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Abstract

The roadmap [25] states importance of registration of data sets for creation of
the Virtual Physiological Human, a model of a human body. It also mentions
usage of morphing technique for interpolation of new data. This thesis focuses
on the transformations tied with these operations and tries to find an automatic
solution which does not need user set up parameters. The deformation filter for
surface models of muscles in musculoskeletal model of human body developed in
the previous work was chosen as testing application. It has difficulties with dam-
aged input meshes, especially those containing non-manifold edges and vertices.
Therefore, the goal is an automatic detection and removal of such artifacts, and
the combination of several such inputs into one finer mesh surface gained using a
multi-morphing method. To make this possible, approaches for mutual registra-
tion of input meshes are analysed, a suitable parametric domain is searched for
and appropriate way of final interpolation is chosen. A solution for making such
actions in fully automatic manner for general damaged input meshes with similar
shape specified by underlying real-world object, but with various initial position
and unknown number of topological artifacts consisting of holes and isolated com-
ponents on top of previously mentioned non-manifold edges and vertices, is then
suggested. The resulting method is then implemented and both partial steps and
complete design is tested in various experiments. The results are discussed and
conclusion is stated at the end of this thesis.
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Chapter 1

Introduction

Modern medicine collects a lot of data from patients. These data vary from scalar
values of a blood pressure, temperature or heart beat through 2D images gained
from X-ray to fully 3D images from computer tomography (CT) or magnetic
resonance (MR). The data are usually recorded during treatments of individual
health issues and are focused on that affected part of the specific patient body.
Therefore, we do not have a complete description of the whole body for a single
person that would enable us to build a complete model but we rather possess
some random samples. It might then be useful to take the missing pieces of data
from some general human model adjust them and put them into the model of
our patient.

Individual models of some real objects from various data sources can have various
positions, rotations and scalings in space. Their combination, however, requires
these models to be registered. Registration is a process that finds relations be-
tween a source model and a target model. The result is a transformation function
that can transform the source model and this way minimise its difference from
the target one. This then enables a projection of properties from one model to
another one. Partial information contained on various models can then easily be
projected to get one big framework. This can even be applied to data of different
types, e.g., 2D image can be registered with 3D surface mesh giving us surface
properties missing in the triangular mesh.

Over 150 experts noted this problem in a roadmap [25] leading to creation of
Virtual Physiological Human (VPH ) as ”a framework of methods and technolo-
gies that will make it possible to describe human physiology and pathology in
a complete and integrated way.” [25]. It requires integration of heterogeneous
data, information and knowledge using a global reference system called Global
Reference Body (GRB). It will make it possible to browse, search and analyse all
medical data in an easy and unified way. Some experiments are not ethical to
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be done on humans. The GRB might also enable to project results from similar
animal species to the VPH model and therefore improve efficiency of medical
research [25].

There are more than just space dimensions in a complete data set. Time of data
sampling, detail scale, population properties and other dimension descriptors
can be adjusted by the viewer of data. This requires suitable user interface
for manipulation in such multidimensional space. The population dimension
describes space of individual people with the general model in the middle and
individuals clustered by common properties like age, weight or blood pressure
on the axes [25]. If we could describe these properties and differences between
individual models, it would then become possible to extract new models from the
existing ones using morphing [25]. Morphing is a process of interpolation between
various models that produces a new model not present in the original input set.
In contrast to the registration, the morphing does not consider one model to be
the source and the other the target. It takes all objects as equally important
points defining the interpolation space so that the new model found somewhere
in that space shares some portion of features from all inputs. The portion of
similarity to individual inputs can then be adjusted by morphing coefficients.
This way, we can, e.g., obtain a model of 60 year old heavy smoker given a model
of 50 year and 70 year old patient. If there are more than two input models
defining interpolation space then we speak about multi-morphing. The morphing
usually assumes some level of registration prior to its running. Therefore those
two terms are different but loosely tight to each other.

Creation of VPH and GRB would enable better human-machine interfaces and
modelling of processes in a human body including the pathological ones [25].
That should improve the health care efficiency [25]. The VPH can help patients
to understand their state, it can help students to learn about human body, it
can help doctor to choose proper treatment and it is also supposed to provide
a tool for medical research [25]. This is why the VPH initiative is regarded so
important that it attracted over e 200 million of public research funding [25].

In this thesis, I would like to focus on the registration and morphing problem.
The main issue with recent registration methods mentioned in [25] is their de-
pendence on user defined parameters. I will therefore look for a fully automatic
solution. I am familiar with one specific European Union research project in-
volved in this effort. It is called VPHOP: Osteoporotic virtual physiological hu-
man (FP7-ICT-223865 ) [26] and it focuses on fight against osteoporosis. In my
bachelor thesis [13], I have implemented a VTK filter for deformation of surface
models of muscles that maintain the volume preservation condition which comes
from the incompressible water inside muscles. The method was later improved
and published in [17]. Under the above mentioned project, the method was ex-
tended with a mutual intersection prevention technique allowing a deformation
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of multiple muscles and rigid models of obstacles, formed by bones, at once.

However, the weakness of the method was in the input data quality. It expected
closed manifold meshes to be on input of each deformation. Real data was,
however, often of a poor quality as a result of errors in input data thresholding
and segmentation. The meshes often contained non-manifold edges and details
were corrupted in these parts. This led to severe artifacts such those that can be
seen in Figure 1.1.

Figure 1.1: Artifacts in product of deformation filter from [13] applied on non-
manifold mesh of Sartorius muscle. Taken from [13].

On the other hand, we often have more similar meshes of nearly same object from
different sources. I will, therefore, try to find an automatic method that combines
multiple surfaces meshes with possibly non-manifold artifacts to create single
manifold mesh with better quality. I will try to achieve this with combination
of mesh registration techniques for global space registration in general initial
pose and multi-mesh morphing for genus 0 closed mesh models. I will have to
handle to non-manifold artifact removal which is not done by the above mentioned
techniques, as the inputs are usually considered to be closed manifold meshes in
the first place. I will focus this technique specifically on the problem of muscle
deformation, but the extent of the approach should be broader in reference to
the VPH initiative.

I will implement created method as a VTK filter for a single purpose testing
application and experiment with several input sets. I will mainly evaluate the
shape preservation quality of output meshes, topological properties and then test
their usability in the above mentioned deformation filter. This should lead to
an automatic tool usable to processing of data before the application to body
modelling tools.

The following two chapters will describe a theoretical background of a surface
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mesh registration and multi-morphing. It will also provide an insight into existing
methods and evaluate their properties and usability. The Chapter 4 will state
a new complex method for the solution of our problem. The Chapter 5 will
then present results of experiments and compare them with other methods or
parameter settings.
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Chapter 2

Mesh registration methods

Sometimes we have more than one model of the same object. Either complete
or partial. Often we do not know the position of one object with respect to the
others. The registration is then a process that finds a proper transformation for
each model or its parts to align models together. For meshes, it usually means to
find a location of each vertex on the surface of the other mesh. As the meshes may
not have and usually do not have neither the same geometric topology nor number
of vertices, vertices usually don’t map to vertices. Barycentric coordinates on
triangles can help to select the nearest point anywhere on the surface triangle
and thus improve the freedom of selection.

There are two main groups of registration methods that differ by the transforma-
tion they are trying to find. Rigid methods aim for affine transformation applied
to whole mesh. Non-rigid methods have a harder goal when they expect the
meshes to be partially or fully deformable and, therefore, rigid transformation
has to be found for each vertex.

Following sections further describe examples from both groups and discuss pos-
sibility of their application to the problem being solved in this work.

2.1 Rigid methods

Rigid methods assume that both registered meshes have either an identical shape
or are partially overlapping subsets of an identical object. This means that purely
rigid body transformations are sufficient to align one object to another. In the
simplest case, only proper rotation and translation for whole mesh has to be
found such this minimises difference between both models after the application
of the transformation on all vertices of one of them.

This assumption is usually perfectly valid only for artificial cases of testing meshes
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made by cloning one model. In the real situation errors causes that perfect regis-
tration cannot be done using rigid transformations. However, for many situations
such as registration of 3D scans from different viewpoints, the error may be small
enough to be ignored. These methods can then be significantly simpler than
those from non-rigid group.

2.1.1 Iterative Closest Point

Iterative Closest Point (ICP) is the most common technique for geometric object
registration. It was primarily designed for rigid body registration but it became
part of various other algorithms, some of them for non-rigid transformations as
well.

Basic ICP

The original Iterative Closest Point (ICP) algorithm was described in [4]. The
approach was designed to work with various geometric entities from point sets
to parametric surfaces and also for general dimension count. For our needs, the
triangle surface mesh representation in 3D space is sufficient.

Input of ICP algorithm is then pair of meshes which does not have to have
the same number of triangles and vertices, but should have approximately same
shape, as the algorithm look for a rigid transformation that moves source mesh
P to the best approximation of target mesh X.

Algorithm is based on iterative application of four steps [4]:

1. Matching points of the working mesh Pk to the target mesh X

2. Calculation of a registration function to get the new transformation

3. Application of the resulted transformation to get Pk+1

4. Evaluating of the current transformation quality for the algorithm termi-
nation

The initial state is given by P0 = P .

In step 1, points of the current mesh Pk are assigned best fitting matches from the
other mesh X. This fitting is defined by pairs of points with minimal Euclidean
distance. Therefore for each point pi from Pk its image from X is calculated as

−→xi = arg min−→xj∈X
|−→pi −−→xj | (2.1)
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This pairing is then used in step 2, where the cross-covariance matrix Σpx is first
calculated as

Σpx =
1

NP

NP∑
i=0

[
(−→pi −−−→µPk) · (−→xi −−→µX)T

]
=

1

NP

NP∑
i=0

[−→pi · −→xi T ]−−−→µPk · −→µXT (2.2)

where NP is number of vertices in input mesh P = P0 and therefore all consequent
meshes Pk, xi ∈ X denotes nearest vertex for pi ∈ Pk calculated by 2.1 and −−→µPk
with −→µX are centres of masses of respective meshes given by simple arithmetic
average as

−→µA =
1

|A|
∑
−→a ∈A

−→a (2.3)

The content of sum in equation 2.2 can then be understood as a measure of
cosine of directions from object centres to the identical point on the surface and
therefore a measure of rotation of the meshes.

In 3D space, the result is 3× 3 matrix.

The final rotation for single algorithm iteration is then obtained from 4×4 matrix
Q(Σpx):

Q(Σpx) =

[
tr(Σpx) ∆T

∆ Σpx + ΣT
px − tr(Σpx)I3

]
(2.4)

where tr(Σpx) is trace of matrix given by well known formula

tr(A) =
N∑
i

aii (2.5)

∆ is substitution cyclic components of matrix A = Σpx − ΣT
px, therefore ∆ =

[A23, A31, A12].

Eigenvector for maximum Eigenvalue is then found and its 4 components form
quaternion −→qk for the current rotation in step k.

The correspondent translation
−→
tk is found simply from mutual positions of cen-

tres. The centre of Pk rotated by −→qk must be used to get valid translation for
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combined transformation. As the centre of mass equation 2.3 is linear, the centre
of rotated mesh is identical to rotated centre of original mesh:

−→µ (R(−→q ) · A) = R(−→q ) · −→µA (2.6)

where R(−→q ) is rotation matrix for quaternion −→q defined as [4]

R(−→q ) =

 q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q2 + q0q2)
2(q1q2 + q0q3) q20 + q22 − q21 − q23 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 + q23 − q21 − q22

 (2.7)

Then the translation part of transformation from Pk to Pk+1 is given by

−→
tk = −→µX −R(−→qk ) · −−→µPk (2.8)

In step 3 of ICP algorithm, the mesh Pk is transformed to Pk+1 using both
rotation quaternion −→qk and translation vector

−→
tk . For each vertex −→pi,k, new vertex

−−−→pi,k+1 is then obtained as

−−−→pi,k+1 = R(−→qk ) · −→pi,k +
−→
tk (2.9)

As both rotation and translation are rigid transformations, the shapes of Pk and
Pk+1 remain unchanged. Therefore, if the original mesh P is only similar to the
final mesh X, perfect registration will never be found.

Therefore the change of error is used as a stop condition in step 4 instead of
its absolute value. The error is defined as sum of squares of mutual distances
between paired vertices of mesh Pk+1 and X

dk =
1

Np

Np∑
i=0

|−→p i,k+1 −−→xi |
2

(2.10)

This value depends on the scale of meshes as well, so to get general measure of
error, [4] suggests using normalised value

d′k = dk

√
tr(Σpx) (2.11)
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The proof in [4] shows, that after each step, the dk+1 is less or equal to dk. This
ensures the stability of the algorithm.

The complexity of algorithm is based on the number of iterations. Each iteration’s
complexity is bounded by O(Np · Nx) matching to fitting vertices to each other
by trying all possible combinations in step 1. This can however be improved
to O(logNx) using k-d trees [4]. Another option is caching of pairs based on
expectancy of continuous transformation [21]. This is much lower time complexity
than effort put to minimisation of dk using general approaches for 7 dimensional
mathematical function with argument −→u = (−→q ,−→t ) [4].

The positive feature of the approach is the safety of convergence and large amount
of modifications discussed below.

The algorithm could be used for our problem, as it handles the mesh regardless
of its topology and therefore can manage to register even non-manifold meshes.

However there are some issues that has to be dealt with. First of all, rigid
approach could become a problem if the deformation that is needed to perfectly
aligned the source mesh to the target mesh is not small. Then there is another
limitation not specifically mentioned for this group of algorithms. It assumes
that the initial pose of meshes is quite close, therefore a general position in
3D space given by random choose of object alignment in our case would make
the algorithm to fail. The algorithm also has problems with meshes without
distinctive axes, such as spheres with minor irregularities on surface. In that
case, solution is found, but number of iterations can get very big [4]. Another
problem is, that the algorithm ensures that a minimal distance transformation is
found, but does not specify that the minimum is global. This means that local
minimum can be found instead. As the error is not allowed to grow, algorithm
is not able to overcome such local minimum and ends. This means, that results
can be dependent on initial position of meshes and could be problematic in our
application where we do not state any such assumptions about inputs.

Thankfully, we can expect that the main portion of rigid deformation in our data
is given by data segmentation errors and differences in the body proportions
of individual subjects. Therefore the main non-rigid transformation could be
described by scaling so the residual difference should become small enough that
adapted ICP method would be able to do the registration with reasonable error.
We can also make the initial position of meshes close enough for ICP to work
if we find some rough method for approximate registration before the ICP run
itself. As for the distinctive shape and local minima problem, we could expect
that no such special case would occur that would make these weaknesses to rise
as our data do not seem to feature any problematic properties.

Therefore the algorithm might be good choice.
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Modifications

Changes in algorithm steps The paper [21] divides possible modifications of
the ICP algorithm steps into six groups. It also includes a comparison of such
adjustments gained by experiments with a single reference implementation and
three different test meshes with known solutions.

First possibility is to change the selection of points. In the original approach
from [4] all vertices from both meshes were considered in all steps of the algo-
rithm. This can however be quite expensive for very large meshes, although extra
vertices do not usually add much information on smooth parts of the surface. It
is therefore possible to select just some smaller set of points that is representative
enough to describe the orientation of the whole mesh.

Then the question is how to select those significant vertices. One option is an
uniform selection of points on the mesh. Another is a random pick of points.
Alternatively points with distinctive features, such as a large gradient, can be
preferred as they are more specific for the shape. The article even suggests
one new method based on an uniform distribution of vertex normals instead of
positions. Authors expect this approach to better cover characteristic of the
mesh. This seems to be vital for meshes with bad normal distribution where all
characteristic vertices are concentrated in small area thus leaving the traditional
uniform approach useless.

Proper point selection can maintain reasonable registration error with lower com-
putation price. Normal uniform and random sampling seems to be the most reli-
able solution for general meshes. However our solution does not require real time
performance, therefore sticking with all points sampling would be the obvious
safest choice.

The random pick in some of the methods adds another interesting feature. If point
selection varies between iterations, some small local minimum can be overcome.
On the other hand, the convergence is no longer certain as some pick of points
may lead to different solution than other.

The quality of sample selection can also be altered by taking both meshes P
and X into account, so that points are not only projected from P to X but also
vice-versa [21].

Traditional approach [4] then used Euclidean metric to pair vertices from both
meshes. Other options from [21] are based on projection of point from P to the
mesh X and locating nearest vertex of incident triangle. This can be either done
in direction of normal or in direction of view ray from target mesh X perspective.

Limitation can also be added so that paired vertices must share some additional
quality to specified degree. This can be either geometry information such as
normal direction or additional information such as colour or density [21].
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Results show that the original closest point approach is by far slowest even with
O(logn) search structures. It is even more significant when the execution time
is considered instead of iteration count. However when it comes to meshes with
low amount of distinctive features, projection based metrics to minimise the error
and therefore to get ideal registration. The closest point metric shows to be more
robust [21]. In our case, the calculation time is not as important as the robustness
of the metric.

In equation 2.2, the cross-covariance matrix is obtained from products of vertex
pairs as a normal sum. This is equivalent to uniform weighting of all pairs. [21]
identifies the change of such weights as another possibility to enhance algorithms
performance.

Weights can be chosen based on vertex selection approaches discussed above [21].
Therefore more distant pairs can have lower weight assuming that the pair may
be false. Or the difference of normal angles determined measured by dot product
can be extension to angle difference threshold. Other choices are more individual
and build upon more knowledge about data origin. Such an example is known
precision of scanner based on camera position [21].

Results show, that this modification has only small general impact on algorithm
qualities.

For our problem however, these weights might reduce problems with non-manifold
area vertices by assigning lower values to problematic parts of meshes where the
probability of mesh errors is higher. The question then would be how to find and
measure such parts.

In extreme variant of zero weights for some pairs, the weighting leads to the
complete pair rejection which is the fifth modification group in [21]. This
causes rejection of pairs beyond some threshold of specified metric such as usual
point distance, normal angle difference or inconsistency on mesh. Inconsistency is
a measure of point surroundings similarity oh both P and X meshes, determined
for example by distance between pair point and its neighbours. This however
assumes that both meshes have similar qualities such as a vertex count and a
distribution, which is not our case.

However, [21] shows that these adjustments do not bring any significant benefit
for general meshes.

Last step in ICP iteration and last part to modify is error measurement. Orig-
inally it is quantified using sum of squares of point-to-point distances (see eq.
2.10), but it can as well be expressed by distances from the point to the nearest
triangle plane in the other mesh.

This allows usage of different minimisation techniques discussed below which
leads to faster convergence [21].
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Acceleration The original paper [4] suggests acceleration using polynomial
approximation of last three errors. This allows a better prediction of new trans-

formations in the current step k based on transformation vector
−→
u′k = (−→qk ,

−→
tk )

calculated traditional way in this iteration and transformations −−→uk−1 and −−→uk−2
from previous iterations. Final −→uk is than obtained as a prediction based on their
change.

This does not change characteristics of the algorithm, but leads to a reduction of
the number of iterations.

Approach was further developed by authors of [21]. Authors state that their
modifications were able to reduce overshoot of extrapolation. This allowed them
to create real-time implementation of ICP for scanner image processing.

2.2 Non-rigid methods

Non-rigid methods do not rely on the fact, that the meshes represent the same
object in the same position. Therefore they have to transform not only complete
mesh but individual vertices as well to achieve non-rigid transformation and com-
pensate initial deformation. Differentiation of these methods is based on amount
of deformation they are able to handle. While the first group expects rather small
errors caused by technical properties or imperfections in samples, the other one
aims for registration of fully deformable objects.

2.2.1 Small deformations

Small deformations in this context are not usually deliberate deformations at
all. They are often caused by different scanning angles, various techniques or
changes in the scanned object. Therefore only small errors that could otherwise
be ignored by rigid methods are handled. The result of this should be better
quality of final registration.

An example of such method is described in article [5]. Aim of this article was
to improve registration of different view scans and to keep more high frequency
details in the final model.

The method works with group of 3D meshes at once and assumes that it has
approximate alignment in the beginning. This comes from the scanning process
itself but could be gained by some feature based method above as well. I will
first describe a configuration with only two meshes.

First traditional ICP is done to match the source mesh to the target one. If the
error is too big, two meshes does not overlap enough and the algorithm stop.
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Then feature points are selected in both meshes. Only small number (1% or even
less) of points is used. Each feature point of each mesh is again target of ICP
to find its position on the other mesh independently. This means choosing some
other points in feature point’s surrounding that will be aligned by this new ICP.

Selection of these neighbours is done randomly and probability of choice has two
criteria. First one is distance from main feature point described as [5]

pfeature(
−→x ) =

1

ε+ ‖−→x −
−→
fi ‖2

(2.12)

where
−→
fi is feature point and −→x his neighbour. Therefore nearer points on same

mesh are preferred.

Second criterion is expression power of point selection. To have such, points
must lie on some geometrical distinctive part, not plane for example. Therefore
another function based on local normal difference is stated [5]:

pstability(
−→x ) = (−→x ×−→nx,−→nx)C−1

( −→x ×−→nx−→nx

)
(2.13)

where C is covariance matrix of overlap area.

This prefers points with normal aiming to different direction than rest of selection.

Final probability of selection of point x is then

p(−→x ) = pfeature(
−→x ) · pstability(−→x ) (2.14)

Feature points are therefore selected on both meshes and then conventional ICP
is done for each feature point of both meshes targeting the second mesh. This
means many calls of iterative algorithm. Authors of [5] however claim, that
thanks to previous close alignment of meshes, all ICP will be very fast and will
end after few iterations.

Now, we have many feature points and their images in the other mesh. All these
images have to be somehow combined together.

First, feature points that were accidentally selected to lie too close to each other
are pruned. Same applies to feature points that are significantly further from
their images than other feature points in their surroundings. This should remove
outliers as article says.
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Error energy equation is then stated to tie each feature point to feature points in
his surroundings:

E(−→gi ,−→gj ) =
∑
Pk

wij

(
|−→gi −−→gj | − |

−→
fi −

−→
fj |
)2

(2.15)

where −→gi are final positions for respective feature points and weights wij are
probably based on distance between points although this is not mentioned in the
article.

Minimising such energy for all pairs of feature points means that distance between
two feature points on both mesh and in final positions should remain unchanged.
The minimum is found in a least square manner using simple gradient descent
method. Figure 2.1 shows effect of such approach on feature points without any
matches that would be left in their initial position otherwise.

Figure 2.1: Finding final positions gi for feature points gi in registration method
from [5]. Note that points without image on the other mesh are forced to proper
position by their neighbours. Taken from [5] and edited.

Now both meshes must be independently warped to match its feature points to
final positions.

Interpolating thin-plate splines are used to describe both initial feature points
−→
fi

and final positions −→gi . Non-feature points on mesh are then interpolated based
on their position on spline.

If more than one mesh like in the original paper are on input, all pairs of two
meshes are registered by initial ICP. Too distant pairs are then pruned. The
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remaining pairs of meshes are targets and sources for the registration of the
feature points.

The authors of the paper then presents that the method is able to prevent smooth-
ing and artifacts on final models made by scanning. With Michelangelo’s David
having 28 million vertices, tens of hours on computing cluster were required.
Smaller models were registered in tens of minutes. This means that it is not real
time algorithm but this is of no concern for us as we do not require that.

This method has nice resemblance to our problem in the number of input meshes
processed at once. The difference is that our meshes are mostly complete and
although some parts might be cut off to remove non-manifolds, there will still
be enough overlap between each of them. This would make the algorithm even
simpler.

The ability to fix minor deformations suits our needs well as our models come
from various scanning techniques and various subjects. Problem however remains,
that pre-processing would have to be performed to ensure initial alignment in a
global space and also to cope with varying model scales.

Our meshes are also more different from each other as they are not from the same
scanner as in the paper. We can therefore expect, that there will be larger dis-
tances between rigidly aligned meshes that might not be fully fixed by suggested
region selection approach.

2.2.2 Large deformations

This group of methods do not assume that surfaces have at least nearly same
shapes. It therefore allows large deformations in the mesh.

An example of such method can be found in [11]. Although both meshes do not
have to be close to each other on most of their surface, there is still an assumption
that some part of the inputs is overlapping and therefore the meshes are not in
general initial position. Then combination of iterative optimisation process with
filtering of false relations leads to registration across the mesh surface. The
main issue is dependence on topological similarity of both meshes that cannot
be guaranteed for our inputs. An additional problem is the requirement of good
initial alignment in at least small part of the mesh. This is easier to ensure if we
know the source of deformation but not so easy if two different meshes without
common origin are registered.
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2.3 Summary

Relevant methods for mesh to mesh registration have been described. This list
is not exhaustive as only some of the distinctive ones have been picked to show
variety of approaches. Extended version of this introduction can be found in
Master Thesis [14]. Extra information can also be found in citation lists in
referenced articles can be used. Especially [21], [5] and [11] contains links to
many other examples in the introduction parts.

From our perspective, important features of algorithm is ability to handle non-
rigid objects, global registration with no previous alignment and potentially in-
complete meshes with varying topology. Our demand for non-rigidity support
was best matched by method from [5] as it is able to perform local deformations
for better alignment of meshes with minor deformations. This could solve dispro-
portional errors in our input meshes caused by various subject origin and different
segmentation. This however may not be necessary if those differences show to be
small enough. General ICP method could then be used instead allowing simpler
implementation and performance benefit as well.

Most of the ICP methods I described assume some sort of initial alignment. For
some of them it is fundamental as they would fail otherwise ([11]), with the others
the risk of finding false local minimum growths with the initial distance in both
translation and rotation.

Another way of fixing problem of initial assumption is to provide such needed
alignment. I will discuss usage of principal component analysis [12] later in Chap-
ter 4.3.1.

The last demand of non-rigid or incomplete mesh support is easier to fulfil as
most of the methods aims for registration of 3D scans, which are partial and
registered to create complete model. Therefore we should be able to perform
registration even if we were forced to cut some parts of input data out for their
corruption, e.g. non-manifold edges.

To sum it up, I will try to use rough alignment of meshes before the full vertex-
per-vertex registration. If this shows to be too approximate, I would prefer an
ICP based method such as from [5], as it is able to perform registration on locally
deformed meshes.
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Chapter 3

Multi-morphing of surface meshes

In the previous chapter, the topic of mesh registration was discussed. While the
registration is process that somehow adapts one mesh to match the other, we
might also want to keep features of both input meshes and produce a result mesh
that would somehow mix both inputs up. This way, there will be no source mesh
to deform nor target one to be approximated, but only two or generally multiple
input meshes and the algorithm should produce single new mesh as combination
of all of them. Then such concept is described by the term morphing. We will
need it to produce the final mesh, while the previously described registration
method will work as a preprocessing that tells the morphing how to map each
mesh to the other ones. Simply said, the registration prevents mixing up head
and leg if two people are morphed into one.

Morphing in computer geometry is a process of interpolation from one entity
to another. Those entities can be anything from raster images such as photos
through 2D shapes like polygons to 3D or higher dimensional objects. For my
work, 3D mesh objects are the main interest.

Morphing can be used in animations, to allow smooth transition from one model
to another. Typical case is metamorphosis of gaming character. If original models
are identical object in different pose, movement can be animated using such
technique. In our case, we will use several models of the same object in the
similar pose but with different representation and quality to get new model with
better quality.

As we do not limit our aims to two meshes only, we speak about multi-morphing.
Most of the principles are however same as in two mesh case and therefore fol-
lowing descriptions will mostly cover the simpler case.
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3.1 Basic concept

Common ideas and key factors for mesh morphing are described in doctoral thesis
[20]. I will first summarise those basics and then look little deeper to individual
parts in context of my goal.

The main problem of mesh morphing comes from different topologies of input
meshes. As the number of vertices of two meshes is generally different, there is
no bidirectional mapping between them. If there was, then simple interpolation
between such pairs would solve the problem.

Therefore general solution is to represent both meshes in a same way. This is
done by projection to parametric domain. This can be plane for some unclosed
meshes, but mostly it is sphere for genus 0 meshes. Those are meshes that can be
deformed into sphere without cutting. We can say, that our meshes will satisfy
this condition. There are also higher genus domains, such as torus for genus
1 ([20]), but we shall not need those. It is also sometimes possible to project
even genus 0 mesh into plane, but it involves cutting and brings unnecessary
complications to later phases [27] (see Section 3.6.1 for insight).

Now we have spheres for both meshes such as that each vertex of sphere presents
parametrisation of single vertex on original mesh. This means that there is bidi-
rectional mapping between the mesh and its parametrisation.

Next phase is therefore to find relations between both meshes. This is done
on parametric domain, sphere. Now sphere parameter −→pi P of source mesh’s P
vertex pi is expressed in barycentric coordinates of parametric triangle j of mesh
X where it lies when both spheres are aligned (see Figure 3.1). This means that
each parametric point −→pi P is expressed in terms of mesh X only as

−→pi P = α−→xj0P + β−→xj1P + γ−→xj2P (3.1)

In the simplest case, the relation could now be projected back to original meshes,
thanks to bidirectional mapping of parametric and original vertices. This would
analogically lead to representation of each vertex −→pi X in term of mesh X

−→pi X = α−→xj0 + β−→xj1 + γ−→xj2 (3.2)

The superscript X in −→pi X denotes, that in general −→pi 6= −→pi X . −→pi X represents
position of point on surface of target mesh X that is nearest match for point −→pi
in source mesh P . Therefore simple method would then only interpolate those
two points to achieve morphing between mesh P and X maintaining topology of
mesh P . This also means that shape mesh X would never be achieved perfectly.
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Figure 3.1: a) An example of parametrisation on spherical domain of two meshes.
b) Detail look into aligned sphere surface where barycentric coordinates of vertices
of one mesh are found in second one. Taken from [20].

More complicated solution uses one extra step called remeshing [20]. This is
general idea of constructing common supermesh which contains features from
both meshes P and X. Then vertices of such mesh are expressed using equations
3.1 and 3.2 instead. This mesh then also creates output. As it can have more
vertices than both meshes P and X, it can sustain details of each of them in both
extremes.

3.2 Parametrisation

Parametrisation is one of two more complicated parts of general algorithm de-
scribed in the previous chapter. In our case of genus 0 mesh, we are trying to
expand the surface to sphere. If there was an inside point, from which every ver-
tex of mesh was visible, one could just project the mesh to sphere by normalising
directions to each vertex from this central point. They are some meshes like this
and they are called star-shaped as cartoon style star is an example of such shape.

Unfortunately most of meshes lack such property and therefore overlaps occur if
projection to sphere is used (see Figure 3.2). Article [1] describes method that
fixes those problems and enables spherical parametrisation of general modus 0
meshes.

It starts with simple sphere projection from inner point of an object. Then relax-
ation follows as iterative process. It penalises long edges to equalise distribution
of mesh vertices and prevent collapse to single point. Therefore for each para-
metric image −→pi P of original vertex −→pi penalty vector −→ei is calculated [1]:
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Figure 3.2: Overlap in parametrisation of non-star mesh.

e(−→pi P ) = c · 1

|N(−→pi P )|
∑

−→v ∈N(−→piP )

(
(−→v −−→pi P ) · |−→v −−→pi P |

)
(3.3)

where N(−→pi P ) denotes set of direct neighbours of vertex −→pi P . Constant c says
how much long edges are penalised. Article states that it should match inverse
of longest edge of penalised vertex.

This penalty is then subtracted to vertex position and result is normalised:

−→
p̃i
P =

−→pi P − e(−→pi P )

|−→pi P − e(−→pi P )|
(3.4)

That ensures that parametric coordinates still lies on unit sphere.

Original text contains mistake in the equation above. It mentions that result
of subtraction should be normalised, but the formula itself contains addition
instead. I have verified the proper version using my own implementation as well
as by implementation of Ing. J. Parus, Ph.D. (see Section B.1.4).

Important property of good parametrisation is that no triangles overlap. This is
true when all triangles have same orientation [1] and therefore stop condition is
based on test of all triangles one by one. Orientation of triangle with vertices −→a ,−→
b , −→c is simply calculated like oriented volume of induced tetrahedra1:

1Volume of tetrahedron would be multiplied by 1
6 .
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sign(Ta,b,c) = sign(−→a ×
−→
b ) · −→c (3.5)

An obvious assumption is that original triangles have consistent clockwise or
counter-clockwise definition. This way parametrisation without overlaps is
achieved for general modus 0 mesh. This is important for the barycentric co-
ordinates as it ensures that they can be found unambiguously for any point on
surface of the sphere domain.

3.3 Supermesh construction

As was mentioned in basic description we can use some of the input meshes
topology as the output one. That might be enough if the selected input has
high number of polygons but in other cases it might limit the number of features
that can be expressed. Alternative approach is creating one new mesh topology
that would be deformed by the morphing instead of the inputs and used as the
output later. Such artificially created mesh is referenced as supermesh in the
[20]. Supermesh can be created to contain all features of both input meshes and
therefore maintain edges and vertices if interpolation goes close to one or the
other of them.

An example of algorithm for construction of such supermesh is described in [1]
and [20]. Both these approaches are very similar as they are inspired by [15]. I
will therefore present an example based on the newer one of them described in
[20].

The supermesh construction there is based on insertion of edges from target mesh
to source mesh. The process starts on parametric domains instead of original
meshes as it makes it easy to track path of edge on different mesh. Therefore
each edge from parametrisation of target mesh X is taken and inserted into
parametrisation of source mesh P (see Figure 3.3a). Then intersected edges are
found and intersection vertices are inserted (3.3b). Triangle walking is suggested
to optimise complexity of intersected edge location. Edge to edge intersection test
as well as point to edge position test are potential source of numerical instability
[21].

Created mesh is not triangular, therefore triangulation is the next step (3.3c).

Triangulation can be done either after each edge insertion or at the end. The
first case is easier ([20]) but unnecessary edges can be inserted as they would
otherwise be provided from target mesh in following steps.

The second case inspects the supermesh on per vertex basis. Sorted fan around
each vertex is built and each pair of consequent neighbours is checked for mutual
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Figure 3.3: a) Orange edge from parametric representation of target mesh X
inserted to parametric representation of source mesh P . b) Intersection points
are inserted. c) Triangulation is fixed. Taken from [20].

connectivity. If none edge between them exists, then new is created resulting in
creation of new triangle.

At the end, supermesh is projected to source mesh and target mesh using barycen-
tric coordinates as described in 3.1. Interpolation between those two meshes and
their vertex positions is the key to the morphing.

There are some additional enhancements described in [20]. First suggestion is
that new vertices could be inserted to Bezier splines instead of flat triangle faces,
keeping the surface more smooth based on normal values in surrounding original
vertices.

Then there is an idea to improve supermesh triangle quality by flipping of some
of extra edges added in triangulation step, so they for example obey Delaunay
condition. This would make some later computations more stable.

Final supermesh can also have unnecessary amount of triangles. The author
states that this can be fixed by reducing number of edges added in merging
phase. He says that edges between nearly parallel triangles do not carry much
information about shape and can be left out.

The last idea is most relevant to me as it describes merging of multiple meshes.
The modification is very simple. Meshes are just paired and processed in divide-
and-conquer manner so that only logn merging operations are performed instead
of n.

Our meshes usually contain enough vertices and not many sharp edges that could
cause most severe artifacts if bad interpolation mesh is used. This means that
there is a chance, that supermesh creation could be avoided. If this assumption
shows wrong, I would use the description above to build a new mesh. This may
be possible to happen if the manifolds areas cut off in pre-processing are large.

Alternative representation is also mentioned in [20]. It says that instead of ordi-
nary vertex positions, for example Laplacian vectors of individual vertices can be
interpolated. This representation is based on difference of vertex and weighted
average of neighbours and therefore describes local shape of mesh invariant on
position in space. This way, two objects can be interpolated even if they lie in
different places in space.
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3.4 Interpolation

I will not go deep into the last part of morphing pipeline as the easiest and most
common choice of linear interpolation should be sufficient for our needs.

However for cases where two meshes describe completely different object, such
as two animals, higher-order interpolations may produce smoother results. For
example, Bézier interpolation polynoms can be easily expressed, if source and
target vertex normals are used as spline tangents [20]. This also means that not
every vertex must have the same interpolation ratio in single pose. We might use
that idea to minimise influence of incorrect meshes in problematic parts.

3.5 Recent development

I have tried to find a more recent developments in the mesh morphing techniques.
The paper [27] describes method for morphing of two general genus 0 meshes.
As well as in [1], these objects does not have to be star based as can be seen
in Figure 3.4. This is made possible by incorporation of relaxation schema that
fixes possible triangle overlaps.

Figure 3.4: Genus 0 mesh of pig and its spherical parametrisation. Note that
even that mesh is far from being star based, parametrisation still avoids overlaps.
Taken from [27].

Let us describe the method in more detail. It first makes rough alignment of
meshes using principal component analysis. This finds main orthogonal axes
which are then aligned with main x, y, z axis of coordinate system.

Next step is sphere domain parametrisation. Authors suggest very simple, not
extremely fast but, judged by the results, a functional solution for fixing overlaps.

Projection to sphere is the first step of parametrisation. Then relaxing energy
for each parametric vertex −→pi P is expressed as arithmetic average of its direct
neighbours [27]:
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e(−→pi P ) =
1

|N(−→pi P )|
∑

−→v ∈N(−→piP )

−→v (3.6)

where N(−→v ) is set of direct neighbours of vertex −→v . To maintain position of
sphere, e(−→pi P ) is normalised. Then for next iteration, each parametric coordi-
nates for each vertex are simply put to be

−→
p̃i
P =

e(−→pi P )

|e(−→pi P )|
(3.7)

Although the stop condition is not mentioned in the article, a similar approach
as in [1] can be expected. That means that iterations stop when all triangles has
the same face orientation.

As the method aims for morphing between different objects, features must be
paired to lie in same positions of parametric domain. This is done manually by
user, who specifies that nose of bear is equivalent to nose of tiger and so on. Then
matching parametrisations of such vertices are replaced by their mutual averages,
so that they lie in the same place. This creates overlaps in the parametric mesh
and therefore new relaxation is run with fixed positions of selected feature points.

Last phase is simple as authors do not use a supermesh and only interpolates one
mesh from its initial form to representation on surface of target mesh. This means
that vertices of one mesh are matched to the linear combination of vertices of the
target mesh using barycentric coordinates of spherical parametric projection of
each source vertex to corresponding spherical triangle of target mesh, as was al-
ready described in Chapter 3.1 with all necessary equations. Linear interpolation
is used in the last phase.

The algorithm is very similar to approach from [1]. The only difference I was able
to spot was change in the parametrisation relaxation process. Overall this method
seems to be much simpler than the one from [1] as it handles the parametrisa-
tion features alignment in more transparent way and it also does not involve
construction of supermesh. The article does not contain direct comparison so I
would only speculate that this can lead to worse performance if meshes are less
similar in topology. Simplicity of relaxation condition could also mark higher
iteration counts.

Results show that for meshes such as in Figure 3.4 a smooth interpolation is
achieved. These shapes are even more complicated than those we are expecting
to deal with. This means that parametrisation approach described should be
possible to use.
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There might be problem with proper alignment of meshes without user specified
feature point as our method should be automatic. However, there are two as-
sumptions I have. First in our case only very similar meshes are morphed and
therefore the parametrisation should be aligned properly. If this show to be in-
correct, similar approach as in [27] could be used with feature points randomly
sampled from mesh registered by some non-rigid method such as [5] described in
Chapter 2.2.1.

Article presents that times under one second are achieved for meshes with few
thousands vertices. This is more than sufficient performance for our non-real time
needs. We could therefore benefit from simplicity of parametrisation approach
without any significant loss caused by its possible inefficiency compared to more
complex variants.

3.6 Multi-morphing

Multi-morphing is generalisation of morphing to space of any number of base
meshes.

Main condition for multi-morphing is that all base meshes have same size and
connectivity. This is solved by supermeshes discussed in Section 3.3. The super-
mesh construction was done on pair of meshes but in the later part, possibility
of multi-mesh merging was discussed and was realised on pair by pair basis.

However, [20] states that such supermesh has poor quality and excessive number
of triangles. This is easy to see as every merge and insertion of edges from in-
dividual base mesh or partial supermesh adds more and more often duplicate or
expendable edges that are no use for the final output. Even after application of
enhancements discussed earlier, such as Delaunay retriangularisation and omit-
ting of auxiliary edges, final mesh might be very bad if there is high number of
high polygonal inputs in the beginning.

3.6.1 Adapted supermesh

There are different approaches more optimised for multiple-mesh merging. An
example is method described in article [18].

The algorithm is however again presented on simplest dual mesh case. The inputs
are two meshes of general genus value and set of user given feature vertices with
correspondences. Those are positions of nose, limbs and so on. First, common
very rough mesh is constructed using these features from both input meshes so
that edges of this coarse mesh are formed from original edges of input meshes.
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This is done by choosing of shortest paths between feature vertices satisfying
condition that they maintain mutual position of other feature vertices and other
chosen paths. This way, both meshes are cut into patch layouts that after re-
placement of paths by edges forms two new low polygonal meshes with identical
topology (see Figure 3.5).

Figure 3.5: Input meshes with selected paths between feature vertices forming
triangular patches (top). Base domain mesh with common topology created from
those patches (bottom). Taken from [18].

Sometimes patches are not triangular, meaning that there are not exactly three
feature vertices on their boundaries. Then face paths are found between feature
vertices that should be connected. Face paths are converted to edge path, insert-
ing new vertices into middle if necessary. This way all patches are ”triangulated”.

To improve quality of patches in the triangle mesh sense, some ”edges” (paths)
are flipped based on degrees of patch vertices (feature vertices).

Authors of [18] warn that even after edge flipping, quality of domain meshes
may be poor if straight paths from input mesh are converted to straight edges.
Therefore they perform iterative relaxation of input vertex positions resulting to
change of domain triangle where the vertex belongs.

Domain meshes are then used as parametric domains for their input meshes. It is
even simpler than in spherical domain case, as we know which input mesh vertex
lies in which patch that matches to single domain mesh triangle. Therefore the
parametrisation is done on plane for each vertex. This is an example of genus 0
(or higher) mesh being parametrised on plane mentioned in Section 3.1.

Therefore bijective mapping between input meshes and their domains is found
and then mutual mapping between domain meshes is simply observed from the
fact that they are isomorphic meshes. This then allows indirect mapping between
both input meshes as described in the introduction part of this chapter.

To build a supermesh, one of the input meshes is selected to be a base. It is
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probably best to pick the one with the best quality of triangles and with the
highest resolution to cover the features of other meshes. Then the second mesh
is projected to the first one. Until here, this is the simplest possible morphing
approach without supermesh discussed at all. However, the quality of approxi-
mation for other models may be poor in some complicated parts, such as ears of
cow in the original article.

Authors of [18] fix this in similar way as they improved patches in individual
meshes. They run iterative relaxation algorithm and they penalise edges based
on their error, error in the middle point and also error in previous iteration for
better stability. The error itself is difference between original vertex of other
mesh and reconstruction of its image based on back projection from supermesh.

This way, vertices of supermesh are redistributed to better cover both models.
However sometimes this is not enough and some vertices are added to areas where
relaxation does not achieve to minimise error under threshold. This is done by
edge splitting.

Last phase fixes normal directions. Authors avoid edge flipping to keep the
supermesh topologically compatible with its starting mesh. Hence they just split
those edges where normals should be corrected instead.

Final supermesh is superset of graph of its source mesh and it is also good approx-
imation of the second input mesh. As algorithm prefers relaxation and position
adjustment of vertices already existing in the supermesh to insertion of new ver-
tices, resulting supermesh can be significantly smaller than that produced by
method described in Section 3.3 ([18]).

This is illustrated on results showing that the supermesh vertex count is limited
to something about 50% of size of the largest input. If the other algorithm
performs edge intersection for almost all edges, it must unavoidably produce
much larger meshes. This means smaller triangles and larger numerical errors in
later computations.

Until now, I have spoken about two input meshes only, although the benefit of
approach should have been in ability to process multiple meshes and maintain
quality of produced supermesh. Authors of [18] states that the most efficient
way of generalisation for more inputs is selection of one template mesh and then
finding its correspondences, patches and domain meshes with all other meshes one
by one. This can obviously be done parallel. Then the construction of supermesh
is iterative, so that supermesh created from template mesh and other mesh i is
new template for supermesh created with next other mesh i+ 1.

Main problem of this approach is that it requires user defined feature vertices.
Those are chosen semantically and are intuitively distributed to cover the surface
and to strengthen important parts. If we wanted to adapt this method, we could
make the selection of such points on one mesh only and use registration algorithm
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to find correspondences on the others.

It also seems obvious that this method is more robust in algorithm complexity
and thus harder to implement.

3.6.2 Affine morphing space

Using supermesh, every input mesh can be expressed in the same topology. There-
fore graphs off all these meshes are isomorphic. This allows construction of Affine
morphing space (AMS ) and Morphing vector space (MVS ) described in [20].

AMS and MVS work in the same way as usual affine spaces. Points are replaced
by vectors of mesh points, vectors by vectors of vectors. All basic operations
such as addition, subtraction, dot product and length calculation can then be
applied on individual element level. Simple example - in standard algebra, one
dimensional space of line can be described using interpolation between two points
−→a and

−→
b as t · −→a + (1− t) ·

−→
b . In AMS, the same can be done for space defined

by morphing between meshes A and B with the same topology. Such space would

than be described as t ·
−→
A +(1−t) ·

−→
B . Then these operations denotes application

of them to individual pairs of points of both meshes.

Hence n input meshes are considered basis of n − 1 dimensional space in which
other meshes can be expressed by barycentric coordinates or as linear combination
of base vertices between first base mesh M0 and other Mi, i > 0. All this
maintains perfect consistency with regular point and vector algebra.

This then goes even further, when orthogonal projection is calculated the usual
way using dot products and Gram matrix [20], which then gets coordinates of
new mesh in the space defined by original base meshes or distance to that space
if new mesh does not lie in it. This then allows analysis of another meshes and
measurement of their similarities to the bases.

However, this all goes little too far from our needs as our interest in mesh mor-
phing is mainly straightforward. We just need to use basis mesh space to create
single new interpolated mesh, which will be output of our program. Therefore
we can see all the math behind terms like AMS and MVS in very intuitive way
and just express the new mesh as linear combination of input meshes keeping
barycentric coordinate condition, such as the sum of interpolation weights will
be 1, so extrapolation is avoided.



29

3.7 Summary

I have described general approach used for morphing aimed at genus 0 surface
mesh models. I have discussed several specific approaches and evaluated their
suitability for our problem.

In this phase however it is hard to estimate necessity of usage of complicated
approaches like multi-morphing supermesh construction [18] instead of simple
methods like using the best mesh as morphed mesh [27].

We also have to consider the benefit of using existing implementation of spherical
parametrisation from [1] instead of creating new code for different parametrisation
techniques like patch detection in [18].

I will therefore try to construct the final algorithm from the simpler methods,
evaluate the results and locate problematic parts that could be improved by
different approaches.
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Chapter 4

My solution

In this chapter, the method for automatic mesh morphing will be built step by
step. Section 4.1 describes the inputs of the algorithm and limitations applied on
them. Then each other section adds one major step to the complete algorithm.
During the initial experiments, two distinctive variants of the method were cre-
ated. The first one is referenced as variant with spherical domain parametrisation
and the second is referenced as direct on-mesh morphing in the later text.

The spherical domain parametrisation morphing version of the method
consists of five major steps. The steps are as follows:

1. Remove various artifacts such as non-manifolds from input meshes. The
target state consists of closed manifold meshes. This is the topic of Section
4.2.

2. Find a rigid and approximate initial alignment of meshes. The target state
are meshes lying approximately on the same place, heading the same direc-
tion and having the same scale. This is described in the following Section
4.3.1.

3. Use that initial alignment as a starting point for some advanced registra-
tion. The result should consist of slightly deformed overlapping meshes
with minimum surface to surface differences and therefore very good mu-
tual alignment. How to achieve that is discussed in Section 4.4.

4. Use these deformed meshes to find topologically equivalent spherical rep-
resentations. This will produce spherical meshes usable as parametrisation
domains. The algorithm and a modification is presented in Section 4.5.

5. Finally, use spherical domains to find relations between meshes and with
that information morph all input meshes into one final result mesh. Details
in Section 4.6.
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These five blocks matching to respective five sections are connected to one large
work-flow diagram in Figure 4.1.

Figure 4.1: Flow diagram of the method variant using spherical domain
parametrisation for morphing.

However, the later experiments will show this conventional schema to be unre-
liable mainly due to the step 4 of parametrisation. This is way in Section 4.7
one extra step is presented that replaces original steps 4 and 5 and builds the
alternative direct on-mesh morphing version of the method. It has therefore
only 4 main steps showed as block in diagram in Figure 4.2. The altered method
works as follows (steps 1 to 3 remain unchanged):

1. Remove various artifacts such as non-manifolds from input meshes. The
target state are closed, consistent and manifold meshes. This is the topic
of Section 4.2.

2. Find a rigid and approximate initial alignment of meshes. The target state
are meshes lying approximately on same place, heading same direction and
having same scale. This is described in the following Section 4.3.1.

3. Use that initial alignment as starting point for some advanced registra-
tion. The result should consist of slightly deformed overlapping meshes
with minimum surface to surface differences and therefore very good mu-
tual alignment. How to achieve that is discussed in Section 4.4.

4. Morph the input meshes using mutual relations found directly on the non-
rigidly aligned meshes without any special intermediate domain. Produces
single final mesh. How to do this is the content of Section 4.2.
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Figure 4.2: Flow diagram of the method variant using direct on-mesh morphing.

To sum it up, Sections 4.2, 4.3.1, 4.4, 4.5 and 4.6 describe five consequent steps
of the spherical domain parametrisation version of the method and sections 4.2,
4.3.1, 4.4 and 4.7 four steps of the direct on-mesh morphing alternative.

4.1 Input specification

The input of the algorithm is a multiple mesh set (see Figure 4.3). The input
meshes are assumed to be non-manifold meshes with similar shapes in general
positions in space. This means that meshes represents the same or similar real
world objects. Typically the same bone or muscle from different scanners and
patients are expected to be used.

Every mesh can have any translation and rotation in 3D space. It can also be
freely non-uniformly scaled compared to the others. There are also expected to
be small deformations that are results of both differences in original scanning
subjects and methods of resulting data processing.

The topology of mesh is specified to contain only triangular polygons. There is no
assumption on quality of such triangles however it is not subject of the algorithm
to perform any deliberate enhancement in this field and therefore degenerated
triangles in the input are likely to be present in the output and might as well
cause numerical problems during the transformation as well.

The mesh is not expected to be fully closed and may contain some smaller holes.
It is however important, that those holes are small enough so that they can be
filled using an automatic approach and most importantly, they do not split the
mesh into two closed surfaced objects. If this happened, smaller component would
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be trimmed out.

It is allowed for the meshes to contain irregularities such as non-manifold edges.
Those edges can be located in one or all inputs. It is however important for the
method, that for each surface element of the represented object, at least one input
mesh contain manifold edges only. Otherwise the results of the method might not
be fully correct. The approach also expects mesh surface not to intersect itself
in any place. Such artifact is not detected by topology inspection and therefore
not removed. It would later cause problems when surface normals are checked
during registration.

The mesh must be genus 0 object. Without mathematical terms, this means
that there is no tunnel in the mesh, such as e.g. in torus, and that mesh can be
deformed to shape of sphere without any cuts. The holes that are not part of the
original object but results of poor triangulation are, however, allowed.

Figure 4.3: Sample of input. Three various femur bone surface meshes of similar
outline shape but different topology with general positions in space.

4.2 Mesh topology refinement

Most of later parts of the algorithm expect input meshes to be manifold, closed
and graph of each consisted of a single component. This is in contradiction with
original assumptions. This step refines meshes so that they fulfil new require-
ments. It might however be complicated to reconstruct damaged parts of models
without errors or loss of details. We will therefore try to recover missing in-
formation from corresponding parts of other meshes during the morphing step
later.

The fix of mesh consists of several consequent steps (see algorithm C.1). First,
non-manifold edges are detected and removed. Then non-manifold triangles re-
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maining in the mesh are found and removed. It might happen that some, hope-
fully small parts of mesh, become split from main component. These parts must
be cut off. The last step is retriangularisation of holes in the mesh.

4.2.1 Non-manifold edges

Non-manifold edges are easy to detect just by counting triangles adjacent to
each edge. Manifold edges in a manifold mesh have always one or two adjacent
triangles. The case of a single triangle belongs to boundary of the hole in the
mesh. In case of more than two triangles, the edge must be non-manifold.

In ideal case, two of the adjacent triangles could be called valid and the others
removed. It might however be impossible to distinguish them in general case.
For example if part of the surface was doubled and lying right on each other (see
Figure 4.4a), the outline where the surface splits would consist of non-manifold
edges with three adjacent triangles each. From topological aspect, both nearly
overlapping neighbours would be equivalent.

(a) Original (b) After non-manifold removal

Figure 4.4: Doubled surface configuration (blue and green) connected with sur-
rounding mesh (grey) by triangles (orange and red) with non-manifold edges
(purple).

Therefore I decide to remove all those triangles instead rather than to risk wrong
choice of left out triangles that might lead to manifold but invalid mesh surface.

This way all triangles around doubled surface area are removed splitting both
layers away from the main mesh by circular hole (see Figure 4.4b). This problem
will be solved later.

4.2.2 Non-manifold triangle fans

Even if all edges of mesh have two or less adjacent triangles, the mesh itself still
does not have to be manifold. As can be seen in Figure 4.5, there might still



35

exists triangles that are connected to largest mesh graph component but do not
share an edge with it.

Figure 4.5: Non-manifold vertex (red) connecting two triangle fans (grey and
blue).

In manifold mesh with closed surface, there is always exactly one closed fan of
triangles. If there is a hole in the mesh, the fan will not be closed. If there are
more than one holes sharing single vertex, there will be more than one fan of
triangles around that particular vertex.

The situation is similar as in previous Section, just with edges replaced by ver-
tices. Once again, I am not able to tell which fan consists of valid surface triangles
and which consists of invalid inner triangles that must be removed.

I could therefore again test each vertex and find its triangle fans by going around
the vertex. If there was only one fan, the vertex would be considered good. If
there were more fans, I would remove all of their triangles, effectively removing
the vertex from mesh.

This might however not be necessary in most cases. If there is at least one closed
triangle fan around the vertex, I can say that it consists of valid triangles and
leave it out from the removal process. In theory, there could be another closed fan
at the same vertex and I might pick the wrong one. However it is both unlikely
and safe to ignore, as the wrong fan that I left in the mesh would be isolated
from the main mesh graph component as a result of the removal of all other
triangles and removed later. This is guaranteed by previous step that removed
all non-manifold edges.

I can therefore sort triangles around vertices by their adjacency, check if some of
the detected fans are closed and if there is such, I can leave its triangles intact.
This comes from assumption, that closed fans are more likely to be consistent
with rest of mesh surface like in Figure 4.5. This way the vertex count of mesh
is better preserved.

In some cases, like in Figure 4.6, more than one triangle fan might actually be
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valid part of surface. Both fans are not closed and therefore removed. This
decreases the quality of mesh, but it does not violate with later steps as it just
merges two or more touching holes that already exists in the mesh.

Figure 4.6: Two holes sharing vertex (red) causing false detection of non-manifold
vertex based on triangle fan count.

4.2.3 Isolated mesh parts

After removal of non-manifolds, some parts of the mesh can become isolated
from the main body. It might sometimes be obvious for observer how these
parts should be connected together. However in most cases, I expect that these
fragments will be just small clusters of triangles, mostly remainders of former
non-manifold artifacts like in Figure 4.5.

Therefore I do not try to recover such isolated parts and remove them from the
mesh data structure completely. I do it by DFS algorithm detecting mesh graph
components and its sizes in number of vertices. I take the largest component as
the valid mesh body and remove all vertices and triangles of the others. Assump-
tion is that the vertex count of main component will be significantly larger than
of others and minimum valid surface parts will be removed by the step.

I have also found out, that some isolated parts, such as single non-connected
vertex, might be in the original input data. This might cause problems to some
algorithms used later on, such as parametrisation. This step solves this problem
automatically.

4.2.4 Holes

All previous refinement steps just removed vertices and triangles from the mesh.
It is therefore likely to find holes in the output mesh surface at this moment.
Parametrisation techniques usually expect the mesh to be closed. Luckily the
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mesh is manifold and composed of single component now. Therefore it should
not be a problem to find outline of each hole and re-triangularize it.

My first idea was to detect vertices with non-closed triangle fan and then traverse
around the hole by triangles adjacent to edge. This way closed polyline would be
found outlying the hole. It is even more simplified by the non-manifold triangle
fan removal step before, as there can now be no two holes sharing same vertex
(see Figure 4.6). The isolated component removal process then ensured that there
will be no isolated island inside the hole, like in Figure 4.4b.

Therefore it would be sufficient then to split the general polygon to convex parts
and triangularize it in simplest way of triangle fan from any point. Then series of
edge flips could improve the local mesh quality by implying Delaunay condition
of empty circumcircle.

However similar approach is already implemented in VTK. Therefore I used the
implementation described in B.1.2 instead.

It might be also possible to improve quality of final mesh if large triangles were
further tessellated to maintain original mesh resolution. It is unnecessary for
most meshes, but it will improve output details if applied on the mesh, that is
used as supermesh in morphing process. Such methods are described in papers [3]
and [19]. An implementation in vtkMEDFillingHole class compatible with VTK
is also available. These methods follow tangent of surface around the hole to
produce smooth patches and even tessellate the space to maintain resolution of
the original mesh. This could significantly reduce the distortion of filled regions
but it was not tested for time reasons.

In this step we have inserted new triangles. However these triangles might not be
valid. Once again, take an example in Figure 4.4b and imagine that the cut off
central part was a high peak. Then the filled hole will be flat area not respecting
original shape.

Then I expect that this peak will be preserved in other input meshes and will
provide necessary data during morphing. As we do not want to influence that
process by newly inserted unreliable triangles, I assign them reliability weights.
I used simple weight metric when all original triangles have weight of 1.0 and
all newly inserted have weight of 0.0. This way the local morphing will use only
data from other meshes if local triangle is unreliable.

4.3 Initial registration

It is important to point out that distinguished features, e.g., the ball of femur
bone, of one mesh might, in space, lie quite far from the same feature of another
mesh since models are freely positioned.
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We, therefore, have to perform global registration first to roughly align the meshes
such that similar parts are positioned close to each other. For this purpose, we
use principal component analysis (PCA) [12] (see alg. C.2) as described in this
section.

4.3.1 Principal Component Analysis

It is important not to expect that similar parts of meshes are the nearest one in
the input as models are positioned in general way. We therefore have to perform
global registration first before finer alignment can be achieved locally in next
steps.

PCA transforms coordinate system in such way, that the most important direction
is in the first component [12]. It does it by inspecting correlations in data.

First the covariance matrix is built using only space coordinates of mesh vertices.
This matrix consists of auto-correlations of individual vertices −→x from mesh X
with N vertices [12]:

MC =
1

N

∑
−→xi∈X

(−→xi −
−→
x ) · (−→xi −

−→
x )T (4.1)

where
−→
x is the centre of gravity of the mesh gained as:

−→
x =

1

N

∑
−→xi∈X

−→xi (4.2)

Then the eigenvalues and eigenvectors of Mc are found. The eigenvector for
largest eigenvalue then contains direction of main object axis which is the domi-
nant direction in the object. The Figure 4.7 presents this output on femur bone
model.

The longest axis line along the bone is the main direction of the bone. The other
two directions are found in remaining two eigenvectors and are orthogonal to each
other as well as the first axis.

The relative direction in respect to mesh orientation as well as the order of axis
is maintained over different representations if meshes are reasonably similar in
outline, have similar vertex distribution - not necessarily density and therefore
vertex count, and have features distinguished enough so there is safe difference
between individual eigenvalue sizes.
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Figure 4.7: Main object axes for a single input mesh. Green arrow for axis of the
largest eigenvalue, orange for the middle and yellow for the smallest.

An example of meshes where this is not preserved is close to sphere ellipsoid. Such
mesh would have very similar eigenvalues and minor differences in distribution
of vertices on surface could cause change in principal axis order.

Experiments with sample data shows that method is safe to use with our meshes.

Now we have basis of coordinate systems for all input meshes and we can use them
to get proper transformation that would ensure proper alignment (see algorithm
C.8).

First we have to enrich the three axes by origin to have complete coordinate
system. Simple centre calculated as mesh vertices average can be used with rea-
sonable vertex distribution (close enough to uniform). Centre of object oriented
bounding box can provide better results otherwise.

The initial rigid body transformation is then combination of translation to origin
of coordinate system and rotation to unify all main axes. One model can be
chosen to define target position if maintaining the position is desired or zero
point and default x, y, z axes can be used otherwise.

Translation of the mesh i to the origin point (0, 0, 0) is specified simply by a
difference of coordinate system origin points so that the translation matrix T is
build using

T (i,0) =


1 0 0 −Cix
0 1 0 −Ciy
0 0 1 −Ciz
0 0 0 1

 (4.3)

where
−→
Ci is centroid of i-th mesh serving as local coordinate system origin point.

Rotation matrix is more complex as it must consist of several partial rotations.
Firstly the mesh i is rotated so that its axis x aligns with base axis (1, 0, 0).
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Rotation axis is vector perpendicular to both source and target vectors of x axis:

−→o =

−−−→
axisx × (1, 0, 0)

|−−−→axisx × (1, 0, 0)|
(4.4)

Then the rotation angle α−→x→−→0 is calculated from its sin and cosine values, ob-
tained as sizes of cross product and dot product:

α−→x→−→0 = arctan
|−→x ×−→0 |
|−→x · −→0 |

(4.5)

A rotation matrix for general rotation around normalised axis o can be build as
[8]:

R(α−→xi→
−→
0
,−→o ) =

[ −→ox2 · (1− c) ·+c −→ox · −→oy · (1− c)−−→oz · s −→ox · −→oz · (1− c) +−→oy · s 0
−→oy · −→ox · (1− c) +−→oz · s −→oy2 · (1− c) + c −→oy · −→oz · (1− c)−−→ox · s 0
−→ox · −→oz · (1− c)−−→oy · s −→oy · −→oz · (1− c) +−→ox · s −→oz2 · (1− c) + c 0

0 0 0 1

]
(4.6)

where c = cos (α−→x→−→0 ) and s = sin (α−→x→−→0 ).

Similar approach is then used for rotation matrix R(α−→yi→
−→
0

) for alignment of

resulting axis y to basic (0, 1, 0) and then in reverse order for matrices rotating
basic axis vectors to match y and x axis of mesh j.

The total rotation is then gained by multiplication

R(i, j) = R(i,0) ·R(0, j) = R(α−→xi→
−→
0

) ·R(α−→yi→
−→
0

) ·R(α−→
0→−→yj ) ·R(α−→

0→−→xj)

(4.7)

I also add non-rigid transformation at this point to adjust model scaling. Simple
scaling matrix is built using oriented bounding box sizes of meshes i and j.
Orientation of those boxes is also determined by main axes calculated above.
Therefore scaling matrix S(i, j) adjusting size of mesh i to size of mesh j is

S(i, j) =


sizexj
sizexi

0 0 0

0
sizeyj
sizeyi

0 0

0 0
sizezj
sizezi

0

0 0 0 1

 (4.8)
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Then final transformation matrix M (i, j) aligning mesh i to mesh j can be gained
from combination of translation, rotation from mesh i to basic position, scaling
and transformations from basic position to position of mesh j in reversed order:

M (i, j) = T (i,0) ·R(i,0) · S(i, j) ·R−1(j,0) · T−1(j,0) (4.9)

Therefore each vertex of each input mesh is transformed by only single vertex -
matrix multiplication.

In theory, all meshes would be approximately aligned at this moment. The qual-
ity of alignment is limited by non-rigid deformations and differences of vertex
distributions in meshes influencing directions of the main axes.

4.3.2 Final alignment

In reality, the direction of main axes is not guaranteed to have always the same
sign. Therefore the final direction for each axis has to be determined other way.
If this was not done, results like in Figure 4.8 would be likely to occur.

(a) Aligned (b) Moved apart

Figure 4.8: Incorrect PCA alignment of three femur bones if orientations of main
axes are not checked.

The easiest way to fix this is using distance between pair of meshes as error
measure. Then only six possible positions given by six combinations of two flips
of two axes x and z must be tested. The third axis z is fixed by the previous two
to keep transformation rigid.

Therefore for alignment of mesh i to j is finalised by testing initial and three
additional transformations rotating mesh i by 180◦ around x, y and both axis.
The transformation with smallest error measure is then picked as final alignment.
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Easiest and fastest way of error distance calculation is using sum of square dis-
tances between nearest vertices. First problem is that this metric is not symmet-
ric. It means that if input order changes, different distance is gained between the
same pair of meshes.

The difference growths when low polygonal mesh A lies near rich mesh B. Then
the distance from A to B is small as there is always some near vertex from B
to pair with for any vertex of A. This, however, does not apply to the other
order and, therefore, the result is significantly different even if the final sum is
normalised by number of measured distances.

It might still output same alignment but for consistency reasons I find nearest
distances from mesh A to B and then from B to A so I can use their average as
final distance. This guarantees symmetric results.

Additionally I also avoid the above mentioned mesh size difference problem com-
plexly by replacing vertex to vertex distances by vertex to nearest triangle dis-
tance (see algorithm C.9).

Given two meshes Xi and Xj, distance between each vertex −→xi of mesh Xi and
every triangle Tj of mesh Xj is tested yo find the nearest one.

First, plane ρj for triangle Tj of mesh Xj is found. Point −→xi ρ is then defined as
projection of vertex −→xi to the plane ρ.

If −→xi ρ lie in Tj then its square distance to −→xi is distance from Tj. Otherwise
square distance to nearest Tj edge is used. This is subject of minimisation over
all triangles of Tj:

dist2(−→xi , Xj) = min
Tj∈Xj

dist2(−→xi , Tj) (4.10)

(4.11)

dist2(−→xi , Tj) =

|
−→xi −−→xi ρ|2 if−→xi ρlies inTj

min
edge∈Tj

dist2(−→xi , edge) otherwise

Formula for dist2(−→xi , edge) is similar.

Then both meshes are swapped and second set of distances is calculated and
combined weighted by size of individual meshes.

e(Xi, Xj) =
1

2|Xi|
∑
−→xi∈Xi

dist2(−→xi , Xj) +
1

2|Xj|
∑
−→xj∈Xj

dist2(−→xj , Xi) (4.12)
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Transformation with minimal error distance e(Xi, Xj) is chosen as final transfor-
mation aligning mesh i to j.

This way every ith input mesh is aligned with selected mesh j. Mesh j can be
any of input meshes as it only affects position of output and does not influence
output quality. The result is displayed in Figure 4.9.

(a) Aligned (b) Moved apart

Figure 4.9: Successful rough PCA alignment of three femur bones.

Complexity is linear in number of input meshes as each of them is aligned only
once. The calculation of main axes is linear in vertex size of mesh. Same applies
to calculations of centres and bounding boxes.

Only part that can achieve quadratic complexity is distance error measure in
last step. This is when each vertex to each triangle is tested. Binary space
partitioning structures can be used to improve this behaviour. Uniform grid,
kd-tree or bd-tree can be used to find nearest triangle candidates. This reduces
number of candidates for distance test.

It is also unnecessary to measure distance of models using the original meshes.
Coarse meshes gained by edge decimation or progressive hulls can be used instead.
I used filter described in B.1.3 to produce meshes of few hundred vertices. This
improved the performance significantly (see comparison in Chapter 5.3.1).

4.4 Non-rigid ICP registration

Now we have all input meshes in condition suitable for a more sophisticated sur-
face analysis. We could now proceed with parametrisation, but as comparison
of different alignment techniques in Section 5.3.3 shows, the product of PCA
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is far from ideal. Although this should cause no problem in morphing theory
as different objects should be possible to morph, it is necessary to synchronise
parametrisations to have feature points on same places. Our experiments de-
scribed later show that it is necessary to align all meshes even more precisely
before parametrisation.

I therefore use base of algorithm from article [5] for slightly non-rigid ICP reg-
istration described in original form in Section 2.2.1. I just modified point neigh-
bourhood selection part and final deformation approximation. The review of the
method is provided in this section.

The registration process is binary while they always only work with one source
mesh and one target mesh. For this reason, I will describe the rest of algorithm
on two meshes only. At the end, only one target mesh will be chosen and all
other meshes will be registered as source meshes to align with this target. Those
registrations are run separately.

Choice of target mesh in this context is not very important as we only want
meshes to have the same shape. However I prefer the largest mesh in number of
vertices to be target as this will allow to find better candidates for source mesh’s
closest points int the ICP part. It is also faster to deform smaller source meshes.
The sampling of feature points on small meshes can be faster as well, depending
on the method used.

Principle of algorithm that registers one source mesh to one target mesh is as
follows (see algorithm C.3 for more details):

1. Pick one target mesh and one source mesh

2. Pick feature points in the source mesh (Section 4.4.1)

3. Pick region for each feature point (Section 4.4.1)

4. Register each region in target mesh using ICP (Section 4.4.2)

5. Interpolate all registrations to get final transformations per source mesh
vertex (Section 4.4.3)

6. Transform source mesh vertices accordingly to get non-rigid aligned source
mesh with target mesh (Section 4.4.3)

Now, the detail description will be provided.

4.4.1 Single ICP region selection

We have already picked one source and one target mesh. Let us consider source
mesh Xi and target mesh Y . We first pick some number of feature points from Xi.
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I use the same approach as [5] so I pick points randomly. I will want to achieve
good local registrations and I therefore pick 10% of mesh vertices, but at most
500 in absolute count. That prevents redundancy of identical transformations for
very close feature points in large meshes.

For each such feature point, ICP will be run as will be described in the next
section and therefore some other points that describe its neighbourhood must be
picked. Original article [5] suggest stochastic selection of points based on their
distance and normal direction variety. This selects mostly the vertices in the
neighbourhood, but also adds vertices from other side of the object to describe
the global shape and avoid problems in flat area’s of the mesh. See Figure 4.10.

Figure 4.10: Source mesh (yellow) with single selected feature point (green)
and its region points (purple) registered to nearest points (cyan) of target mesh
(white). Region points sampled using method from [5].

However, during experiments I have found out, that such selection is not local
enough to provide good local alignment (see Section 5.3.2).

Therefore I modified the selection to pick points closer to the feature point. We
already have model reasonably well aligned using PCA. If this was not true, then
rigid body ICP could be run as described in 2.1.1.

This way two matching surfaces are very near to each other and we can assume
that we do not need that much information about global position to perform
successful registration.

This way I always pick only 3-neighbourhood of the feature point to be the region
for the ICP (algorithm C.10). See Figure 4.11 for comparison.

As comparison in 5.3.2 shows, good alignment of surfaces can be found with this
selection.
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Figure 4.11: Source mesh (yellow) with single selected feature point (green)
and its region points (purple) registered to nearest points (cyan) of target mesh
(white). Region points sampled using 3-neighbourhood.

4.4.2 Iterative Closest Point

Now each region built in the previous section is registered with the target mesh.
I use the original ICP description from [4] here. It is well described in theoretical
Chapter 2.1.1. Schema is also presented in algorithm C.11.

Change to the original ICP by Besl [4] was made in the nearest point to point
search mechanism. I have added normal check to ensure, that both aligned
surfaces have similar normal orientation. I do not allow nearest point to have
normal with angle difference to checked point’s normal larger than 90◦. Therefore
condition is stated such as:

−→ni · −→nj ≥ 0

The normals are estimated as average of point triangle normals weighted by their
inner angle at point:

−→ni =

∑
T∈cellsof−→pi

|∠−→a −→pi
−→
b | · (−→a −−→pi )× (

−→
b −−→pi )∑

T∈cellsof−→pi

|∠−→a −→pi
−→
b |

−→a , −→pi ,
−→
b are vertices of triangle T .
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This is applied in each iteration of error minimisation algorithm described in
2.1.1.

The output is a final transformation matrix M that is gained from each iteration
of ICP as

M0 = I

Mi+1 = Ti+1 ×Mi

M = Mmax

where T is transformation gained in ICP iteration as combination of rotation and
translation in this order. See Chapter 2.1.1 for more details again.

As not all points but only earlier selected neighbourhood points are used for the
source mesh, only the alignment errors in the feature point’s neighbourhood are
fixed. This might cause other parts of the mesh to be miss-aligned (see 4.12).
That is however no problem as non-rigid deformation of the mesh surface will
handle it later.

Figure 4.12: Final transformation of source mesh (yellow) to target mesh (white)
according to local ICP result for region (purple) of single feature point (green)
on bone’s head. Region sampled using 3-neighbourhood.

4.4.3 Deformation of source model

After previous step, each pair of source and target mesh has K feature points
with k transformation matrices Mj that describe alignment deformation for their
neighbourhood. Now we must expand this information to whole source mesh
surface and therefore completely non-uniformly transform source mesh vertices
to achieve alignment with the target mesh. As individual vertices can be trans-
formed in a different way, this leads to non-rigid deformation of mesh. The result
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will, therefore, be a slightly deformed source mesh that minimises the point-to-
point distance to the target mesh.

First the feature point references are filtered, then their transformations are inter-
polated into the rest of mesh and finally the individual vertices are transformed.

Some feature points may be inconsistent with rest of pairs. This is when distance
between two feature points and their transformed image differ too much. This
distance should be calculated as geodesic to avoid miss judgements of bended
areas. In our case such problems are not likely to happen, because we had two
nearly complete and very similar objects at the beginning. The authors of [5]
worked with incomplete scan samples instead.

Regardless if we filtered some pairs out, we now have a set of pairs usable to
deform source mesh X.

Article [5] uses thin-plate splines to distribute transformations across complete
surface (more about this in 2.2.1). I experimented with simpler method using
non-linear distance based interpolation.

I begin with k feature points of source mesh X with K transformation matrices
Mj. Then each vertex of mesh X is evaluated by distance from each of feature
points.

Regardless of measure chosen, the next step weights influence of all feature points
−→xj based on distance from inspected general vertex −→xi :

wi,j =

{
1−

(
1

dMAX
· distance(−→xi ,−→xj )

)c
if distance(−→xi ,−→xj ) < dMAX

0 if distance(−→xi ,−→xj ) ≥ dMAX

where dMAX is maximum distance for which the feature point can influence vertex.
c is power of distribution influence decrease. I have chosen dMAX to be 0.1 an
c = 1.5 in my experiments but I tested only few other values and kept the best
of them. It allows distribution of most of deformation to closest neighbourhood.

The function distance(−→x ,−→y ) can be either geodesic or Euclid distance. However
in both cases must be reasonably normalised so that the maximum measured
distance is 1. This enables dMAX to remain constant for any scale model. Good
approximation or normaliser for Euclid measure is size of oriented bounding box.
For geodesic distance function we usually have the maximum from pre-calculated
values.

Sum of influences of all feature points cannot be bigger than one. At the same
time, no vertex can be left out without any deformation. That would cause such
points to be dragged out of the mesh. Therefore I use conditional normalising
to fix sums that are not zero and I distribute all feature point wights equally
otherwise:
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wNi,j =


wi,j∑
i

wi,j
if
∑
i

wi,j > 0

1
k

if
∑
i

wi,j = 0

Thanks to smoothness of decay of weight function, all such vertices would be
possibly miss-aligned but will not create any sharp edges.

These weight are then used to interpolate between deformation matrices for each
of K feature point giving final position of inspected source mesh vertex −→xi :

−→
x′i =

K∑
j=0

(
wNi,j ·Mj

)
· −→xi (4.13)

The process is repeated with each vertex −→xi of source mesh. Final output is
source mesh non-rigidly transformed thus deformed to better align with target
mesh (see Figure 4.13).

Figure 4.13: Output of non-rigid ICP alignment step for two femur meshes. The
source mesh is yellow, the target mesh is white. Green spots marks feature points.

The distance used in the interpolation should be measured as geodesic distance
which could be approximated using edge-length weighted distance in graph found
using Dijsktra or Floyd–Warshall algorithm for shortest paths in graph.

However practical tests approved usage of simple Euclid distance as well if the
initial alignment is good and feature point density is high enough. Usage of
Euclid measure has benefit of fast O(N) time complexity without need of external
storage. Disadvantage is hidden in situations where two parts of mesh are facing
each other in close proximity while their true geodesic distance is high (e.g. nearly
touching hands).
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Evaluation of alignment precision and visualisation of outputs can be found in
Section 5.3.3.

4.5 Spherical parametrisation

Now all meshes have approximately same shape. In this phase, we will split
the two variants of the main method. This and the following section are only
relevant to the spherical domain version as was announced in the very beginning
of Chapter 4. For this, we have to create suitable parametrisation of all meshes.
These parametrisations will help us find bijective relations between meshes in the
later morphing phase described in Section 4.6.

4.5.1 Basics

In theory, every manifold genus 0 mesh can be parametrised on unit sphere.
We can imagine such process as expansion of inner volume of model similar to
pumping air into balloon.

In practise however, the process is simple and accurate only for ”star shaped”
objects. Such an object has an inner point from which every part of surface can
be seen without occlusion. Then given such point, mesh just needs to be centred
to it and all vertex coordinates normalised to achieve valid parametrisation. We
call parametrisation valid if it maintains topology with original mesh, therefore
their graphs are isomorphic, and no two triangles are overlapping (see Figure 3.2
for example of artefact).

Overlap can be easily measured by inspecting numbers of clockwise and counter-
clockwise oriented triangles. Parametrisation is valid if all triangles are oriented
in the same way when observed from sphere centre.

Such test is easily implemented using simplified volume formula such as in article
[1]:

Ṽ (Ta,b,c) = (−→a ×
−→
b ) · −→c (4.14)

If our triangles are oriented clockwise then parametrisation error of parametrisa-
tion P (X) of mesh X can be stated as sum of negative test results:

error(P (X)) =
∑
T∈X

{
|Ṽ (Ta,b,c)| if Ṽ (Ta,b,c) < 0

0 otherwise
(4.15)
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This does weight each triangle by its area so that the final error depends not only
on number but also on size of overlapping triangles.

In ideal situation, error measure of 0 should be achieved. Practise shows that
it may be hard for some meshes and that errors of size 10−6 and below can be
ignored. However even if an error is exactly zero it does not say anything about
quality of triangles in parametrisation.

Ideal parametrisation have triangles of similar sizes. This is not possible to
achieve for complicated objects like cow model with head and legs. It is however
important for the result that the smallest triangles do not degenerate to almost
zero area, which would cause barycentric coordinates to be heavily influenced by
numerical errors. As far as I know, there is no method that solves this and all
simply relies that it will end up good enough automatically.

4.5.2 Projection relaxation

As we do not work with strictly ”star shaped” meshes, we have to deal with
overlaps after initial projections. I have tested three different approaches to this
problems and none of them seems to do it very well.

The First method was Alexa’s relaxation algorithm based on Gauss-Seidel iter-
ative solution of linear equations. It is originally described in [1] and is more
explained here in Section 3.2. I have tested both implementation of Ing. Parus
Ph.D. and my own to minimise risk of implementation mistake or wrong inter-
pretation of original article.

The second method is very similar to the previous, yet simpler and more recent.
It was published in [27] and discussed in 3.5. The approach is almost identical as
only difference in relaxation schema is in equation for next-step parametrisation
coordinates. This means that I only had to replace equation 3.3 by 3.6.

The third method described in [2] was result of my search on internet for reference
implementations. For testing purpose, I have used author’s implementation of
method. This method is again based on iterative solution of linear equations. The
main feature of the implementation is the ability to use GPU through OpenCL.
Therefore it can hardly be compared with my CPU implementations by time.

The results of comparison of these methods can be found in Section 5.4.1. The
main outcome is that not a single method was able to produce valid parametrisa-
tion of all tested input meshes. Therefore I decided to further work with Alexa’s
method which is easy to implement as I need to be able to modify it in later
parts.

First problem with implementation is initial selection of the projection point. It
is vital that it lies inside the mesh in the beginning. Otherwise, degenerative solu-



52

tions are found (see 4.14). Its choice can influence convergence of later relaxation
process [20].

Figure 4.14: Spherical parametrisation with centre out of original volume. Pro-
jection centre point highlighted by green dot.

All methods, I have read about, either do not discuss the problem at all or they
expect user interaction or they expect centre of gravity to suffice inside volume
condition.

My experiments showed that none of these approaches can be used for most
of models in automatic framework. Therefore I suggest a different technique
for inner point selection. We want the inner point to be inside of mesh and
to be position in such a place that the projection overlap error is minimised.
I suggest usage of main axes discussed in Section 4.3.1 (see algorithm C.12)
instead of implementation of complicated mathematical mechanism to express
those conditions using equations listed above (see eq. 4.15)

From knowledge of my input mesh shapes, which are muscles and bones, I expect
the middle of the mesh to be good enough. I just need to move the centre of
gravity found by equation

c =
1

|X|
∑
−→x ∈X

−→x (4.16)

to the inner volume. Therefore I use plane defined by the centre of gravity and
two minor axis from PCA. Then I find triangles that intersect this plane. This
gives me polygon of intersection of mesh and constructed plane (see Figure 4.15).

Now the problem is reduced to 2D. I then calculate new centre of gravity for
polygon points only. This one could still lie outside. Therefore I either use one of
two main vectors in plain again or find new main vector by PCA in 2D space of
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(a) Cut of mesh (b) Detail of cut

Figure 4.15: Intersection of plane specified by two minor axes from PCA together
with gravity centre of mesh and mesh surface itself. Intersected triangles and their
points form base for inner centre point selection.

point to plane projections and check number of intersections with polygon from
the new centre point in one direction. If number of intersections is even number,
point lies outside and is moved to the average of two consequent intersections.

It is important to notice that this approach is by far not general. It relies on
meshes to be genus 0 and closed, which I can guarantee. In practise my inputs
also provide reasonable shape so that initial position calculated from 2D cut
always lies inside the mesh.

Gained point is then used as centre point for all experiments with parametrisation
presented in this thesis.

In the Alexa’s solution of the parametrisation problem[1], algorithm starts with
initial projection of mesh to unit sphere. This is just normalisation of vertices
moved to the centre −→c constructed at the end of previous Section:

−→xi P =
−→xi −−→c
|−→xi −−→c |

(4.17)

Then relaxation by iterative recalculation of each single parametrisation vertex
−→xi P of mesh X is applied using formula
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c =
1

max |−→v −−→xi P |
(4.18)

e(−→xi P ) = c · 1

|N(−→xi P )|
∑

−→v ∈N(−→xiP )

(
(−→v −−→xi P ) · |−→v −−→xi P |

)
(4.19)

−→
x̃i
P =

−→xi P − e(−→xi P )

|−→xi P − e(−→xi P )|
(4.20)

where N(−→xi P ) denotes neighbour vertices. See algorithm C.13 for overview.

The algorithm stops when the parametrisation error according to formula 4.15
becomes zero or when the maximum allowed iteration count is reached. I test
the error only each 10th iteration to save time although the error calculation is
about ten times faster than the iteration itself.

I use 1 000 or 10 000 as iteration maximum, but the changes after several hundred
iterations tends to be minimum as can be seen in Section 5.4.1.

I also experimented with value of constant c in the formula 4.18, but it did not
have much effect (see Section 5.4.1).

It is also possible to use intermediate results of relaxation as inputs of the running
iteration. This is called in-place modification and it seems to improve not only
the speed but also final parametrisation error (see Section 5.4.1). In this case,
some vertices in the neighbourhood are results of previous and some of current
iteration. This tends to be able to add more movement to the mesh fixing more
overlaps in the process. Original text [1] does not specifically mention which
variant to use. I decided for the in-place one.

4.5.3 Cascade schema

Regardless of any parameters, this method does not work for big meshes, like
42 502 vertex model of femur bone in Section 5.4.1. The reason seems to be,
that there is not enough space for the vertices to be moved in the relaxation
phase. I therefore came with an idea of cascade solution. This way the initial
parametrisation is done on relatively small mesh with several hundreds vertices
where triangles are big enough for relaxation mechanism to handle their move-
ment as there is enough space in each vertex’s neighbourhood to move in (see
algorithm C.4). The initial parametrisation is then propagated up to the original
mesh size.

I have used decimation filter described in Section B.1.3 to create coarse hull for
the input mesh. I did not limit to single step only as this would cause large errors
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in parametrisation after scaling up (see Section 5.4.3 for comparison). Therefore
I choose factor two for mesh vertex count scaling.

The process starts with the nearest smaller power of scaling coefficient multiplied
by base mesh size compared to vertex count of largest mesh. So I choose starting
coarse mesh size as

NX0 = NB · c
blogc

max(NXi)

NB
c

(4.21)

where c is scaling coefficient, chosen to be 2, and NB vertex count of smallest
coarse mesh where the initial parametrisation is run, chosen to be 300 vertices.

So given the largest mesh to be femur bone with 42 502 vertices and other two
meshes having 2 502 vertices only, initial coarse mesh will have 38 400 vertices.
That would mean up-scaling for the smaller meshes. It would make no sense so
the high-order steps are skipped for such meshes. On implementation level, their
coarse meshes are identical to the input mesh if the target vertex count is higher
than in input.

The algorithm cannot rely on meshes to have exactly same number of vertices
anyway as the filter does not guarantee that the target vertex count will be obeyed
absolutely.

The relation between larger and smaller mesh in the cascade is given by mean
value coordinates (MVC ) originally described in [24]. They allow expressing co-
ordinates of point inside both convex and non-convex triangular mesh in similar
manner as position of point inside triangle is determined by barycentric coordi-
nates. They also work outside the mesh but as my previous application of them
in bachelor thesis showed, the precision in outer volume is limited [13]. This is
the reason why the progressive outer hull filter was developed by David Cholt
[6] to create strictly outer hull of input mesh and therefore the MVC should be
reliable for backward mesh reconstruction and propagation of parametrisation up
to the original input sizes. Thanks to this, single vertex −→xi of larger mesh Xk

could be reconstructed from smaller mesh Xk+1 using equation

−→xk,i =

NXk+1∑
j=0

wij · −−−→xk+1,j (4.22)

where wij is mean value coordinate of i-th vertex of bigger Xk in direction of
j-th vertex of smaller mesh Xk+1.

This way cascade of coarse meshes is created so that the first meshes are the
original inputs, then the coarse meshes with above mentioned exception for small
inputs are created to approximately fulfil size given by equation 4.21.
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Next meshes are consequently created to reach size NXk+1
reduced by coefficient

c:

NXk+1
=

1

c
·NXk

, k > 0 (4.23)

Final coarse meshes will have basic size NB. These final meshes are parametrised
using algorithm of Alexa described in previous chapter. Then same mean value
coordinates that maps vertex −→xi of larger mesh Xk+1 to linear combination of
vertices of smaller mesh Xk are used to propagate parametrisation to higher
mesh in similar way as in equation 4.22. Only the coordinates of points xi are
replaced by coordinates of parametrisations:

−→xk,iP =

NXk+1∑
j=0

wij · −−−→xk+1,j
P (4.24)

After any parametrisation is projected to the bigger mesh, it is, likely however,
no longer to be valid parametrisation. First of all individual parametrisation
coordinates do not have to necessarily lie on unit sphere. This is because the
larger mesh can have more features than the small one. Such features can then
cause movement of parametrisation from or to the projection centre. This is
easily fixed by normalisation of recalculated parametrisation vertices. Next, some
of large model features that are omitted on small model can even cause some
triangles to overlap on parametric domain. An example can be seen in Figure
4.16. For this reason new process of Alexa’s relaxation is run to fix local problems.

Backward parametrisation projection and relaxation then repeats until original
input size of mesh is reached. Based on this description, these steps can be done
with individual meshes separately. However following Section will show that there
are relations among parametrisations that imply simultaneous calculations and
mutual adjustments.

4.5.4 Registration of parametrisations

Now we have a spherical parametrisation for each of the input meshes. Therefore
we could proceed with morphing using barycentric coordinates as described in
Chapter 3.1. However if we did, the results would be rather unpleasant. The Fig-
ure 4.17 demonstrates the problem. It shows result of morphing of two different
models of femur bone with same vertex size.

The reason is as follows. As the parametrisation of each mesh is an independent
process, there is nothing that would cause same parts of the described model
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Figure 4.16: Construction of coarse mesh from high-polygonal mesh causes loss of
green circled feature. Valid parametrisation (right bottom) of coarse mesh then
implies invalid parametrisation of original mesh after reconstruction using mean
value coordinates.

Figure 4.17: Result of two femur bones meshes intermediate weight morph using
misaligned parametrisations.

to lie on the same place on parametric domain. Therefore if you look on these
two parametrisations merged together in Figure 4.18 you can see, that some
distinctive regions with high parametric vertex densities such bone heads lie on
different spherical coordinates.

This then causes vertices of supermesh to fall in different regions of both meshes.
As an effect of this, supermesh vertices are moved along long paths across model
surface during interpolation. You can see visualisation of individual paths in
Figure 4.19.

Some of these paths go above the mesh surface in the concave regions and some
under the surface in the convex regions of the model. This causes the shape to
be distorted. It also means that dense areas of one mesh might fall in the sparse
areas of other mesh. Effect of this is seen on the bone heads. There are not
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Figure 4.18: Spherical parametrisations of two meshes starting from two aligned
femur bones models. Dense areas on pole matches to bone head and should lie
on each other.

Figure 4.19: Morphing paths (red) between two meshes (blue and grey) based on
misaligned parametrisations (Figure 4.18). Number of vertices reduced for better
visibility. Incorrect and very long paths results in distorted mesh in Figure 4.17.

enough vertices in the local area of supermesh and the shape of the head cannot
be described properly.

To solve this parametrisation alignment problem, parametrisation process must
be modified and new step inserted before each re-parametrisation. It will make
the parametrisations of the same parts of various input meshes overlap, e.g.,
dense areas of parametrisation of bone head will be in same polar coordinates in
parametric sphere domain for all models of the bone. We will now have to take
the parametrisation as complex process that works with all inputs at once. It
will now become as follows:

1. Project meshes to sphere to get initial parametrisations
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2. Relaxate parametrisations according to Alexa 2000 [1]

3. Find feature points of all mesh that should be aligned

4. Make parametrisations of those points the same by enforcing average value

5. Relaxate parametrisation again but do not move the enforced feature points

I will described added steps in more details now. Although the meshes itself were
already aligned, the parametric domains after initial parametrisation are not and
therefore the above described problems can occur. Therefore I use approach
similar to the [27]. I pick feature points on all input meshes and adjust their
parametrisations so that they share shame parametric coordinates.

The main difference is that [27] used user-defined feature points whereas I use
automatic selection.

Same as in Section 4.3.1, I use PCA to find main axes of individual meshes aligned
by non-rigid ICP. Then I use same approach to find an inner point. I cast rays
to six directions determined by axis starting from the inner centre point (see
Figure 4.20). In each direction I find furthest intersected triangle. I then pick
the triangle apex closest to the intersection point to be the feature point. This
way I get six point for each mesh.

Figure 4.20: Obtaining six feature points of mesh using furthest intersections of
main axes going through inner centre point of mesh.

It is important that these six vertices must be unique on each mesh. This limits
the bottom of the initial parametrisation coarse mesh size. However we could skip
this registration steps for few first iterations if we needed smaller coarse mesh.
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Then I align parametrisation points matching to same set of feature points across
the inputs. I do this by averaging their parametric coordinates and then normal-
ising the result. It is therefore important that some level of alignment was done
with meshes in the beginning of this complete algorithm. This prevents para-
metric points to lie on opposite sides of parametric domain and therefore to
degenerate in the result of averaging.

This step might have caused errors in individual parametrisations. Article [27]
then suggests running relaxation process to fix these issues. However I have found
this to be insufficient as it is not able to move neighbour vertices for a long path
in dense regions.

Therefore I suggest a better approach for distribution of this adjustment across
wider area of sphere surface (see algorithm C.14).

This distribution method is very similar to that used in Section 4.4.3. The main
difference is in distance measure adapted to spherical space representation and
then in normalisation of influence weights as here not all points must be affected
by shifts which is difference from the complex mesh deformation application be-
fore.

I determine offset of each feature point and then add this offset not only to the
respective feature point but also to other point in his wider neighbourhood.

The shift −→si of single feature point −→xi P is calculated using approach described
above as

−→si = −→xi P −

M∑
m=0

−→x P
m,i∣∣∣∣∣

M∑
m=0

−→x P
m,i

∣∣∣∣∣
(4.25)

where M is number of input meshes and
−−→
xm, i

P is parametrisation of feature point
matching to −→xi P on mesh m.

I calculate distance dPi,j of parametrisation point −→xj P to feature point −→xi P as a
normalised angular distance of their positions from centre of sphere:

dPi,j =
1

π

(
tan− 1

|−→xi P ×−→xj P |
−→xi P · −→xj P |

+
π

2

)
(4.26)

The I use quadratic distribution function w(i, j) to calculate weight of each fea-
ture point i to each point j:
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w(i, j) =

{
1− ( 1

dMAX
· dPi,j)u if dPi,j < dMAX

0 if dPi,j ≥ dMAX

where dMAX is maximum distance for which the weight can be calculated. u
is power of distribution influence decrease. I have chosen dMAX to be 0.15 an
u = 1.5 in my experiments.

Sum of influences on single point cannot be bigger than one. Therefore I use
conditional normalising to fix this issue:

wNi,j =


wi,j∑
i

wi,j
if
∑
i

wi,j > 1

wi,j if
∑
i

wi,j ≤ 1

These formula work even for feature points itself, therefore j can be iterated
through entire parametric mesh.

We then calculate adjusted position of
−→̃
xj

P using formula

−→̃
xj

P = −→xj P +
∑
i∈FP

wNi,j ×−→si (4.27)

where FP denotes set of feature points and −→si if shift of i-th feature point.

This way parametrisation is smoothly adjusted to be registered with other input
meshes. However there still might be some overlaps, so new relaxation process is
then run according to description in Chapter 4.5.3.

This was supposed to result in smooth parametrisation after few iterations only
(see Figure 5.14d). There are more measurements and pictures on this topic to
be seen in later Section 5.4.2.

In some cases, even this approach might not be robust enough to produce valid
parametrisation without overlaps. In this case, I suggest further improvement by
iterative distribution of registration adjustment shifts.

In this scenario, total shift of each feature point −→si is divided into several, e.g.
10, parts. Then each minor shift −→s i,k is distributed among mesh using same
approach as described above. Relaxation is then run between each distribution
step. Therefore there are much smaller parametrisation errors to be fixed by the
relaxation mechanism.

Evaluation of effects of this modification are also discussed in later measurement
Chapter 5.4.2.
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4.6 Multi-morphing of meshes with reliability

maps

At this stage, we have three data sets available. The input meshes with all
topological problems solved in Section 4.2 and mutually aligned parametrisations
produced in Section 3.2 are the first two. Third input is set of reliability weight
vectors for mesh triangles that was secondary product of mesh refinement process
in 4.2.

We will now use these data to morph all input meshes together while preferring
original input data and suppressing regions created during refinement hole filling
step (see algorithm C.5). This way we will combine features of all individual
meshes and get one single new mesh. It will also be the final output of the
algorithm.

The basic meshing idea was described in theoretical Chapter 3.1 and was mainly
inspired by thesis [20]. It consists of three basic steps:

1. Select supermesh among input meshes that will me transformed and re-
turned as the final result. Described in Section 4.6.1.

2. Find barycentric coordinates of each vertex in parametrisation of the su-
permesh in parametrisations of other meshes. This gives bijective mapping
from supermesh to other meshes. More in Section 4.6.2.

3. Use these coordinates to reconstruct the supermesh vertex but replace the
parametric domains with the original meshes now. This gives us target
points on surface of other meshes that are paired with vertex of supermesh.
Described in 4.6.3.

4. Combine those reconstructed point using linear combination to get new
position for supermesh vertex. Section 4.6.3.

The output is therefore supermesh with vertex coordinates multi-morphed from
surfaces of other meshes. The supermesh is considered to be copy of selected
input mesh, therefore it also remains in the ”other” mesh set.

4.6.1 Choice of supermesh

First of all, supermesh has to be chosen. Supermesh is term used in thesis [20]
and also in theoretical Chapter 3.1 of this document. Regardless of its origin, it
describes the mesh graph that is being morphed to various target shapes. If we
want good quality of output mesh we have to use good supermesh.
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First way how to get a supermesh is usage one of the original input meshes. The
second is construction of special mesh using one or more input meshes at once.
This was described in Section 3.3.

I decided that the input meshes have enough vertices and edges compared to the
complexity of object, because the models have relatively low amount of features
and if so, they are shared, so no flat region should be morphed to large peak.
Hence there is no need to create supermesh for better description of various
target shapes. However if we wanted to improve quality of results, this might be
a possible spot for extension.

I assume that all input meshes are reasonably good if we speak about usual
metrics like triangle shapes or vertex density distributions. Therefore there are
only two differences between them. First one is size of input mesh in number
of vertices. We can expect larger mesh to be more likely to fit shape of other
mesh after morphing as there is better chance of finding available supermesh
vertex for description of local feature. Also some inputs in the very beginning
could have more artifacts then the others. Removing artifacts could worsen the
topology quality in the major step 2. Therefore mesh with less added triangles
is preferred.

Put together, I pick the mesh XS to be supermesh if

∑
t∈TXS

rS,t = max k

∑
t∈TXk

rk,t

 (4.28)

where TXk
is set of triangles of k-th mesh and rk,t is reliability weight of t-th

triangle. In Section 4.2.4 it was stated to be 1 for original input triangles and 0
for triangles added during hole filling.

This effectively chooses meshes with most original triangles in absolute count.
Such mesh does not have to be perfect and it might even contain more removed
artifacts than some smaller mesh. These patched areas will however be replaced
in the interpolation phase of morphing.

4.6.2 Barycentric coordinates on spherical domain

Now parametrisation of the supermesh must be expressed in surface space of

parametrisations of other meshes. Barycentric coordinates
−→
Λi = (λ0, λ1, λ2) are

used to express coordinate of each supermesh parametrisation vertex −→si P using

barycentric coordinates in the triangle
−→
T = (a, b, c) of mesh Xk in which −→si P lies

when both parametric spheres are aligned to same centre:
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−→si P = λ0 · −→x P
k,a + λ1 · −→x P

k,b + λ2 · −→x P
k,c (4.29)

If we treated parametrisations like triangular meshes in traditional way, then
barycentric coordinates of point −→p inside triangle −→xa, −→xb , −→xc would be found by
solving equation

−→p = λ0 · −→xa + λ1 · −→xb + λ2 · −→xc

−→p =
[ −→xa −→xb −→xc ] ·

 λ0
λ1
λ2


−→p =

 xa,0 xb,0 xc,0
xa,1 xb,1 xc,1
xa,2 xb,2 xc,2

 ·
 λ0
λ1
λ2


This is non-homogenous matrix equation that has single solution if the triangle
does not have zero area and if the point −→p lies in the plane of triangle. This is
however not true on the spherical domain. The triangles are not flat here. Their
edges are not lines but parts of great circle. Therefore points on their surfaces
do not lie on plane determined by their three points (see Figure 4.21).

Figure 4.21: Difference (red) between spherical triangle (blue) and planar triangle
(grey) when barycentric coordinates of point on sphere (green) are calculated.

Therefore usage of planar barycentric relations will cause points to be evaluated
lying outside of the triangle. We might add some tolerance to the test, but
the error will get larger with size of triangle. Thesis of Ing. Parus Ph.D. [20]
suggests normalisation of barycentric coordinates gained for planar triangle to get
barycentric coordinates in spherical triangles and points on unit sphere domain:

−→
Λ S =

−→
Λ · 1

λ0 + λ1 + λ2
(4.30)
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I tested this approach and results in Section 5.5.1 shows that this fixes the al-
gorithm so that correct barycentric coordinates inside single unique spherical
triangle is found for each vertex of supermesh parametrisation.

From time complexity point of view, each point of supermesh is tested against
each triangle of each other mesh to find the spherical triangle where it lies and
appropriate barycentric coordinates. This then leads to quadratic complexity
O(M · N2) if M is number of inputs, all inputs have similar vertex size N and
number of triangles is linear in vertex count.

This might be a lot for large meshes and therefore some smarter approach to find
triangle for point could be used. The coordinates on spherical domain are 2D
thanks to the locked unit radius, so quad-tree or 2D grid can be used to speed
up triangle location instead of 3D structures possibly gaining larger speed up.

If we use one of the inputs as the supermesh, then we can easily find triangles
and barycentric coordinates in the same mesh as (1, 0, 0). This allows unified
implementation of later steps. As there are always at least three triangles sharing
each point in closed mesh, I pick the one with highest reliability. This prevents the
vertex to be disabled in interpolation process if some of its triangles is unreliable.

4.6.3 Interpolation in AMS

Now we have spherical barycentric coordinates
−→
Λ S
i,k for each parametric vertex

of supermesh −→si P and each mesh k along with identifications of respective other
mesh triangles.

For each mesh k, the parametric vertices of triangle
−→
T = (a, b, c) can now be re-

placed by original mesh vertices −→x k,a,
−→x k,b,

−→x k,c. This will give us approximation
of local surface by supermesh vertex −→si :

−→s i,k =
−→
Λ S
i,k · (−→x k,a,

−→x k,b,
−→x k,c) (4.31)

The approximation is perfect at point −→si but the supermesh gets further from
surface Xk inside the supermesh triangles if some vertices of Xk are not covered
by supermesh vertex (see Figure 4.22).

This is the reason for picking the largest mesh for supermesh and why construc-
tion of even richer mesh could improve results.

This way we get approximations of surfaces of all input meshes using supermesh
vertices −→si as sets of vertices −→s i,k for mesh k.

Each such projection of point −→si to mesh k then represents reference point in
Affine Morphing Space (AMS ) as stated in [20] and explained in Section 3.6.2.
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Figure 4.22: Limit approximation of target mesh (green) by supermesh (blue).
Approximation error (red) is zero at supermesh vertices but increases in the
middle of its triangles.

It means that we now have set of points −→si and we can use morphing weights
as barycentric coordinates inside. This way we calculate linear interpolation
between them provided that sum of barycentric coordinates is 1.

If no additional information was provided, we would pick the middle point in this
space as final output using uniform linear coefficients w0 = w1 = ... = wM = 1

M

where M is number of inputs.

However this is where the reliability weights of input mesh triangles come to play.
I build the interpolation coordinates from the reliability of triangles Tk, j where
the projection of supermesh parametric vertex −→s Pi,k was found to lie in individual
meshes Xj. Therefore if triangle Tk, j was untouched by artifact removal process,
the initial linear coordinate li,k will be 1. If this was added while filling holes it
will have zero and will not influence the result.

The final weights are then normalised to add up to 1 as the extrapolation is not
desired.

Only one special case must be handled. It might happen that all projections lie
in added triangles with zero reliability. Then uniform coordinates are used again
giving unreliable results as there is no more information to use.

Put together, linear coordinate li,k of final output vertex −→ri in AMS for k-th
projection of supermesh vertex −→si are given using:

li,k =



rk,Tk
M∑
h

rh,Th

if
M∑
h

rh,Th > 0

1
M

if
M∑
h

rh,Th = 0

where Tk is triangle of mesh k where the supermesh vertex projection lies in and
rk,Tk is its reliability. M is number of inputs.
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i-th vertex −→ri of output mesh can be found using these linear coefficients li,k and
AMS determined by vertices −→s i,k:

−→ri =
M∑
k

li,k · −→s i,k (4.32)

Final result is mesh R with vertex coordinates −→ri and topology described by
supermesh S. It is a mesh that combines features of all input meshes. Its shape
should be mix of their shapes. However the Figure 4.23 shows that it is not
always true.

Figure 4.23: Output of multi-morphing step as step 5 of spherical domain version
of the method applied to femur bone.

4.7 Direct on-mesh alternative for morphing

Now we will get to the other variant of the main algorithm. As far we spoke about
spherical domain morphing, but now we will discuss direct on-mesh alternative as
was mentioned in the very beginning of Chapter 4. Therefore, this section does
not continue from the previous one, but completely replaces steps in Sections 4.5
and 4.6 instead. It directly continues where the Section 4.4 ended. Therefore
no parametrisation is needed and the morphing is done on non-rigidly aligned
meshes instead.

Morphing using parametrisation on spherical domain works well if the parametri-
sation step was able to produce valid parametrisation without triangle overlaps
and at the same time preserve mutual registrations of features in all meshes.
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However as experiments in Chapter 5.4.3 show, it is often not easy to provide
both valid and mutually aligned parametrisation. This then causes the product
of morphing to be visually invalid and distorted (see Figure 4.17).

Although I have put large portion of my effort into attempts to solve this problem
conventionally on the spherical domain, it seems that it might not be possible or
efficient. I was not even able to find any solution as all earlier discussed methods
simply assumed that no such problems will occur.

One possible solution for misalignment of parametrisations would be their merge
to get rich supermesh candidate that would be able to preserve all details in
interpolation extremes. However the long distances between extreme poses would
anyway inevitably cause shape corruption in all inner morphing phases.

Therefore I have come with completely different morphing schema that can be
used if spherical parametrisation fails.

I exploited the fact that non-rigid ICP method gave us well aligned models and
I simply skipped projection to sphere phase and used those models directly as
parametric domains.

This means that no parametrisation step has to be done at all.

Supermesh is once again chosen to be the most reliable of parametric domains,
this time of deformed meshes X̃k.

Of course there still are some minor differences between the outliers of individual
deformed models. However they should be now small enough so that for each
vertex −→si of supermesh S it is possible to find its counter pair point on the surface
of other mesh X̃k by minimisation of their mutual distances.

This means that for each vertex−→si and each of deformed input meshes X̃k, nearest
point −→s i,k is found as nearest point on nearest triangle Ti,k:

Ti,k = arg min
Tj∈X̃k

distance(−→s i, Tj) (4.33)

Distance of point to triangle can be determined by distance to its plane ρ if
point’s perpendicular projection −→x ρ falls into the area of triangle or distance to
nearest edge of triangle otherwise:

distance(−→x , T ) =

{
|−→x −−→x ρ| if −→x ρinsideT

minei∈T distance(
−→x , ei) otherwise

General barycentric coordinates in 3D discussed in 4.6.2 can be used to test
mutual position of point and triangle directly in 3D space. Rotation of all points
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to plane of any two standard axes and usage of 2D barycentric coordinates is
second alternative.

Distance of point to edge of triangle is told by distance of perpendicular projection

of point −→x e to its line if the projection lies between end points
−→
A and

−→
B or

distance to the nearer one of them otherwise:

distance(−→x , e) =

{
|−→x −−→x e| if −→x wbetween

−→
Aand

−→
B

min−→p ∈{−→A,−→B} |
−→x −−→p | otherwise

Then I use nearest triangle Ti,k and its nearest point to find its barycentric coordi-

nates
−→
Λ i,k. Barycentric coordinates also helps to distinguish 3 possible outcomes

shown above:

1. max
−→
Λ i,k = 1 - nearest point is vertex of X̃k

2. min
−→
Λ i,k = 0 - nearest point lies on edge of X̃k

3. otherwise - nearest point lies inside of triangle of X̃k

This helps to improve the guess of projection triangle reliability. If the nearest
point is vertex of X̃k, we can pick any of its triangles to be used as source
triangle for barycentric coordinates. We will therefore pick the one with highest
reliability weight. Similarly with nearest point on edge, we can pick the most
reliable triangle of edge.

This makes sure that the mesh X̃k will have influence on target position of −→si
through its nearest point −→s i,k.
The same improvement could also be applied on previously discussed spherical
parametrisation morphing.

I also added similar restriction to nearest triangle search as in non-rigid ICP
step. I enforce the nearest triangle j to have normal angle difference compared
to morphed point’s normal i not higher than 90 degrees:

−→ni · −→nj ≥ 0

This once again prevents false target surface pick in thin mesh surface areas (see
Figure 4.24).

As we now have triangle and barycentric coordinates
−→
Λ i,k for each supermesh

vertex −→si and each mesh X̃k, we can go back to Chapter 4.6.3 and proceed with
interpolation as all following steps are identical.
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(a) Normal check OFF (b) Normal check ON

Figure 4.24: Influence of normal check in nearest triangle search in direct mor-
phing. See the hole in the flat area of Iliacus muscle on left image. The opposite
surface would be evaluated closer than the correct one if no restriction was used.

The only difference is therefore in change of spherical parametric domain to non-
rigidly aligned deformed input meshes and thus change of spherical barycentric
coordinates to general 3D barycentric coordinates for nearest point in nearest
triangle on the target domain (see algorithms C.5 and C.6 for comparison).

The coordinates used for morphing are still being read from original non-deformed
input meshes so no information was lost prior to morphing. The deformed and
non-rigidly aligned meshes were only used as source of mutual surface positions.
In another words they create navigation maps to find sources of coordinates for
the morphing.

Finally, the supermesh is again morphed so that it combines features of all input
meshes. As the Figure 4.25 shows, the similarity is now significantly improved.
The results are discussed and compared with spherical domain approach in Chap-
ter 5.5.2.
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Figure 4.25: Output of multi-morphing step as step 4 of direct on-mesh version
of the method applied to femur bone.
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4.8 Summary

4.8.1 Overview

I have provided detailed description of two versions of an algorithm that is able
to take several various meshes with possible non-manifold artifacts or small holes
on the input and produce one closed mesh without non-manifolds on the output
that is an approximation of shapes of all.

The algorithm flow is described in Figure 4.1 for the version with spherical para-
metric domains and on 4.2 for version with direct on-mesh morphing. Main steps
of algorithms are summarised in algorithms 4.1 and 4.2. Individual steps are then
described more in referenced sub-algorithms published in appendix C.

Algorithm 4.1 Complete overview of algorithm with spherical parametric do-
main

1: Remove non-manifolds and fill holes {more in alg. C.1}
2: Align meshes using PCA {more in alg. C.2}
3: Align meshes non-rigidly using modified ICP {more in alg. C.3}
4: Find spherical parametrisations {more in alg. C.4}
5: Multi-morph meshes using parametrisations {more in alg. C.5}

Algorithm 4.2 Complete overview of algorithm with direct on-mesh parametri-
sation

1: Remove non-manifolds and fill holes {more in alg. C.1}
2: Align meshes using PCA {more in alg. C.2}
3: Align meshes non-rigidly using deformation by modified ICP {more in alg.

C.3}
4: Multi-morph meshes directly using non-rigidly aligned models {more in alg.

C.6}

4.8.2 Asymptotic analysis

Analysis shows that all elementary steps are linear in number of mesh inputs M
and linear or quadratic in size of individual meshes N . Registration on vertex
to vertex or vertex to triangle base is usually reason for quadratic behaviour. In
second case, I assume the number of triangles to be linear to number of vertices
for purpose of this analysis which is valid for genus 0 closed surface meshes. I
also assume all meshes to have the same size N .
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Mesh refinement step

Artifact removal is run for M meshes. Then removing edges is linear in number
of edges. Although in general there are N2 edges in a graph of N points, we
can state that there are only O(N) edges in each mesh after we agreed on O(N)
triangle limit. Therefore non-manifold edges are removed in O(N) steps.

Similar applies to vertex neighbour tests in vertex filtering sub-step. Again,
general node in graph has O(N) neighbours but we can expect that it there will
be some constant boundary in usual surface meshes, although exceptions might
be found like central vertex of cone model. Nevertheless, let each vertex be
processed in O(1) leaving complete mesh be processed in O(N).

Finding mesh components for solitary mesh part detection then requires O(E)
steps where E is number of edges. We already stated E = O(N) hence this step
is also linear O(N).

Last part is mesh hole filling. Ready to use implementation of VTK was used
and it does not state the complexity. However we can assume that at least
O(E) ∼ O(N) steps are required that finds the holes. Than size and number
of holes influence final complexity. Let’s assume that are only few small holes
relative to N so that hole filling step can be left with O(N) total complexity.

This way the complete mesh refinement step is done in O(M ·N) time.

Initial registration step

The mesh alignment step is set of M − 1 alignment processes. Each consists
of O(N) main axes calculation and 4 O(N2) error distance calculations. This
can however be reduced by smarter data structure like kd-tree or uniform grid.
If binary search is applied, the final complexity is O(N logN). Therefore final
complexity of alignment step is O(M ·N2) with simple implementation or O(M ·
N logN) with optimised structures.

Non-rigid alignment step

Then non-rigid ICP deformation step is problematic as it contains iterative pro-
cess with undetermined number of iterations.

For each of M meshes feature points are chosen based on N . However there is
a constant limit for the size of selection and therefore only c0 points are chosen.
Each pick then follows selection of points in neighbourhood.

It involves constant number of iterations each picking neighbourhoods of points
from previous iteration. We already stated that each point can only have constant



74

maximum number of neighbours. This means that each neighbourhood is created
in O(c1 · c2) ∼ O(1) steps.

Then ICP for each region consists of unknown number of iterations. However
thanks to the iteration limit there is some c3 that bounds the complexity so that
ICP is done in c3 ·Oiter.

Each iteration contains finding nearest points for c1 points in region. This can
again be done in O(c1 · N) using brute force or O(c1 logN) using binary search
structures.

Then c0 deformations are distributed to mesh using O(N) algorithm.

To sum it up, the final complexity for single mesh is O(c0 ·(c1 ·c2+·c3 ·Oiter)) which
then determines complexity of steps to be O(M ·N) or O(M · logN) depending
on the implementation. However in practise, left out constants are very large
and therefore this step takes same or more time than the others for usual meshes
with few thousands vertices (see Chapter 5.6.2 for details).

Spherical parametrisation step

Parametrisation consists of coarse mesh hierarchy construction and individual
relaxation iterative processes.

For of M meshes O(log2N) coarse meshes are constructed. Each of them has
O(N) vertices. Calculation of Mean value coordinates then requiresO(Ni·Ni+1) ∼
O(N2) operations. Same complexity applies to reconstruction of higher mesh
later on.

Hence cascade hierarchy construction has O(N2 · logN) complexity.

It might however be possible to further optimise MVC calculations using above
described space search structures if only close triangles would be allowed to be
evaluated although it’s not used in original source article [24]. This might reduce
total complexity to O(N · log2N) but might require some more adjustments. It
would also mean that mesh reconstruction using MVC would have to be improved
to fit new complexity boundary. This might not be possible so I stick with the
higher guess.

Then for each coarse mesh iterative relaxation is run. It consists of maximum c
iterations where c is up to 10 000. Each iteration is linear in number of vertices
and their neighbours. We have already stated that each vertex has only constant
number of neighbours and therefore each iteration is O(N). This then leaves
relaxation process to have complexity of O(N). The relaxation is run on each
cascade level, hence it adds O(N · logN) calculations.

The final parametrisation cost is then M ·O(N2 · logN) +O(N · logN) ∼ O(M ·
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N2 · logN).

If the cascade schema is omitted, the complexity is reduced only to cost of pro-
jection and relaxation which makes it O(N) total when ignoring relatively high
iteration count constant c.

If the direct morphing alternative was used then parametrisation step would be
skipped.

Multi-morphing step

In multi-morphing phase, supermesh is picked based on sum of reliability weights
in O(M · N) time. Then each of N supermesh’s vertices is calculated using
barycentric coordinates in M − 1 other meshes.

For each such vertex and mesh, barycentric coordinates of parametric image in
parametrisation of other mesh has to be found. That includes testing of O(N)
triangles according to former agreement that number of triangles is linear to
number of vertices. Again, special structures can be used to reduce this search
to O(logN). Other calculations are then performed in constant time.

If the direct morphing approach was used, then all steps would be analogous and
identical in terms of asymptotic analysis. Same applies to possible data structure
based enhancement.

Therefore total cost if multi-morphing is expressed asO(M ·N2) orO(M ·N ·logN)
depending on data structure used.

Summary

If we sum all individual complexities for spherical parametrisation version we get

O(M ·N) +O(M ·N2) +O(M ·N)+

O(M ·N2 · logN) +O(M ·N2) ∼ O(M · N2 · log N) (4.34)

or

O(M ·N) +O(M ·N logN) +O(M · logN)+

O(M ·N2 · logN) +O(M ·N · logN) ∼ O(M · N2 · log N) (4.35)

depending on data structure used to search nearest points and triangles of mesh
in 3D-space.
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However as can be seen, the final complexity O(M ·N2 · logN) in case of cascade
schema spherical parametrisation is same for both brute force and binary search
implementation as it is determined by the MVC calculation and later reconstruc-
tion part of parametrisation step. If we were able to optimise this, we could hope
to get O(M ·N · log2N) instead.

If direct morphing on mesh domain technique was used then no parametrisation
would be needed saving us the most costly part of pipeline and giving the final
time complexity as O(M · N2) or O(M · N logN) in the case of effective data
structures for search of points in triangle meshes.

Once again I have to emphasise that this estimations are only valid if the as-
sumptions made are maintained. Those were that both number of triangles and
number of edges of the mesh is linear to number of vertices and degree of each
vertex is limited by some constant independent on mesh size. These properties
were observed on real data and are likely to be maintained by any reasonable
closed genus 0 triangular surface mesh, but they are not at all valid for general
graph where number of edges can be O(N2) and degree of all vertices O(N).
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Chapter 5

Results

5.1 Implementation

I implemented the method described in Chapter 4 using the integrated develop-
ment environment Microsoft Visual Studio 2010 Ultimate x64 and programming
language C++.

I have divided the solution to two parts. The first one in project MeshReg-
ister contains only the algorithm itself. It heavily uses VTK framework (see
Section B.1.2) for data structure, their manipulation and processing. The main
class implementing the algorithm vtkMeshRegister is inherited from abstract class
vtkPolyDataAlgorithm so it can be used by other SW as a standard VTK filter.
The main ”component” relations can be seen on schematic Figure 5.1.

Figure 5.1: Schema of application parts and dependencies. The orange blocks are
my projects. Red block is integrated code. Other blocks are independent public
frameworks.

The rest of implementation is in project MeshRegisterGUI. It contains the GUI
that allows to control the application, specify inputs and observe and store out-
puts. There were two major reasons for such division. First, it makes it easier
to move only the filter to another application. Second, it uses Qt framework for
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user interface (see B.1.1). It is a huge package of several hundred megabytes that
has to be downloaded and compiled 1. Therefore I aimed for isolation of filter
from its code to avoid possible dependencies.

More detail information about implementation can be found in Chapter B.2.
Description of application architecture and individual classes is then available in
Chapter B.3.

I also worked with Borland Delphi 7 IDE. I used it to modify the GUI only
parametrisation application Embedding3D of Ing. Parus Ph.D. (see B.1.4) to a
DLL library which can be called by my C++ code. For this reason I had to
renew my high-school knowledge of Pascal language as the original code was
provided in Delphi. I also created appropriate C++ code in class Embedding3D
for comfortable usage of DLL. I had to modify both interface method of the
library as well as the logic to provide access to parametrisation method and
enable possibility to specify my own centre of projection.

Almost all code is platform independent. That includes VTK and Qt libraries.
Only time measurement in MyTimer and DLL loading in Embedding3D uses Win-
dows API. The first one could easily be modified and the second fully removed.
However cross-platform portability was not a goal.

The testing during development and in the final phase was done using data pro-
vided by my supervisor. They consisted from both latest already filtered data
and former corrupted data I used for my bachelor thesis.

The meshes itself were processed data from medical scanners and three different
sources. I did most of the development phase using Femur bone as it provides
distinctive shape and smooth surface, so it is easy to observe effects of modifica-
tions.

I did not have an alternative for my work as a reference solution, so I run only
partial comparisons of parametrisation and non-rigid alignment phase. I used
combination of ready to use implementations available and my own reimplemen-
tations based on article descriptions.

5.2 Experimental setup

I have run various experiments using input sets with both manifold and non-
manifold meshes. Data were provided by supervisor.

Manifold only data sets:

1There is a binary version of Qt available. However it supported only Visual Studio of version
2008 when I started implementation. Therefore compilation from source code is required for
proper integration with Visual Studio 2010.
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• Femur bone ... three models, two with 2 502 vertices one with 42 502
vertices

• Iliacus muscle ... two models, one with 3 248, second with 3 978 vertices

• Sartorius muscle ... three models, 2 390, 9 004 and 4 956 vertices

Non-manifold and mixed data sets:

• Femur bone ... two smaller models from manifold set modified using my
vtkDamage filter to randomly add 51 and 25 non-manifold edges, 146 and
73 non-manifold vertices, 92 and 53 holes2 an 14 isolated components each.
The results are total vertex counts 2 698 and 2 629.

• Sartorius muscle ... one manifold model from manifold set with 9 004
vertices and one non-manifold model 1.1 from my bachelor work [13] with
9 001 vertices, 2 non-manifold edges and 11 isolated components.

I have used both artificially and naturally damaged meshes as I did not find
suitable natural candidate that would have all artifacts I needed for all tests.

The tests were run on consumer PC with quad core CPU Intel Core i7 2600K at
3.5GHz with Hyper-Threading, 16 GB of dual channel 1600 MHz DDR-III RAM
and Windows 7 x64 OS. GPU acceleration using CrossFire configuration of two
AMD Radeon HD 6870 1GB graphic cards were used in standard VTK ’s OpenGL
based renderer and in one reference implementation of spherical parametrisation
used in tests [2].

5.3 Alignment

5.3.1 Alignment using original and course mesh

I measured accuracy of PCA based alignment with full size and coarse mesh with
300 vertices. The coarse mesh here is the outer hull gained using filter described
in Section B.1.3. Example of such outer hull can be seen in Figure B.5.

The Table 5.2 presents measured times and distances between meshes. The dis-
tance error was measured on point-to-point basis and denotes average value for
multiple inputs.

2Counting holes in non-manifold mesh is not precise as there is no definition what is inside
and what outside. The hole removal process relies on fixing of non-manifolds first.
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Figure 5.2: Comparison of initial alignment precision and execution time based
on working mesh used. ”+coarse” time includes coarse mesh construction. Errors
are always measured on the final full size mesh for the purpose of the test.

As the results show, there is no measurable difference between alignment on full-
size mesh and coarse mesh. The coarse mesh is used only to accelerate the PCA
and it seems to have enough information to describe direction trend so the error
calculated on the full size mesh after the alignment is finished does not differ
from the full mesh approach. However the execution times differ a lot as no
acceleration data structure was used. Figure 5.3 confirms this result visually as
there is no difference observable.

(a) On coarse mesh (b) On full size mesh

Figure 5.3: Three Sartorius muscle models aligned using PCA on coarse and
full-size mesh.

The conclusion here is that usage of coarse mesh is reasonable and does not bring
any measurable loss of accuracy while saving significant execution time (O(N2)
without optimisation).
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5.3.2 Region selection in ICP

I have compared the original proposal of region points selection from [5] and my
own modification based on 3-neighbourhood. The goal was to find a method that
better describes local shape of mesh.

Figures 4.10 and 4.11 compare selection of points used for region.

Figure 5.4 then compares final alignments gained from ICP run on both selections
of region for the same centre vertex in head of femur bone.

(a) Based on [5] (b) 3-neighbourhood

Figure 5.4: Final transformation of source mesh (yellow) to target mesh (white)
according to local ICP result for region (purple) of single feature point (green)
on bone’s head. Various region sampling mechanisms.

It is clear that the 3-neighbourhood better describes the local shape and gains
closer local alignment.

5.3.3 Alignment comparison

I have compared final alignment quality and also execution times of PCA, rigid
ICP and non-rigid ICP with both region selection methods. Method ”A” denotes
region selection based on [5], method ”B” my proposal of 3-neighbourhood. I have
measured the distance of meshes after alignment to evaluate alignment quality.
I have used two smaller models of Femur bone from manifold input set for this
experiment. Hence both inputs have 2 502 vertices.

Table 5.5 summarises average values gained. Times for ICP based methods do
not include preprocessing by PCA. Non-rigid ICP ”A” uses 150 regions with
100 vertices each. Version ”B” uses 500 regions with variable number of vertices
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depending on 3-neighbourhood size. I assume that total number of vertices used
in comparison is in both cases approximately 1 500. However it seems, that
adding more regions to the method ”A” does not significantly reduce the final
error.

Figure 5.5: Comparison of various alignment methods. Error measured as average
distance between nearest points taken from both perspectives.

Results proves 3-neighbourhood (noted as non-rigid method ”B”) to be globally
more successful strategy. Hence I use this approach in rest of measurements.

Figures 5.6 and 5.7 further document this fact by direct comparison of alignment
in complicated regions of mesh.

Although increasing number of feature point regions for non-rigid ICP improves
local alignment, using all points of original mesh as is demonstrated in Figure
5.8 causes distortion as no interpolation is then possible in deformation step and
therefore sharp changes occur. Therefore we always use only 10% but at most
500 feature vertices to create ICP regions.

5.4 Parametrisation

5.4.1 Initial spherical parametrisation

This section contains results of experiments with spherical parametrisation run on
a single mesh only. The goal of this was to find the best spherical parametrisation
strategy which will be later extended to multi-mesh setup.

I have used the high-resolution 42 501 vertices model of femur bone from manifold
input set. It provides good challenge for all tested parametrisation techniques
because they tend to fail in producing valid parametrisation although the mesh
contains visually good topology and no artifacts. Figure 5.9 demonstrates both
original bone and initial parametrisation given by projection to sphere.
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(a) PCA (b) Rigid ICP

(c) Non-rigid ICP ”A” (d) Non-rigid ICP ”B”

Figure 5.6: Comparison of various methods for alignment source mesh (red) to
target mesh (blue). Bottom head of Femur bone.
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(a) PCA (b) Rigid ICP

(c) Non-rigid ICP ”A” (d) Non-rigid ICP ”B”

Figure 5.7: Comparison of various methods for alignment source mesh (red) to
target mesh (blue). Top head of Femur bone.

Figure 5.8: Result of non-rigid ICP alignment with all mesh points used as feature
points. Self intersections visible in vertical line of central part.
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(a) Femur bone (b) Spherical projection

Figure 5.9: Original femur bone model with 42 501 vertices and its spherical
projection with overlap highlighted in red.

Relaxation method comparison

Various methods of spherical parametrisation were discussed in theoretical chap-
ters 3 and 4. First one was Alexa’s relaxation scheme described in 3.2 based on
[1] (noted as Ale00 ). The similar relaxation scheme was described in 3.5 based
on [27] (noted as Zhu09 ). I have tested them with both isolated iteration and
in-place modification where results of current iteration can affect later processed
parametric vertices in current iteration.

I have also tested the implementation of Parus (more in B.1.4) which I used for
reference during implementation. However I was able to get identical results after
debugging phase and therefore results of these measurements are fully represented
by my C++ re-implementation.

To add some independent solution, I also tested parametrisation method de-
scribed in [2] which I was able to obtain implemented (noted as Ath11 ). It
introduces performance improvements and most importantly OpenCL implemen-
tation on GPU. Therefore the time results are not comparable with rest of my
own CPU based implementations.

I have provided all my implementations with fully sufficient number of relaxation
iterations set to 10 000. Changes with higher number of iterations are minimal.
The goal was not to find fastest solution. The quality of parametrisation was
main criteria instead. It was estimated using error function 4.15 based on area
of flipped triangles. Results are summarised in Table 5.10.
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Figure 5.10: Comparison of various parametrisation methods applied on single
Femur bone mesh with 42 502 vertices.

As expected, no method was able to achieve perfect parametrisation without any
overlapping triangles. This is weakness of relaxation method because the mesh is
genus 0 and not that far from being star shaped. Hence perfect parametrisation
is achievable for sure. The article [22] shows that this behaviour is common for
iterative Gauss-Seidel based relaxation method as they become unstable after
critical amount of iterations.

The differences in error size are not that important in practise as they are all
wrong and will cause errors in morphing phase. Figure 5.11 shows details of the
problematic regions Femur bone heads.

(a) Spherical projection (b) ALE00 (c) ALE00 in-place

(d) ZHU09 (e) ZHU09 in-place (f) ATH11

Figure 5.11: Comparison of mesh quality from various parametrisation methods.
Detail look to mesh of Femur bone head where overlap regions exist (red).
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The overlap regions emerge when group of vertices degenerates to single point.
This then prevents neighbourhood shift to have significant effect and the relax-
ation slows down.

I decided to use Ale00 as base for improvements because it generates more con-
sistent overlap regions than Zhu09. The worse performance of Ale00 is caused
by algebraically more complicated relaxation formula. Ath11 was not considered
as choice because it is more complicated, harder to modify and does not seem to
provide other benefits than the performance given by GPU implementation.

Influence of iteration count

I have further experimented with Alexa’s relaxation schema with in-place modi-
fication. I have measured the residual error dependence on iteration count.

Table 5.12 shows that after fast initial phase, the relaxation process slows down
and perfect state is never achieved. Adding even more iterations additionally
causes some meshes to collapse. This is explained in [22] as attribute of Gauss-
Seidel based methods. Usage of more than 10 000 iterations is therefore both
ineffective and dangerous.

Figure 5.12: Influence of iteration count on residual error of Alexa’s spherical
parametrisation [1] measured by flipped triangle surface error function.

Influence of step size

I have also made measurements of influence of additional multiplication coefficient
added to position change in relaxation of each vertex in equation 4.18.

Values under 1 makes the process slower while values above 1 use extrapolation
to achieve larger correction shifts.

I have used 1 000 iterations only to make differences more significant.
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Results in Table 5.13 seem to recommend the coefficient of 1.75 as ideal value.
However results for coefficient 3.0 make warning that this improvement might be
very unstable. This is then proven when coefficient 1.75 is applied with 10 000
iterations. It immediately fails to provide good parametrisation and exits with
residual error of 0.02496 which is clearly more than with default coefficient 1.00
in previous Section which achieved residual error 0.00062. Optimal length of step
may be also influenced by other parameters including size of mesh triangles and
uniformity of their density distribution. I therefore do not recommend adding
any additional coefficient for general usage without previous adaptation to specific
input meshes.

Figure 5.13: Influence of additional coefficient in relaxation step on residual error
of Alexa’s spherical parametrisation [1] measured by flipped triangle surface error
function.

5.4.2 Spherical parametrisation adjustment distribution

Figure 5.14a presents alignment error in parametrisation of two meshes of reduced
Femur bone models with 300 vertices each for better orientation in image. The
red and blue vertices are chosen as matching feature points and should lie on the
same place.

Zhu and Pang [27] suggest moving both feature points to normalised average
position which causes overlaps in the mesh (Figure 5.14b). They use relaxation
schema to fix this problem with one modification - feature vertices are locked
and not relaxed at all. However Figure 5.14c shows that even 10 000 iterations
of Alexa are not able to fix the problem. Furthermore it propagates the error to
the rest of the mesh and even larger overlaps emerge.

My combined interpolation based shift and relaxation schema, which was de-
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(a) Start state (b) Direct shift

(c) Direct shift + relaxation (d) Interpolated shift + relaxation

Figure 5.14: Alignment of pair of feature points (red and blue) on spherical
parametrisations of two meshes reduced to 300 vertices (dark and light grey).
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scribed in detail in Chapter 4.5.4, is able to provide aligned and valid parametri-
sation with only tens of iterations per shift (Figure 5.14d).

However the situation changes with bigger meshes where overlaps start to remain
unfixed in dense areas of the parametric mesh (see Figure 5.15). I use smaller sub-
shifts to reduce the problem, but it still persists. This problem is yet unresolved.

Figure 5.15: Problem with shift and relaxation of feature point alignment in
dense areas of high-polygonal meshes.

5.4.3 Cascade spherical parametrisation

Section 5.4.1 shows that some meshes, especially those with higher number of
vertices, tend to produce invalid parametrisation with overlapping triangles. To
fix this, I have designed cascade schema exploiting the observation that low res-
olution meshes usually perform much better.

I have used model of Femur bone with 10 000 vertices to compare cascade ap-
proach with direct parametrisation. The cascade solution used coarse meshes of
size 4 800, 2 400, 1 200, 600 and 300 to find parametrisations on lower levels and
propagate it back to higher.

Direct comparison in Figure 5.16 show that not even one approach is successful
in obtaining valid parametrisation.

Even worse, cascade mechanism leaves residual error 0.00016 which is even higher
than 0.0000356 with direct approach. Adding execution time penalty of 95 sec-
onds compared to 34 seconds and large memory consumption due to MVC ma-
trices storage, cascade schema shows to be wrong way of fixing the problem.

The reason for failure lies in the last steps of up propagation where parametrisa-
tion of large coarse mesh is interpolated to the original size mesh. The resulting
overlaps are unfortunately still too large and relaxation mechanism which is very
unreliable for large meshes fails.
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(a) Direct parametrisation (b) Cascade parametrisation

Figure 5.16: Comparison of spherical parametrisation output details in region of
Femur bone head on model reduced to 10 000 vertices.

The conclusion is that direct approach is preferred where applicable.

5.5 Morphing

5.5.1 Barycentric coordinates on sphere surface

I have made experiment to find out, how big error can cause calculation of
barycentric coordinates using planar method instead of spherical. I have used
two average sized meshes with 2 502 vertices where both small and large trian-
gles exists in parametrisation. I have taken all parametric vertices of first mesh
and found their barycentric coordinates on other mesh. I then used these coordi-
nates to reconstruct absolute coordinates of those points and measured distance
from their template. This is equivalent to morphing of parametric domains itself.

In optimal case, zero error should be obtained. The Table 5.17 summarises results.

It is obvious that the error is much smaller for spherical coordinates. The differ-
ence is so large that it would surely be observable in result of morphing. Even
bigger problem is that for some points no triangle can be found such that per-
pendicular projection falls into its area and its distance to the plane is within
limit.
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Figure 5.17: Comparison of calculation of barycentric coordinates on spherical
domain using spherical approach and planar simplification. Mesh with 2 502
vertices used.

5.5.2 Spherical and direct mesh domain comparison

Although I was unable to fully fix all problems with spherical parametrisation
discussed in 5.4.1, I decided to use meshes that have minimal smallest parametri-
sation problems and compare results of direct domain morphing with spherical
parametric domain.

I have used two smaller Femur bone models and two Iliacus muscle models as
their shape is relatively good for spherical parametrisation.

Figure 5.18 shows that even for such simple model, cascade parametrisation is not
able to produce valid results. The shape is heavily distorted and the situation is
even worse with cascade schema, that was already been proven to be inefficient.

The reason for peak at bone head can easily be found in Figure 5.19. The result
of spherical variant is significantly compressed and the parts that stays closer to
original position then creates such peak. This is result of long interpolation paths
discussed in chapter of 4.5.4.

The Iliacus muscle results seem better for spherical parametrisation if solid surface
is used for rendering, but wireframe render shows inner mesh problems caused by
misaligned parametrisations (Figure 5.20). Even worse results come from cascade
schema.

This all proves that valid, not overlapping parametrisation is vital for spherical
domain methods and if this is not possible to guarantee, especially when mutual
alignment of domains is added to the case, results are very poor.

The results of direct mesh morphing are on the other side satisfying and therefore
I will use it exclusively in rest of experiments.

Because direct morphing effectively skips one step of algorithm (parametrisation),
it is not a surprise, that measured execution times are on its side as well (see Table
in Figure 5.21).
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(a) Inputs after initial alignment (b) Spherical parametrisation

(c) Cascade spher. parametrisation (d) Direct morphing

Figure 5.18: Comparison of morphing of two Femur meshes (a) using various
parametric domains (b, c, d).
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Figure 5.19: Overlay of Femur bone morphing outputs from spherical parametri-
sation method (smaller) and direct morphing (larger).

5.6 Overall

5.6.1 Final results

In this chapter, I present and discuss outputs of the method for various input
meshes. All experiments were done using direct morphing version of the algo-
rithm.

Manifold inputs

Morphing of manifold Femur bones was easy as the non-rigid ICP was able to
produce very good alignment of parametric domains. Therefore the resulting
mesh has smooth shape without any visible problems (see Figure 5.22).

Although the alignment of much more varying meshes in Iliacus set is looser, the
result is still very good (see Figure D.1) thanks to normal direction constraint in
point-to-cell pairing mechanism of morphing.

Worse results were gained for thin and irregularly shaped models of Sartorius
muscle. When two more robust and less peaked meshes in Figure D.2 were
used, the results seemed good. However if all three meshes including the large
and jagged one was put on input, the resulting mesh seems to have problematic
regions on one pole. It maintains manifold edges but some parts are close self
intersections of surface (see Figure D.3).

The jagged shape in combination with high vertex count seems to cause problem
in local alignment as applied number of ICP regions (up to 5003) does not guar-

3Higher numbers of regions did not seem to improve alignment and caused higher chance of
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(a) Inputs after initial alignment (b) Spherical parametrisation

(c) Cascade spher. parametrisation (d) Direct morphing

Figure 5.20: Comparison of morphing of two Iliacus muscle meshes (a) using
various parametric domains (b, c, d).
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Figure 5.21: Execution times of complete algorithm using various domain for
morphing.

(a) Partially aligned inputs (b) Output of morphing

Figure 5.22: Output of morphing of three manifold Femur bone models.

antee precise enough alignment in such case. Laplace smoothing of such input
might help resolve this issue, but was not tested.

Non-manifold or combined inputs

Non-manifold Sartorius muscle model featured only 2 non-manifold edges, but
its thin shape and jagged outlier was potential source of problems. However using
robust model of the same muscle with almost none features, morphing was done
giving plausible output (see Figure D.4). The output keeps all small features of
the non-manifold model but consists of only manifold edges and vertices. Isolated
components were removed as well.

I used two artificially created damaged meshes of Femur bone to test morphing
of two non-manifold meshes. The initial result in Figure 5.23a shows noticeable

self-intersections in deformation phase of non-rigid ICP.
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displacements in areas where holes were filled and reliability weights were there-
fore zero. This caused usage of only one mesh and therefore sudden jump in the
surface.

(a) Refined input meshes with weights

(b) Refined input meshes without weights

(c) Non-rigidly aligned meshes with weights

Figure 5.23: Various approaches for multi-morphing of damaged meshes.

I propose two possible solutions. First, we could just abandon the idea of re-
liability weights and always interpolate between all input surfaces. The output
of such idea in Figure 5.23b presents that this produces smooth and bump free
surface. However it might be risky if there was larger a hole in some area of any
input. It might then cause the final mesh to be unnecessarily flattened in such
area unless you fill holes using a better method - see Section 4.2.4.

Therefore I suggest different solution that keeps reliability weights in action, but
reduces the jumps between them to minimum. Figure 5.23c shows that the surface
is much smoother if results of non-rigid ICP alignment were used as inputs.

It might look like that identical shapes are then being morphed, but that is not
usually true as the non-rigid alignment rarely results into perfect fitting like with
the Femur bone.

The final result of morphing of fully aligned meshes with reliability weights can
be seen in Figure 5.24 together with inputs used.
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(a) Inputs (b) Output of morphing

Figure 5.24: Output of morphing (red) two intentionally non-manifold models of
Femur bone (yellow, white).

5.6.2 Timings

I measured execution times for individual steps of direct morphing variant of the
algorithm.

The output of individual steps for three manifold femur bone data set is visualised
on Figures 5.25. Figure 5.25a shows input meshes in their start positions. Figure
5.25b shows result of step 1 - artifact fix. It removes non-manifolds, isolated
components and fills holes. Step 2 is initial global space alignment using PCA
(Figure 5.25c). The algorithm continues with step 3 and non-rigid ICP alignment
using my region selection based on k-neighbourhood (Figure 5.25d). Finally, all
meshes are morphed using direct morphing domain in step 4 (Figure 5.25e).

The results of time measurements are summarised in Table 5.26.

It can easily be seen that about 70% of time is spent in rigid mesh alignment
step. It is caused mainly by relatively large number (usually the maximum of
500) of deformation regions resolved using ICP. It could probably be significantly
accelerated if spatial subdivision structure was used for finding the nearest point.
This is however valid assumption even for morphing and initial alignment step
as they all perform vertex to vertex search operations.

Absolute values of times are by far not interactive but that was not the goal.
They are low enough so that complete muscles set of human body model can be
processed in few hours.

If shorter execution times were required, more advanced algorithm of space search
improvement would again be most vital change.
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(a) Input meshes (b) After artifact removal

(c) After init. PCA alignment (d) After non-rigid ICP (e) Output of direct morphing

Figure 5.25: Outputs of individual main steps of the complete morphing algo-
rithm for three Femur bones.

Figure 5.26: Execution times of individual steps of the direct morphing algorithm
for various inputs. NM denotes non-manifold inputs.

Then parallelisation could also be easily applied as most of operations are run on
individual meshes, vertices or triangles, so they independent on each other. There
might only be need for change of some data structures and their access methods.
For instance, std library in C++ or direct getters in VTK like parameterless
overload of vtkPolyData::GetPoint() are not thread safe.

5.6.3 Application to human body framework

I have used non-manifold mesh sets to test influence of morphing on quality and
precision of deformation using volume preserving algorithm from [13].

This experiment was relatively complicated to realise as I was no longer able to
build application from my bachelor work from sources. This was caused by loss



100

of appropriate versions of referenced libraries as the framework I worked with
does not compile with current versions.

Therefore I extracted the algorithm and temporarily integrated it into my appli-
cation. It was removed again after experiments so that it does not collide with
the new source code. It would also make no benefit for the user without a conve-
nient way of defining action lines for skeletons. Such extension would be beyond
this work’s scope.

This also means that the skeleton action lines are manually inserted approxima-
tion of real muscle bounds. This however does not influence the informative value
of test.

Simple vtkQuadricDecimation together with enlargement offset was used to cre-
ate coarse mesh in the deformation algorithm before the new decimation filter
vtkProgressiveHull (see Section B.1.3) was implemented. This was the case in
the bachelor thesis as well. I have experimented with both solutions this time as
they give very different results.

Sartorius muscle

I have compared results of deformation for original non-manifold Sartorius muscle
and output of its morphing with manifold model from Chapter 5.6.1 (see Figure
D.4 for both).

With older vtkQuadricDecimation decimation filter, the deformation of non-
manifold mesh resulted into heavy distortion (see Figure 5.27a).

The same method applied on morphed mesh did not achieve perfect result but
significantly reduced the distortion (see Figure 5.27b).

Although both outputs featured large problems, the volume preservation coef-
ficient defined as ratio of output and input volume c = Vout

Vin
was maintained

0.974571 and 1.00196 which itself would be acceptable.

(a) Deformation of original mesh (b) Deformation of multi-morphed mesh

Figure 5.27: Deformation of original non-manifold and morphed manifold Sarto-
rius muscle using old version of deformation filter from [13].
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When newer vtkProgressiveHull decimation filter was activated in the deformation
filter, the deformation of non-manifold mesh failed. I have made short investiga-
tion of the reason. I have found out, that the matrix of linear equation is poorly
conditioned and its inversion fails. This then caused deformation process to stop
(see Figure 5.28a).

The deformation of the morphed mesh on the other hand produced valid result
without any artifacts and with perfect volume preservation coefficient of 1.00031
(see Figure 5.28b).

(a) Deformation of original mesh (b) Deformation of multi-morphed mesh

Figure 5.28: Deformation of non-manifold and morphed sartorius muscle using
new version of deformation filter from [13].

Femur bone

Here I used both artificially created non-manifold damaged models of femur bone
and compared results of deformation of one of them with result of deformation of
their morphing output as described in Chapter 5.6.1 (see Figure 5.24 for both).

Old modification of deformation filter failed on non-manifold input (see Figure
5.29a). The same filter applied on output of morphing resulted in large arti-
facts on output caused by poor coarse mesh (see Figure 5.29b). The volume
preservation coefficient 1.00614 does not balance such failure.

(a) Deformation of original mesh (b) Deformation of multi-morphed mesh

Figure 5.29: Deformation of non-manifold and morphed femur bone using old
version of deformation filter from [13].
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The new modification of new filter behaves much better. Although it once
again fails on near-to-singular matrix inversion for non-manifold input (see Figure
5.30a), it provides valid results without noticeable problems for morphed mesh
(see Figure 5.30b). Same applies on the volume preservation coefficient where
perfect value of 1.00065 was achieved.

(a) Deformation of original mesh (b) Deformation of multi-morphed mesh

Figure 5.30: Deformation of non-manifold and morphed femur bone using new
version of deformation filter from [13].

Summary

The morphing itself does not guarantee that output mesh will behave well in
deformation filter [13] but it seems to at least reduce the extent of problems. The
results are much better and more reliable with new decimation filter vtkProgres-
siveHull, which was not tested in the original work [13].

5.6.4 Final method

After all presented experiments, the final properties of multi-morphing method
were chosen. The direct morphing schema outperformed the spherical domain
alternative, therefore the schema in Figure 5.31 is recommend for general usage.
This means that the spherical parametrisation step was completely removed. If
you still wanted to use the spherical domain version, standard parametrisation
with in-place Alexa 2000 relaxation schema without the cascade extension is
recommended.

The individual steps are then recommended to be used as follows:

1. Artifact removal - use as described in Section 4.2. No ambiguous alterna-
tives were provided.

2. Initial alignment - use as PCA and progressive coarse mesh for acceleration
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Figure 5.31: Flow diagram for direct on-mesh morphing version of algorithm.

3. Non-rigid alignment - use as rigid whole mesh ICP first, then continue with
non-rigid ICP method on regions generated by 3-neighbourhood. Use up
to 500% regions, 10% of mesh vertices typically.

4. Morphing - use direct morphing on non-rigidly aligned meshes. Apply reli-
ability weights from step 1.

Details of individual steps and their mentioned variants are detail discussed in
Chapter 4.
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Chapter 6

Conclusion

I have introduced one of problems being solved in the VPHOP project and stated
the role of this thesis in the introduction chapter. I have then provided wide de-
scription of various registration techniques including those suitable for non-rigid
objects. I have also summarised morphing approaches with both general algo-
rithm and specific examples. I have then evaluated the suitability of individual
solutions for this thesis and proposed an automatic multi-morphing method for
non-manifold genus 0 meshes. I have implemented several variations and focused
mainly on spherical parametrisation and non-rigid ICP based registration parts
where I introduced some modifications and provided a comparison of their per-
formance.

Some of the ideas did not prove to be effective, such as cascade spherical
parametrisation. The spherical parametrisation itself then had to be abandoned
as it was unable to provide valid parametrisation no matter what modification
and public available solution I tested.

Finally I created a specification for implementation that I was able to successfully
test in both partial and complex experiments with input meshes consisting from
both manifold and non-manifold real muscle meshes. The method behaves well
for smooth meshes, but it can produce self-intersections in jagged regions. This
could potentially be fixed in post-processing.

I have compared benefit of method to deformation filter on human body frame-
work and it showed noticeable improvement in stability and quality of output.

I have also provided asymptotic time analysis of current implementation and I
suggest acceleration using spatial subdivision data structures such as kd-trees
for space search operations. Another performance improvement could easily be
gained using parallelisation by OpenMP library that I worked with in previous
work.

The main goal for future is to make the search of parametric domain more ro-
bust to shape change. Non-rigid ICP method used is only able to make good
alignment for close surfaces of similar shape. Especially my adaptation based on
k-neighbourhood would provide unstable results with larger changes. Therefore
in current state, this method cannot morph between completely different objects,
such as cow and fish, which was presented in some other works like for example



105

[27]. They however used spherical parametrisation and I was unable to reproduce
their result. After consultation with Ing. Jindřich Parus Ph.D., I suspect those
algorithms not to be complete or not to be applicable to so general data as they
claim.

However for the aim of this work, muscle models are expected to be reasonably
similar so the method seems to be usable. By providing exhaustive theoretical
introduction and description of existing methods, suggesting a new method based
on their combination, its implementation and testing from various aspects, con-
cluded with evaluation of gained results, I believe the assignments of this work
were fulfilled.
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Abbreviations

AMS ... Affine Morphing Space

BFS ... Breadth First Search - general graph search algorithm

DFS ... Depth First Search - general graph search algorithm

DLL ... Dynamic-link library

GRB ... Global Reference Body - global reference system for medical data of
VPH

GUI ... Graphical User Interface

ICP ... Iterative Closest Point - basic method for rigid mesh registration

MVS ... Morphing Vector Space

VPH ... Virtual Physiological Human - a framework of methods and technolo-
gies that will make it possible to describe human physiology and pathology
in a complete and integrated way

VTK ... The Visualization Toolkit – graphical library pro visualisation and
manipulation of various data
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Appendix A

User documentation

All following instructions are targeted to MS Windows 7 Professional x64 oper-
ating system and MS Visual Studio 2010 Ultimate integrated development envi-
ronment. However it should be applicable also to operating system Windows XP
32-bit or newer.

The libraries and most of the source code should compile on GNU/Linux as well
but some small fragments use Windows API which makes compilation elsewhere
impossible. See Chapter 5.1 for details and information about necessary changes.
I also do not provide any makefile for alternative compilers.

The same applies to provided binary files that can run on Windows XP 32-bit or
newer Microsoft operating system.

A.1 Build

There are several folders in root of attached DVD. Their description can also be
found in the readme.txt file.

Folder src contains C++ source codes and solution for MS Visual Studio 2010
Ultimate in file MeshRegister.sln. When you open it, you can see two main
projects.

To compile the MeshRegister project with algorithm implementation, paths to
VTK 5.8.0 or newer must be set in project properties. You can find source
codes of VTK in extra folder in root of DVD or you can download it from VTK
homepage [10]. The VTK itself has to be configured using CMake [16] and
compiled first.

For compilation of the MeshRegisterGUI project with GUI, paths to the same
VTK 5.8.0 library and to Qt 4.7.4 or newer library has to be set up. Again, you
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can obtain the second one from extra folder on DVD or from internet [7]. You
can also download extension for Visual Studio here to make work with framework
easier.

Then you can compile both projects using Build All function of MSVS. You
should not see any errors or warnings. The output file MeshRegisterGUI.exe will
be created.

To run the application, copy all other DLL libraries and folder structure from bin
folder on DVD to the same folder where built MeshRegisterGUI.exe resides. You
will have to unpack them by yourself or use the installer which unpacks them
automatically. Then you can run the application using this executable.

A.2 Installation and prerequisites

Open bin folder on attached DVD. Run the setup.exe and go through standard
installation wizard. You will need about 25 MiB of free space on target hard
drive.

Application requires Microsoft Visual C++ 2010 Redistributable Package (x86)
to run. Installer should be able to detect it and download it from internet if
necessary.

By default, folder MeshRegisterGUI will be created in Start menu with shortcut
MeshRegisterGUI leading to installation directory.

Here you can find main executable MeshRegisterGUI.exe. Use it to start the
application.

You also find here a few other folders. Folder examples contains some demo data
for testing. Folder cache will be used for output caching. Folder logs will be filled
by application logs. Folder data contains internal application data.

If you want to remove application, then close it and use standard Windows ap-
plication manager Programs and features accessible though Control panel. Here
you will find it as MeshRegisterGUI.

A.3 User manual

After application is started, you see the main window (Figure A.1).

It can be divided into three main zones.

The upper left panel shows rendering of input or output meshes. Use the tab
controls under the panel to switch between them.
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Figure A.1: Main window of the MeshRegisterGUI application with input tab
selected. Red lines highlight the splitters for change of space ratios between
panels.
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The bottom left panel contains tabs with console output and morphing settings.
It also contains the execution button in its upper part.

The right vertical panel then holds manger of both input and output meshes. It
again contains tab switch between inputs and outputs which is synchronised with
renderer panel, so you always see what you manage and vice-versa.

Drag the red highlighted zones on figure A.1 with your left mouse button to
change the space ratio between those components.

A.3.1 Mesh management

After start with empty application, you will see empty input mesh manager
(Figure A.1). You can use button Load Mesh... to add single mesh using file
opening dialog. This will allow you to select any supported file which is VTK
or OBJ. Support of OBJ may not be perfect and was tested with only limited
number of exporters.

You can also use Load Directory... button to open all supported files in selected
directory at once. It is very useful with example inputs prepared in folder exam-
ples in installation directory.

Loading the meshes may take same time. They are added to the upper list with
checkboxes (Figure A.1). Initially no mesh is selected.

You can now click name of any mesh to see its parameters in the bottom table
of the mesh manager (Figure A.1).

Then you may tick some meshes using checkboxes left from their names. This will
add individual meshes to the renderer view. Those meshes will also be considered
input for morphing.

The selected mesh with displayed statistics is shown red and wireframe in the
left window. Others are white and solid (Figure A.1).

You can also remove single selected mesh using Remove Mesh button or all meshes
in manager using Remove All button.

The button Save Mesh... opens a save file dialog and allows you to export single
selected mesh into one of three supported formats:

• VTK

• OBJ

• TRI

It is more useful for output meshes but it is enabled in input manager as well.
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You can switch to output mesh manager using tab control at the bottom of the
manager or the renderer (Figure A.1). You will see identical manager panel with
the same options but different meshes (Figure A.2).

You can use all functions from input manager, such as loading older outputs from
hard drive for their comparison with new ones, but the main functionality here
is the Save Mesh... button that allows you to store outputs of this application.

A.3.2 Settings

Settings tab of the left bottom panel of the main window (Figure A.1) is the
initially selected one. It contains three main groups of settings.

Cache

The Cache settings allow you to turn on and off caching of individual execution
steps. This speeds up repeated filtering of same inputs and allows you to faster
switch between target steps and see how the method works (see sec A.3.4). The
All caches option then activates or deactivates all caching options at once.

You can also delete all those caches from your hard drive using the Clear caches
function.

There is also one additional caching that is used always and it stores coarse
meshes. You can only clear this cache using Clear coarse meshes button.

All caches are stored in the cache folder in installation directory.

Parametrisation

In the Parametrisation group, spherical parametrisation variant of method can
be activated by unchecking the Direct morphing option.

You can then specify if you want to use cascade modification of spherical
parametrisation using the Cascade parametrisation checkbox.

You can also choose a relaxation method for the initial projection. There are two
methods available:

• Alexa 2000 [1]

• Zhu 2009 [27]
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Morphing

Morphing group allows you to modify final morphing interpolation step.

Input meshes are morphed by default. You can choose to morph output of non-
rigid ICP alignment instead by checking the Morph unified meshes option.

You can also disable usage of reliability weights by unchecking the Use reliability
weights options. Average coefficients are then used even for damaged meshes.

See Chapter 5.6.1 for more details.

A.3.3 Renderer interaction

There are two different renderers in the main application window (see Figure A.1
and Figure A.2).

Figure A.2: Main window of the MeshRegisterGUI application with output of
partial execution and progress bar.

The input renderer has black background for easier distinguish. The meshes here
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are white solid by default or red wireframe if selected. You can either select mesh
using mesh manager or you can just use your left mouse button and click on it
in the renderer. This also causes the output console in the bottom part of the
main window (Figure A.2) to give information about the mesh, clicked vertex
and adjacent triangles.

The output window has white background and the characteristic of the mesh
depends on the target state chosen (see sec. A.3.4).

You can always choose between the solid and wireframe rendering using the S and
W buttons. The other standard VTK controls work here as well. An example is
the R to reset camera. Others can be found in [10].

Standard camera control is mapped to mouse and its buttons. You can use left
mouse button drag to rotate camera around the rotation centre. It is positioned
in the centre of scene by default.

You can use middle mouse button drag to move the centre of rotation. And finally
right mouse button drag allows you to zoom in and out.

Further instructions and alternative controls can again be found in [10].

A.3.4 Execution

Before you can execute the morphing, be sure to have at least one input mesh
selected and displayed in the input renderer (Figure A.1). Only then will the
button Execute in the left middle part of the main window be enabled. You will
usually want to specify more than one input. If only one input exists, all steps
except the artifact removal become irrelevant.

Before you run the morphing, you can select target state in the select control just
on the left. You can see six options here (see Figure A.3b):

• 0. None - only merges inputs without any modification

• 1. Fix artifacts - removes non-manifold edges and vertices, isolated compo-
nents and fills holes. Produces wireframes distinguished by contrast colours.

• 2. Initial alignment - does only rough alignment using rigid PCA based
method. Produces aligned and coloured solids.

• 3. Non-rigid ICP alignment - does precise alignment using non-rigid ICP
based method. Produces aligned and coloured solids.

• 4. Spherical parametrisation - creates spherical parametrisation of meshes.
Produces wireframes of parametric domains distinguished by contrast
colours.
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• 5. Morph - morphs the meshes together. Produces single solid mesh.

All steps of course perform execution of the previous steps.

(a) Main menu (b) Target selection

Figure A.3: Main menu and target of execution selection of the MeshRegisterGUI
application.

When you finally click the Execute button, progress dialog with label Working...
will appear. You can see progress on the progress bar and you can also abort the
execution using Abort button. The GUI remains interactive during the execution.

The start of morphing also automatically switches to console view, so you can
see the outputs of the method and individual steps. The console also contains
both overall and partial timing information.

After the process is over, the pop-up window automatically closes and the per-
spective is switched to output view, so you can see the result straight away.

A.3.5 Others

Main menu

The top of the main window contains the main menu. It has only two main
groups.

The File group contains three options (Figure A.3a):

• Clear all - clears all meshes in both input and output mesh managers

• Load mesh - opens load mesh from file dialog for the input mesh manager

• Load directory - opens load all meshes from directory dialog for the input
mesh manager

• Exit - terminates the application

The item About in the Help menu opens an About dialog with information about
application and its author.
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Logging

All messages seen in the output console text area (Figure A.2) are simultaneously
written to log files on hard drive. They can be found in the logs folder of the
application installation directory.

They are named in form

log_[date]_[time].txt

for regular log messages or

error_[date]_[time].txt

for error messages.

This can be useful in case of fatal failure of the application.

Standard system console can additionally be also enabled using the symbol
USE_CONSOLE in the main.cpp module of MeshRegisterGUI project. That how-
ever requires compilation of the application as is only intended for developers and
debugging purposes.
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Appendix B

Programmer documentation

B.1 SW components

B.1.1 GUI framework Qt

Qt is cross-platform application and GUI C++ framework from Nokia that helps
to create applications faster and possible to move across different platforms pro-
vided that other parts of application are platform independent as well [7]. For
logo see B.1. Its support is not only limited to desktop computers but also
portable devices like smartphones.

Figure B.1: Logo of QT framework. Taken from [7].

I used it to build simple GUI for my application. In my bachelor work, I have
worked with application based on MAF framework and more specifically its ex-
tension Medical for medical applications [13]. However I received a complete
application at the beginning and only modified inner logic. The MAF framework
is more complicated to work with and Medical is not available to public usage. I
also had previous experiences with Qt and I have found out that is supported by
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later described VTK library. It also comes with graphical editor and integration
to MS Visual Studio so it saved me time necessary for GUI construction and I
could focus on the main problem. The simplicity is also the reason why I did not
use Windows API to create GUI by myself.

Qt is built from individual graphical components such as buttons, forms, text
fields etc. just like any other similar framework. Hierarchical structure is built
by inserting one to each other. The layout is given by special components called
layouts. They support standard behaviour like float form side to side, extension
to full space or grid distribution.

Actions are implemented using slots, signals and their mutual connections. For
example button from class QPushButton provides signal clicked that can be con-
nected to slot of application QApplication called quit. This means that if the
button is clicked, quit() method of QApplication is called and application is ter-
minated.

Here is an example of such code in C++ showing also usage of vertical layout
(taken from [7]):

#include <QtGui >

int main(int argv , char **args)

{

QApplication app(argv , args);

QTextEdit *textEdit = new QTextEdit;

QPushButton *quitButton = new QPushButton("&Quit");

QObject :: connect(quitButton , SIGNAL(clicked ()),

qApp , SLOT(quit ()));

QVBoxLayout *layout = new QVBoxLayout;

layout ->addWidget(textEdit );

layout ->addWidget(quitButton );

QWidget window;

window.setLayout(layout );

window.show ();

return app.exec ();

}

Qt is not limited to GUI only. It also provides support for file system operations
such as directory listing and threads synchronisation mechanisms like mutexes,
semaphores or thread management. Although these features come useful, I did
not use them in my filter itself and I limited their usage to GUI part only. The
reason is to keep the kernel independent on Qt on source code level. It is relatively
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large library with size of several hundred megabytes and takes up to few hours
to compile. You can download binary distribution but there was limited support
for Visual Studio 2010 when I started with implementation (2011).

B.1.2 Visualisation system VTK

The Visualization Toolkit (VTK ) (logo B.2) is multi-platform framework for data
visualisation developed as opensource since 1993 [23].

Figure B.2: Logo of VTK. Taken from [10].

It is written in C++, but it supports many other languages such as Java, Tcl,
Perl and Python through wrappers. I will use it in my C++ application. It is
distributed in form of source code which can be easily build on target platform
using CMake ([16]). This provides both wide portability but also possibilities
for different configuration. In my case, I enable support for Qt. Special classes
like QVTKWidget are then generated that can be placed to Qt frames and hold
VTK target render area. Therefore complicated GUI can be built by means of
Qt leaving only the 3D rendering to VTK.

I have chosen this framework because I have experiences with it from my bachelor
thesis [13] and I know that it provides lot of functionality I would have to imple-
ment myself otherwise. It is also compatible with the main part of SW developed
in VPHOP project [26].

Architecture

VTK ’s main purpose is taking existing data and displaying them in graphical
window for user interaction, which is mainly navigation in 3D-space including
zooming. However to support this basic functionality, VTK contains many other
classes. They handle both input and output operations with VTK ’s own data
format. They also provide representation of data classes with basic interaction
and accessors.

For instance, there is a vtkPolyData which represents surface boundary object,
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in my case triangular mesh. Its hierarchical structure can be seen in Figure
B.3. Main structure hidden inside is simple vector of individual points vtk-
Points. Topology of triangles is stored in cell lists of each point stored in external
structures. Therefore you have to call special methods such as BuildCells() and
BuildLinks() that ensures that secondary structures for mesh navigation are built.
This then enables more complicated queries such as cell neighbours search.

Figure B.3: Collaboration diagram for class vtkPolyData. Taken from [10].

The way of representation also means that methods like GetCell(), that gets ob-
ject of single mesh triangle, do not reference permanent mesh data. They always
built structures on demand. There are usually two versions of such methods.
One writes to internal buffer, second to user provided memory. It is important
to notice the difference if you program parallel application. The first version uses
shared memory for all calls. Therefore if more threads accesses the method in
same time, memory is overwritten and the method is not thread safe. This is
also mentioned in documentation [10].

In addition to mostly passive data classes, there are also many filters. The idea
of filters is to build pipe-line by connecting one to each other. Pipeline usually
begins with data provider, which can be file reader or geometry generator. Filter
outputs are then connected with next filter inputs so that they process what
previous filter produced. The pipeline usually ends in vtkRenderer which displays
data wrapped in actors and mappers. These are the ones which actually know
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how to visualise different structures from meshes or point clouds to volumetric
data.

Figure B.4: Example of simple graphical pipeline with VTK. Generates and
displays cone. Implemented in scripting language Tcl. Taken from [9].

Notable filters

vtkFillHolesFilter This filter processes input meshes and finds holes in their
surface by detecting their boundaries. Then it simply triangulates those creating
new edges in the topology. It is possible to set how large the filled hole can be
so that it does not triangulate space between distant object if this could occur.

vtkFeatureEdges This class traverses through mesh edges and filters only
those with specified features. Usage is limited to detection of edges with specified
number of adjacent triangles and angles. It can be useful for detection of non-
manifold edges as well as holes.

It gets useful as vtkPolyData itself does not provide natural way of edge access
like for points and triangles. There is no method that gets number of edges as
well as method that gets single edge by ID. You can only access edges based
on end points or you could also use cell traversal and process boundaries of each
triangle. That would however inevitably lead to redundant check of shared edges.
This filter makes work with edge structures much more convenient.
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vtkQuadricDecimation Along with similar filters vtkDecimate, vtkDeci-
matePro and vtkQuadricClustering this filter provides technique for reduction
of mesh size in a matter of vertex count. It was originally used in my bachelor
work [13] to create coarse outer hull for mean value coordinate calculations MVC.
However it proved to have problems with thin features and most importantly it
does not guarantee the product mesh to be outer envelope. This reduced preci-
sion of MVC calculation [13]. For this reason, it was replaced by newly created
filter described in Section B.1.3.

B.1.3 Progressive hull filter

An author’s implementation of progressive hull construction method proposed by
Bc. David Cholt and described in the article [6] was used to create coarse meshes
in several parts of my algorithm implementation. The same code is also used in
the improved version of the deformation filter [17].

The main class vtkProgressiveHull of the C++ code is inherited from vtkPoly-
DataToPolyDataFilter, so it is used as standard VTK filter.

The method itself is based on an edge decimation approach. Edges are sorted
according to the volume gain caused by their removal and consequently each of
them replaced by single new vertex. This vertex is in such position that the new
mesh is an envelope of the previous and it also has minimum possible volume.

The article [6] describes changes made to an older method that ensure more equal
distribution of decimation over the surface, better stability in spiky regions of the
mesh and no creases in the output mesh. This is very useful for jagged meshes
like one of the Sartorius muscle models (see Figure D.3).

An example of the output can be seen in Figure B.5.

(a) Femur bone (b) Iliacus muscle

Figure B.5: Examples of coarse meshes with target size of 300 vertices created
using filter described in sec. B.1.3. Coarse mesh displayed as outer progressive
hull of the input high-polygonal mesh.
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B.1.4 3D Embedding by Parus

3D Embedding is experimental implementation of Alexa’s spherical parametrisa-
tion [1] created by Ing. Jindřich Parus, Ph.D. I have used it as reference for
my own implementation and it helped me to check correctness. It was originally
realised as a Delphi GUI application. I created DLL to be able to use it directly
from my C++ application. However I later chose to rewrite the implementation
completely according to original article [1] in order to be able to fully control the
process. I therefore used this implementation mainly for validation purposes.

B.2 Implementation details

Most important code of algorithm implementation can be found in ExtendedMesh
and vtkMeshRegister.

ExtendedMesh is main mesh data structure. It uses embedded vtkPolyData for
topology information but contains copy of vertices for faster access. It also adds
many new methods for accessing inner centre, point neighbours, main axes, spher-
ical projection and so on. Additionally it supports import and export to HDD
as well as visualisation using various colours.

vtkMeshRegister is the main class of the implementation. It is child of vtkPoly-
DataAlgorithm and it executes the mesh registration and morphing algorithm
and implements parts that work on more than one mesh.

It supports clever caching of partial results enabling much faster development
of individual steps by skipping the previous ones and loading their results from
hard drive. This is vital as performance in interactive debug mode gets often very
low. Caching is enabled through class MeshCache and it uses simple approach
to generate string filename from vtkPolyData key to store vtkPolyData or general
memory data block value.

vtkMeshRegister also supports premature termination after any major step to
show partial results and provide tool to tune them separately. This feature is
accessible from GUI.

To keep caller interactive, asynchronous abort calls are supported and progress
information is send to listeners during execution. GUI uses this to show progress
bar and provide Abort button (see Figure A.2).

There are also some other interesting aspects in the implementation I would like
to emphasise.

Logger class for HDD and console logging uses smart C++ macros to accept
std::stringstream inputs in extremely simple way. Only this one row has to be
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added to log almost any information:

LoggerSs("The result is " << result << ".");

This makes logging very convenient and easy to use. Additionally, it also logs
into console through std::cout. The GUI part then redirects this stream into
QPlainTextEdit GUI text editor. This allows communication with user even if
the console is not shown. However application supports native console activation
even in GUI mode.

I have also adopted auto-pointer principle that is represented by vtkSmartPointer
template in VTK. I have made my own implementation to keep it usable without
VTK in different projects.

ReferencedPointer is my alternative to vtkSmartPointer. It requests template
argument to implement interface IReferenced. Then objects are created in similar
way as in VTK would. Only difference is that I support parameters in factory
methods and therefore composed calls are used to create auto-pointer. Therefore
where the code

ExtendedMesh* mesh = ExtendedMesh ::New(polyData );

mesh ->Delete ();

could be used, is replaced by safer

ReferencedPointer <ExtendedMesh > mesh =

ReferencedPointer <ExtendedMesh >:: New(

ExtendedMesh ::New(polyData ));

alternative. On the top of convenience of automatic destructor call, it prevents
memory leaks as the destructor is called even after exception, because it is tied
with stack shrink.

In VTK, the code would look like this:

vtkSmartPointer <ExtendedMesh > mesh =

vtkSmartPointer <ExtendedMesh >::New();

mesh ->SetPolyData(polyData );

I use many custom structure for basic geometry elements such as Vertex3, Vertex4,
Matrix4x4. They are far more convenient to use than VTK ’s raw double arrays as
they incorporate algebraic operations through both static and instance methods
and overloaded operators. They also enable stream text output.

These structures were used in some of my previous projects as well, but were
improved in this version. They are now fully templated and therefore support
both float and double as well as integer types. Own type was also defined
as pkFloat derived from double to make change of main project data type even
easier. Double was chosen for better precision plus because it is default data type
in VTK.
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Usage of templates is made simpler by defined data type synonyms such as Ver-
tex4d for double parametrised Vertex4 or Vertex4t for pkFloat and so on.

B.3 Architecture

In the Microsoft Visual Studio 2010 solution MeshRegister.sln there are two main
projects.

I will provide brief description of their requirements and contained classes. More
details can be found in source code documentation. The general discussion of
implementation was provided in Section 5.1.

B.3.1 MeshRegister project

Project MeshRegister contains implementation of the algorithm and requires
VTK 5.8.0 or newer to build.

The context of classes and their relations can also be seen on UML class diagram
in Figure B.6.

Libraries

• VTK - provides data structures, algorithms and minor I/O support

Interfaces

• IIdentity - interface of object identifiable by numeric ID

• IReferenced - interface of object with reference counter

Classes

• BigMatrix - sizable matrix of simple data types

• BigMatrixReferenced - sizable matrix of objects with referenced counter.
Supports auto-pointer mechanism.

• CoarseMesh - generator of coarse mesh. Also calculates mutual MVC and
supports back projection from coarse to full size mesh.

• Embedding3D - singleton wrapper for Parus’ 3D embedding DLL B.1.4
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• ExtendedMesh - main data structure for mesh. Wraps vtkPolyData, adds
new methods, manipulations, faster access to data, normal caching and
many more.

• IdentityBase - default realisation of IIdentity

• Logger - smart HDD and console logger. Accepts streams to easily combine
numeric values with text.

• MathMatrix - child of BigMatrix supporting mathematical matrix opera-
tions such as addition, multiplication, transposition and inversion.

• MyMath - static mathematic library for intersection, barycentric coordi-
nates etc.

• MyVector - dynamic vector structure with multi-threading support

• OOBox - object oriented bounding box for ExtendedMesh

• PriorityQueue - support class for vtkProgressiveHull

• ReferencedBase - default realisation of IReferenced

• StdRedirector - redirector of std::cout and std::cerr

• Utils - static utility class

• VertexNeighbours - cache for faster access to vertex neighbours

• vtkDamage - child of vtkPolyDataAlgorithm, filter that generates non mani-
fold mesh from source mesh for testing purposes. Adds non manifold edges,
vertices, creates hole and inserts isolated components.

• vtkMeshRegister - child of vtkPolyDataAlgorithm, implementation of main
algorithm and its major steps

• vtkProgressiveHull - filter for construction of coarse mesh hull using edge
decimation. Child of vtkPolyDataToPolyDataFilter. Made by Bc. David
Cholt. See Section B.1.3.

• vtkProgressiveHullCPU - CPU based realisation of vtkProgressiveHull.
Made by David Cholt. See Section B.1.3.

• vtkProgressiveHullCUDA - GPU based (CUDA) realisation of vtkProgres-
siveHull. Made by Bc. David Cholt. See Section B.1.3.
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Structures

• Color4 - normalised RGBA color structure

• Matrix4x4 - template of 4 × 4 matrix with algebraic operations and trans-
formation factories

• MemoryDisposer - structure for automatic disposing of memory blocks after
stack shrink

• MutexLocker - structure for automatic unlocking of mutexes after stack
shrink. Uses vtkMutexLock.

• MyTimer - timer with nano-second precision. Uses Windows API.

• Plane - template of plane in 3D space, holds general equation of plane as
Vertex4

• ReferencedPointer - auto-pointer for IReferenced objects

• ValueCache - memory cache of simple value with invalidation support

• Vertex3 - template of three dimensional vector with algebraic operations

• Vertex4 - template of four dimensional vector with algebraic operations

Other

• Common.h - header with basic definitions and common includes

• my types.h - custom data types

B.3.2 MeshRegisterGUI project

Project MeshRegisterGUI contains graphical user interface for the MeshRegister
and requires the MeshRegister project, VTK 5.8.0 or newer and Qt 4.7.4 to
build.

The context of classes and their relations can also be seen on UML class diagram
in Figure B.7.
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Libraries

• MeshRegister - provides implementation of muscle registration and morph-
ing

• VTK - provides visualisation of 3D data and access to data structures used
in MeshRegister

• Qt - provides GUI, I/O operations and thread management

Interfaces

• IResultAcceptor - interface accepting a result of vtkMeshRegister execution

Classes

• AboutDialog - dialog with information about the application and author,
child of QDialog

• FilterWorker - parallel thread for asynchronous execution of vtkMeshReg-
ister, child of QThread

• MeshData - data class holding ExtendedMesh instance together with statis-
tics and visual properties

• MeshManager - widget for mesh management, child of QMainWindow

• MeshRenderer - widget for mesh rendering, child of QVTKWidget

• MeshRegisterGUI - main window of application, child of QMainWindow

• ProgressDialog - dialog with filter progress information and abortion option,
child of QDialog

• QStdRedirector - class for redirection of standard output streams to QPlain-
TextEdit using StdRedirector.

Other

• main.cpp - module with application’s entry point. Opens the main window
MeshRegisterGUI.
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Figure B.6: UML class diagram of MSVS project MeshRegister.
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Figure B.7: UML class diagram of MSVS project MeshRegisterGUI.
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Appendix C

Algorithms

This chapter provides partial algorithm description referenced from the Chapter
4.

The common variables used are similar to those used in the main text where
detailed explanations, discussions and references can be found.

Their brief summary follows:

i ... general index

k ... index of mesh — forall k ⇒ for each mesh

Xk ... k-th input mesh

|Xk| ... size of k-th mesh in number of vertices

−→xi ... i-th vertex

Pi ... parametrisation of i-th mesh

−→xi P ... parametrisation of i-th vertex

Ti ... i-th triangle

ei ... i-th edge

S ... supermesh

ri ... reliability of i-th triangle

fi ... triangle fan of i-th vertex

Ci ... i-th component of mesh
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Hi ... i-th hole in mesh

FPi ... parametrisation of i-th mesh

−→
Λ S
i,k ... spherical barycentric coordinates of i-th vertex in k-th parametric do-

main

C.1 Main steps

Algorithms C.1, C.2, C.4 and C.5 describe individual main steps of the global
algorithms 4.1 and 4.2.

C.2 Auxiliary algorithms

Auxiliary algorithms C.7, C.8, C.9, C.12, C.13 and C.14 describe some elementary
yet non-trivial steps used in above referenced main step algorithms.

All algorithms are cross referenced with their text description in Chapter 4.
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Algorithm C.1 Fix of artifacts in meshes (see Chapter 4.2)

for all input mesh Xk do
for all edge ei in Xk do

if ei has more than 2 triangles then
Remove all triangles of ei {Removes non-manifold edges}

5: end if
end for
for all vertex −→vi in Xk do

Find triangle fans for −→vi
Pick largest closed fan fc {if exists}

10: for all fan fi do
if fi 6= fc then

Remove all triangles in fi {Removes vertices with multiple fans}
end if

end for
15: end for

Find all components Ck,i of Xk using DFS
Ck,max ← largest Ck,i in vertex count
for all Ck,i do

if Ck,i 6= Ck,max then
20: Remove all triangles in Ck,i {Removes minor components}

end if
end for
Find holes Hk,i in Xk

T̃k ← ∅
25: for all Hk,i do

Triangulate hole Hk,i

T̃k ← T̃k∪ triangles to fill Hk,i

end for{State reliabilities rk,i}
for all triangle ti in Xk do

30: if ti ∈ T̃k then
rk,i ← 0

else
rk,i ← 1

end if
35: end for

end for
return {Xk}
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Algorithm C.2 Mesh alignment using PCA (see Chapter 4.3.1)

Pick target mesh XT

Find main axes and centre of XT (more in alg. C.7)
for all input mesh Xk do

Find main axes and centre of Xk

5: Find translation and rotation matrix to align Xk to XT (more in alg. C.8)

Apply transformation to Xk

for all axis orientation do
Rotate Xk by axis
Measure distance between Xk and XT vertices (more in alg. C.9)

10: Remember nearest axis
end for
Transform Xk by minimal axis

end for
return {Xk}
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Algorithm C.3 Non-rigid mesh alignment using modified ICP based method
from [5] (see Chapter 4.4).

Select target mesh Y
for all input mesh Xk where Xk 6= Y do
r ← number of feature points
for j = 0→ r − 1 do

5: FPj ← randomly picked point on mesh Xk

Sj ← ICP region for FPj {See alg. C.10 for details.}
Run ICP to align Si to Y {See alg. C.11 for details.}
Mj ← total transformation matrix from ICP

end for
10: for all vertices −→xi in Xk do

W ← 0
for all j = 0→ r − 1 do

d← distance between −→xi and
−→
fpj {Euclid or geodesic distance can be

used, see 4.4.3 for details.}
d← d/(MESH SIZE · dmax) {Normalise maximum allowed range to
1}

15: wj ← 1− d1.5
W ← W + wj

end for
M ← I {4× 4 identity matrix}
for all j = 0→ r − 1 do

20: if W > 0 then
wj ← wj/W {Normalise weight sum}

else
wj ← 1/r {Alternative uniform distribution to remote vertex}
M ←M + wj ·Mj {Interpolate transformation matrices}

25: end if
end for
−→xi ←M · −→xi {Deform vertex −→xi}

end for
end for

30: return {Xk}
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Algorithm C.4 Cascade spherical parametrisation (see Chapter 4.5.3)

meshmax ← maximum number of vertices in input mesh

size0 ← sizelast · c
blogc

meshmax
sizelast

c {See sec. 4.5.3}
size← size0
for all input mesh Xk do

5: Xk,0 ← Xk {Start with input meshes}
end for
i← 0 {Decimate down}
while size ≥ sizelast do

for all k do
10: Xk,i+1 ← decimate Xk,i to size

Calculate MVC for Xk,i+1 in Xk,i (more in article [24])
end for
size← size/c {Scale down}
i← i+ 1

15: end while
for all k do
Pk,i ← Xk,i {Initialise parametrisation with smallest mesh}
Find inner centre of Pk,i (more in alg. C.12)
Move Pk,i by inner centre to (0, 0, 0)

20: Project Pk,i to sphere
Relax Pk,i (more in alg. C.13)

end for
{Interpolate up}
while size ≤ sizelast do
size← size · c {Scale up}

25: for all k do
Pk,i−1 ← interpolation of Pk,i using MVC (more in [13])
Project Pk,i−1 to sphere
Find feature points FPk

end for
30: Average feature points FPavg ← avg(Pk,i−1) for all k

for all k do
shift of FPk ← FPk − FPavg
Distribute shift of FPk to surface of Pk,i−1 C.14
Relax Pk,i−1

35: end for
i← i− 1
Output Pk,i as parametrisation of Xk

end while
return {P0,0, P1,0, . . . }
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Algorithm C.5 Multi-morphing of meshes Xk to supermesh S using spherical
parametric domains (see Chapter 4.6)

kS ← arg max
k

∑
i

rk,i {Choose supermesh based largest on reliability sum}

S ← XkS {Copy supermesh structure for output}
for all i = 0→ |S| do
li ← 0

5: for all k do
Tk,j ← spherical triangle of XP

k where the −→si P lies
−→
Λ S
i,k ← spherical barycentric coords of −→si P in Tk,j

li,k ← rTk,j ,i {Reliability of target triangle}
li ← W + li,k

10: end for
−→si ← (0, 0, 0)
for all k do {Calculate weights}
li,k ← li,k/li {Normalise linear coefficients}
(a, b, c)← Tk,j

15:
−→s i,k ←

−→
Λ S
i,k · (
−→x k,a,

−→x k,b,
−→x k,c)−→si ← −→si + li,k · −→s i,k

end for
end for
return S
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Algorithm C.6 Multi-morphing of meshes Xk to supermesh S directly using
non-rigidly registered input meshes (see Chapter 4.7)

kS ← arg max
k

∑
i

rk,i {Choose supermesh based largest on reliability sum}

S ← XkS {Copy supermesh structure for output}
for all i = 0→ |S| do
li ← 0

5: for all k do
Tk,j ← nearest triangle of X̃k from−→si (see 4.3.2 for point-triangle distance
measure)
−→
Λ i,k ← 3D barycentric coords of −→si in Tk,j

if max
−→
Λ i,k = 1 then {Nearest point lies on vertex of X̃k}

Tk,j ← triangle of nearest point fan with highest reliability

10: Update
−→
Λ i,k

else if min
−→
Λ i,k = 0 then {Nearest point lies on edge of X̃k}

Tk,j ← triangle of nearest edge with highest reliability

Update
−→
Λ i,k

end if
15: li,k ← rTk,j ,i {Reliability of target triangle}

li ← W + li,k
end for
−→si ← (0, 0, 0)
for all k do {Calculate weights}

20: li,k ← li,k/li {Normalise linear coefficients}
(a, b, c)← Tk,j
−→s i,k ←

−→
Λ S
i,k · (
−→x k,a,

−→x k,b,
−→x k,c)−→si ← −→si + li,k · −→s i,k

end for
25: end for

return S
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Algorithm C.7 Finding main axes of mesh M (see Chapter 4.3.1)
−→µ ← (0, 0, 0) {Centre of gravity point}
for all −→xi inM do
−→µ ← −→µ +−→xi

end for
5:
−→µ ← −→µ /|M |
A← empty 3× 3 matrix
for all −→xi inM do

∆−→µ ← −→xi −−→µ
A← A+ ∆−→µ ·∆−→µ T

10: end for
Λ← eigenvalues of A
V ← eigenvectors of A−−−→
axisx ← V [arg maxi Λ]
−−−→
axisy ← V [arg |i Λ]

15:
−−−→
axisz ← V [arg mini Λ]

return {−−−→axisx,
−−−→
axisy,

−−−→
axisz}

Algorithm C.8 Finding transformation of mesh M to basic pose (see Chapter
4.3.1)

axisx, axisy, axisz ← main axes of M (see alg. C.7)
−→µ ← centre of M−→
t = −−→µ
T ← translation matrix for vector

−→
t

5: α← angle between axisx and (1, 0, 0)
−→oα ← rotation axis between axisx and (1, 0, 0)
Rα ← rotation matrix with angle α around axis −→oα
axisy Rα · axisy
β ← angle between axisy and (0, 1, 0)

10:
−→oβ ← rotation axis between axisy and (0, 1, 0)
Rβ ← rotation matrix with angle β around axis −→oβ
A← Rβ ·Rα · T {Combine elementary transformations}
for all −→xi inM do
xi ← A · xi {Transform mesh by vertex}

15: end for
return M



142

Algorithm C.9 Distance metric for alignment quality test of meshes X0 and X1

(see Chapter 4.3.2)

d← 0 {Total distance}
for side = 0→ 2 do {Project mesh 0 to 1 and then vice-versa}
dside ← 0 {Distance from mesh 0 to mesh 1}
for all −→x 0,i in X0 do

5: jmin ← 0
minSq ←∞
for all triangle T1,j in X1 do
ρ← TA1,j × TB1,j × TC1,j {Plane of triangle t1,j}−→x ρ

0,i ← projection of −→x 0,i to ρ
10: di,j

if −→x ρ
0,i lies in T1,j then

di,j ← |−→x ρ
0,i −

−→x 0,i|2 {Distance to perpendicular projection}
else
di,j ← distance to nearest edge of T1,j

15: end if
if di,j < min then
minSq ← di,j
jmin ← j

end if
20: end for

dside ← dside +minSq
end for
d← d+ dside/|X0|
Swap X0 and X1

25: end for
d← d/2
return d
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Algorithm C.10 Selection of region S for feature point (FP) based on k-
neighbourhood (see Chapter 4.4.1)

S ← ∅
S ← S ∪ {

−→
FP}

for i = 0→ k − 1 do
R← S

5: while is not empty R do
−→x ← pop element from R
for all neighbours −→vj of −→x do

if S does not contain −→vj then
S ← S ∪ {−→vj }

10: end if
end for

end while
end for
return S

Algorithm C.11 Iterative schema of ICP aligning points from S to mesh Y (see
Chapter 4.4.2)

M ← I {Initialise transformation matrix.}
−→µY ← centre of Y
loop
Z ← ∅

5: for all −→si in S do
Z ← Z ∪ arg min−→yj ∈ Y |−→si −−→yj |2 {Get nearest points in target mesh.}

end for
−→µX ← 1/|S| ·

∑
i
−→si {Centre of S}

−→µY ← 1/|Z| ·
∑

i
−→zi {Centre of Z}

10: Σ← cross-covariance matrix (see equation 2.2)
Q← matrix build from Σ according to equation 2.2
Find eigenvalues and eigenvectors of Q
−→q ← eigenvector for largest eigenvalue of Q
MR ← R(−→q ) {See eq. 2.7.}

15:
−→
t ← −→µY −−→µX
MT ← translation matrix for vector

−→
t

M ←MT ·MR ·M
error ← 1/|S| ·

∑
i |
−→si −−→zi |2

if change of error ≤ threshold then
20: Break

end if
end loop
return M
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Algorithm C.12 Finding inner centre point of a mesh M (see Chapter 4.5.2)
−−→
axisx,

−−→
axisy,

−−→
axisz ← main axes of M (see alg. C.7)

−→µ ← centre of gravity of M

ρ← −→µ × (−→µ +
−−→
axisy)× (−→µ +

−−→
axisz) {plane defined by point −→µ and vectors

axisy and axisz}
T ← triangles of M intersected by ρ

5: P ← vertices of T
−→µ ← 0
for all −→pi inP do
−→pi ← projection of −→pi to plane ρ
−→µ ← −→µ +−→pi

10: end for
−→µ ← −→µ /|P |
IL ← intersections of polygon P and ray −−−→axisz from −→µ
IR ← intersections of polygon P and ray

−−→
axisz from −→µ

if |IR|mod2 = 0 then {It’s still outside}
15: if |IR| > 0 then

−→µ ← (
−→
I R0 +

−→
I R1)/2

else
−→µ ← (

−→
I L0 +

−→
I L1)/2

end if
20: end if

return −→µ
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Algorithm C.13 Relaxation algorithm for parametrisation P according to [1]
(see Chapter 4.5.2)

loop
error ← 0
for all triangle ti in P do

(−→a ,
−→
b ,−→c )← vertices of ti

5: error ← error +−→a ×
−→
b · −→c

end for
if error ≤ THRESHOLD then

return P
end if

10: for all vertex −→pi in P do
−→s ← (0, 0, 0)
Ni ← neighbours of −→pi
for all −→vj ∈Ni do
−→s ← −→s + (−→vj −−→pi ) · (−→vj −−→pi )

15: end for
c← 1/max |−→vj −−→pi |−→s ← −→s · c/|Ni|−→pi ← −→pi −−→s−→pi ← −→pi /|−→pi |

20: end for
end loop
return P
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Algorithm C.14 Distribution of shift vectors V for feature points FP over
spherical parametrisation P (see Chapter 4.5.4)

Require: |FP | = |V |
for all vertex −→pi in P do
W ← 0
for all shift vector

−→
fpj in FP do

d← angle between −→pi and
−→
fpj with respect to rotation centre (0, 0, 0)

5: d← |d|/(π · dmax) {Normalise half-circle to 1}
if d > 1 then
wj ← 0 {Too far}

else
wj ← 1− d1.5

10: end if
W ← W + wj

end for
for all shift vector −→vj in V do {shift vertices matching to feature points}

if wj > 0 then
15: wj ← wj/W {Normalise sum to 1}

−→pi ← −→pi + wj · −→vj
end if

end for
end for

20: return P



147

Appendix D

Pictures

(a) Partially aligned inputs (b) Output of morphing

Figure D.1: Output of morphing of two manifold Iliacus muscle models.

(a) Partially aligned inputs (b) Output of morphing

Figure D.2: Output of morphing of two manifold Sartorius muscle models.
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(a) Partially aligned inputs (b) Output of morphing

Figure D.3: Output of morphing of three manifold Sartorius muscle models.

(a) Partially aligned inputs (b) Output of morphing

Figure D.4: Output of morphing (red) of manifold model with 2 390 vertices
(yellow) and non-manifold Sartorius model with 9 001 vertices (white).
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