
University of West Bohemia in Pilsen
Department of Computer Science and Engineering
Univerzitni 8
30614 Pilsen
Czech Republic

Installing and Using PyPy Standalone
Compiler with Parlib Framework
Technology Overview and Installation Manual

Marek Paška

Technical Report No. DCSE/TR-2012-09
August, 2012

Distribution: public

Technical Report No. DCSE/TR-2012-09
August 2012

Installing and Using PyPy Standalone
Compiler with Parlib Framework

Marek Paška

Abstract

This technical report describes how to install and use an application framework
called Parlib with an experimental compiler based on the PyPy project. This soft-
ware equipment enables to write programs in the Python programming language
and to translate them to efficient machine code and Java byte-code. A develop-
ment process that takes advantage of these tools is briefly described. The de-
velopment process also embraces formal methods, literally explicit model checker
Java Pathfinder, to improve dependability of the final program. The develop-
ment process is designed for embedded devices; however, it is not limited to this
domain.

Contents

1 Introduction 2

2 Technology Overview 2

2.1 The PyPy Interpreter and Compiler 2

2.2 Java Pathfinder 2 . 4

3 Development Process Overview 4

3.1 Specifying Application and Target Platform 5

3.1.1 Architecture . 5

3.1.2 Software . 5

3.1.3 Hardware . 5

3.2 Development Process Based on High Level Dynamic Language . . 6

3.3 Refining the Development Approach 7

4 Installation 8

4.1 Installing System Prerequisites . 9

4.1.1 Content of the Script . 9

4.2 Installing PyPy-standalone-compiler, framework-parlib and Java
Pathfinder . 10

4.2.1 Content of the Script . 10

5 Building an Example Program 12

6 The Deadlock Experiment 14

7 Conclusion 18

1

1 Introduction

This technical report describes how an experimental tool-chain based on (also
experimental) implementation of the Python programming language can be in-
stalled and used. The purpose of the tool-chain is to produce dependable and
resource-efficient applications based on Python. The tool-chain and a develop-
ment process that takes advantage of it were developed as a Ph.D. study project
[1].

The resource efficiency is achieved by compilation to the C code. This low-level
code is intended for embedded devices, though it is not limited to this domain.

The dependability is addressed by employment of an explicit model checker called
Java Pathfinder. This tool can discover awkward bugs such as deadlock or race
condition.

This report also provides a brief description of the underlying technologies and
basics of our development process.

2 Technology Overview

The tool-chain is based no two established peaces of software: PyPy and Java
Pathfinder. These are the giants on whose shoulders we stand.

2.1 The PyPy Interpreter and Compiler

PyPy [2] is an experimental implementation of the Python language developed
at ETH Zurich since 2003. The most interesting attribute of the PyPy project is
that it is written entirely in Python, i.e., it is self-hosting. The main goal of the
project is to bring the recent fruit of research of interpreters and virtual machines
to the world of Python.

Python is dynamically and strongly typed object-oriented language. Its main im-
plementation is Python interpreter written in C, usually referred to as CPython.
CPython runs on many architectures and operating systems. Apart from PyPy,
there exist several other implementations: Jython that runs on the top of JVM
and IronPython for .Net.

PyPy consists of several parts. First of all, it is an interpreter. As it is written
in Python, it runs on the top of another interpreter; that means, CPython. So
the program that runs on top of the PyPy interpreter pays the cost of double
interpretation.

Another part of PyPy is a compiler. The primary goal of the compiler is to trans-

2

late the PyPy interpreter from Python to C source code that can be compiled
to native machine code. Apart from C, there are several other target codes sup-
ported: Java byte-code, MS Intermediate Language (.Net), SmallTalk, LLVM1,
and JavaScript.

The PyPy compiler is a single-purpose program. It was designed to compile
the PyPy interpreter to the more efficient code and thus to avoid the double
interpretation. The software stack before and after the translation from Python
to C is depicted in figure 1.

Application (Python)

PyPy Interpreter (RPython)

Python Interpreter (C)

OS

PyPy

Compiler

Application (Python)

PyPy Interpreter (C)

OS

Figure 1: Translation of PyPy Interpreter

Because of the dynamic nature of the Python language, the PyPy compiler only
supports more static subset of Python called Restricted Python, or RPython.

However, PyPy approach combines dynamic and static code. The main idea is
that the dynamic behavior is enabled only up to some fixed point of execution. At
first, the program’s object space is constructed dynamically; all dynamic features
are enabled, including eval. At second, dynamic features are suppressed. The
dynamics is limited only to the features known from compiled languages, such as
dynamic object creation, virtual method call, etc.

The frozen program’s object space is used for subsequent transformations:

1. Type inference. A static data type is assigned to every data field. These
types are abstract, i.e., have only indirect relation with the data types of
the target platform.

2. Low-level typing. According to the selected backend, e.g., C of JVM, a
particular native data type is assigned to each data field.

3. Backend-specific transformations. Implementation details such as memory
management and exception handling are addressed here.

4. Code generation. The final output code is generated, e.g., C source code or
Java byte-code.

The main strength of the PyPy compiler is its flexibility and modularity. Every
step of the compilation can be customized easily.

1Low Level Virtual Machine, http://llvm.org

3

2.2 Java Pathfinder 2

Java Pathfinder 2 (JPF2) [3] is an explicit model checker for Java developed at
NASA. Its predecessor Java Pathfinder 1 [4] attempted to translate Java source
code to Promela language though it is now retired.

JPF2 is a special implementation of the Java Virtual Machine (JVM) that has
a model-checking facility. The verification is done at the Java byte-code level;
JPF2 does not need access to the source code of the investigated program.

Conventional JVM executes Java byte-code sequentially and the state of the
running program is constantly altered during the execution. JPF2, on the other
hand, has the ability to store every state of the program and restore it later when
needed. This approach allows all reachable states of the program to be examined.
The JPF2 architecture is pluggable; there is a possibility to use various algorithms
for the state space traversal. JPF2 can also use heuristic methods to determine
which states should be examined first in order to discover an error.

The model-checker can search for deadlocks, check invariants, user-defined as-
sertions (embedded in the code), and LTL-expressed2 properties. JPF2 provides
techniques for fighting the state space explosion: abstraction, slicing. User can
also specify the level of atomicity, the atomic step can be set to one byte-code
instruction, to one line of Java code, or to a block of code.

JPF2 also supports non-determinism to be injected into a deterministic Java
program. For instance the method Verify.randomBool() returns either true or
false, and JPF2 guarantees that both possibilities will be examined.

Java Pathfinder 2 is a mature tool that is practically used at NASA. The main
advantage is that it checks real Java programs and can provide a proof of cor-
rectness.

3 Development Process Overview

The development process takes advantage of various features of the tool-chain.
The first advantage is that the Python code can be directly interpreted (without
compilation) by CPython. This allows rapid application prototyping. The second
advantage is that we can easily produce Java byte-code that can be checked by
Java Pathfinder.

2Linear Temporal Logic

4

3.1 Specifying Application and Target Platform

Let us specify what kind of applications is our development approach suitable for
and what software and hardware platform we are targeting.

3.1.1 Architecture

We are interested in multi-threaded programs. First, they are common as many
real-world programs have to handle multiple tasks at once. Second, their design-
ing, debugging, and finally proving their correctness is much more complicated
then in the case of single-threaded programs.

We are interested in reactive systems; however, we do prefer neither event-driven
nor time-triggered systems.

Many reactive systems are real-time. We rely on high level dynamic languages
and thus we insist on automatic memory management. Therefore, our approach
cannot be used for hard real-time systems due to the fact that real-time garbage
collectors are a subject of active research. However, if there were industry-ready
hard real-time GC, it can be incorporated. Nowadays, it can be only used for
soft real-time systems.

Inability to cope with hard real-time requirements also makes our approach hardly
applicable to safety-critical systems.

3.1.2 Software

We assume the final product is interfacing an operating system rather than bare
metal. We are not restricted to any particular OS; however, our primary software
platform is Linux and thus POSIX interface.

For convenience and to overcome differences of various operating systems, we do
not access OS directly but through the standard C library. Our primary target
is GNU C Library3 but other variants such as uClibc4 should work as well.

Our threading relies on POSIX Threads [5] that are available for many Unix-like
operating systems and even for Microsoft Windows.

3.1.3 Hardware

We are not restricted to any particular hardware architecture. Our primary CPU
architecture is Intel x86, though. Support for another architectures such as ARM

3http://www.gnu.org/software/libc/
4http://www.uclibc.org/

5

can be achieved relatively simply because we use portable assembly code, more
known as the C language.

We currently assume only 32-bit architectures.

Other hardware requirements are given by the underlying operating system. As
we insist on memory-safe language, it can be safely operated on systems without
MMU5 such as µClinux6.

3.2 Development Process Based on High Level Dynamic

Language

First, the program code is primarily written in a widely used high level dynamic
language. The code should have the following properties:

• Relatively short, easy to maintain and debug due to the expressiveness of
the high level language.

• Flexible and open for new paradigms due to the dynamic approach.

• Familiar for many developers on the market because it is based on a
widespread language.

Second, the final output is in the form of native machine code; it is generated
ahead-of-time, not just-in-time. Machine code is fast and compact enough to
cope with constrained hardware resources. However, we will embrace automatic
memory management.

Third, there is a support for formal verification. There has to be a way how to
earn solid guarantees of correctness of the final application. Moreover, the formal
methods used should be accessible even for wide developer audience.

The development approach is designed to have three steps.

1. The program is written in a high level dynamic language. It is runnable by
the standard interpreter of the language.

2. The machine code intended for deployment is generated. The program is
runnable on an embedded computer.

3. Various properties of the code are formally verified or at least tested with
the help of formal methods.

5Memory Management Unit
6http://uclinux.org/description/

6

The main strength of the first step is the easiness of development. Because there
is no need of compilation, one can quickly experiment with the code and create
rapid prototypes. Debugging of an interpreted code is more straightforward than
in the case of machine code that is run on CPU. The behavior of the virtual
machine can be easily changed; in contrast, one can not change the behavior of
a physical CPU.

The second step takes the debugged high level program as an input and produces
low-level machine code as an output. This step is actually challenging and heavily
depends on the selected tool-chain, following chapters are dedicated to this topic.

The result of the third step is a set of guarantees of correctness of the final
machine code. The guarantees are earned by experiments propelled by formal
methods.

The overall scheme of our proposed development approach is depicted in figure
2.

Program Code

(High Level, Dynamic)

Compile (2)

Program Code

(Machine Code)

Verify (3)

Develop (1)

Set of Guarantees
Set of Formal

Properties

Figure 2: Overall Scheme of Our Approach

3.3 Refining the Development Approach

After we have selected some concrete tools (PyPy and Java Pathfinder), we can
describe the development approach in more detail. We propose an iterative de-
velopment process. There are three types of iteration, every type has a different
cost and different purpose, see figure 3.

The first type of iteration exclusively uses the standard Python interpreter. A
developer applies a change in a RPython source code of the application, runs
the modified code in the Python interpreter and instantly sees how the change
work. This type of iteration is very fast as there is no compilation. This approach
perfectly fits test-driven development.

The second type of iteration deals with a testing based on formal methods. A

7

Java byte-code is generated by PyPy from RPython sources and the generated
byte-code is investigated by Java Pathfinder. This iteration is more expensive
than the first one. First, one have to precisely formulate the formal properties
the investigated code should meet; second, the investigation itself may consume
significant computation time.

The third type of iteration deals with the final code. The C code is generated
by PyPy from RPython sources and is subsequently compiled into the machine
code. The machine code can be deployed to the intended target embedded device.
The final code on the final hardware can be subject of various tests, for instance
performance test.

The first type of iteration is very cheap and can be performed with high frequency.
The second and the third type tend to be costly. However, their particular cost
depends on the nature of the application and conditions. One can have a cheap
set of semi-formal tests that can be performed frequently and a very complicated
way how to test on the target hardware. And vice versa, one can have a very
costly set of formal tests that require hours of computing and an efficient way
how to test on the target hardware.

Program Code

(RPython)

Compile

Program Code

(Machine Code)

Feedback from testing based on formal

methods (Java Pathfinder)

Development with

interpreted run

Program Code

(Java byte−code)

Feedback from

interpreted run

Compile
Feedback from

tests on final HW

Set of

Guarantees

of Correctness

Set of Formal

Properties

Figure 3: Refined Scheme of the Proposed Development Approach

4 Installation

The PyPy-based tool-chain with framework-parlib should run on all contemporary
32bit x86 Linux distributions. The presented installation procedure is created

8

for 32bit release of Debian 6.0 ”Squeeze” and 32bit release of Ubuntu 12.04 LTS
”Precise Pangolin” operating systems.

The installation procedure consists of two steps. The first step installs the nec-
essary development packages from the standard distribution repositories. The
second step downloads and builds the source code related to PyPy and framework-
parlib.

Each of the two steps can be performed by execution of one bash script. This
section is merely an explanation of these scripts.

4.1 Installing System Prerequisites

The script that installs all required development packages to Debian or Ubuntu
can be obtained from this URL:

https://github.com/paskma/scripts/raw/master/install_framework_parlib_prerequisites.sh

It can be downloaded and executed by this sequence of commands:

wget https://github.com/paskma/scripts/raw/master/install_framework_parlib_prerequisites.sh

chmod +x install_framework_parlib_prerequisites.sh

./install_framework_parlib_prerequisites.sh

Tip: use the -y option and you will not be bothered by confirmation questions
of the package manager.

After execution of the script, all system-wide tools needed for our tool-chain
ought to be installed.

4.1.1 Content of the Script

Now let us explain the content of the script.

apt-get install git-core

apt-get install subversion

Installs the Git and Subversion source code management tools. They are need
in order to get various source codes from repositories.

apt-get install g++

Installs C and C++ compiler. Needed in order to generate the machine code
from the C code.

apt-get install libgc-dev

9

Installs the Bohem garbage collector. This GC is used by the machine code
produced by PyPy.

apt-get install openjdk-6-jdk

Installs the open source Java development kit. This is needed in order to compile
framework-parlib Java binding and to run Java Pathfinder experiments.

apt-get install unzip

Some packages are available as zip archives, we need to inflate them.

4.2 Installing PyPy-standalone-compiler, framework-

parlib and Java Pathfinder

The second script installs and builds a bunch of source codes from various internet
sources. The script can be obtained from this URL:

https://github.com/paskma/scripts/raw/master/install_framework_parlib.sh

Download the second script into a directory to which you want all the software
to be installed. The directory should be somewhere in your home directory, for
instance $HOME/projects makes the perfect sense. The script can be downloaded
and executed by these commands:

wget https://github.com/paskma/scripts/raw/master/install_framework_parlib.sh

chmod +x install_framework_parlib.sh

./install_framework_parlib.sh

After execution of this script, all tools that we need for creating efficient and
dependable applications based on Python ought to be installed.

4.2.1 Content of the Script

INSTALL_ROOT=‘pwd‘

We need to set this environment variable, the installation root is the same as the
current directory.

git clone https://github.com/paskma/pypy-sc.git

The first command obtains a copy of the PyPy-standalone-compiler. This is
our fork of the PyPy experimental implementation of the Python programming
language.

svn co http://codespeak.net/svn/py/dist/py@60839

ln -s ../py pypy-sc/py

10

This downloads an additional library needed by the PyPy compiler, it is simply
called py. A symbolic link connects the library with PyPy.

git clone https://github.com/paskma/framework-parlib.git

This command gets the framework for the intended applications. This code
contains mainly an API for unified access to the resources of the underlying
platform (Python interpreter, Linux operating system, Java virtual machine).
Notable part of the API deals with thread synchronization. The package also
includes various example applications and compilation scripts.

The very next thing what we need is an older standard Python implementation
(CPython), literally 2.4.4. This Python installation is needed solely for the PyPy
compiler. Interpreted tests of application based on parlib can be run on the
standard (and newer) Python interpreter from the oprarating system.

Moreover, we need to add one patch to the Python interpreter. The default
output of the PyPy compiler is randomized: many identifiers contain an integer
whose value might change between compilations. Our patch removes this un-
pleasant feature. It is obvious that the compilation itself works also without this
patch.

wget http://www.python.org/ftp/python/2.4.4/Python-2.4.4.tgz

tar xf Python-2.4.4.tgz

cd Python-2.4.4

patch -p1 < ../framework-parlib/misc/disable_hash.patch

./configure --prefix=$INSTALL_ROOT/python24

make

make -i install

cd ..

This set of commands downloads, unpacks, patches and installs the Python in-
terpreter.

wget -O jasmin-2.2.zip \

http://sourceforge.net/projects/jasmin/files/jasmin/jasmin-2.2/jasmin-2.2.zip/download

unzip jasmin-2.2.zip

To produce Java byte-code, PyPy needs a Java assembler called Jasmin.

svn checkout \

https://javapathfinder.svn.sourceforge.net/svnroot/javapathfinder/trunk -r 1790 jpf_trunk

cd jpf_trunk

java RunAnt run-tests

cd ..

The dependability of the final programs is achieved through the employment of
an explicit model checker called Java Pathfinder. These commands download a
copy of the tool and compile it. To make sure it works properly we run all the
unit tests.

11

echo "PARLIB_FRAMEWORK_ROOT=\"$INSTALL_ROOT/framework-parlib\"" > framework-parlib/environment.sh

echo "PYPY_ROOT=\"$INSTALL_ROOT/pypy-sc\"" >> framework-parlib/environment.sh

echo "PYTHON_BIN=\"$INSTALL_ROOT/python24/bin/python\"" >> framework-parlib/environment.sh

echo "JPF_ROOT=\"$INSTALL_ROOT/jpf_trunk\"" >> framework-parlib/environment.sh

echo "JASMIN_JAR=\"$INSTALL_ROOT/jasmin-2.2/jasmin.jar\"" >> framework-parlib/environment.sh

The compilation scripts of the framework-parlib need to know the location of the
PyPy standalone compiler, Python 2.4, Java Pathfinder and the Jasmin Java as-
sembler. The locations are saved in a file called environment.sh. The installation
script creates this file.

cd framework-parlib/binding/c

./compile.sh

cd ../../..

These commands builds a small native library that handles access to the operating
system.

We need to make user execute this command in his shell:

#export PATH="$INSTALL_ROOT/framework-parlib/bin:$PATH"

echo "Execute the following command in your shell:"

echo -n ’export PATH="’

echo -n $INSTALL_ROOT

echo ’/framework-parlib/bin:$PATH"’

The compilation scripts of the framework-parlib are located in the directory
framework-parlib/bin. We recommend to add this directory to your PATH envi-
ronment variable. The installation script can not modify the environment vari-
able, it only prints the recommended command that you can execute manually.

5 Building an Example Program

The framework-parlib comes with several example programs that are located in
framework-parlib/experiments.

Before you start to play with the examples, you need to set your PATH envi-
ronment variable to contain the path where the translation scripts are located,
i.e., framework-parlib/bin. The exact form of the command that performs this
action was printed by the second installation script. On the author’s computer,
the command looks like this:

export PATH=/home/paskma/projects/framework-parlib/bin:$PATH

After setting the PATH, we can run all the compilation scripts, literally:
par run pure.sh, par compile c.sh, par run c.sh, par compile j.sh, par run j.sh
and par check.sh.

12

We can try to play with examples. The simplest example is located in framework-
parlib/experiments/hello world. After switching to the directory, we can directly
run this program by the Python interpreter, this is done by the par run pure.sh
script. A dollar sign states for the command prompt.

$ pwd

/home/paskma/projects/framework-parlib/experiments/hello_world

$ par_run_pure.sh

Hello, world!

This program simply writes the traditional ”Hello, world!” message.

Now, we can translate the program to C and build a native version. This is done
by the following command:

$ par_compile_c.sh

If the compilation succeeds, we can run the native version.

$ par_run_c.sh

Hello, world!

We can produce the Java version of the program in the very similar way:

$ par_compile_j.sh

$ par_run_j.sh

Hello, world!

The java version can be checked by Java Pathfinder. This is done by the
par check.sh command:

$ par_check.sh

Using directory /home/paskma/projects/jpf_trunk/hello_world

JavaPathfinder v4.1 - (C) 1999-2007 RIACS/NASA Ames Research Center

================================== system under test

application: pypy/Main.j

================================== search started: 7/26/12 1:10 PM

Hello, world!

================================== results

no errors detected

As we can see, this trial program is really defect-free.

Note that not all of the example programs are directly usable. In some
of them (testcase deadlock, testcase race, testcase ltl, testcase exception, test-
case random), you have to choose between a correct implementation and an im-
plementation with an injected bug. In that case, there are two scripts in the
example’s directory: go good.sh and go bad.sh. You have to execute one of them
before you compile or run the code.

13

1c l a s s Resource (Monitor) :
2de f i n i t (s e l f) :
3Monitor . i n i t (s e l f)
4s e l f . s econdLeve l = None
5
6de f se tSecondLeve l (s e l f , s econdLeve l) :
7s e l f . s econdLeve l = secondLeve l
8
9@synchronized
10de f cascadeLock (s e l f) :
11pr in t ” F i r s t l e v e l locked ”
12s l e ep (1 . 0)
13s e l f . s econdLeve l . lockSecondLeve l ()
14
15@synchronized
16de f lockSecondLeve l (s e l f) :
17pr in t ”Second l e v e l locked ”

Figure 4: Deadlock Test Case: Class Resource

6 The Deadlock Experiment

This experiment lives in the framework-parlib/testcase deadlock directory. Re-
member that before you start playing with it, you have to set the PATH envi-
ronment variable correctly and use either go good.sh or go bad.sh script.

Deadlock is a program state in which two or more threads are waiting to each
other and thus neither ever finishes. In our case, we have a program that has
two worker threads that are locking two resources, resA and resB. A deadlock is
possible if the first thread has locked resA and is trying to lock resB meanwhile
the second thread has locked resB and is trying to lock resA.

As we do not use plain locks but structured monitors, we connected the resources
into a chain so that locking of the first resource causes locking of the second re-
source and vice versa. See the Resource class listing in figure 4: the synchronized
method cascadeLock calls the synchronized method lockSecondLevel. Note that
there is a one second sleep between the acquisition of the first and the second
resource.

Another component of the testing program is the worker thread. This class is
rather simple; it has one resource associated and calls its cascadeLock method,
see figure 5.

The entry point of our program is a method called main of the Application class,
see figure 6. The method creates the resources, makes the chain of them, creates
and starts the worker threads, and waits until they are finished.

14

1c l a s s Worker (Thread) :
2de f i n i t (s e l f , r e s our c e) :
3Thread . i n i t (s e l f)
4s e l f . r e s our c e = re sour ce
5
6de f run (s e l f , ∗ args) :
7s e l f . r e s our c e . cascadeLock ()
8pr in t ”Thread f i n i s h e d without deadlock ing . ”

Figure 5: Deadlock Test Case: Class Worker

1c l a s s Appl i ca t ion :
2de f main (s e l f , argv) :
3resA = Resource ()
4resB = Resource ()
5resA . setSecondLeve l (resB)
6resB . setSecondLeve l (resA)
7
8w1 = Worker (resA)
9w2 = Worker (resB)
10
11w1 . s t a r t ()
12w2 . s t a r t ()
13
14w1 . j o i n ()
15w2 . j o i n ()
16return 0

Figure 6: Deadlock Test Case: Class Application (with a bug)

15

thread index=0,name=main,status=WAITING,

this=java.lang.Thread@0,target=null,priority=5,lockCount=1

waiting on: pypy.worker.Worker_59@728

call stack:

at pypy.worker.Worker_59.ojoin(Worker_59.j:403)

at pypy.application.Application_55.omain(Application_55.j:138)

at pypy.main_54.invoke(main_54.j:33)

at pypy.entry_point_50.invoke(entry_point_50.j:22)

at pypy.Main.main(Main.j:40)

thread index=1,name=Thread-0,status=BLOCKED,

this=pypy.worker.Worker_59@728,priority=5,lockCount=0

owned locks:pypy.resource.Resource_56@711

blocked on: pypy.resource.Resource_56@715

call stack:

at pypy.cascadeLock_66.invoke(cascadeLock_66.j:49)

at pypy.resource.Resource_56.ocascadeLock(Resource_56.j:52)

at pypy.worker.Worker_59.orun(Worker_59.j:109)

at pypy.worker.Worker_59.oRUN(Worker_59.j:163)

at parlibutil.ThreadStarter.run(ThreadStarter.java:17)

thread index=2,name=Thread-1,status=BLOCKED,

this=pypy.worker.Worker_59@755,priority=5,lockCount=0

owned locks:pypy.resource.Resource_56@715

blocked on: pypy.resource.Resource_56@711

call stack:

at pypy.cascadeLock_66.invoke(cascadeLock_66.j:49)

at pypy.resource.Resource_56.ocascadeLock(Resource_56.j:52)

at pypy.worker.Worker_59.orun(Worker_59.j:109)

at pypy.worker.Worker_59.oRUN(Worker_59.j:163)

at parlibutil.ThreadStarter.run(ThreadStarter.java:17)

== results

error #1: gov.nasa.jpf.jvm.NotDeadlockedProperty

"deadlock encountered: thread index=0,name=main,s..."

Figure 7: JPF Report: Stack Trace of a Deadlock

Now we can run the program. Because of the sleep in the worker thread, the
deadlock will occur with very high probability. If we run the program in all three
environments, we always see, that the program hangs, the output of the native
version is like this:

$ par_run_c.sh

First level locked

First level locked

Both threads just lock the first resource (from their perspective) and then fail to
lock the other. The program never terminates.

If the test program is run by JPF, the bug is quickly discovered and a report is
produced, see figure 7. The report shows that the first worker thread owns the
lock of the resource object with id 711 and is blocked on the lock of the resource
object with id 715. The other worker thread owns resource 715 and is blocked
on resource 711.

16

1c l a s s Appl i ca t ion :
2de f main (s e l f , argv) :
3resA = Resource ()
4resB = Resource ()
5resA . setSecondLeve l (resB)
6resB . setSecondLeve l (resA)
7
8w1 = Worker (resA)
9w2 = Worker (resA)
10
11w1 . s t a r t ()
12w2 . s t a r t ()
13
14w1 . j o i n ()
15w2 . j o i n ()
16return 0

Figure 8: Deadlock Test Case: Class Application (fixed)

== results

no errors detected

== statistics

elapsed time: 0:00:01

states: new=191, visited=210, backtracked=400, end=5

search: maxDepth=18, constraints=0

choice generators: thread=191, data=0

heap: gc=484, new=1534, free=119

instructions: 52790

max memory: 9MB

loaded code: classes=130, methods=1682

Figure 9: JPF Report: No Deadlock after the Fix

One of the ways how to avoid a deadlock is to add a global order of the locked
objects. In our case, the deadlock can not occur if both threads first lock resA
and then resB. You can see the fixed method main in figure 8; both constructors
of the worker threads take resA as a parameter.

With this modification, the output of the program is as follows:

$ par_run_c.sh

First level locked

Second level locked

Thread finished without deadlocking.

First level locked

Second level locked

Thread finished without deadlocking.

The program works properly in all three environments. However, to prove that
the fix is correct, we utilize JPF again, see report in figure 9.

17

7 Conclusion

The main purpose of this document is to present the installation procedure. This
document contains only the basic information about the development process
that leverages the installed tools. You are invited to read the doctoral thesis [1]
where we present our motivations, explain why we chose the Python programming
language and PyPy, and analyze the internals of the translation process; see also
[6] and [7].

References

[1] M. Paska, Development of Dependable and Efficient Software with
Dynamically-typed Languages, [Submited], Ph.D. thesis, University
of West Bohemia, Pilsen, Czech Republic, 2012.

[2] A. Rigo, M. Hudson, S. Pedroni, Compiling
Dynamic Language Implementations, IST FP6-
004779, http://codespeak.net/svn/pypy/extradoc/eu-
report/D05.1 Publish on translating a very-high-
level description.pdf, 2005.

[3] W. Visser, K. Havelund, G. Brat, S. Park, F. Lerda, Model Check-
ing Programs, Automated Software Engineering Journal, Volume 10,
Number 2, 2003.

[4] K. Havelund, T. Pressburger, Model Checking Java Pro-
grams Using Java PathFinder, International Journal on
Software Tools for Technology Transfer, Vol. 2, No. 4.
http://ase.arc.nasa.gov/people/havelund/Publications/jpf-sttt.ps,
2000.

[5] D. R. Butenhof, Programming with POSIX Threads, Addison-Wesley.
ISBN 0-201-63392-2, 1997.

[6] M. Paška, Generative Programming with Support for Formal Verifica-
tion, 2009 IEEE International Symposium on Industrial Embedded
Systems, Ecole Polytechnique Fédérale de Lausanne, Switzerland,
July 8 - 10, 2009, IEEE Catalog Number CFP09INB-USB, ISBN
978-1-4244-4110-5, Library of Congress 2009901328, 2009.

[7] M. Paška, An Approach to Generating C Code with Proven LTL-
based Properties, EUROCON 2011, ISBN: 978-1-4244-7485-1, IEEE
Catalog Number CFP11EUR-CDR, Lisbon, Portugal, 2011.

18

