
University of West Bohemia
Department of Computer Science and Engineering
Univerzitni 8
30614 Pilsen
Czech Republic

Large component diagrams visualization
The State of the Art and the Concept of Ph.D. Thesis

Lukáš Holý

Technical Report No. DCSE/TR-2012-08
July, 2012

Distribution: public

Technical Report No. DCSE/TR-2012-08
July 2012

Large component diagrams visualization

Lukáš Holý

Abstract

Software applications applications can easily consist of hundreds or thousands
of components and it is thus difficult to understand their structure. Diagram
visualisation does not help much because of visual clutter caused by big amount
of elements and connections, especially in the case of flat component models.
This work sums up current state of the art tools and approaches in component
diagrams visualization. After that we propose a set of criteria for the evaluation
of tools for component architecture visualization. Furtermore we present a novel
approach which should ease the orientation and navigation in complex diagrams.
It is among other benefits useful in the reverse engineering process. One of the
key concepts of this approach is removing a large part of connections from the
diagram while preserving the information about component interconnections. We
also describe a viewport technique for use in the visualization of UML compo-
nent diagrams. This technique should ease the work with complex diagrams by
highlighting details of the important parts of the diagram and their related sur-
roundings without losing the global perspective. The further aim is to integrate
mentioned techniques and new techniques into one application.

The work was supported by the UWB grant SGS-2010-028 Advanced Computer
and Information Systems.

Copies of this report are available on
http://www.kiv.zcu.cz/publications/
or by surface mail on request sent to the following address:

University of West Bohemia
Department of Computer Science and Engineering
Univerzitni 8
30614 Pilsen
Czech Republic

Copyright c©2012 University of West Bohemia, Czech Republic

3

Contents

1 Introduction 3

1.1 Problem Definition . 3

1.1.1 Component Software Modeling 3

1.1.2 Diagram Complexity . 4

1.2 Goal of the Work . 5

2 Background and Related Work 6

2.1 Component Based Software Development 6

2.1.1 Component Models and Frameworks 7

2.1.2 Compositional Forms . 7

2.1.3 Contracts . 10

2.1.4 Component Diagramming - State-of-the-art 11

2.2 Software Visualization . 12

2.2.1 Information Schemes . 13

2.2.2 Graph Layouts . 14

2.2.3 Nodes Visualization . 16

2.2.4 Edges Visualization . 17

2.2.5 Background Visualization 20

2.3 Nodes Clustering . 21

3 Concept of the thesis 23

3.1 Using Large Projection Areas . 23

3.2 Component Software Visualization Tools Evaluation 25

1

Contents

3.2.1 User’s Needs and Requirements 25

3.2.2 Criteria for Evaluating Tools 29

3.2.3 Tools . 32

3.2.4 Plain UML Tools . 32

3.2.5 Tools for UML Profiles . 33

3.2.6 Specific Component Model Visualization Tools 35

3.2.7 Generic Component Model-aware Visualization Tools . . . 37

3.3 Viewport Technique for Surroundings Exploration 39

3.3.1 Viewport for Component Diagrams 39

3.4 Lowering Visual Clutter . 40

3.4.1 Coexisting Approaches . 40

3.4.2 Proposed Technique . 41

3.4.3 Separated Components Area (SeCo) 42

3.4.4 Discussion and Examples 45

3.4.5 Component Application Visualizer 47

3.4.6 Techniques’ Implementation 47

4 Future Work 52

5 Conclusion 53

References 54

2

Chapter 1

Introduction

This work focuses on the effective visualization of large system component models.
New methods of the visualization should bring clarity of represented data. These
methods should support user interaction with the model for better customization
according to user needs.

1.1 Problem Definition

1.1.1 Component Software Modeling

Software architects and developers have been using various forms of visualizing
the structure of software applications since the advent of the discipline. In the
last 20 years, the increased adoption of object-oriented programming lead first
to several proposals for adequate modeling notations which were then gradually
consolidated into the current standard – the Unified Modeling Language (UML)
[54]. While UML is able to model both the static and dynamic aspects of many
kinds of software, recent development in the field of component-based software
engineering (CBSE) brings new challenges.

The visualization of component-based applications [65] is not a trivial task due
to the rich structures of component interfaces and the differences between com-
ponent models. Frameworks like EJB [64], CORBA [53], OSGi [55] and more
can be found in commercial applications and even more component models – for
example SOFA [13], Fractal [50] or CoSi [11] – are the subject of research.

The diversity of component models in terms of the features available on compo-
nent interface is well described in e.g. [21]. On an abstract level, components
have in common two basic properties: the black-box nature and the fact that the
features they need and provide on their interface are well defined [65].

3

Chapter 1. Introduction

Their interface features can cover all known contract levels [8]:

• syntactic, e.g. functional interfaces in most models and events in EJB3 [64],

• semantic, e.g. triggers in SaveCCM [32],

• behavioural like protocol in SOFA [56],

• extra-functional property specifications, e.g. in Palladio [6],

• control interfaces like in Fractal [50].

This richness indicates that modeling and visualizing component applications is
a challenging task.

1.1.2 Diagram Complexity

Software applications become more and more complex and although there are
lots of tools which help the development process, they are still limited in helping
human understanding of the application structure. Software components [65] are
one of the ways to handle this complexity as they encapsulate parts of function-
ality to unified components. Even with the usage of the components, nowadays
applications can easily consist of hundreds or thousands of them. It is therefore
difficult to explore the structure of the application and create a mental model of
the whole system.

One of the ways how to get an insight into a component application structure can
be a diagram, eg. UML component diagram. When the diagram is large there
are many problems with exploring it. One is the contradictory need of providing
enough details and showing the complete diagram (application structure) at the
same time. Diagrams displayed at the desired level of detail become too big to
provide a sufficient overview and keep orientation; especially difficult is to trace
dependencies between distant components.

Another question is how to reduce visual clutter [60] caused by the large number
of elements and connections between them. The visual clutter makes tracing of
dependencies difficult and hinders orientation in the diagram. Current tools do
not offer features designed for work with such large diagrams [40].

It is possible to divide large diagram into smaller ones. But in this case user would
lose the overview of the whole system and the information about interconnections
among system parts. Although diagrams of hierarchical component models [13]
usually does not have this problem because they keep the information about parts
in their hierarchy, there is a lot of component models [64],[55] with flat structure
where the described problem occurs.

4

Chapter 1. Introduction

1.2 Goal of the Work

The main goal of the thesis is to bring better ways of large component software
visualization to increase the understanding of the application structure. We will
mainly focus to node-link diagram representation, because it is intuitive and
well known eg. in form of UML component diagram. Node-link diagrams are
widely used in various domains and thus inventing new techniques in software
visualization can be potentially generalized for graphs used in other domains.

We will use the existing ComAV tool which is a platform for visualization and
reverse-engineering of component-based applications. Data aquired by this tool
can be visualized by discovered techniques. We will also provide an implementa-
tion of discovered techniques to enable their further verification.

5

Chapter 2

Background and Related Work

2.1 Component Based Software Development

Szyperski defined components in [65] as following:

A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A soft-
ware component can be deployed independently and is subject to
composition by third parties.

Bachmann [5] states:

Component-based software engineering is concerned with the rapid
assembly of systems from components where: components and frame-
works have certified properties; and these certified properties provide
the basis for predicting the properties of systems built from compo-
nents.

Component is [5]:

• subject to third-party composition,

• an opaque implementation of functionality,

• conformant with a component model.

Component based software development (CBSE) should speed up the develop-
ment of new software by reusing the existing component. These can be developed
by third parties. It should also increase the predictability of produced applica-
tion. On the other hand there is some overhead in wraping functionality into
components. User of third party components should check the changes of used
components’ versions. There is also diversity in component models and frame-
works, which slows down the growth of large market.

6

Chapter 2. Background and Related Work

2.1.1 Component Models and Frameworks

Bachmann [5] explains terms component model and framework as: The com-
ponent model gives a uniformity to components and their composition. Its use
is to define how a component should look like, how components communicate
each other, which resources they use, etc. The component model ensures the
components are compatible in terms of deployment, the communication, etc. It
determines the rules components must hold to be able to cooperate and it min-
imalists misunderstood assumptions. A component framework is basically an
implementation of a component model. It supports all mechanisms such as de-
ployment, synchronization, life-cycle, communication of components which are
defined in the component model.

Component models will impose standards and conventions of the following kind:

• component types,

• interaction schemes,

• resource binding.

A component framework is basically an implementation of a component model.
It supports all mechanisms such as deployment, synchronization, life-cycle, com-
munication of components which are defned in the component model.

2.1.2 Compositional Forms

The compositional forms influence the features needed in a tool used for com-
ponent diagram visualization. There are compositional forms described in [5]
as:

Component Deployment

Components must be deployed into frameworks before they can be composed
or executed. The deployment contract(s) (as shown at point 1 in Figure 2.2)
describes the interface that components must implement so that the framework
can manage their resources.

7

Chapter 2. Background and Related Work

Figure 2.1: Component Deployment[5]

Framework Deployment

Frameworks may be deployed into other frameworks. Contract is analogous to
the component deployment contract.

Figure 2.2: Framework Deployment[5]

Simple Composition

Components deployed in the same framework can be composed. The compo-
sition contract expresses component- and application-specific functionality; the
interaction mechanisms to support this contract are provided by the framework.

Figure 2.3: Simple Composition[5]

Heterogeneous Composition

Support for tiered frameworks implies composition of components across frame-
works, whether across hierarchical (as illustrated in Figure 2.4) or peer frame-
works. In either case bridging contracts are needed in addition to composition

8

Chapter 2. Background and Related Work

contracts (as shown at point 2 in Figure 2.4) in order for interactions to span
generic component models.

Figure 2.4: Heterogeneous Composition[5]

Framework Extension (Plug-In)

Frameworks may be treated as components, and may be composed with other
components. This form of composition most commonly allows parameteriza-
tion of framework behavior via plug-ins. Standard plug-in contracts for service
providers are increasingly common in commercial framework.

Figure 2.5: Framework Extension (Plug-In)[5]

Component (Sub)Assembly

A component-based system is an assembly of components. The ability to predict
the properties of assemblies suggests a similar ability for subassemblies. Contract
is used to compose C1 and subassembly C3, which contains one or more compo-
nents. A question that arises is whether C2 is visible outside of C3 and whether
it is separately deployed.

Figure 2.6: Component (Sub)Assembly[5]

9

Chapter 2. Background and Related Work

Most common compositional forms are component deployment and simple com-
position, which we can find for example in OSGi1. Component (sub)assembly is
the form represented in hierarchical component models such as SOFA 22. The
idea of a framework deployment form can be found for example in SpringDM3

deployed in OSGi. In this situation we can find the idea of heterogenous com-
position between SpringDM and OSGi components. It is also possible to extend
SpringDM by components running in the OSGi framework (eg. Equinox4).

2.1.3 Contracts

The interfaces are used for communication among components. There are several
languages for interface description according to [22]:

• modelling languages (such as UML or different ADLs),

• particular specification languages (Interface Definition Languages),

• programming languages (such as interfaces in Java),

• some additions built directly in a programming language.

There can be also different types of iteraction [22]:

• port-based where ports are the channels for communication of different data
types and events;

• functions in programming languages defining input and output parameters;

• interfaces or classes in Object Oriented programming languages.

The interfaces provide most of time a basic description of services and thus there
are contracts for better describtion. Contracts among components should guaran-
tee good interface connecting and determite “rights and duties”” of components
involved. Contracts can be negotiated by involved sides and can be also changed
in runtime, if all sides agree. They can also expire.

Contract definition according to [65]:

A contract (an interface together with its specification) mediates be-
tween independently evolving clients and providers of the services the
interface makes accessible.

1http://www.osgi.org/
2http://sofa.ow2.org/
3http://www.springsource.org/osgi/
4http://www.eclipse.org/equinox/

10

Chapter 2. Background and Related Work

There can be following levels of contracts, according to [9]:

• Syntactic (or basic) The goal is to make the system work. It is gener-
ally specified with Interface Definition Languages (IDLs), as well as typed
object-based or object-oriented languages. It ensures the components can
be assembled.

• Behavioral The goal is to specify each operation. It is generally specified
with a couple of assertions: a precondition and a postcondition. It ensures
the operations offered and required are not only syntactically compatible
but also semantically.

• Synchronization The goal is to specify the coordination of operations. It
can be specified with an automaton labelled with operations. It ensures the
operations are used in the proper order.

• Quality of Service The goal is to quantify a few features associated to
operations. Performance, availability and quality of result can be specified
and negotiated at that level.

Bachman [5] distiguishes between component contracts and interatction contracts
and defines them as following:

• A component contract specifies a pattern of interaction rooted on that
component. The contract specifies the services provided by a component
and the obligations of clients and the environment needed by a component
to provide these services.

• An interaction contract specifies a pattern of interaction among different
roles, and the reciprocal obligations of components that fill these roles.

For purposes of this work we limit us to visualize the interfaces as defined in
UML component diagram.

2.1.4 Component Diagramming - State-of-the-art

There are many software architecture modeling tools and visual syntaxes and
their use is very common in practice. But a closer look reveals the lack of good
model representations. On one hand, a generic representation like UML provides
insufficient support for component-specific needs, on the other hand, tools focused
on component development sometimes force the user to learn new visual syntax
specific for the component model. Advanced features offered by the tools on top
of basic architecture visualization are often limited.

11

Chapter 2. Background and Related Work

Most commonly used visual language for displaying component applications
structure is UML component diagram [52]. Its main features are:

• components,

• provided and required interfaces,

• stereotypes,

• tagged values,

• notes,

• hierarchy of inner component,

• including ports as parent’s component interfaces.

Figure 2.7: UML component diagram

2.2 Software Visualization

Visualization is very effective way in understanding software structure, behaviour
or evolution. This section describes related software visualization approches and
techniques, which help to increase understanding the software. When visualizing
complex structures we usually face the problem of not having enough space on
the screen to visualize the whole diagram in the desired level of details. Thus we
are forced to use some technique to navigate through such a large diagram while
showing only part of it on the screen.

12

Chapter 2. Background and Related Work

2.2.1 Information Schemes

There are several main approaches while dealing with the complexity problem
[20]:

• overviev and detail,

• pan and zoom,

• focus and context.

These principles can be combined together to offer a user good understanding of
large diagram.

Overview and Detail

This approach is very comonly used in the software diagram tools as well as
other visualizing fields like maps, CAD systems etc. Its main principle is to
provide user two or more views with different level of details. Most common
is using the detailed view for most of the screen area while the overview area is
smaller for ensuring orientation. This approach is useful in large diagrams, but its
scalability for very large diagrams is limited. It can be partly improved by using
more overview levels, but it decreases the transparency of the whole approach.

Pan and Zoom

This approach is used for providing the ability to view a desired part of the dia-
gram in desired level of detail. The panning feature usually moves the undelaying
diagram according to mouse movements. The zooming feature provides the abil-
ity to see the diagram in different levels of size and detail. It is usually handled
by mouse wheel, plus and minus keys or buttons dedicated for mouse control.
This approach shows the focused and contextual information in views, which are
in fact separated by time.

Focus and Context

This approach combines the both focus and context information into one view.
Focused area shows detailed information, the context area shows the relevant
contextual information and they are seamlessly integrated into one view. This
integration can be achieved by several techniques such as fisheye distorsion, using
the border for various type of marks or showing proxy elements for hidden objects.
This aproach differs from the overview and detail in showing the detail view right

13

Chapter 2. Background and Related Work

in the diagram where the less detailed information are shown. In the contextual
part can be also shown information which lie away from the focused area. These
information cannot be easily shown by overview and detail or pan and zoom
approaches.

Animation

Animating the changes between showing different views helps user to better un-
derstand shown diagram. It can be used for various changes such as changing
zoom [7] [68] level, moving between distant nodes in the diagrams or moving
the elements during diagram modifications. Important factor while using anima-
tion is the time an animation takes. Longer time leads to better understaning
of content, but it can slow down work with the tool. Appropriate values for the
animation are suggested between 300 and 1000 miliseconds in [43]. Also the work
of [69] about optical flow reduction can be helpful for this problem.

2.2.2 Graph Layouts

The node layout of the visualized diagram graph can significantly increase the
understanding of the application. There are many methods for graph layouts
such as:

• force-directed,

• orthogonal,

• circular,

• tree,

• layered.

Above mentioned layout methods are briefly described in following paragraphs.
Our current knowledge about layouts is based on preliminary tests, discussions
in community and several overviews and evaluations in publications [23], [1],
[17],[34],[57], [31]. More rigorous choice of suitable algorithm for component
diagrams is a subject for further research.

Force-directed layouts

For component diagrams visualization are suitable force-directed graph-drawing
methods. In these methods the nodes’ layout is computed according to under-

14

Chapter 2. Background and Related Work

laying physical model. The iterative algorithm computes the nodes’ placements
until the energy in the whole system is minimal.

Classical force-directed algorithms like [28], [42] are suitable for drawing general
graphs. They are also used in practice [12] for graphs containing hundreds of
vertices. There are also available more efficient force-directed techniques for even
larger graphs (tens of thousands of nodes)[33], [70].

Orthogonal layouts

Orthogonal methods are using only horizontal and vertical directions for drawing
the edges. Therefore it can be tedious to trace dependencies in large diagram
while having a detailed view.

Circular layouts

Circular layouts place the nodes on the circle and the edges connects them inside
or outside a circle. The edges can be drawn straight (inside a circle) or bended.
Also an edge bundling techniques (see Section 2.2.4) are suitable to be used for
this layout. Nodes in this layout can be placed on the circle to minimize the edge
crossings.

Tree layouts

Tree layouts are suitable for drawing tree graphs. Usually the root of a tree
is drawn in the middle and its children are placed around it. The component
diagrams are usually not in a tree structure, thus this category of layouts is
unlikely to be used for implementation

Layered layouts

Layered layouts are suitable for acyclic or nearly acyclic graphs. They place the
nodes into horizontal layers. Layers are connected among each other and the
nodes in each layer are placed to minimize lines crossings among layers.

15

Chapter 2. Background and Related Work

2.2.3 Nodes Visualization

Nodes represent individual components in UML component diagrams. From visu-
alization point of view there are several main node factors, which can be adjusted
to express desired metrics or attributes:

• dimensions - such as width, height (or depth in 3D),

• colors - including various color effects eg. trasitions,

• shape.

While using various node dimensions and colors can be in accord with visual
syntax of used model, changing the shape of the node is usually violating it.

The work of Anslow [16] uses basic shapes combined with colors to represent
individual nodes as shown in Figure 2.8.

Figure 2.8: The ExtC Graph View using various node representations [16]

The work of Sazzadul [4] shows the application in 3D as a city, where are used
various glyph for node representaion as shown in Figure 2.9.

16

Chapter 2. Background and Related Work

Figure 2.9: The file city - various glyphs for node representations [4]

2.2.4 Edges Visualization

One of the basic elements of diagrams are the links among nodes. Holten [38]
came with the alternative representation of edges, which should help to reduce
the visual clutter and can thus help users to orient easier. They developed five
representations which combine the shape of the edge as well as the color.

17

Chapter 2. Background and Related Work

To evaluate the proposed representations, they performed a user study which
leads to following recommendations:

• Standard arrow representation (part (a) in Figure 2.10) should be avoided,
because the performance of the users is quite low while using it. It is
probably caused by the arrowheads, which cause occlusion problems and
visual clutter.

• The best results was measured while using the tapered representation (f)
in Figure 2.10 for directed graphs.

• For intensity based representation the dark-to-light representation is better
than light-to-dark.

• Combining used factors (such as curving, changing colors etc.) for repre-
sentation of the edges (multi-cue) does not seem to be better than using
only one factor (single-cue).

The UML component diagram describes provided and required interfaces, which
can be considered as directed edges. Thus above mentioned recommendadions
can be used in component diagrams. Also the described intensity of edges can
be used for indicating desired component connections metrics. Such as in case of
clustered interfaces described in Section 3.4.3.

Figure 2.10: The six single-cue directed-edge representations used in the rst user
experiment. (a) arrow; (b) light-to-dark; (c) dark-to-light; (d) green-to-red; (e)
curved; (f) tapered [38]

18

Chapter 2. Background and Related Work

Edge Bundling

Visualization of large node-link graphs usually suffer from visual clutter. One of
the possible soultions of this problem can be using of edge bundling techniques
which can reveal high-level edge patterns. The edge bundling can be applied
for both general layouts of graphs or circle layouts. Holten [37] presented self-
organizing approach to edge bundling. They model edges as flexible springs
atracting each other. They also present rendering techniques to emphasize the
bundling.

Figure 2.11: US airlines graph (235 nodes, 2101 edges) (a) not bundled graph (b)
bundled graph [37]

Holten [36] also presents a technique of visualizing the elements in circle layout
with the possibility to collapse elements. This collapsing and uncollapsing is fully
animated, few steps are shown in Figure 2.12. Collapsing leads to replacing of
all edges leading from all collapsed elements with one edge.

Figure 2.12: Steps of animation of collapsing the checks element (highlighted
in blue) in (a) hides all of its children and lifts the relations pertaining to the
children to the checks element, as shown in (d). [36]

Also the work of Gansner [30] presented a multilevel agglomerative edge bundling
method. It minimizes ink needed to edges representation with respecting con-
straints on the curvature of the resulting splines. They declare that this method
is able to bundle hundreds of thousands of edges in seconds. For comparison they
provide the same graph as Holten [37], shown in Figure 2.13.

19

Chapter 2. Background and Related Work

Figure 2.13: US airlines graph (a) not bundled graph (b) bundled graph [30]

2.2.5 Background Visualization

The background of visualized node-link diagram can be used for improving the
navigation and understanding of visualized system. The work of Byelas [15] pre-
sented the tool using the areas of interest (AOI) technique in software diagrams.
It investigates correlation of system properties while preserving the layout of
dislpayed nodes. Several rendering modes of this technique are show in Figure
2.14.

Figure 2.14: UML diagram with 12 AOIs, various rendering modes.[15]

20

Chapter 2. Background and Related Work

Another work using diagram background is [29]. It describes the use of geo-
graphic maps to highlight clusters and neighborhoods. Although the work shows
the similarities and recommendations arising from TV shows the idea could be
adapted for the software visualization.

Figure 2.15: Background maps used for displaying clusers [29]

We provide deeper evaluation on current visualization tools in Section 3.2.

2.3 Nodes Clustering

In scope of this work the graph clustering can be used for reducing the amount
of components in the displayed diagram. Although components usually represent
relatively independent feature of a system, we can still find groups of components
which represent even more global feature. For example a system can have several
components for ensuring the security. So it is usually possible to find a group
of components in a system which can be considered as a cluster. Cluster can be
possibly collapsed into one node. Thus the number of nodes in whole diagram
would be lowered and the understanding of the whole diagram become easier.
The number of nodes in the whole diagram is lowered although the connections
among components are usually still present and could be shown on demand.

Clusters can either be marked manually, in an automated way [19],[47], [10] or
by a combination of those approaches [48]. The overview of clustering algorithms
can found in [61], [71]. While using manual clustering user selects the nodes
belonging to a cluster. When using an automated way, a diagram is considered
as a graph. In this situation, the main factor for creating clusters usually are
the interconnections (edges) among nodes. To improve the automated clustering

21

Chapter 2. Background and Related Work

we can also use available metrics and information about components. These
information can be eg. names of the packages (eg. org.package1.subpackage2)
which can can help to form cluster even when the components are not even
connected.

Important factor in choosing a clustering algorithm for certain implementation
is the quality of the clustering result for the given domain. There are several
metrics which can help to choose the appropriate clustering algorithm stated eg.
in [10]. But even after using these metrics it is usually not clear which algoritms
will give the best result for the general type of graph which component software
application diagram can be.

22

Chapter 3

Concept of the thesis

The main apporach of this thesis lies in both using known techniques and using
novel invented techniques for reducing complexity of large diagrams, which are
generally node link graphs. This allows a user to explore the diagram and find
desired information, design patterns or understand the architecture of a system.
As useful existing techniques and approaches are considered ideas described in 2.
Also using the hardware support for improving the insight into the data shown is
described in 3.1. There are several relatively independent factors when visualizing
complex software structures. By imporoving each of this factors and combining
them together we achieve large increase of the insight into visualized system. The
overall picture of the influencing factors important for the scope of this work are
shown in Figure 3.1.

The screen size and resolution are described in 3.1. The factors from the software
side of the Figure 3.1 are described in Section 2.2.

3.1 Using Large Projection Areas

The main idea of improving the diagram understanding by large projection ar-
eas is the fact that a person is generally able to see larger area than nowadays
standard screen size. Thus the goal of this section is to provide an overview of
current projection possibilites with respect to price of final solution which would
increase the comfort of displayed diagram understanding.

Enlarging the projection area can be easily achieved by using projectors, but we
also need to have high resolution to see the details. On the other hand a very high
resolution on small projection area will not bring additional advantages. Thus one
of the main requirements for the solution is to preserve reasonable ratio between
the pixel size and projection area while covering whole user’s persperctive.

23

Chapter 3. Concept of the thesis

Figure 3.1: Factors influencing visualization in scope of this work

There are possibly four main ways of achieving the large viewing area:

• using high resolution projectors

• using several projectors composition

• using several monitors compostion

These solutions vary in price and comfort. While using multiple screens or pro-
jectors there is a possibility to use multiple interconnected computers as signal
source. In case we have these interconnected computers we can save costs for the
graphic adapters neccessary while using one computer. On the other hand there
are further complications while using multiple computers such as delays or data
throughput.

Current high resolution projectors can offer resolution around ten millions pixels.
In the compostion of projectors we can theoretically achieve very large resolution,
but currently offered products can provide hundreds of millions pixels. Using
projectors is more expensive than using monitors, but it is possible to achieve a
projection areas without seeing any visible grid. Current projecting devices for
affordable price still do not exceed the abilities of humans eyes in a resolution
criteria. The eye cannot be simply compared to projection devices by using
only resolution metric, because there are many influencing factors in human’s
reception. On the other hand we can consider values between hunderds of millions
and thousands of millions of pixels as comparable with humans abilities.

24

Chapter 3. Concept of the thesis

3.2 Component Software Visualization Tools

Evaluation

In the following section, we describe the problems in visualization of component-
based software related to its diversity, as well as different approaches to visualiza-
tion of such structures. In Section 3.2.2 we suggest the criteria that can be used
for evaluating tools able to visualize such software. These criteria are thoroughly
discussed and evaluated from the views of different CBSE stakeholders. The
application of these criteria is then presented on the example of IBM Rational
Software Architect in Section 3.2.5.

3.2.1 User’s Needs and Requirements

People involved in the component development and maintenance process need to
visualize the component applications in a various ways. Visualization should help
them to understand the system, analyze dependencies [46], extract and show de-
sired properties, etc. These techniques are necessary especially when dealing with
larger systems which consist from many (hundreds or thousands) components.

Graphical notation is one of the important aspects of visualizing component mod-
els. Many component models propose their own graphical notation while other
ones assume a generic one like UML; this fragmented landscape can be seen
as similar with the situation before UML became widely established for object-
oriented languages.

Component Visualization Approaches

Components are by their nature more complex than classes in terms of their con-
tractually specified interface features. Their models, visual syntax, supporting
meta-data and tool functionalities should therefore be also more sophisticated.
For example, the study [46] shows that architectural modeling would benefit from
consolidated views, model consistency and defect checking, and its augmenting by
metrics. Additionally, Kollman et al note that obtaining more abstract represen-
tations and providing advanced (semantically rich) model features are important
for analysts [44].

Several works describe general criteria on analytical visualization tools, e.g. [67]
or [45]; both of these works attempt to structure the criteria into categories for
better orientation. [59] have further identified common desirable features or open
issues which can be improved by visualization techniques. Visual notations can
be in general analyzed or compared from the semiotic point of view, like in [62]
or in [51], to understand the suitability of chosen symbols and layouts.

25

Chapter 3. Concept of the thesis

However we are not aware of any other method that would help to evaluate
component architecture visualization tools. Favre et al discussed several issues
with visualization of component-based software in [25]. While Favre covered all
areas of component visualization, namely component models, components and
their assemblies, he addressed only global issues of such visualization and he did
not identified specific visualization tasks, however he provided a solid background
and motivation for future work.

The options in modeling and visualizing component software architectures specif-
ically are, cf. [49]:

1. component model-specific tool/notation;

2. generic component-aware tool/notation;

3. UML with profiles;

4. plain UML.

Component model-specific visualization means a visual notation (symbols and
their meaning) supported by tools which are able to visualize only one or very
few specific models. The motivation for this approach is the diversity of features
provided by individual component models. The downside is that the specifics
of the given notation can make it difficult for experts from different domains to
read and understand the models. Examples of this approach are SaveCCM [32]
or Palladio [6] component models.

26

Chapter 3. Concept of the thesis

Figure 3.2: Example of plain UML2 Component Model

Secondly, we can use a universal component-aware visualization tool like SoftVi-
sion [66] which is either able to visualize any component model or can be extended
for given component model needs. Related to this category is the use of UML [52]
constrained by or extended with UML profiles which enable to further specify the
semantics of existing model elements and create new ones on top of the core UML
meta-model. Creation of profiles including introduction of icons for new model
elements is supported by some tools, e.g. IBM Rational Software Architect, and
many UML tools are able to use a pre-defined selection of profiles.

Finally, we can use plain UML, especially its component diagram (see Figure 2.7)
and possibly class diagram. It may not capture the desired level of details neces-
sary for full component modeling but provides a universal notation that is under-
stood by most software engineers today. Moreover, the tool support is extensive
(e.g. MagicDraw, Enterprise Architect, PowerDesigner or StarUML, to name just
a few). However, this probably most common modeling approach “. . . lacks sup-
port for capturing and exploiting certain architectural concerns whose importance
has been demonstrated through the research and practice of software architec-
tures” [49] and supports only rudimentary analytical tasks.

27

Chapter 3. Concept of the thesis

Problems and Approaches Classification

In general, the options and benefits of a visualization of a component application
are affected by: (a) the component model and its features; (b) visual notation’s
repertoire; (c) the capabilities of a tool used for visualization. Suitable visualiza-
tion approaches have to be general enough to cover a wide range of component
models while at the same time being able to capture all aspects of a concrete
component model, in order to provide sufficient level of standardization while
preserving precious information about the particular component-based applica-
tions. In visualization of component-based software it is therefore crucial to
provide good notation and diagramming functionalities and beneficial to support
more advanced features for architectural analyzes, data mining and visualization
in general.

In this section we aim to define a suite of criteria that capture these features
and emphasize the aspects important from CBSE point of view. These criteria
should be suitable for the evaluation of visualization tools to indicate their fitness
for advanced visualization of component-based software. Secondly these criteria
can guide developers of current or new tools while considering implementation
of new features, because each applied criterion increases the added value of the
visualization tool.

28

Chapter 3. Concept of the thesis

Functional criteria Category

System
archi-
tect
(SA)

Compon.
devel-
oper
(CD)

Compon.
assem-
bler
(CA)

C00 Basic features N/A mandatory

C01 Richness of component
interface visualization

Data representa-
tion / Static

∗∗∗ ∗∗∗ ∗∗∗

C02 Model extraction Integration / Data
mining

∗∗ ∗∗

C03 Component and archi-
tecture analysis

Data representa-
tion / Static

∗∗∗

C04 Finding matching
variation / extension
points

Data representa-
tion / Static

∗∗∗ ∗ ∗∗∗

C05 Analysis and visualiza-
tion of extra-functional
properties

Data representa-
tion / Static

∗∗∗ ∗∗ ∗

C06 Change analysis Data representa-
tion / Dynamic
and Evolution

∗∗∗ ∗∗ ∗

C07 Analyzing differences
between views

Operations / Com-
parison

∗∗ ∗∗

C08 Traceability analysis Operations /
Searching

∗ ∗ ∗∗

C09 Model querying and
structural analysis

Operations /
Searching

∗∗ ∗∗

C10 Interactive components
clustering

Operations /
Searching

∗∗∗ ∗∗

C11 Custom metrics and
parameters visualiza-
tion

Effectiveness /
Benefits

∗∗ ∗ ∗∗

C12 Diagram scalability
and filtering

Effectiveness /
Scalability

∗∗ ∗∗∗

Table 3.1: Criteria and roles for component visualization

3.2.2 Criteria for Evaluating Tools

The criteria which we consider important for visualization tools targeted at
component-based development are based on the general visualization rules and
particular CBSE needs identified in the previous section. The criteria are sum-
marized in Table 3.2.1; the list is structured using the general scheme proposed
by [67] and related to roles specific to CBSE, cf. [65]. Individual criteria are

29

Chapter 3. Concept of the thesis

discussed in detail below.

The importance of each criterion for each role is indicated by stars, the scale is
from none (not applicable) through one star for lowest importance to three stars
for highest importance. Formula 3.1 describes the calculation of final rating sr
of given tool for one role.

sr =

∑n
i=1(wi · ci)

M ·
∑n

i=1(wi)
(3.1)

Here wi stands for the criterion importance and ci represents the coverage of the
feature by the given tool, on the scale from zero for “not present” to M for full
coverage. Symbol n stands for the number of criteria and M equals three.

Criteria Description

We distinguish between basic and advanced criteria. As basic criteria we consider
common tools features, which should be fulfilled in any case. As basic features
we consider following:

• pan&zoom,

• diagram overview,

• adjusting the layout of a diagram,

• import&export,

• displaying model structure.

The brief description of advanced criteria follows.

Rich component interface visualization Represents the tool’s ability to work
with all properties and features specified by component model or framework.

Model extraction Describes the tool’s ability to extract model from source
code, deployment form or runtime representation, to a representation suitable
for working with visualizing the gathered data.

Component and architecture analysis This criterion describes to what de-
gree a tool is able to provide analyses of structures or behavior of components.
There are many possible analyses, for instance for internal dependencies between
provided and required interfaces or finding unused required interfaces or struc-
tures. Tools can also be able to check architecture style rules, detect design
patterns or anti-patterns.

30

Chapter 3. Concept of the thesis

Finding matching variation/extension points The process of finding a vari-
ation or extension point in complex application can be very tedious. But if the
tool is aware of the data types and structures it is displaying and is able to run
basic queries internally, there is a possibility to offer users a feature which ease
this process.

Analysis and visualization of extra-functional properties Extra-functional
properties [41] can be either stored in a file or repository separately or can be
gathered from the code or running system. Tools can also be able to compose the
extra-functional properties of individual components into one property for the
system or subsystem, and compare them in order to determine which component
is better for a given purpose. There are also several ways of presenting the
gathered data as a visualization in the diagram or them exporting into another
tool.

Change analysis Represents the tool’s ability to analyze the impact of the
change (e.g. changed interfaces or relations), application’s consistence and com-
ponent’s compatibility with other related components after the change.

Analyzing differences between views Although analyzing differences in tex-
tual data is a common task sufficiently solved by tools, differencing two graphical
views is not a very common feature. It enables users to faster understand the
changes made in the system.

Traceability analysis Important part of understanding the system is tracing
through its dependencies. Although components should be treated as black boxes,
composing the dependency along a chain of components from the individual in-
ternal dependencies between provided and required interfaces can be very useful.
It enables users to predict the ripple effects of potential changes or understand
the structure of the system.

Model querying and structural analysis Describes tool’s ability to perform
user specified or built-in operations generally needed to find desired information
in the model. It comprises features from basic search to tool’s own query language
where the queries can be specified by user. Advanced features like structural anal-
ysis, model evolution prediction or design patterns and anti-patterns detection
are also related to this criterion.

Interactive components clustering Diagrams of large applications become
difficult to explore. One of the possible ways of improving the diagrams to be
easier to understand is creating clusters of components which semantically rep-
resent a subsystem. Clusters can be minimized into symbols to lower the visual
clutter of the application’s diagram overview. These clusters can be found or
suggested by tools automatically and/or adjusted by user manually.

Custom metrics and parameters visualization This criterion describes
tool’s ability to provide data and related operations, which would lead to vi-

31

Chapter 3. Concept of the thesis

sualization of desired metrics a parameters. Important part of this criterion is
also the way in which the tool is able to visualize and customize the gathered
data. There can be several data sources for the metrics and parameters. They
can be stored in a file or repository separated from the diagram representation.
Another way of gathering such data can be tool’s own metrics measuring and
composing capability.

Diagram scalability and filtering In case of large diagrams a tool should
be able to handle the load and offer satisfactory response time. This criterion
evaluates how the tool handles the problem of model complexity. It can be
reduced for instance by multiple levels of displayed details or filtering highly
connected parts suitable for detailed view.

In Table 3.2.1 we can see that most of the criteria are related with the component
system architect or assembler and fewer are related with component developers.
Component architects and assemblers need to have an overview of the whole
system which can consist from hundreds or thousands of components and thus
they need lot of analytical techniques and tools to ease their work.

3.2.3 Tools

This and following subsections describe the capabilities of current state-of-the-
art tools for analyzing component applications in view of these criteria, in the
form of a non-exhaustive survey. Primarily it describes the tools which provide
interesting features besides basic component diagramming and focuses on those
which introduce a novel look on component visualization.

In spite of the imperfections of plain UML component model we briefly present
in subsection 3.2.4 selected tools which work with this model as the baseline. We
also consider UML profiles as a separate point of view in subsection 3.2.5 because
they provide an opportunity to represent various component models. Then we
discuss visualization tools specific for some component models in subsection 3.2.6
which usually provide very good representation for the given model. Finally, in
subsection 3.2.7 we sample tools which are able to represent any component model
or at least support a high number of models or languages.

For each of the tools described in more detail we list the criteria from Table 3.2.1
it supports.

3.2.4 Plain UML Tools

The UML component diagram describes static application architecture and be-
longs to the structural diagrams category. It is able to show the components

32

Chapter 3. Concept of the thesis

themselves, their provided and required interfaces, associated artifacts and also
composition hierarchy by putting (sub-)components inside other components.

There are many tools for drawing plain UML component diagrams, e.g. UMLet1

or Dia2.

MetricView

MetricView is a standalone tool which allows users to display custom metrics di-
rectly in the UML model (C11), as shown in Figure 3.3. Metrics visualization is
among others useful for displaying extra-functional properties. This software has
a version called MetricViewEvolution which is able to calculate metrics (C05), vi-
sualize evolution data (C06) and provide more views for UML model exploration.
This tool also implements the area of interest technique [14] for UML diagrams
(C12) which helps to highlight areas of concern in the diagram.

Figure 3.3: Metricview metrics visualization

3.2.5 Tools for UML Profiles

For purposes of component application modeling and visualization we can use
UML profiles to describe the specifics of component model(s). Visualization and
analytical features then depend on the tool’s support for profiles.

1http://www.umlet.com/
2http://live.gnome.org/Dia

33

Chapter 3. Concept of the thesis

There are many tools which are able to work with UML profiles such as Mag-
icDraw3, StarUML4, Borland Together Designer5, Visual Paradigm for UML6 or
IBM Rational Software Architect (described in 3.2.5). Diagrams can usually be
exchanged among such tools using XML Metadata Interchange (XMI), which
should enable UML compliant documents exchange between tools.

Papyrus

Papyrus7 is an component of the Eclipse Model Development Tools. It is able to
work with UML2 exactly according to its definition and supports UML profiles
very well. It it is able to customize its editors, model explorer and create user
defined perspectives (C11, C12) in a way which provides users the look and feel
comparable with domain specific language editors. Papyrus can download the
following profiles UML profiles via its update site: MARTE, SysML, EAST-
ADL, CCM and LwCCM (C05). The learning curve of this tool can be improved
by using tutorials, videos or documentation provided.

IBM Rational Software Architect

IBM Rational Software Architect (RSA) is part of the Rational Rose tool family
and it is build on the Eclipse platform. We chose RSA for this case study because
it is not just a UML diagramming tool but rather represents a robust solution
that supports model driven development, analytical work over different views on
the same software and a lot more. All of these features are built on top of the
UML meta-model.

RSA offers not only use of UML profiles but it is also possible to design new ones
with it. This means that any component model can be represented with details
limited only by the UML meta-model itself.

RSA supports all basic features needed for reasonable visualization of component-
base software (C00), thus it is possible to use it for these purposes. Richness of
contractual levels (C01) is achieved by using UML profiles, extension mechanism
which – together with the option to define custom element icons – is power-
ful enough to model and reasonably well visualize most of kinds of component
interface features.

RSA is able to trace dependencies, inheritance or ancestors by using several
different features, thus covering the (C08) criteria in its full content. RSA enables

3http://www.magicdraw.com/
4http://staruml.sourceforge.net/
5http://www.borland.com/us/products/together/index.aspx
6http://www.visual-paradigm.com/product/vpuml/
7http://www.eclipse.org/modeling/mdt/papyrus/

34

Chapter 3. Concept of the thesis

model management for parallel development and architectural re-factoring – split,
combine, compare and merge models and model fragments, thus (C07) criteria is
also fully covered.

For model analysis and model metrics there is a special plug-in, called The Model
Metric Analysis Plug-in which covers the criteria of (C11). This plug-in enables to
create Kiviat diagrams (“spider charts”), perform interactive analysis of model
and asses the results. RSA is able to create data sets (queries) to extract a
defined set of information from UML models. This feature is accessed by using
RSA extended with BIRT project8, which also enables to create reports and
sub-reports, these features covers the criteria (C09).

It may seem that model extraction (C02) is supported, because RSA can reverse-
engineer class diagrams from Java, C++ and .NET source code. However, this
ability does not work on component-based software and component diagrams.
No other criteria is fulfilled.

Evaluation of RSA

Detailed overall value of IBM Rational Software Architect’s component visualiza-
tion capabilities is calculated by using Formula 3.1 and is summarized in Table
3.2.

ci SA CD CA

C01 2 ∗∗∗ ∗∗∗ ∗∗∗
C07 3 ∗∗ ∗∗
C08 3 ∗ ∗ ∗∗
C09 2 ∗∗ ∗∗
C11 2 ∗∗ ∗ ∗∗
sr 12 0,26 0,29 0,41

Table 3.2: Assessment of RSA using our criteria

We can conclude that RSA does not fully cover the desiderata of component ap-
plication visualization but still offers features, from which component assemblers
can benefit the most.

3.2.6 Specific Component Model Visualization Tools

From the tools available for the many existing component models, we selected
two representatives with direct support for model visualization.

8www.eclipse.org/birt/phoenix/

35

Chapter 3. Concept of the thesis

Save-IDE

Save-IDE9 is an Integrated Development Environment (IDE) which can be used
for the development of component-based embedded systems in the SaveCCM
component model. Among others it uses formal specification and analysis of be-
haviors for designing systems (C05). It also enables internal component analysis
(C03). Components’ visualization in IDE is shown in Figure 3.4.

Figure 3.4: Save-IDE visualization

SOftware MOdel eXtractor (SoMoX)

SoMoX10 is a tool for reverse engineering (C02) of the Palladio component model.
Palladio can execute analysis (C05) of software performance, reliability, and main-
tenance properties on its component-based applications. It is also able to extract
the components from source code (C10) written in various languages. Reverse en-
gineering results in the creation of basic and composite components, component
interface and service signatures, ports (roles), assembly and delegation connectors

9http://save-ide.sourceforge.net/
10http://www.palladio-simulator.com/tools/add ons/somox/

36

Chapter 3. Concept of the thesis

and behaviour model. The extracted models enable quality analysis and help to
understand analyzed system.

Plug-in Dependency Visualization

Plug-in Dependency Visualization11 is a plugin for the Eclipse IDE. It enables to
extract (C02), visualize and analyse the dependencies (C08) among core and user
installed Eclipse plugins, called bundles. The dependency graph helps to under-
stand the system by providing reasonable cognitive support. The user is able to
select several options of highligting the bundles. For example, it is possible to
show the shortest dependency path between two selected components. Example
of application visualized by this tool can be seen in Figure 3.7

3.2.7 Generic Component Model-aware Visualization
Tools

There are very few tools in this category, and often there is little information
available about them.

SoftVision

SoftVision is a software visualization framework described in [66] which is able to
interactively explore relations between data structures, as shown in Figure 3.5.
It can scale the model to visualize large complex datasets (C12).

This tool enables users to define the structure of the component model used
in a given component based system and thus visualize any component model
(C02). If the needs of users differ for each component model, SoftVision provides
elements customizability (C11). Thanks to this feature the user is able to create
applications which suits well for exploration of given architecture. It also enables
to write a custom scenario model which helps users better analyze the system by
creating custom map, edit and filter operations (C09).

11http://www.eclipse.org/pde/incubator/dependency-visualization/

37

Chapter 3. Concept of the thesis

Figure 3.5: Softvision visualization [66]

Sec. Approach
Visual
syntax

Tool
sup-
port

Compon.
features

fully
captured

Simplicity
of prepara-

tions
before use

Requir.
coverage

3.2.4 Plain UML
component
diagram

** well-
known

***** * ***** **

3.2.5 UML pro-
files

**** tool
depen-
dent

*** **** ** **

3.2.6 Specific
component
model

model de-
pendent

model
depen-
dent

model de-
pendent

***** *

3.2.7 Generic custom *
** tool
depen-
dent

** ***

Table 3.3: Comparison of approaches to component modeling

38

Chapter 3. Concept of the thesis

3.3 Viewport Technique for Surroundings Ex-

ploration

Visualization techniques which handle the complexity, such as off-screen rendering
[27], can help to understand a diagram, even it is complex. This section describes
a novel approach called viewport which attempts to reconcile the above mentioned
contradictory requirements and helps to explore the dependencies among com-
ponents in an intuitive way. This technique should help to work with complex
diagrams (hundreds or thousands of components) by highlighting details of the
important parts of the diagram and their related surroundings without losing
the global perspective. To avoid visual clutter it uses clusters of interfaces and
components.

3.3.1 Viewport for Component Diagrams

The proposed technique shows the graph (standard UML component diagram)
zoomed-out to provide the appropriate overview of the complete architecture,
with elements displayed without details. Besides that it shows selected compo-
nents in detail inside a viewport area plus all their relations with other components
in the diagram in an interactive border area (see Figure 3.6). These relations are
for each component clustered into two sets: all provided interfaces (displayed as
”lollipops”) and all required interfaces (displayed as ”sockets”).

Figure 3.6: Viewport for component diagrams

These interfaces are then connected to clustered proxy components, visually rep-
resented as rectangles with rounded corners. Each rectangle represents one or
more components. Numbers inside the clustered interfaces and proxy compo-
nents represent a desired metric, e.g. the number of elements clustered in a given

39

Chapter 3. Concept of the thesis

symbol. One of the key factors of our approach will be the interactivity of the
border area, which should comprise user manipulation with clustering of inter-
faces or components, layout adjustments and selecting the components shown in
the viewport.

The viewport technique should enable to explore and understand the dependen-
cies in large diagrams by showing the context of a selected diagram subset. The
clustering shall reduce the visual clutter otherwise caused by large number of rela-
tions. The proxy elements should reduce the need for the disorienting pan&zoom
otherwise necessary while exploring dependencies and provide user relevant in-
formation in one place. The viewport can either be placed on a given position in
the diagram (there can be more viewports in a diagram) or have a fixed position
on the screen.

3.4 Lowering Visual Clutter

In the following section we describe the problem of the visual clutter first. After
that we describe a related work in Section 3.4.1. Then in Section 3.4.2 we present
a novel technique which helps to reduce the visual clutter in large graphs. In
Chapter 4, we describe the work in progress related to the implementation of the
proposed technique as well as the future work.

This section focuses on the problem with highly connected components and the
clutter caused by their connection visualization.

Very often, only a small amount of components is connected to a large number
of other components. It results in a lot of lines going only from few components
as can be seen in Figure 3.7, where is shown part of Eclipse12 structure in Plugin
Dependency Visualization tool13. Such components are often, among developers,
informally called “God Objects”. Having such objects (components), the user
is limited to recognize other connections in their surrounding area and trace the
connections themselves. Another side effect of these components is that they fill
a lot of space, thus exhausting one of the essential resources in the visualization
which can be used for easing the work with large component diagrams.

3.4.1 Coexisting Approaches

Visual clutter can be reduced by many techniques, such as bundling [37], sam-
pling [58], clustering [18] etc. The whole taxonomy of these techniques has been

12Popular IDE, see http://www.eclipse.org/
13http://www.eclipse.org/pde/incubator/dependency-visualization/

40

Chapter 3. Concept of the thesis

described by Ellis and Dix in [24]. We provide a short description of those tech-
niques which are related to our work.

The clutter caused by the lines is often reduced by edge bundling [35] (see also
Section 2.2.4). Although this approach reduces the clutter, it can be difficult to
trace the dependencies between connected nodes leading through the edge bun-
dles. The visual clutter can be also lowered by using node clustering as mentioned
in Section 2.3. Another influencing factor is the chosen layout algorithm (as de-
scribed in Section 2.2.2), which can ease orientation in both clustered graphs
[26] or a non-clustered ones [57], [31]. In the following section, we describe our
approach to how to reduce the clutter in this problem.

Figure 3.7: Wide Amount of Lines From One Component

3.4.2 Proposed Technique

The proposed technique reduces the visual clutter by removing the components
with a large number of connections from the main diagram into a, so called, sep-
arated components area (abbreviated to SeCo) placed on the border of a window.
This essentially marks the component as a “familiar one”. The user may then
concentrate on and continue getting familiar with the rest of the system.

When a user moves components from the main diagram to this area, the lines
between these components and remaining components are elided. Instead of them
a representing visual symbol is used in the diagram area. It reduces the number of
lines in the graph not reducing the information provided. Obviously, components
with a high number of connections are the most beneficial to be moved, because
they reduce the high number of lines from the graph. For instance, a user may
displace a component implementing a logger. Such a component is probably used
by most of components in the system and its displacement reduces the graph
complexity. We assume both automatic and manual component selection may
be used. In the automatic case, all components with the number of connections
overcoming a certain threshold are displaced. In the manual use, a user drags-
and-drops the components from the main graph to the SeCo.

In the following paragraphs, we describe in detail the individual parts of the
whole visual design used by this technique.

41

Chapter 3. Concept of the thesis

3.4.3 Separated Components Area (SeCo)

SeCo is a part of the application window. It can be placed on left or right side of
the window, because current screens have wide aspect ratio and thus using these
sides will not deform the rest of the viewing area as much as using the top or
bottom side. The wireframe of the application window is shown in Figure 3.8.

Figure 3.8: Overall Layout of the Application Window

Items

SeCo consists of a list of items. Each item consists of components, interfaces and
one corresponding symbol (see Section 3.4.3). Components placed in SeCo have
displayed relations with the rest of the components in the diagram on the border
between diagram area and SeCo.

We distinguish between two situations corresponding to an item’s internal layout
of components and the representing symbol. In the first situation, if there is only
one component in the item, interfaces are directly connected to the component
and the symbol is behind the component as shown in Figure 3.10. In the second
situation, the item consists of more components which form a group. In this case,
the interfaces are directly connected to the symbol and the components are shown
behind the symbol (Figure 3.12). The former situation stresses the display of the
interfaces-component connections while the latter situation stresses the space
saving. Groups are described more in detail in Section 3.4.3.

Symbols and Delegates

The purpose of symbols is to create clear and easily recognizable key which
uniquely identifies one item within SeCo. Symbol should be small enough to
save space anywhere it is used. The user should be able to choose its own sym-
bols. We have chosen letters for the demonstration of the idea, but it can be any
other symbol or an icon.

To keep the information about the connections in the main area when lines are
removed, we use so called delegates. They represent the connection between a

42

Chapter 3. Concept of the thesis

given component and the corresponding item placed in SeCo. In the diagram,
they are shown as small rectangles neighbouring the displayed components and
containing the symbol which corresponds to the connected item (see Figure 3.9).

Figure 3.9: Delegates in the Diagram Area

By clicking on a delegate, the connections, interfaces and components involved
in the relations are shown and/or highlighted. Display of the delegates in the
diagram area can be toggled by clicking on the symbols in SeCo. The item
indicates the state when delegates are shown by dark background as shown in
Figure 3.10. The indication of the state when delegates are shown can be also
differentiated by a checkbox, or other graphical element. We have chosen different
background color in order to save screen space.

Figure 3.10: Item Design When Showing its Delegates

Interface Clustering

For each component shown in SeCo, interfaces are clustered into two sets: all pro-
vided interfaces (displayed as “lollipops”) and all required interfaces (displayed
as “sockets”). This is shown in Figure 3.10. Numbers inside the clustered inter-
faces represent the number of elements clustered in the given symbol. It helps to
minimize the space which these components fill.

The clustered interfaces are by default not connected to the rest of the diagram by
any lines which reduces the amount of lines in the diagram area. The connections
(resp. lines) appear only when interacting with one of the sides of the connection
included in clustered interfaces or the interface itself.

There are two kinds of interaction with clustered interfaces. First is a simple
showing of the connections lines and highlighting of the components involved after
user hovers with mouse cursor on the clustered interface. Second is a showing of
the details of all interfaces including names, connections and highlighting of the
involved components. It is launched by mouse click on the clustered interface. It
is shown in Figure 3.11 for Interface 4. In a case a component from the diagram

43

Chapter 3. Concept of the thesis

area connected to an inspected interface would not be visible in the current
diagram area view, it does not make sense to show the connection line and thus
a proxy component is shown instead. This situation is shown in Figure 3.11 by
the rectangle with rounded corners – Component N. It is shown in Figure 3.11
for Interface 4.

In the case a component from the diagram area connected to an inspected in-
terface would not be visible in the current diagram area view, it does not make
sense to show the connection line and thus a proxy component is shown instead.
This situation is shown in Figure 3.11 by the rectangle with rounded corners for
Component N.

Figure 3.11: Interface Details

Component Groups

It is possible that a particular functionality of the system is implemented by
several components. In a case this functionality is used by a large number of
other components in the system, it can be represented as a group in SeCo.

All components from such a group are then replaced by one delegate in the
diagram. It saves space in the diagram and also helps to create semantic clusters
of components. It consequently improves understanding of the whole system
where user may e.g. find cliques of components first. These may be then grouped
and displaced from the graph to continue a study of the remaining graph.

The group symbols visually differ in component symbols and colours. A group
symbol is larger in the size compared to the case of a single component, to denote
the fact the group shows a large number of components. It is thus possible to
show two additional categories of clustered interfaces. These categories contain
all provided interfaces not used by any other component in a diagram and
analogically all required interfaces which no other component provides. In the
case of single components it is better to show these interfaces only on demand
and thus save the space. The group is shown in Figure 3.12. Showing not used
interfaces can easily inform the user about potentially missing components and
thus prevent the future deployment problems.

44

Chapter 3. Concept of the thesis

Figure 3.13: Application Layout with Example Diagram

Figure 3.12: Group of Components Represented by a Group Symbol

When showing delegates in the diagram area for a given group or an item, its
appeareance changes. We have chosen different the background color for demon-
strating this item’s state as shown in Figure 3.13 on group with symbol “V”. This
situation is equivalent to the situation of one component.

3.4.4 Discussion and Examples

In a lot of situations, there are components in the system which are connected
with large number of other components. Thus, they are suitable candidates to be
removed from the diagram area and moved to SeCo. In other cases we can use the
SeCo features to form groups of components. These groups can serve as named
categories according to which the user can classify the rest of the components in
the diagram area and thus form a logical units of an investigated system.

45

Chapter 3. Concept of the thesis

Table 3.4 shows several systems with components having large number of con-
nections. The table lists each system per a line with columns denoting the num-
ber of components, clustered and non-clustered connections among the compo-
nents respectively. While non-clustered connections represent UML-like drawing
separately connecting each individual provided-required interface pair, clustered
connections collapse all connections between two components into two sets: all
provided interfaces and all required interfaces.

System Components Clustered
Non

Clustered

Nuxeo 202 698 1425
CoCoME 37 125 188

OpenWMS 65 232 642
Eclipse 378 533 1079

Table 3.4: Several Systems with the Number of Components and Connections

Several experiments using the proposed technique were performed, based on the
data in the table. In one of them only 7 Nuxeo components have been removed
from the diagram area leading to 241 and 431 lines remaining in the graph for
the clustered and non-clustered versions, respectively. Therefore, the graphs were
reduced of about 67% of lines in both cases.

These numbers show that by using the proposed technique, significant visual
clutter reduction may be achieved. Visual effect of the results is shown in Figures
3.14 and 3.15, using circle layout for clarity.

Figure 3.14: Nuxeo Before the Reduction

46

Chapter 3. Concept of the thesis

Figure 3.15: Nuxeo After the Reduction

3.4.5 Component Application Visualizer

We are currently implementing this technique in HTML5 technology as a plug-in
extension to the ComAV tool [63]. ComAV is a versatile an extendible platform
for visualization and reverse-engineering of component-based applications.

It offers the possibity to use multiple component models (currently OSGi,
EJB 3 and SOFA 2 are supported) and different visualization styles. It uses
component-model independent data format to store a reverse engineered structure
of component-based applications and as an input for any visualization plug-in.

We plan to integrate a viewport technique [39] into this application to enable
users to form relevant clusters comfortably. ComAV is thus a suitable tool to
test this new technique as it has powerful reverse-engineering features supporting
OSGi, EJB 3 and SOFA 2 component models. Consequently, it can easily analyse
a structure of hundreds of components.

3.4.6 Techniques’ Implementation

For implementing above decribed techniques a graph framework can be used,
because the component diagram can be considered as a graph. There are many
available graph frameworks both commercial or free to use. Their list for Java
can be found at [3]. We focused on framework’s ability to interact in a short time
with the user while displaying large amount of elements. The other important

47

Chapter 3. Concept of the thesis

abilities were available documentation, graph layouts, customizability and size of
the community around framework.

At first we chose JUNG, JGraph and Zest frameworks as suitable for visualization
of large graphs for further comparison. Mentioned frameworks are able to work
with both directed and undirected graphs. They also provide GUI for work with
the displayed graph and layout functions. After testing these three frameworks
we decided for JUNG. The framework and reasons of our decision are described
in following section.

JUNG

The JUNG [2] stands for Java Universal Network/Graph Framework. It is a
software library written in Java and compatible with Swing. It supports both
directed and undirected graphs as well as hypergraphs and graphs with parallel
edges. It allows users to annotate graphs, entities, and relations with metadata.
It is also possible to use Java applets as shown in Figure 3.16.

Figure 3.16: Example of JUNG applet showing both clustering and layout
(Fruchterman-Reingold) algorithms.

We chose the JUNG framework as the most suitable for our needs, because of good
documentation and overall functions. Showing 5000 nodes interconnected with
5000 edges lasts 28 seconds in JUNG framework whereas it takes 1180 seconds
in JGraph framework.

We implemented a prototype showing the large component diagram. We have
customized the connections lines to be shown as connected interfaces. Although
this framework is very good in graph visualization, we considered the imple-

48

Chapter 3. Concept of the thesis

mentation of described techniques problematic, mainly due to large amount of
specific customizations. Thus we decided not to use a framework and implement
the desired techniques by using basic drawing primitives.

HTML5 + Java EE

We decided to implement the desired features as a web application to be eas-
ier to use. As backend technology we use servlets from Java EE technology,
mainly because of Java implementation of ComAV tool [63]. For frontend we
use HTML5, JavaScript, jQuery 14 framework and CSS3. These technologies are
widely supported and provide desired features seamlessly integrated in the web
page, whereas the JUNG uses applets which cannot be connected to the rest of
the web page so easily as the previously mentioned technologies. We use canvas
and SVG elements from HTML5 to represent the nodes of the diagram. Although
HTML5 techonology is still not fully supported 15 by all main browsers, it pro-
vides uploading of multiple files, which is used for uploading components. Also
desired features such as SVG support or Canvas are likely to be stable in the
future.

The tool is able to load and visualize the components reverse-engineered by the
ComAV tool. A user first pick component on a local machine a uploads them
to the server. The ComAV tool creates the model of the application and the
CoCA-Ex tool shows the application diagram in the webpage.

It currently has following features:

• removing nodes with the highest degree to the SeCo area (as single compo-
nents or as one group),

• searching and highlighting components in the diagram according to given
name,

• panning and zooming,

• manual layout adjusting,

• connected elements highlighting,

• delegates showing (as described in Section 3.4.3),

• symbols using,

• groups using.

14http://jquery.com/
15http://caniuse.com/

49

Chapter 3. Concept of the thesis

It provides standard features such as panning and zooming. There are two modes
of manipulating the components with appropriate icons in the toolbar. First mode
is for moving components (A) where the user can manually adjust the layout of
the diagram. Second mode (B) serves for removing components from the diagram
area to the SeCo area simply by clicking on the desired components which should
be removed. Last two icons in the toolbar serve for the automatic removal of a
configured amount of components from the diagram to the SeCo area. The tool
is currently configured to remove 15% of most connected components. The icon
(C) is used for removing these components and adding them to SeCo area as
individual items. The next icon (D) creates one group for all of them.

CoCA-Ex offers a fulltext search in components’ names. In Figure 3.17, one
can see the search for a word “relations”. Seven components in the diagram
contain this word as indicated by the number seven (F). Matching components
are highlighted by orange color (E).

If one clicks on the provided interfaces of a component in SeCo, these interfaces
and connected components become highlighted by green color. An example is
shown on dependency between the Nuxeo Common component’s provided in-
terfaces (Y) and Nuxeo Platform Imaging API component (G). Similarly, for
interfaces required by components in SeCo highlighting by yellow color is used.
It is demonstrated on dependency between Nuxeo URL API component (H) and
Nuxeo ECM Web Platform UI component’s required interfaces (Y).

For several components from the SeCo area (those with symbols’ background
highlighted by different colors (S)) there are delegates shown in the diagram area,
e.g. (K). For inspecting interfaces, the tool offers highlighting of a connection by
a red color and showing the interfaces involved in the connection (P), as shown in
the green tooltip. Each individual component shown in SeCo has its own button
(R) to remove it back to its original position in the diagram area.

Our preliminary experiences with this tool show that it is able to handle large
diagrams without problems. Also we discovered requirements for this tool which
should be implemented to ease the work to a user. We describe this requirements
in Chapter 4.

50

Chapter 3. Concept of the thesis

Figure 3.17: Nuxeo system loaded into CoCA-Ex application

51

Chapter 4

Future Work

Future work will focus on research on new techniques, their implementation and
evaluation. It will also focus on the CoCA-Ex tool improvements in following
features:

• layout integration,

• clustering integration,

• clustered interfaces exploration,

• viewport technique integration.

Furhermore we will investigate options for automatic suggestion of diagram parts
suitable for displaying in viewports. Important part of the future reasearch will
also be an evaluation of the CoCA-Ex tool.

We believe that the presented ideas can be generalized to be used in other do-
mains, where one suffers from visual clutter caused by the large number of nodes
and connection lines. Thus one part of the future work will be to provide exam-
ples of these applications including the technique adaptations.

52

Chapter 5

Conclusion

In this work we suggested several criteria for evaluating tools targeted at visu-
alization of component-based software. These criteria can be used on existing
visualization tools as we presented on the example of IBM Rational Software Ar-
chitect, which was evaluated with quite satisfactory results. On the other hand,
this case shows that even advanced visualization tools currently address only a
few of the needs related to component visualization.

The proposed criteria can thus also serve as a guideline for efforts towards bet-
ter visualization of component-based applications. Currently the main problem
behind the lack of such efforts can be due to relatively low usage of components.
However, their importance continues to rise and future visualization tools should
address these topics to a broader extent.

We also presented a viewport technique which can help to form clusters and ease
the process of exploring selected components surroundings.

We also described a technique which helps to reduce the amount of lines in the
diagram, by removing the selected components from the diagram area (shown in
Figure 3.13). It uses a separated components area where the selected components
are shown, and symbolic delegates which represent the connections instead of
lines.

These techniques are among other benefits useful in the reverse engineering pro-
cess when the user is interactively getting familiar with the whole diagram.

Finally we provided an implementation of part of the invented techniques in
CoCA-Ex tool which is based on HTML5, CSS3, JavaScript, jQuery and Java
EE technologies.

53

Bibliography

[1] Handbook of graph drawing and visualization, 2012.

[2] Java universal network/graph framework, 2012.

[3] The stony brook algorithm repository, 2012.

[4] S. Alam and P. Dugerdil. EvoSpaces Visualization Tool: Exploring Software
Architecture in 3D. In WCRE ’07: Proceedings of the 14th Working Confer-
ence on Reverse Engineering, pages 269–270, Washington, DC, USA, 2007.
IEEE Computer Society.

[5] F. Bachmann, L. Bass, C. Buhman, S. C. Dorda, F. Long, J. Robert, R. Sea-
cord, and K. Wallnau. Volume ii: Technical concepts of component-based
software engineering, 2nd edition. Technical report, CMU/SEI - Carnegie
Mellon University/Software Engineering Institute, 2000.

[6] S. Becker, H. Koziolek, and R. Reussner. The palladio component model
for model-driven performance prediction. Journal of Systems and Software,
82(1):3 – 22, 2009. Special Issue: Software Performance - Modeling and
Analysis.

[7] B. B. Bederson and A. Boltman. Does animation help users build mental
maps of spatial information? In Proceedings of the 1999 IEEE Symposium
on Information Visualization, INFOVIS ’99, pages 28–, Washington, DC,
USA, 1999. IEEE Computer Society.

[8] A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and D. Watkins. Making com-
ponents contract aware. Computer, 32(7):38–45, 1999.

[9] A. Beugnard, J.-M. Jzquel, and N. Plouzeau. Contract aware components, 10
years after. In J. Cmara, C. Canal, and G. Salan, editors, WCSI, volume 37
of EPTCS, pages 1–11, 2010.

[10] R. A. Bittencourt and D. D. S. Guerrero. Comparison of graph clustering al-
gorithms for recovering software architecture module views. In Proceedings of
the 2009 European Conference on Software Maintenance and Reengineering,

54

Bibliography

CSMR ’09, pages 251–254, Washington, DC, USA, 2009. IEEE Computer
Society.

[11] P. Brada. The cosi component model: Reviving the black-box nature of com-
ponents. In Proceedings of the 11th International Symposium on Component-
Based Software Engineering, CBSE ’08, pages 318–333, Berlin, Heidelberg,
2008. Springer-Verlag.

[12] F. J. Brandenburg, M. Himsolt, and C. Rohrer. An experimental comparison
of force-directed and randomized graph drawing algorithms. pages 76–87.
Springer-Verlag, 1996.

[13] T. Bures, P. Hnetynka, and F. Plasil. SOFA 2.0: Balancing advanced features
in a hierarchical component model. In SERA, pages 40–48. IEEE Computer
Society, 2006.

[14] H. Byelas, E. Bondarev, and A. Telea. Visualization of areas of interest
in component-based system architectures. In Proceedings of the 32nd EU-
ROMICRO Conference on Software Engineering and Advanced Applications,
pages 160–169, Washington, DC, USA, 2006. IEEE Computer Society.

[15] H. Byelas and A. Telea. Visualization of areas of interest in software archi-
tecture diagrams. In Proceedings of the 2006 ACM symposium on Software
visualization, SoftVis ’06, pages 105–114, New York, NY, USA, 2006. ACM.

[16] K. Cassell, C. Anslow, L. Groves, P. Andreae, and S. Marshall. Visualizing
the refactoring of classes via clustering. In M. Reynolds, editor, Australasian
Computer Science Conference (ACSC 2011), volume 113 of CRPIT, pages
63–72, Perth, Australia, 2011. ACS.

[17] C. Chen. Graph drawing algorithms. In Information Visualization, pages
65–87. Springer London, 2006. 10.1007/1-84628-579-8 3.

[18] K. Chen and L. Liu. A visual framework invites human into the cluster-
ing process. In Scientific and Statistical Database Management, 2003. 15th
International Conference on, pages 97 – 106, july 2003.

[19] Y. Chiricota, F. Jourdan, and G. Melançon. Software components capture
using graph clustering. In Proceedings of the 11th IEEE International Work-
shop on Program Comprehension, IWPC ’03, pages 217–, Washington, DC,
USA, 2003. IEEE Computer Society.

[20] A. Cockburn, A. Karlson, and B. B. Bederson. A review of overview+detail,
zooming, and focus+context interfaces. ACM Comput. Surv., 41(1):2:1–2:31,
Jan. 2009.

55

Bibliography

[21] I. Crnkovic, M. Chaudron, S. Sentilles, and A. Vulgarakis. A classification
framework for component models. In Proceedings of the 7th Conference on
Software Engineering and Practice in Sweden, October 2007.

[22] I. Crnkovic;, S. Sentilles, A. Vulgarakis, and M. R. Chaudron. A classification
framework for software component models. IEEE Transactions on Software
Engineering, 37:593–615, 2011.

[23] T. Dwyer, B. Lee, D. Fisher, K. I. Quinn, P. Isenberg, G. Robertson, and
C. North. A comparison of user-generated and automatic graph layouts.
IEEE Transactions on Visualization and Computer Graphics, 15(6):961–968,
Nov. 2009.

[24] G. Ellis and A. Dix. A taxonomy of clutter reduction for information vi-
sualisation. Visualization and Computer Graphics, IEEE Transactions on,
13(6):1216 –1223, nov.-dec. 2007.

[25] J.-M. Favre and H. Cervantes. Visualization of component-based software.
In Proceedings of the 1st International Workshop on Visualizing Software for
Understanding and Analysis, pages 51–, Washington, DC, USA, 2002. IEEE
Computer Society.

[26] Q. Feng. Algorithms for drawing clustered graphs, 1997.

[27] M. Frisch and R. Dachselt. Off-screen visualization techniques for class dia-
grams. In Proceedings of the 5th international symposium on Software visu-
alization, SOFTVIS ’10, pages 163–172, New York, NY, USA, 2010. ACM.

[28] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-directed
placement. Softw. Pract. Exper., 21(11):1129–1164, Nov. 1991.

[29] E. Gansner, Y. Hu, S. Kobourov, and C. Volinsky. Putting recommendations
on the map: visualizing clusters and relations. In Proceedings of the third
ACM conference on Recommender systems, RecSys ’09, pages 345–348, New
York, NY, USA, 2009. ACM.

[30] E. R. Gansner, Y. Hu, S. C. North, and C. E. Scheidegger. Multilevel
agglomerative edge bundling for visualizing large graphs. In G. D. Battista,
J.-D. Fekete, and H. Qu, editors, PacificVis, pages 187–194. IEEE, 2011.

[31] S. Hachul and M. Jnger. Large-graph layout algorithms at work: An exper-
imental study. http://jgaa.info/ vol. 11, no. 2, pp. 345369, 2007.

[32] H. Hansson, M. Akerholm, I. Crnkovic, and M. Tarngren. SaveCCM - a
component model for safety-critical real-time systems. In EUROMICRO,
pages 627–635. IEEE Computer Society, 2004.

56

Bibliography

[33] D. Harel and Y. Koren. A fast multi-scale method for drawing large graphs
(full version). In Journal of Graph Algorithms and Applications, pages 183–
196. Springer-Verlag, 2000.

[34] M. Himsolt. Comparing and evaluating layout algorithms within graphed.
J. Visual Languages and Computing, 6:255–273, 1995.

[35] D. Holten. Hierarchical edge bundles: Visualization of adjacency relations
in hierarchical data. IEEE Transactions on Visualization and Computer
Graphics, 12(5):741–748, Sept. 2006.

[36] D. Holten, B. Cornelissen, and J. J. van Wijk. Trace visualization using
hierarchical edge bundles and massive sequence views. Visualizing Software
for Understanding and Analysis, International Workshop on, 0:47–54, 2007.

[37] D. Holten and J. J. van Wijk. Force-directed edge bundling for graph visu-
alization. Comput. Graph. Forum, 28(3):983–990, 2009.

[38] D. Holten and J. J. van Wijk. A user study on visualizing directed edges
in graphs. In Proceedings of the 27th international conference on Human
factors in computing systems, CHI ’09, pages 2299–2308, New York, NY,
USA, 2009. ACM.

[39] L. Holy and P. Brada. Viewport for component diagrams. In M. J. van
Kreveld and B. Speckmann, editors, Graph Drawing, volume 7034 of Lecture
Notes in Computer Science, pages 443–444. Springer, 2011.

[40] L. Holy, J. Snajberk, and P. Brada. Evaluating component architecture
visualization tools - criteria and case study. 2012.

[41] International Standard Organization (ISO/IEC). Informational technology
– product quality – part 1: Quality model. International Standard ISO/IEC
9126, June 2001.

[42] T. Kamada and S. Kawai. An algorithm for drawing general undirected
graphs. Inf. Process. Lett., 31(1):7–15, Apr. 1989.

[43] C. Klein and B. B. Bederson. Benefits of animated scrolling. In CHI ’05
extended abstracts on Human factors in computing systems, CHI EA ’05,
pages 1965–1968, New York, NY, USA, 2005. ACM.

[44] R. Kollman, P. Selonen, E. Stroulia, T. Systä, and A. Zündorf. A study
on the current state of the art in tool-supported uml-based static reverse
engineering. In A. van Deursen and E. Burd, editors, Proceedings of the 9th
Working Conference on Reverse Engineering (WCRE 2002). IEEE Com-
puter Society, November 2002.

57

Bibliography

[45] A. Kuhn, D. Erni, P. Loretan, and O. Nierstrasz. Software cartography:
thematic software visualization with consistent layout. J. Softw. Maint.
Evol., 22:191–210, April 2010.

[46] C. F. Lange, M. R. Chaudron, and J. Muskens. In practice: UML software
architecture and design description. IEEE Software, 23(2):40– 46, April
2006.

[47] S. Mancoridis, B. S. Mitchell, and C. Rorres. Using automatic clustering to
produce high-level system organizations of source code. In In Proc. 6th Intl.
Workshop on Program Comprehension, pages 45–53, 1998.

[48] F. McGee and J. Dingliana. Visualising small world graphs - agglomerative
clustering of small world graphs around nodes of interest. 2012.

[49] N. Medvidovic, D. S. Rosenblum, D. F. Redmiles, and J. E. Robbins. Mod-
eling software architectures in the unified modeling language. ACM Trans.
Softw. Eng. Methodol., 11(1):257, January 2002.

[50] P. Merle and J.-B. Stefani. A formal specification of the Fractal component
model in Alloy. Research Report RR-6721, INRIA, 2008.

[51] D. Moody and J. van Hillegersberg. Evaluating the visual syntax of UML:
An analysis of the cognitive effectiveness of the UML family of diagrams. In
D. Gaevic, R. Lmmel, and E. Van Wyk, editors, Software Language Engi-
neering, volume 5452 of Lecture Notes in Computer Science, pages 16–34.
Springer Berlin / Heidelberg, 2009.

[52] Object Management Group. UML Superstructure Specification, 2009.

[53] OMG. CORBA components. OMG Specification formal/02-12-06, Object
management Group 2006, 2006.

[54] OMG. UML 2.4 specification. OMG document ptc/2010-11-14, Object Man-
agement Group 2011, 03 2011.

[55] OSGi Alliance. OSGi service platform v4.2. Core specification, OSGi Al-
liance 2009, 2009.

[56] F. Plasil and S. Visnovsky. Behavior protocols for software components.
IEEE Trans. Software Eng, 28(11):1056–1076, 2002.

[57] H. C. Purchase, M. McGill, L. Colpoys, and D. Carrington. Graph draw-
ing aesthetics and the comprehension of uml class diagrams: an empirical
study. In Proceedings of the 2001 Asia-Pacific symposium on Information
visualisation - Volume 9, APVis ’01, pages 129–137, Darlinghurst, Australia,
Australia, 2001. Australian Computer Society, Inc.

58

Bibliography

[58] D. Rafiei. Effectively visualizing large networks through sampling. In Visu-
alization, 2005. VIS 05. IEEE, pages 375 – 382, oct. 2005.

[59] Ratneshwer and A. K. Tripathi. Dependence analysis of software component.
SIGSOFT Softw. Eng. Notes, 35:1–9, July 2010.

[60] R. Rosenholtz, Y. Li, and L. Nakano. Measuring visual clutter. Journal of
Vision, 7(2), August 2007.

[61] S. Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64, 2007.

[62] K. Siau and Y. Tian. A semiotic analysis of unified modeling language graph-
ical notations. Requirements Engineering, 14:15–26, 2009. 10.1007/s00766-
008-0071-7.

[63] J. Snajberk, L. Holy, and P. Brada. Comav - a component application
visualisation tool. In Proceedings of International Conference on Information
Visualization Theory and Applications. SciTePress, 2012.

[64] Sun Microsystems. Enterprise JavaBeans(TM), version 3.0. EJB Core, Sun
Microsystems, 2006, 2006.

[65] C. Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley / ACM Press, 3rd edition, 2002.

[66] A. Telea and L. Voinea. A framework for interactive visualization of
component-based software. In Proceedings of the 30th EUROMICRO Confer-
ence, pages 567–574, Washington, DC, USA, 2004. IEEE Computer Society.

[67] A. Telea, L. Voinea, and H. Sassenburg. Visual tools for software archi-
tecture understanding: A stakeholder perspective. IEEE Softw., 27:46–53,
November 2010.

[68] B. Tversky, J. B. Morrison, and M. Betrancourt. Animation: can it facili-
tate? Int. J. Hum.-Comput. Stud., 57(4):247–262, Oct. 2002.

[69] J. VANWIJK and W. NUIJ. Amodel for smooth viewing and navigation of
large 2d information spaces. In IEEE Trans. Visual. Comput. Graph. 10, 4,,
page 447458. IEEE, 2004.

[70] C. Walshaw. A multilevel algorithm for force-directed graph drawing. In
Proceedings of the 8th International Symposium on Graph Drawing, GD ’00,
pages 171–182, London, UK, UK, 2001. Springer-Verlag.

[71] J. Wu, A. E. Hassan, and R. C. Holt. Comparison of clustering algorithms
in the context of software evolution. In Proceedings of the 21st IEEE In-
ternational Conference on Software Maintenance, ICSM ’05, pages 525–535,
Washington, DC, USA, 2005. IEEE Computer Society.

59

