IEEE Inter-
national Conference on Computer and Information Technology (CIT),
pp. 508–515, 2016.

[209] J. He, Y. Yang, X. Wang, and Z. Tan, “Adaptive traffic sampling
for P2P botnet detection,” International Journal of Network Manage-
ment, vol. 27, no. 5, p. e1992, 2017.

[210] S. Shin, L. Xu, S. Hong, and G. Gu, “Enhancing network security
through software defined networking (SDN),” 2016 25th International
Conference on Computer Communication and Networks (ICCCN), pp.
1–9, 2016.

[211] K. Giotis, G. Androulidakis, and V. Maglaris, “Leveraging SDN for
efficient anomaly detection and mitigation on legacy networks,” Pro-
ceedings of the 2014 Third European Workshop on Software Defined
Networks, pp. 85–90, 2014.

[212] M. B. Lehocine and M. Batouche, “Flexibility of managing VLAN fil-
tering and segmentation in SDN networks,” 2017 International Sym-
posium on Networks, Computers and Communications (ISNCC), pp.
1–6, 2017.

[213] B. R. Granby, B. Askwith, and A. K. Marnerides, “SDN-PANDA:
Software-defined network platform for anomaly detection applica-
tions,” 2015 IEEE 23rd International Conference on Network Protocols
(ICNP), pp. 463–466, 2015.

[214] A. F. Murillo Piedrahita, V. Gaur, J. Giraldo, A. A. Cardenas, and
S. J. Rueda, “Leveraging software-defined networking for incident re-
sponse in industrial control systems,” IEEE Software, vol. 35, no. 1,
pp. 44–50, 2018.

[215] M. G. Pérez, A. H. Celdrán, F. Ippoliti, P. G. Giardina, G. Bernini,
R. M. Alaez, E. Chirivella-Perez, F. J. G. Clemente, G. M. Pérez,
E. Kraja, G. Carrozzo, J. M. A. Calero, and Q. Wang, “Dynamic re-
configuration in 5G mobile networks to proactively detect and mitigate
botnets,” IEEE Internet Computing, vol. 21, no. 5, pp. 28–36, 2017.

[216] M. Iorga, L. Feldman, R. Barton, M. J. Martin, N. Goren, and C. Mah-
moudi, “Fog computing conceptual model,” NIST Special Publication,
no. 500–325, 2018.

[217] R. Shrestha, R. Bajracharya, and S. Y. Nam, “Challenges of future
VANET and cloud-based approaches,” Wireless Communications and
Mobile Computing, vol. 2018, pp. 1–15, 2018.

[218] M. Doering and M. Wagner, “Retrofitting SDN to classical in-vehicle
networks: SDN4CAN,” Universität Tübingen, http://hdl.handle.net/
10900/78141 , 2017.

[219] K. Halba and C. Mahmoudi, “In-vehicle software defined networking:
An enabler for data interoperability,” Proceedings of the 2nd Interna-

xix

http://hdl.handle.net/10900/78141
http://hdl.handle.net/10900/78141


tional Conference on Information System and Data Mining, pp. 93–97,
2018.

[220] M. D. Z. Khan, M. Chowdhury, M. Islam, C. Huang, and M. Rahman,
“In-vehicle false information attack detection and mitigation frame-
work using machine learning and software defined networking,” arXiv
preprint arXiv:1906.10203, vol. abs/1906.10203, 2019.

[221] A. Alioua, S.-M. Senouci, and S. Moussaoui, “dSDiVN: A distributed
software-defined networking architecture for infrastructure-less vehic-
ular networks,” Innovations for Community Services, pp. 56–67, 2017.

[222] C. Jiacheng, Z. Haibo, Z. Ning, Y. Peng, G. Lin, and S. Xuemin, “Soft-
ware defined internet of vehicles: architecture, challenges and solu-
tions,” Journal of Communications and Information Networks, vol. 1,
no. 1, pp. 14–26, 2016.

[223] W. B. Jaballah, M. Conti, and C. Lal, “A survey on software-defined
VANETs: Benefits, challenges, and future directions,” arXiv preprint
arXiv:1904.04577, vol. abs/1904.04577, 2019.

[224] A. Mahmood, W. E. Zhang, and Q. Z. Sheng, “Software-defined het-
erogeneous vehicular networking: The architectural design and open
challenges,” Future Internet, vol. 11, no. 3, 2019.

[225] T. Häckel, P. Meyer, F. Korf, and T. C. Schmidt, “Software-
defined networks supporting time-sensitive in-vehicular communica-
tion,” arXiv preprint arXiv:1903.08039, vol. abs/1903.08039, 2019.

[226] M. O. Kalinin, V. M. Krundyshev, and P. V. Semianov, “Architectures
for building secure vehicular networks based on SDN technology,” Au-
tomatic Control and Computer Sciences, vol. 51, no. 8, pp. 907–914,
2017.

[227] A. A. Khan, M. Abolhasan, and W. Ni, “5G next generation VANETs
using SDN and fog computing framework,” 2018 15th IEEE Annual
Consumer Communications Networking Conference, pp. 1–6, 2018.

[228] R. Poler, A. Tsuchiya, A. Ortiz, I. Koshijima, and F. Fraile, “Software-
defined networking firewall for industry 4.0 manufacturing systems,”
Journal of Industrial Engineering and Management, vol. 11, no. 2, pp.
318–333, 2018.

[229] R. Yusof, S. R. Selamat, and S. Sahib, “Intrusion alert correlation
technique analysis for heterogeneous log,” International Journal of
Computer Science and Network Security, vol. 8, no. 9, pp. 132–138,
2008.

[230] J. M. Chahira, J. K. Kiruki, and P. K. Kemei, “A review of intrusion
alerts correlation frameworks,” International Journal of Computer Ap-
plications Technology and Research, vol. 5, no. 4, pp. 226–233, 2016.

[231] S. Indriyanto, M. N. D. Satria, A. R. Sulaeman, R. Hakimi, and
E. Mulyana, “Performance analysis of VANET simulation on software
defined network,” 2017 3rd International Conference on Wireless and
Telematics (ICWT), pp. 81–85, 2017.

xx


	Contents
	List of Tables
	List of Equations
	List of Figures
	Introduction
	Motivation
	Research Challenges and Objective
	Report Outline

	Incident Detection
	Taxonomy of IDSs
	Architectures
	Detection Methods
	Modes and Placement

	Anomaly Detection with Machine Learning
	Aspects of Machine Learning
	Example of Two Outlier Detection Algorithms
	Combining Classifiers

	IDS Evaluation Metrics

	Incident Analysis
	Pre-Processing
	Normalization
	Verification

	Processing
	Aggregation
	Correlation
	New Attack Scenario Detection
	Missed Attack Hypothesizing

	Post-Processing
	Intention Recognition
	Prediction
	Impact Analysis
	Prioritization
	Root Cause Finding


	Incident Response
	Taxonomy of Intrusion Response Systems
	Response Cost
	Response Selection

	Intrusion Response Representation
	Possible Response Measures
	Adaptive IDS
	Network Reconfiguration Leveraging SDN


	Aims of the Ph.D. Thesis
	Conclusion & Future Work
	Author's Publications
	References

