
University of West Bohemia
Department of Computer Science and Engineering
Univerzitńı 8
306 14 Pilsen
Czech Republic

Algorithms for Manipulation

with Large Geometric and Graphic Data

Jǐŕı Skála

Supervisor: Ivana Kolingerová

Technical Report No. DCSE/TR-2009-02
April 2009

Distribution: Public

Abstract

The theme of this work is manipulating large data in the field of computer
graphics. Generally, large data appear in many scientific disciplines ranging
from weather forecasting to marketing analyses. The computing power of mod-
ern computers still increases but so do the demands to process larger and larger
data sets. The main memory is in principle insufficient to hold all the data
at the same time so techniques are developed to handle the data in pieces.
Random access is unacceptable in such cases so special, so called out-of-core,
methods are used to process the data.

Data stream algorithms are frequently used for efficient computations on
large data. The algorithms are characterised by processing the data as a con-
tinuous stream in one or very few linear scans. Streaming algorithms were
getting more attention in the last few years, however, they are not much used
in computer graphics.

This work first describes the state of the art concerning large data and data
streams. An overview of clustering and a Delaunay triangulation follows. Next
we propose a solution for manipulation with large geometric data. It is based on
a clustering that identifies groups in the data. Each group is then replaced by
a representative which reduces the data significantly. A data stream approach
is used to cluster really huge data. A hierarchy of clusters is built which is then
used by the dynamic hierarchical triangulation. It constructs a triangulation
of the clustered data. By switching between clusters and their representatives,
the level of detail can be changed in various parts of the data.

Several more improvements are presented. The clustering algorithm was
adapted. Both the clustering and the triangulation can use anisotropic metrics
if suitable for any specific problem. A concept is presented how to modify the
clustering to do space partitioning for ray tracing acceleration.

This work was supported by the following projects:

Czech Science Foundation (GACR), project 201/09/0097
Ministry of Education, Youth and Sports, project 2C 06002 (VIRTUAL)
Ministry of Education, Youth and Sports, project KONTAKT 5/2005-06
Ministry of Education, Youth and Sports, project LC 06008 (CPG)

1

Contents

1 Introduction 4

2 Large Geometric Data 6
2.1 Large data acquisition . 6
2.2 Large data manipulation . 7

2.2.1 Processing the entire data set 7
2.2.2 Reducing the amount of data 7
2.2.3 Large data visualisation 10

3 Data Streams 15
3.1 Data stream fundamentals . 15

3.1.1 Motivation puzzles . 16
3.1.2 Data stream models . 17
3.1.3 Typical data stream techniques 17

3.2 Data streams in computer graphics 18
3.2.1 Streaming meshes . 18
3.2.2 Stream-processing points 19

4 Clustering 20
4.1 Distance measures . 20
4.2 Clustering approaches . 21

4.2.1 Single-link and complete-link 24
4.2.2 k-means . 25
4.2.3 Facility location . 26

4.3 Clustering large data . 30
4.3.1 Methods for large databases 30
4.3.2 Methods for data streams 32

5 Delaunay Triangulation 35
5.1 Constructing the Delaunay triangulation 35

5.1.1 Local improvements . 36
5.1.2 Incremental construction 36
5.1.3 Sweeping construction . 37
5.1.4 Incremental insertion . 37
5.1.5 Divide & conquer . 38
5.1.6 Higher dimension embedding 38

5.2 Point location strategies . 39

2

Contents

5.2.1 Directed acyclic graph (DAG) 39
5.2.2 Walk in a triangulation 40

5.3 Streaming Delaunay triangulation 42
5.3.1 Inserting finalisation tags into the stream 42
5.3.2 Streaming triangulation 43

6 Contributions 45
6.1 Speeding up the facility location 45
6.2 From the k-median to the facility location 47
6.3 Dynamic hierarchical triangulation 49
6.4 Anisotropic metrics . 52
6.5 Euclidean matching . 54

6.5.1 Initial attempts . 55
6.5.2 The working algorithm . 56

7 Conclusion 58
7.1 Summary of the work done . 58
7.2 Perspective to the future . 59

Bibliography 61

A Pseudo-codes 73
A.1 The gain function . 73
A.2 The Local Search clustering algorithm 74

B Clustering of the world 75

C Professional activities 77

3

Chapter 1

Introduction

In my PhD study I research algorithms for manipulation with large geomet-
ric data. I believe it is a prospective field because computer graphics deals
with large data in many applications, ranging from rendering high definition
photorealistic images for film industry, to visualisation of scientific data from
complex measurements and simulations in geography or medicine. More about
large data in computer graphics can be found in Chapter 2.

As technology goes forward, the amount of data that is to be processed also
increases. We have larger memories, more powerful processors, can acquire and
transmit data faster. But we can always produce more data than our computers
can reasonably process. Thus new techniques are being developed to handle
such large amounts of data. Since the beginning of computers, there are data
that by far exceed the amount of available main memory. The processing is
therefore done either online without storing all the data, or so called out-of-
core which means using a slow (but large) external memory like an array of
hard drives or tapes. Random access is extremely inefficient in such situations
and even impossible for online streams. This is why data stream algorithms are
now being researched extensively.

Data stream algorithms emerged in the last few years starting perhaps in
1970’s. A brief history could be found for example in [117]. First streaming ap-
plications were concerned with sorting and searching. Nowadays, data stream
algorithms are used in many areas for complex analyses of massive data. Many
applications emerge from the great expansion of Internet. The traffic is perma-
nently monitored to keep the network running, detect weak points and possible
intrusions or abuses. A strong demand comes from marketing that needs statis-
tics on browser clicks or user queries. This leads to another large application of
data streams. Financial and banking analyses, stock market monitoring, trend
tracking and forecasting. Take the exploration of natural phenomena as the last
example. Large data need to be processed in astronomy, meteorological surveys
or seismic observations. You can read more about data streams in Chapter 3.

So far, data stream approaches were not much employed in computer graph-
ics. Even though it is an area that does deal with huge data and the streaming
approach would be often natural. There are techniques to handle large data in
computer graphics. However, not much of them could process extremely large

4

Chapter 1. Introduction

data that do not fit into the main memory. The streaming approach still seems
to be on the edge of interest. Considering that it proved useful in many ar-
eas described above, we1 decided to adopt the data stream approach to master
large geometric data.

The target of my research is to develop algorithms that allow to manipulate
huge graphics data. We decided to address this task by means of clustering.
Our concept is to use clustering to identify groups with similar features in the
data. Such groups can be then replaced by a single or a few representatives,
thus reducing the amount of data significantly while preserving all important
features. This is the major difference from ordinary sampling. Another great
advantage over sampling is that we have a cluster associated with each repre-
sentative. If we store the clusters in an external memory, we can later return
arbitrary cluster back to the data. It is thus possible to restore selected parts
of the data to the original state for a more precise examination. Another pos-
sibility is to process the clusters separately and then aggregate the results for
the whole data set.

For really large data the clustering solution alone would not be sufficient.
Here comes the data stream approach into account. We use a data stream
clustering technique that can process gigantic data using just a small amount
of memory. The cluster representatives are eventually clustered over and over
until the data are reduced to a manageable size. So the data stream clustering
intrinsically creates a hierarchy which is another great feature. We get a hierar-
chical model of the data so we can later put back clusters at various levels and
thus control the level of detail. An extended description of clustering techniques
including the data stream solution can be found in Chapter 4.

We are currently working on a dynamic hierarchical triangulation that
utilises the cluster hierarchy. So far it is intended for visualisation but it could
be used for further scientific computing as well. The program starts with a
triangulation of the top level, i.e., all clusters are replaced by a representative.
When a cluster is put back, its points are inserted to the triangulation so the
detail is increased. Of course further clusters can be inserted up to the limit
of available memory. Clusters can be later selectively removed to save memory
for other data. Fundamentals of the Delaunay triangulation are discussed in
Chapter 5. The dynamic hierarchical triangulation is described in Section 6.3.

Chapter 6 discusses our further contributions to the current state of the art.
We made improvements to the clustering algorithm. These are rather details
so please refer to Sections 6.1 and 6.2 if interested. In order to extend the
potential of the clustering and the triangulation, we integrated the possibility to
compute with anisotropic distance measures. We selected namely the elliptical
metrics which, though relatively simple, offers a good flexibility. The work is
documented in Section 6.4. Based on a positive feedback on the hierarchical
clustering, we are currently developing a method that could be used for space
partitioning for ray tracing acceleration. Our research so far is documented in
Section 6.5.

Chapter 7 concludes this work and sketches our plans for the future work.

1Me and my Ph.D. study advisor.

5

Chapter 2

Large Geometric Data

Large data may be found in many application areas such as databases, sensor
networks, network traffic monitoring or market statistics. It is also intensively
studied in computer graphics. This chapter gives a general overview of selected
methods for large geometric data acquisition and manipulation. Especially
for the manipulation, there are many profoundly different approaches. This
chapter mentions the fundamental techniques and gives a basic overview of
their function. Following chapters concentrate on selected particular methods
in detail. It is to be noted that this work focuses on large data in computer
graphics, especially data of a geometric character. Other areas such as video
processing are not covered in the text.

The term of large data has a continually evolving meaning as new technolo-
gies are discovered and brought to practise. This applies both to data acqui-
sition and manipulation. The Stanford 3D Scanning Repository [137] offers a
good example. The famous Stanford Bunny was scanned in 1994. With its
36 000 vertices it was considered quite a large model. In 1999 several Michelan-
gelo’s statues were scanned, including the Atlas with about 250 million vertices.

Today geometric models are often even larger. Let us mention for example
terrain models. Today, even the whole world is available in digital form [93, 139].
The digital elevation map has a size of 1.9 GB, the resolution is about 900 m
per pixel. Visualisation of large detailed models is required in medicine, for
example in The Visible Human Project [141]. The data from the year 2000
contain 58 GB of high resolution images. Further large models can be found in
industry, see for example The Walkthru Project [143]. The model of the Double
Eagle Tanker consists of 82 million triangles. And we must not forget the film
industry and computer games.

2.1 Large data acquisition

A lot of large geometric models come from scanning real-world objects. Today
it is most often done using a laser scanner. The technology is called LIDAR
(LIght Detection And Ranging). It is an optical scanning technology that emits
laser pulses and detects the reflected light. The principle is common with a
radar with the difference that LIDAR uses light instead of radio waves. This

6

Chapter 2. Large Geometric Data

way it is possible to capture a full 3D shape of virtually any object. It is even
possible to mount such a device on an aeroplane and make a large detailed scan
of Earth’s surface. Satellite photography is used to record wide areas. Other
scanning methods producing large data could be found in medicine, namely the
computer tomography and the magnetic resonance. A typical scan could have
256 × 256 × 256 or 512 × 512 × 512 samples.

There are also applications working with synthetic data generated by the
computer. These include various simulations, for example the finite element
method. Another area is concerned with computing statistics from large data.
The data often comes from real-time measuring of network traffic, monitoring
market transactions, etc. The input arrives continuously over time and is often
too large to be processed completely and exactly, so approximate algorithms
must be employed. It is not the common case for geometric data so this problem
is not further discussed in this text.

2.2 Large data manipulation

This section summarises different approaches to the manipulation with large
geometric data. The list of the methods mentioned here has no ambition of
being complete. The most relevant techniques are discussed and their funda-
mental principles are explained. Nevertheless, there are many other special
approaches. Detailed description of every method would be beyond the scope
of this document.

2.2.1 Processing the entire data set

In some cases it is necessary to process the entire data set; nothing could be
omitted. If the data set is too large, the only possibility is to process it in
pieces. There are generally two possible approaches to this task. The first one
is to use a parallel and/or distributed computing to distribute the data among
several (or several thousands) processing units. More on parallel and distributed
processing of geometric data could be found for example in [1, 89]. Another
approach also processes the data in pieces but on a single computer. This is
the first step to the so called data stream approach. Streaming algorithms are
discussed in detail in Section 3.

2.2.2 Reducing the amount of data

There are such situations when it is not necessary to deal with all the data at
the same time, so it is possible to consider just a subset of the original data.
This is mostly the case of visualisation or performing some local computations
on the data. Generally, there are two ways how to reduce the amount of data.
The first approach defines a region of interest, takes only that part of the data
and discards everything else. It keeps all information about a limited region.
Like if you take a single page (or several individual pages) of a large map.
This technique is well suitable for both visualisation and local computing. The
second approach takes the data as a whole but in a lower resolution. It keeps

7

Chapter 2. Large Geometric Data

the most important information about all regions. Like if you take a map with
a lower ratio scale. This technique is particularly suitable for visualisation.

Clipping and culling

Selectively discarding unnecessary data is basically done by clipping and culling.
These techniques differ in the way how particular regions are selected to be
discarded or not. See Figure 2.1. Clipping removes those regions that are out
of the current scope. For example, when you are virtually overlooking a digital
terrain, you do not need to render what is behind your back. Culling removes
those parts that are unimportant from the nature of the data. Back to the
example with a terrain, when looking at a hill, you cannot see what is behind.
This is called occlusion culling. You even cannot see the other side of the hill
itself. This is the back face culling.

removed by clipping removed by culling

viewer

Figure 2.1: Parts of a scene removed by clipping and culling.

Various methods exist to speed up both clipping and culling. Those funda-
mental include space subdivision – quadtrees [45, 30], octrees [18] and kD-trees
[8, 31]. More advanced methods, such as the binary space partitioning [47, 32],
are used especially for the culling. A detailed description of such techniques
would be beyond the scope of this work.

Simplification

Even after applying clipping and culling the amount of data may be still too
large. Simplification is used in such cases. It is a way how to handle all the
required data at the cost of reduced quality. This technique is especially useful
in visualisation applications.

The simplification involves removing insignificant detail from the model.
The fundamental approach by Shroeder et al. [131] uses the technique of ver-
tex removal, also referred to as vertex decimation. It simplifies the model by
successively removing a vertex and patching the resulting hole as illustrated in
Figure 2.2. To avoid degeneracies in the model it is necessary to check whether
the vertex removal would not change the topology of the model. Preserving the
topology is a valuable property for example in medical applications.

Turk [138] proposed an interesting method that could be named mesh re-
sampling. Unlike most other methods, this one generally does not use any of

8

Chapter 2. Large Geometric Data

Figure 2.2: Example of a vertex removal. The marked vertex has been removed.

the original vertices. It places random samples on the mesh surface instead.
The sampling could be either uniform or with increasing density in the areas
of higher curvature. Next a new mesh must be constructed from the samples.
Turk uses a very elegant and robust method. First the newly sampled vertices
are inserted into the original mesh. This is done by simple triangle subdivision
since the new vertices has been sampled from the mesh surface. The original
vertices are then successively removed similarly as in decimation. The method
guarantees that the topology will be preserved. Turk further presents how to
interpolate between the resampled models.

Another method is the edge contraction or edge collapse. It replaces two
incident vertices by a single one. All the edges that were connected to both
original vertices are connected to the new vertex. Figure 2.3 shows an example.
Edge collapse is an essential part of the algorithm by Hoppe et al. [69]. They

Figure 2.3: Example of an edge contraction. The marked edge has been contracted.

define an energy function that models the competing requirements of compact
representation and geometric fidelity to the original mesh. The simplification
is then solved as an optimisation problem to minimise the energy function.

After the edge contraction the question is where to place the new vertex.
Simple algorithms use the midpoint between the removed vertices. Advanced
techniques try to minimise the error incurred. This leads to the question of
error measure. Simplification algorithms need to evaluate the error incurred
by removing a particular vertex or contracting an edge, so as to decide which
vertices to remove or which edges to contract. The error of removing a single
vertex is often measured as a distance of the vertex from an average plane of its
neighbours. For edge contraction, the distance between the involved vertices is
used. Alternatively, the change in object volume may be measured. The vertices

9

Chapter 2. Large Geometric Data

are placed into a priority queue according to their associated error which is
continuously updated as the simplification proceeds. Vertices are simplified in
the order of minimal error until the model is reduced to a desired size or until
an error threshold is reached.

Garland and Heckbert [50] proposed an analogous method to the edge con-
traction – the pair contraction. It differs in that it can merge any two vertices,
being incident or not. This way the topology may change dramatically and
even independent objects may be joined together. This yields nice results when
a drastic simplification is required. The algorithm uses quadric error metrics
to evaluate possible contractions. The error is computed as a quadratic form
which allows to compute the right replacement for the two contracted vertices
and generally achieves good quality simplifications.

Cohen et al. [22] proposed a technique of simplification envelopes. It is a
general framework within which various existing simplification algorithms can
run. Simplification envelopes are a generalisation of offset surfaces. They allow
to generate mesh approximations that are guaranteed not to deviate from the
original mesh by more than a pre-specified amount. Precisely speaking, all
vertices of the simplified model will be within a distance ε from the original
and vice versa. Topology is also guaranteed to be preserved. The algorithm
surrounds the original mesh with two envelopes and then performs simplification
within this volume. The envelopes are constructed by offsetting each vertex of
the original mesh in the direction of its normal and in the opposite direction
by ε. If should any self-intersection occur, the offset ε is reduced so as to avoid
that. The authors present two methods for computing the envelopes as well as
two simplification algorithms that can actually be used within the framework.
Simplification envelopes inherently ensure that sharp edges will be preserved.

The simplification envelopes are particularly associated with the Hausdorff
distance which is commonly used to measure the difference between the original
and the simplified model. Let X and Y be two point sets representing some
objects and let d be any metric. The (directed) Hausdorff distance from X to
Y is defined as

dh(X,Y) = max
x∈X

{min
y∈Y

{d(x, y)}} (2.1)

It is the maximum of distances from any point x ∈ X to the closest point y ∈ Y .
The (symmetric) Hausdorff distance between X and Y is then defined as

dH(X,Y) = max{dh(X,Y), dh(Y,X)} (2.2)

Simply speaking, the Hausdorff distance is the greatest local difference between
the two objects.

2.2.3 Large data visualisation

This section describes techniques of large data visualisation. Many of the above
mentioned approaches could be used for visualisation as well. But they are
rather general and image rendering is just one of their possible applications.
The algorithms described in this section were developed primarily for the visu-
alisation purposes.

10

Chapter 2. Large Geometric Data

Level of detail

The idea of using a simpler representation of objects to improve rendering frame
rate was first proposed in [21]. Level of detail techniques [102] are now often
employed to render complex scenes efficiently. Not all objects present in the
scene need to be rendered at full resolution. Distant objects are too small
for the fine detail to be visible. Similarly, fast moving objects do not need
to be rendered in high detail. Therefore simplified models are used to reduce
system load. However, if an object slows down or gets close to the viewer, a
more detailed model should be used. So the rendering system must be able to
dynamically select a model in the appropriate resolution, thus control the level
of detail. Figure 2.4 shows a model at several different resolutions.

Figure 2.4: Example of a model at four different levels of detail. Images adopted
from [67].

In earlier times, lower resolution models were prepared by hand. This had
the advantage of perfect quality. The modeller person knows best which details
should be preserved and which can be dropped. But the handwork is rather slow
and expensive so automatic methods are used nowadays. The handmade models
usually had discrete levels of detail. It means that there was the original finest
model plus two or three simplified ones. Such models can be easily handled
but the so called popping effect may appear when switching between particular
levels of detail. It means that the substitution of simplified models could be
noticeable for the viewer and often even disturbing. Automatic methods [100,
130] can generate smooth transitions by gradually increasing or decreasing the
amount of detail in the model. Sophisticated view-dependent methods [68, 97]
can even change the detail depending on the view direction, keeping high detail
only in the near parts and on the silhouette where fine details are well visible.

Most simplification algorithms can be used for the level of detail. Among
them the technique of progressive meshes [67] is especially remarkable. The
images in Figure 2.4 come from a progressive mesh. The goal is to find such
a mesh M that both accurately represents the original object and has a small
number of vertices. This can be expressed as a minimisation of an energy
function

E(M) = Edist(M) + Erep(M) + Espring(M) (2.3)

The Edist term measures the distance of the mesh from the original, the Erep

term is a penalisation for the number of vertices, and the Espring term is to
regularise the optimisation problem. Please consult [67] for more details.

11

Chapter 2. Large Geometric Data

The algorithm is based on [69] though it uses a modified energy function
and performs only edge collapses (no edge splits or edge swaps). The key
is that an edge collapse is invertible. The inverse transformation is called a
vertex split which adds a new vertex and two faces. A mesh is then stored
in a much coarser version together with a sequence of vertex splits. They
indicate how to incrementally refine the mesh exactly back into the original
mesh. The representation thus defines a continuous sequence of meshes of
increasing accuracy, from which approximations of any desired complexity can
be retrieved. Moreover, geomorphs can be constructed between any two such
meshes. A geomorph is basically a linear interpolation between two models.
It makes very smooth transitions between them. Progressive meshes naturally
support progressive transmission, they permit selective refinement and could
be used as a mesh compression.

Point based rendering

Points as rendering primitives were first discussed in [98]. The point based
rendering got an increased popularity later [56, 127, 11]. A comparison of
various point based rendering techniques may be found in [129]. As the name
suggests the point based rendering uses points or similar very simple primitives
to render complex 3D models. Every point is defined by its coordinates and
preferably has also a normal vector corresponding to the surface from where it
was sampled. Optionally, the point colour may be specified. Unlike conventional
triangle meshes, it works with just the points without connectivity. It does
not require any information about point adjacency. So there is no need for a
demanding and possibly unstable triangle mesh construction. This spares a lot
of time as well as memory because there is no need to store the mesh. For large
models, the problem is not only to compute the reconstruction. The problem
is even to hold the whole triangle mesh in the memory.

The point based rendering displays just individual points. It is therefore
necessary to render the points large enough so that they overlap and there are
no gaps between them. Otherwise the rendered model would have holes in its
surface. If the rendering is correct, points fill the whole surface smoothly as
seen in Figure 2.5.

The most common primitives are indeed points. Do not confuse points with
pixels. A point is a spot that could be rendered several pixels large. Using
programmable graphics, the point size can be adjusted according to the actual
projected screen size. Rendering a spot is of course much easier then rasterising
a triangle, evaluating the lighting model in all three vertices and interpolating
the colour. Sprites1 are more flexible primitives in that a texture can be mapped
on them. The most complicated primitives are quads or triangles, still with no
connectivity among them. Textures with alpha channel are mapped onto them
so points can be rendered for example as disks oriented according to the surface
normal.

Rendering points is simple and allows to display even large models. But
it is still profitable to employ acceleration techniques such as an octree [90].

1Small 2D images integrated into a 3D scene.

12

Chapter 2. Large Geometric Data

Figure 2.5: The point based rendering. Overlapping points covering a surface.

Additionally, it allows to control the (view dependent) level of detail, do the
view-frustum and the back-face culling [120]. The octree is traversed as usual.
If a node lies outside of the view frustum, or if a node is determined as back-
facing, or if the screen-projected size of a node is smaller than a threshold, then
the sub-tree under the node is not taken into account.

Vertex clustering

Rossignac and Borrel [126] proposed a simplification method that uses vertex
clustering to render complex scenes. Perhaps a more precise expression would
be vertex quantisation. The scene is uniformly divided by a grid. The grid
resolution controls the amount of simplification. Vertices falling into one grid
cell form a cluster which is then replaced by a single representative vertex. This
could be either the centre of mass of the cluster or the most significant vertex.

The significance of vertices is evaluated by their visual importance. Impor-
tant vertices are those that

1. have a high probability of lying on the object’s silhouette from an arbitrary
viewing direction

2. bound large faces that should not be affected by the removal of small
details

The first criterion may be efficiently estimated by the inverse of the maximum
angle between all pairs of incident edges. The second criterion may be estimated
by the longest edge incident to the vertex.

The notable property of the algorithm is that it does not simplify objects
separately. If two objects are close together so that some of their vertices fall
into a single grid cell, the objects will be merged together. Manifold topology
is not required and not guaranteed to be preserved.

An example of the method results can be seen in Figure 2.6. The top image
shows an object vanishing into a distance with decreasing level of detail. The
bottom image shows all the instances at the same size.

13

Chapter 2. Large Geometric Data

Figure 2.6: Examples of different level of detail obtained by the clustering. Image
adopted from [126]; colours adjusted.

Luebke and Erikson [101] proposed a hierarchical dynamic simplification.
It is a similar but more advanced approach. It also uses vertex clustering (but
can use any other simplification algorithm) to create the so called vertex tree.
The tree defines how vertices (possibly from different objects) will be merged
together to simplify the scene. Each node in the tree contains one or more ver-
tices. The algorithm may collapse all of the vertices within a node into a single
representative vertex. Triangles whose corners have been collapsed together are
removed. Likewise, a node may be expanded by replacing the representative
vertex by the original node’s vertices. The triangles that were removed become
visible again. The vertex tree is queried dynamically at run time to generate the
desired degree of simplification. The algorithm uses a screen space error metric
that measures the error in pixels and therefore perfectly reflects the distortion
that is actually visible.

14

Chapter 3

Data Streams

The concept of data streams is versatile and can be used in an extremely wide
area of applications. Typical tasks include detecting outliers, extreme events,
intrusions, track trends and perform analyses. Data streams are often found in
connection with computer networks [85, 94, 146], namely monitoring the traffic
or computing statistics of browser clicks and user queries. More applications
include astronomical [48], satellite and meteorological surveys, financial obser-
vations [48] such as stock exchange and currency trades. An increasing interest
emerges also in computer graphics [70], particularly in computational geometry
[44, 121, 74, 78, 75].

The following section starts with an informal definition of data stream and
an on-the-surface discussion of diverse concepts adopted in different disciplines.
Classical model problems are presented. Although simple, they can be inspiring
for solving practical tasks. Fundamental techniques frequently used in data
stream processing are introduced. The second section focuses on data streams
in computer graphics.

3.1 Data stream fundamentals

From a general point of view, data stream is a sequence of data. Every ap-
plication branch then has different specifications, expectations and limitations
posed on the stream. A comprehensive overview can be found in [117]. There
are essentially three challenges that may be concerned – to transmit the data
to the program, to compute sophisticated functions on large pieces of input in
an acceptable time, and to store the presented information long-term. Either
of the tasks may be demanded, or all of them.

In most cases the amount of data in the stream is extremely large so it is hard
to store it or to compute complex functions by conventional algorithms. Let N
be the length of the stream, i.e., the number of distinct pieces of information,
which is often supposed to be known. Data stream algorithms are usually
allowed to use O(Na), a < 1, or O(log N) memory.

The data stream can be stored on hard drives or tapes. This is the offline
variant [78]. Processing time is not critical and it is possible, though discour-
aged, to do multiple passes over the data. Random access is prohibited. Offline

15

Chapter 3. Data Streams

data streams allow to compute complex analysis on them. This is a common
case in computer graphics. By contrast, in online data streams [55] data arrive
at a very high rate so it is hard and usually impossible to process them exactly.
Approximate algorithms must be used. This is a common scenario in computer
networks.

3.1.1 Motivation puzzles

This is a list of typical problems being solved in the data stream model. Many
real world tasks can be directly mapped to them. The techniques how to solve
them are discussed in Section 3.1.3. For more details see for example the nice
survey [117].

A traditional task is finding missing numbers. Let π be a permutation
of {1 . . . n} and let π−1 be π with one number missing. Paul shows Carole
a stream consisting of π−1[i] in the increasing order of i; Carole’s task is to
determine the missing number m. Of course she is not allowed to memorise all
the numbers. This is a rare data stream problem that can be solved exactly.
Carole maintains a sum of the presented numbers

∑i
j=1 π−1[j]. The sum of all

the numbers {1 . . . n} is easy to compute as N(N+1)
2 , so the missing number can

be computed as

m =
N(N + 1)

2
−

N−1∑
j=1

π−1[j] (3.1)

Variants exist for more missing numbers [117]. Let π−2 be a permutation
with two missing numbers m1 and m2. Carole now needs to maintain more
information. A simple solution would be to maintain a sum and a product of
the presented numbers. Carole then gets

m1 + m2 =
N(N + 1)

2
−

N−2∑
j=1

π−2[j] (3.2)

m1m2 = n! −
N−2∏
j=1

π−2[j] (3.3)

which is a simple system of equations. However, Carole can use far fewer bits
by tracking the sum and a sum of squares. The solution is then obtained from
the equation system

m1 + m2 =
N(N + 1)

2
−

N−2∑
j=1

π−2[j] (3.4)

m2
1 + m2

2 =
N(N + 1)(2N + 1)

6
−

N−2∑
j=1

(π−2[j])2 (3.5)

This scheme can be extended to k missing numbers.
Further tasks commonly solved in data streams are counting distinct ele-

ments and detecting duplicate values [52, 6, 23]. Another problem is to find
the majority value [15, 26] which is the value repeated most frequently. Closely

16

Chapter 3. Data Streams

related are the so called iceberg queries [107, 51, 14, 84] looking for items that
are repeated more frequently then a specified threshold. A common task is to
compute a histogram [17, 58, 53] or quantiles [55].

3.1.2 Data stream models

There are three traditional data stream models [117] that can be applied to
a majority of real world problems. Let a1, a2, . . . be the input stream that
describes an underlying signal A, suppose A : [1 . . . N] → R for simplicity.
Models differ in how the stream describes the signal. In the time series model
ai = A[i], i.e., ai present absolute values of the signal in the increasing order of
i. This is suitable for observing some quantity at regular intervals.

In the cash register model ai are increments to A[j]. Let Ai be the state
of the signal after seeing i items of the stream. Let ai = (j, Ii), Ii ≥ 0, then
Ai[j] = Ai−1[j] + Ii. Multiple ai can increment the same A[j] over time. The
cash register model is suitable for instance for web server access monitoring
because a single client may access the server multiple times.

The turnstile model differs in that ai are updates to A[j]. Let ai = (j, Ui),
Ui ∈ R, then Ai[j] = Ai−1[j] + Ui. This model is appropriate for dynamic
systems with inserts and deletes, but it is often hard to find good solutions.
A modification is the strict turnstile model where ∀i : Ai[j] ≥ 0. The model is
suitable for example for a database where it is not possible to delete an item
not present.

There are more advanced models for special situations. Permutation stream-
ing is a special case of the cash register model in which items do not repeat.
The input stream is a permutation of some set and the items arrive in an un-
ordered way. The task may be to estimate various permutation edit distances
[27] or to estimate the number of inversions in the permutation [2, 64]. This
could be used for example to detect packet retransmissions in a network traffic.

In the case of a synchronised streaming [117] a function is to be computed
on two signals given as streams, e.g., estimating the edit distance of two strings.
Windowed streaming [29] is used to emphasise the recent history of the stream.
A sliding window of width w is defined and the algorithm focuses only on the
data within the window, i.e., the most recent w items from the stream. This is
a common practise for example in fraud detection. A variant [28] of the model
is to age the input signal and to consider older records with a lower significance.
Another variant [24] considers recent items of the stream at a fine granularity
while the distant past is aggregated.

3.1.3 Typical data stream techniques

Many data stream algorithms are based on one of several fundamental tech-
niques. Shedding is the simplest, often used on very fast and massive online
data streams. It just blindly samples the data at a lower frequency. True sam-
pling, as it is used in data streams, carefully selects which data to retain and
which to drop [17, 55, 52, 107]. The sliding window has already been mentioned
in Section 3.1.2.

17

Chapter 3. Data Streams

Advanced techniques such as sticky sampling and lossy counting [107] are
used for example to determine how frequently particular elements occur in the
stream. Sticky sampling draws a sample set of distinct elements and counts how
many times each of them appeared. The sample set is continuously refreshed
to drop sporadic elements and to include new ones appearing in the stream.
Lossy counting is a bucketing technique, i.e., it divides the stream into pieces
(buckets) and processes them one after another. It counts all distinct elements
in a bucket. Before proceeding to the next one, all the counters are decremented
and elements whose counter reached zero are dropped. The sketching technique
[53, 15, 23, 25, 26, 73] computes summary information on the stream. It allows
various queries to be approximately answered very quickly.

3.2 Data streams in computer graphics

With an increasing size of geometric models, data stream approaches are get-
ting into consideration especially in computational geometry [72]. Isenburg et
al. [78] proposed a streaming computation of Delaunay triangulation. Their
method is described in detail in Section 5.3.2. This section focuses on two more
applications of data streams [74, 121]. The streaming approach is not much
used in computer graphics so far. There are several more streaming algorithms
proposed by Isenburg et al. [76, 77, 75]. They often rely on the data to be
approximately sorted. Otherwise, some external pre-sorting must be done.

3.2.1 Streaming meshes

Geometric models are usually stored in the common format comprising of a list
of vertices followed by a list of triangles. There is no ordering required so a
triangle may reference vertices from both ends of the vertex list, as well as a
vertex may be referenced by triangles from both ends of the triangle list. It is
especially notable for instance at the Stanford bunny [137] where both triangles
and vertices are heavily scattered. This bad topological coherency is not well
suitable for huge gigabyte-sized models since any processing algorithm would
need random access to either of the lists. It prohibits the stream processing
and makes cashing inefficient.

Isenburg and Lindstrom proposed streaming meshes [74] to overcome this
problem. The idea is to interleave vertices and triangles so that some algorithm
processing the mesh will come to the right vertices when they are needed.
Vertices that will not be needed anymore are finalised, i.e., marked that they
can be freed from memory. An algorithm processing an interleaved mesh can
thus hold just the vertices that are actually needed. It uses little memory and
does not need random access to the whole mesh.

Isenburg and Lindstrom suggest two variants of streaming meshes. The
pre-order format introduces a vertex just before the triangle that references it
for the first time. The vertex is finalised as soon as it is referenced by the last
incident triangle. The post-order format first introduces triangles. As soon
as all triangles incident to a vertex are present, the vertex is introduced and
implicitly immediately finalised.

18

Chapter 3. Data Streams

Many mesh generating applications work in such a way that the output can
be easily stored in the streaming format. Authors also propose methods how
to reorganise existing models.

3.2.2 Stream-processing points

A framework for stream-processing points was proposed by Pajarola [121]. The
input is a point cloud sorted along one direction. The algorithm then sweeps the
data along that direction and processes them as a stream. Points are sequen-
tially loaded into the memory where stream operators (see bellow) are applied
to them. Many operations such as normal computation cannot be performed
on isolated points. Therefore a working set is maintained where points accu-
mulate and their local neighbourhood is available. As soon as a point cannot
contribute anymore to any operation, it is released from the working set and
written to the output. Eventually, a buffer and a deferred write may be used
to preserve the global stream ordering.

Pajarola introduces stream operators as functions computed on a single
point using only a local neighbourhood. They are applied to the points that have
all necessary neighbours present in the working set. Pajarola introduces several
elementary operators that are particularly important for processing raw point
clouds. Except the elementary I/O operators, they are k nearest neighbours,
normal computation, curvature estimation, splat size estimation (for the point
based rendering; see Section 2.2.3), and fairing (smoothing). The power of
the stream-processing framework consists in that the stream operators can be
concatenated and thus a complex computation on the data can be performed in
a single pass. The operators are implemented as modules with input and output
buffers. A module starts computing when it has enough data in the input buffer.
Processed points are passed to the output buffer. This way modules hand over
the data efficiently as the computation proceeds.

19

Chapter 4

Clustering

Over the years, clustering has evolved into a really general concept. It is used in
various data analysis [37, 5], data mining [43] (specially mining large databases
[118, 149]), information retrieval [124], image segmentation [79], pattern recog-
nition [7] and other scientific fields [81, 82]. It can also be found in non-technical
disciplines such as archeology or marketing.

Clustering means, in principle, grouping similar elements together. Depend-
ing on the area of application, elements could be anything – from points in 1D
space1 to 3D objects, entire images, documents or data base entries. Each
element is described by a characteristic vector. Points are specified by their
coordinates. For more complex elements some abstraction is needed to get a
suitable representation. This work focuses on clustering of points in 3D. We
are going to investigate also more complex objects, surely triangles. The future
work is outlined in Section 7.2.

A majority of clustering tasks are NP-hard problems so most algorithms
produce only approximate results.

A comprehensive overview of clustering can be found for example in [38,
65, 37, 81, 82, 108]. This chapter will briefly introduce the main concepts of
clustering. It will then concentrate on the facility location problem and methods
for clustering large data.

4.1 Distance measures

To measure a similarity between elements, it is necessary to determine a dis-
tance measure. By far the most common is the Euclidean distance. Given
two elements xi = {xi1, xi2, . . . xiD}, xj = {xj1, xj2, . . . xjD} in D dimensional
space, the Euclidean distance is defined as

d(xi,xj) =
√

(xi − xj)2 (4.1)

It works well for compact spherical clusters. Different measures are used for
special applications, e.g., to detect clusters of a complex shape or for pattern

1Clustering the depth information for rendering.

20

Chapter 4. Clustering

matching. The Minkowski metric is a generalisation of the Euclidean distance
and is defined as

dp(xi,xj) = p

√
(xi − xj)p (4.2)

Anisotropic metrics can be used to find clusters of non-spherical shape. This
is discussed in detail in Section 6.4. The Mahalanobis distance [105] can be
used if there is a correlation between elements of the characteristic vector. It is
suitable for classification of elements into classes. A covariance matrix Σ of each
class is computed from known samples. The Mahalanobis distance between an
element xi and a class with a mean xj is then defined as

dM (xi,xj) =
√

(xi − xj)TΣ−1(xi − xj) (4.3)

The Hausdorff distance [116] can be used to measure the distance between sets,
e.g., for point set matching. Given two sets A and B and an arbitrary metric
d, the (oriented) Hausdorff distance from A to B is defined as the maximal
distance from an arbitrary point a ∈ A to the closest point b ∈ B. Written in
the form of equation

dh(A,B) = max
a∈A

{min
b∈B

{d(a, b)}} (4.4)

From the properties of minimum and maximum operators follows that the dis-
tance is not symmetric. The general Hausdorff distance between A and B is
defined as

dH(A,B) = max{dh(A,B), dh(B,A)} (4.5)

Following sections assume the use of the Euclidean distance. It is the most
common measure, very simple and works well in many scenarios.

4.2 Clustering approaches

A large amount of clustering techniques exist. This section gives an overview
of various different approaches. The most common algorithms are described in
more detail. For further information please refer for example to [82, 108].

Clustering algorithms can be divided, according to some particular principle
of their function, into two opposed courses. Following paragraphs list several
such divisions.

Clustering algorithms can be either partitional or hierarchical. Partitional
approaches divide the data into an exact number of clusters (partitions). Hi-
erarchical algorithms create a hierarchy of small clusters grouped into larger
clusters forming a tree structure called dendrogram. The degree of clustering
can be than controlled by going up and down in the hierarchy. Figures 4.1
and 4.2 show examples of partitional and hierarchical clustering of the same
data. The dashed line in the dendrogram in Figure 4.2(b) shows from which
level of the hierarchy the clustering in Figure 4.2(a) was created.

Another possible division is to agglomerative and divisive or partitional al-
gorithms. An agglomerative approach [95, 87, 136] starts with each element in
a single cluster. These are then successively merged according to a similarity

21

Chapter 4. Clustering

Figure 4.1: An example of a partitional clustering.

1

2

3 4

5

9
8

10

11

7

6
12

(a) example clustering

1 2 3 4 5 6 7 8 9 10 11 12
(b) dendrogram

Figure 4.2: An example of a hierarchical clustering with a dendrogram on the right.

measure until a stopping condition is met. The algorithm usually stops when
a desired number of clusters has been reached, or when there is such a low
similarity between existing clusters that no further can be merged. A divisive
approach [104, 5] works vice versa. It starts with all the data in one large
cluster. It is then repeatedly split according to a dissimilarity measure. Again
the algorithm stops when there is a predetermined number of clusters or when
existing clusters are homogeneous enough so that no further splits are necessary.

The clustering can be either hard or fuzzy. Hard clustering [104] assigns
each element into exactly one cluster. Fuzzy set theory was first applied to
clustering in [128]. Fuzzy clustering [10, 9] determines a degree of membership
in several clusters for each element. It is then possible to get a hard clustering
by assigning each element into the cluster with the largest membership value.

Clustering algorithms can be deterministic or stochastic. Stochastic tech-
niques [104] usually use some random search among all possible solutions. Such
algorithms do not always yield an optimal solution but often guarantee a con-
stant factor approximation. A great benefit is that randomised algorithms
mostly run rather fast and thus are perfectly suitable for processing large
amounts of data.

The clustering method may process the data all at once or work incremen-
tally. If the algorithm works with all the data together it can in principle

22

Chapter 4. Clustering

produce more precise results. Incremental algorithms [60] can be faster and
have much lower memory requirements which is again a great benefit when
processing large data. The low memory requirements come from the fact that
the algorithm does not need to store all information about the data processed so
far. It is only necessary to hold summary information about particular clusters
which can be orders of magnitude smaller than all the data contained in them.

The notion of cluster representation was introduced in [38] and was sub-
sequently studied in [36, 114]. There are two major cluster representations –
centroid based and sample based. The centroid based approach stores just the
centre of each cluster and possibly the number of elements contained within.
This is a very compact representation but completely sufficient for many appli-
cations. The sample based approach stores several well chosen representatives
for each cluster, e.g., points at the border of the cluster. This requires more
memory but also gives more information in particular about the cluster shape
and possibly about how elements are distributed within the cluster. Figure 4.3
shows the difference between the centroid based representation (on the left) and
the sample based representation (on the right). There is a single cluster in both
figures. Crosses show the summary information stored about the cluster.

Figure 4.3: The centroid based cluster representation on the left, and the sample
based representation on the right.

Following sections describe some of the most common clustering algorithms
in detail. Namely two examples of the hierarchical agglomerative clustering
– the single-link and the complete-link algorithm. Then the famous k-means
algorithm and finally the facility location. Except these, a vast amount of
other methods exist. Many of them are modifications and/or combinations of
the methods described here.

Further, there are different approaches based on genetic algorithms [54], sim-
ulated annealing [125], tabu search [3] or artificial neural networks [80]. They
have good theoretical properties. Evolutionary approaches (genetic algorithms
and simulated annealing) are globalised search techniques. This ensures that
they do not remain stuck at some local optimum. All of the four approaches give
solutions very close to optimum. Unfortunately, these methods do not perform
so well in practise. They are sensitive to the initial setting of learning/control
parameters which is impractical. Neural networks are often order-dependent
which means that they can produce different results for different input order-
ing. Perhaps the biggest problem of all the methods is that they are too slow,
especially genetic algorithms which also require a lot of memory. They are thus
used only for small data sets of about hundreds or thousands of elements.

23

Chapter 4. Clustering

4.2.1 Single-link and complete-link

Single-link [136] and complete-link [87] are hierarchical agglomerative clustering
approaches. They are non-incremental, deterministic and do the hard cluster-
ing. They differ in the way they measure the similarity between clusters. The
single-link algorithm defines the distance between two clusters as the minimum
pairwise distance between the elements of the two clusters, i.e., the similarity
of the clusters is measured as the similarity of their most similar members.
By contrast, the complete-link algorithm uses the maximum pairwise distance,
i.e., the similarity of the clusters is measured as the similarity of their most
dissimilar members.

The single-link algorithm is more versatile but tends to produce straggly or
elongated clusters. This could be unpleasant but in some scenarios it is very
useful to detect non-spherical clusters. The complete-link algorithm produces
compact clusters. Which algorithm works better depends on the nature of
input data. Figure 4.4 shows a comparison of both approaches. The single-link
algorithm (a) correctly detects the cluster at the top but merges the two clusters
at the bottom. On the contrary, the complete-link algorithm (b) separates the
two bottom clusters but also splits the top cluster.

(a) single-link (b) complete-link

Figure 4.4: A comparison of the single-link and the complete-link approach.

A few terms of graph theory will be necessary for the following text. A
connected graph is a graph where there is a path connecting each pair of points.
A connected component of a graph is a maximal set of connected points such
that there is a path connecting each pair. A clique in a graph is a set of points
that are completely linked together.

The single-link algorithm can be summarised as follows

1. Start with each element in a distinct cluster. Compute distances between
all pairs of elements.

2. Take these distances in an ascending order. For each such distance d form
a graph where pairs of elements closer than d are connected by an edge.
When all the elements form a connected graph, stop.

24

Chapter 4. Clustering

3. The result is a hierarchy of graphs where an arbitrary similarity level can
be selected. The clusters are the connected components of the appropriate
graph.

The complete-link algorithm basically works the same way. The difference is
that the second phase is terminated when all the elements form a single clique.
When a graph is selected from the hierarchy, clusters are the maximal cliques
of the graph.

The time complexity of both algorithms is O(N2 log N), whereas the single-
link can be improved to O(N2). Nevertheless, both algorithms must compute
N2 distances which is the most demanding part of the computation. More on
the complexity analysis can be found in [109].

4.2.2 k-means

The k-means [104] is for sure the best known clustering algorithm. It gained
popularity for its simplicity, short running time and low memory requirements.
It is a partitional non-incremental stochastic algorithm. It does hard clustering
but there is a modification fuzzy c-means [10] that does fuzzy clustering.

The k-means algorithm works as follows

1. Choose k cluster centres either randomly or based on some heuristics.

2. Assign each element to the closest cluster centre.

3. Recompute cluster centres as centroids of particular clusters.

4. While a convergence criterion is not met, go to step 2. Typical conver-
gence criteria are no (or minimal) reassignments between clusters or a
low decrease in the squared error (i.e., a sum of squared distances to the
cluster centres).

The algorithm has a time complexity of O(NkI) [110], where I is the num-
ber of iterations. Practical experience shows that far less than N iterations
are necessary to achieve convergence. The algorithm has some disadvantages.
Perhaps the most significant one is that it is necessary to determine the number
of clusters k prior to starting the algorithm. It could be solved by running the
algorithm several times with different settings and choosing the best result (the
minimal squared error). But this considerably increases the running time. Next
problem is that for some bad initial configuration the algorithm may converge
to a local optimum. There are methods [110] for choosing the initial cluster
centres so that the global optimum is reached with high probability.

Another approach is to allow cluster splitting and merging according to
some additional criteria. This should solve both the above mentioned problems
(the choice of k as well as the initial seed). One example of such an approach
is the ISODATA algorithm [5]. The question is then how to balance the split-
ting/merging criteria.

In addition to the mentioned modifications, there are several more. Namely
the k-median algorithm with the restriction that cluster centres can only be

25

Chapter 4. Clustering

chosen among input data elements. A comparison of the k-means and the
k-median can be seen in Figure 4.5. In case of the k-median, the exact geometric
centre is shifted to the closest data element. There are other modifications that
use different distance measures or cluster representations [110, 10].

(a) k-means (b) k-median

Figure 4.5: A comparison of the k-means and the k-median algorithm.

4.2.3 Facility location

The facility location problem is a special clustering task. The general formula-
tion is as follows. Let F be the set of so called facilities and C be the set of
clients (in some literature expressed as D as for demand nodes). Every client
should be serviced by (connected to) a facility. The problem is to determine
which facilities to open and which clients should they service. The facility
cost must be payed for opening a facility. The service cost must be payed for
connecting clients to facilities (mostly based on the distance). The problem
has a direct real life application. Imagine there are some cities that need to
be supplied with electricity and there are several potential locations where a
power plant could be built. Building a power plant everywhere would be too
expensive; as well as connecting all the cities to a single one. It is to be deter-
mined where to build a power plant and where to connect particular cities. It
is necessary to find such a balance to minimise the overall costs.

Expressing the problem in a mathematical way, the task is to minimise the
overall clustering cost Q defined as

Q =
∑
j∈F

fc +
∑
i∈C

cij (4.6)

where fc is the facility cost, and cij is the distance between a client i ∈ C and its
facility j ∈ F . Distances are generally considered non-negative, symmetric and
satisfying the triangle inequality. It is to be noted that generally there are no
restrictions on the set of facilities F . It can be independent of C, a subset of C,
or equal to C. There are some specialisations of the facility location problem.
Facilities may have different facility costs and may have limited capacities to
service just a certain number of clients. These specialisations are not considered
in the following text.

To compute an ordinary clustering of a set P , simply set C = P and F = P .
Unlike the k-means algorithm, there is no need to specify the number of clusters

26

Chapter 4. Clustering

in advance. It is, however, necessary to choose the facility cost. It determines
how the clustering will look like. A high value will produce a clustering with a
low number of large clusters. Facilities are expensive so only a few of them will
be opened and a lot of clients connected to each of them. On the other hand, a
low facility cost will result in many small clusters. Facilities are cheap so a lot
of them will be opened and clients distributed among them. Recommendations
on how to set the facility cost can be found in Section 6.2 on page 47.

Following sections describe three different approaches to solve the facility
location problem. A brief overview of them may be found in [132].

Linear programming rounding

The method was introduced by Shmoys et al. [133] based on the work by Lin
and Vitter [99]. It was later extended and improved in [57, 19]. The approach
is based on a linear programming relaxation. Let C be the set of clients and
F be the set of facilities. We allow F = C. Let cij denote the distance of the
client i ∈ C to the facility j ∈ F . Let xij = 1 if the client i is connected to
the facility j; xij = 0 otherwise. Finally, let yj = 1 if the facility j is opened;
yj = 0 otherwise. The facility location problem can be then formulated as an
integer program

minimise
∑
i∈C

∑
j∈F

cijxij +
M−1∑
j=0

fc · yj (4.7)

subject to ∑
i∈C

xij = 1 ∀j ∈ F (4.8)

xij ≤ yj ∀i ∈ C, j ∈ F (4.9)
xij ∈ {0; 1} ∀i ∈ C, j ∈ F (4.10)
yj ∈ {0; 1} ∀j ∈ F (4.11)

whereas 4.8 ensures that each point will be connected to exactly one facility
and 4.9 ensures that it will be connected to an open facility. If we let xij and yj

be any positive real numbers we get a linear relaxation of the integer program.
This can be solved in polynomial time. The fractional solution is then rounded
to the integer solution while increasing the clustering cost by a small constant
factor. The proof may be found in [133].

Primal-dual algorithm

There is a related approach also based on linear programming. It was intro-
duced by Jain and Vazirani [83] and later addressed by Charikar and Guha [16]
and Mahdian et al. [106]. The method again starts with an integer program
stated by Equations 4.7–4.11 and its linear relaxation. A dual program is then
constructed as

maximise
∑
i∈C

αi (4.12)

27

Chapter 4. Clustering

subject to

αi − βij ≤ cij ∀i ∈ C, j ∈ F (4.13)∑
i∈C

βij ≤ fc ∀j ∈ F (4.14)

αi ≥ 0 ∀i ∈ C (4.15)
βij ≥ 0 ∀i ∈ C, j ∈ F (4.16)

The solution of this dual linear program gives the solution to the original prob-
lem. There is an intuitive interpretation of the dual variables αi and βij . The
αi can be understood as a total contribution of the client i towards opening
some facility and connecting the client to it. This can be divided to cij for
connecting i to the facility j and βij for opening the facility; see Equation 4.13.
Equation 4.14 describes how several clients pay for opening a facility.

Based on the dual linear program and the interpretation of dual variables, an
algorithm can be formulated. The original primal-dual algorithm was proposed
in [83]. The following description is, however, based on [106] which is a slightly
easier and more intuitive modification. A notion of time is introduced. The
algorithm starts at the time 0. Initially, all clients are unconnected, all facilities
are closed and αi = 0 ∀i ∈ C. While C �= ∅, for every client i ∈ C, increase the
parameter αi simultaneously at a unit rate (say by 1 in a unit time), until one
of the following events occurs.

1. For an unconnected client i and an open facility j, the equality αi = cij

comes true. In this case, connect the client i to the facility j and remove
i from C.

2. For a closed facility j,
∑

i∈C βij =
∑

i∈C max(0, αi−cij) = fc. This means
that the total contribution of clients is sufficient to open the facility j. In
this case, open the facility j and for each unconnected client i for which
αi ≥ cij , connect i to j and remove i from C.

If more events occur at the same time, they can be processed in an arbitrary
order.

Local search algorithm

From the general point of view, local search technique operates on a graph on
the space of all feasible solutions. Two solutions are connected by an edge if one
solution can be obtained from the other by a particular type of modification.
The local search technique then walks in the graph along nodes with decreasing
costs and searches for a local optimum. That is such a node whose cost is not
greater than the cost of each of its neighbours. Korupolu et al. [91] analysed
clustering techniques based on the local search. One of the first such techniques
was proposed by Charikar and Guha [16]. First, a coarse initial solution is
generated. It is then iteratively refined by a series of local search improvements.
A single local search step can be briefly described as follows. A facility is chosen
at random and it is determined whether opening it can improve the solution.

28

Chapter 4. Clustering

If so, nearby clients are reassigned to the new facility. Facilities with a low
number of remaining clients are then closed and their clients are reassigned to
the new facility too.

Describing the local search algorithm more precisely, a facility j ∈ F is
selected at random (does not matter whether it is open or closed) and it is
determined whether it can improve the current solution: If j is not already open,
the facility cost would have to be payed for opening it. Next, some clients may
be closer to j then to their current facility. All such clients can be reassigned to
j, decreasing the connection cost. After that some facilities may have just a few
clients. If those clients would be reassigned somewhere else, the facilities could
be closed and their facility costs spared. To limit computational complexity,
reassignments are allowed only to the facility j which is being investigated.
The reassignments will indeed increase connection costs, but the savings for
closing the facilities (sparing their facility costs) could be larger. The possible
improvement of the current solution is computed by the so called gain function.
If gain(j) > 0, the facility j is opened (if not already open) and reassignments
and closures are performed. The algorithm written in a pseudo-code can be
found in Appendix A.1.

Figure 4.6 illustrates one local search improvement. Facilities are shown
as big circles. Lines show the assignment of points to facilities. The original
situation is on the left. The big grey circle denotes the facility candidate. Gray
dashed lines show prepared reassignments. The situation after reassignments
and closures is shown on the right. You can see that the candidate facility
was actually opened. Some points were reassigned to it and the facility at the
bottom was closed.

Figure 4.6: Situation before and after one local search step.

In order to obtain a constant-factor approximation, the described local
search technique is repeated N log N times [16], where N is the number of
potential facilities. The complete clustering algorithm written in a pseudo-code
can be found in Appendix A.2. We believe that the number of iterations could
be considerably reduced at the cost of slightly decreased accuracy. This is
discussed in Section 6.1, starting on page 46.

An algorithm to create the initial solution is also presented in [16]. It is for
the general case when the facility cost can be different for each facility. This text
assumes uniform facility costs so a different algorithm proposed by Meyerson

29

Chapter 4. Clustering

[113] will be described here. It assumes that all input points are potential
facilities, i.e., C = F , which is quite common in general clustering problems.
Points are taken in random order. A facility is always created at the first one.
For every other point, the distance d to the closest already open facility is
measured. A new facility is opened at the point with probability d/fc (or one
if d > fc). Otherwise, the point is assigned to the closest already open facility.
Figure 4.7 illustrates the process how the initial solution is generated. The
image on the left shows the situation after processing the first six points. The
image in the middle shows that a new facility has been opened at the seventh
point and three more points were processed. It is obvious that the assignment
of clients to facilities is not perfect. The image on the right emphasises this by
showing a crossing of assignments.

Figure 4.7: The process of generating the initial solution.

4.3 Clustering large data

Methods for clustering large data can be roughly divided into two parts. The
first family of methods was developed for large databases focusing mainly on
reducing the computational time. The second family is intended for processing
real data streams. In this case the amount of data fairly exceeds the avail-
able memory so special techniques are required to process the data in smaller
manageable pieces.

4.3.1 Methods for large databases

Originally, the problem with large data was not so much concerned with lim-
ited memory. Problems appeared earlier than all the memory was full. Many
common clustering algorithms have a time complexity of O(N2 log N) which
could be too much even when processing some thousands of elements. Sev-
eral techniques were developed to overcome this issue. Although some of the
methods can deal even with data that are larger than the available memory,
they are usually not infinitely scalable and therefore are not suitable for true
data stream processing. The following sections describe algorithms based on

30

Chapter 4. Clustering

a minimisation of the sum of squared errors which is the most common case
for general clustering. There are special density-based [41] or grid-based [122]
methods but these are out of the scope of this work.

Algorithm CLARANS

One of the first approaches to clustering large databases is the CLARA (Clus-
tering LARge Applications) algorithm [86]. Instead of processing the entire
data set, the algorithm draws a random sample of the data. The sample is
then clustered using an ordinary k-medoid algorithm2 [86]. Resulting medoids
approximate the medoids of the whole data set. To get a better approximation,
several samples may be drawn and the one with minimal sum of squared errors
(SSQ) will be selected. For even better accuracy, the SSQ is computed among
the entire data set, not just the sample.

The algorithm CLARANS (Clustering Large Applications based on RAN-
domised Search) [118] uses a different approach. Instead of working with just
a sample and possibly missing some important data element, it uses the whole
data set but limits the effort of the clustering algorithm. More specifically,
CLARANS views the problem of clustering as a graph searching problem. Each
set of cluster centres represents a graph node. Two nodes are neighbours if they
differ in just one centre, i.e., if one set of centres can be obtained from the other
by replacing a single centre. The search starts at an arbitrary node, searching
for the node with a minimal clustering cost. Thus at every node, neighbours
are examined in a random order and the search continues to a neighbour with a
lower (not necessarily the lowest) cost. To limit the computational complexity,
just a limited number of neighbours is inspected at every node. If none with
a lower cost is found, the current node is proclaimed a local minimum. Again,
this algorithm can be repeated several times and the best solution selected.

Algorithm BIRCH

The BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies)
[149] uses a completely different approach. For each cluster the so called clus-
tering feature (CF) is defined as a triple (N,LS, SS), where N is the number
of elements in the cluster, LS is the (linear) sum of elements and SS is the
square sum. Only this summary information is held for each cluster, instead
of all the elements. This is highly efficient and fully sufficient for all further
algorithm decisions. Clustering features are organised in the CF tree. Each leaf
node contains a list of [CFi] entries, where CFi are cluster features of particular
clusters. A leaf node is a cluster made up of all the subclusters represented
by its entries. The size of all clusters (entries) in a leaf node is limited by a
threshold value T . A non-leaf node contains a list of [CFi, childi] entries, where
childi is a pointer to a child node and CFi is the cluster feature of this child.
So a non-leaf node is also a cluster made up of all the child subclusters.

2Also known as the k-median algorithm. A medoid is similar to a mean, but a medoid
always belongs to the data set.

31

Chapter 4. Clustering

The BIRCH is an incremental algorithm so it dynamically builds the CF tree
as data arrive. Each new element finds its way through the tree into the ap-
propriate cluster. If the cluster can absorb the element, i.e., the threshold T
would not be exceeded, the element is added to the cluster. If the cluster would
exceed the threshold, a new cluster (leaf entry) is created and the new element
is placed there. If any node would have too many entries, the node is split and
its entries are redistributed. In either case (absorption, new cluster creation,
split) appropriate cluster features are updated. Updates are propagated up the
tree which is no problem because cluster features are additive.

With the restrictions on the maximal cluster size and the maximal number
of entries in a node, the algorithm can process very large data in a constant
memory. The CF tree compresses data into compact summaries while main-
taining the finest granularity that can be achieved given the available memory.
Entries in the leaf nodes need not be perfect clusters so it is best to pass them
to some ordinary clustering algorithm.

Algorithm CURE

CURE (Clustering Using REpresentatives) [61] is a hierarchical agglomerative
clustering algorithm. It uses a compromise between all-point and centroid-
based cluster representation. A constant number of well scattered samples
is chosen in each cluster. These samples capture the shape and extent of the
cluster which allows CURE to capture even non-spherical clusters. The samples
are then shrunk towards the centre of the cluster by a fraction α and used
as representatives of the cluster. The algorithm then proceeds as common
hierarchical agglomerative clustering. It merges clusters with the closest pair
of representatives.

CURE is less sensitive to outlier points. If an outlier would be selected for
the representative, it would be shifted a large distance due to the shrinking,
thus reducing any distortive effect. The kinds of clusters identified by the
algorithm can be tuned by the parameter α. For α = 1 the algorithm reduces
to a centroid-based method like the complete link. For α = 0 it becomes similar
to the all-points approach like the single link. See Section 4.2.1 for a reference
on single link and complete link algorithms.

To handle large data sets that cannot fit into the main memory, CURE uses
random sampling to reduce the size of the input. If this is still not enough, the
algorithm first partitions the random sample and partially clusters the data in
each partition. The pre-clustered data is then clustered again in a second pass
to generate final clusters. This also improves running time since it is faster to
process several smaller pieces than a single large one.

4.3.2 Methods for data streams

Algorithms for clustering data streams can be divided into three groups. The
first approach is based on the divide and conquer strategy. The data set is
divided into several blocks which are solved separately. One or more represen-
tatives are then selected from each cluster and these are further clustered to

32

Chapter 4. Clustering

get the result. This technique can be extended to more levels if the data set is
still too large.

The second approach is an incremental clustering. A cluster is created
for the first data element. Then following elements are considered one after
another. Each one is either assigned to one of the existing clusters or to a new
cluster. This is done based on some similarity measure. This approach is used
by the leader clustering algorithm [65], for a more recent application see [113].
The major advantage of incremental clustering is that the algorithm does not
need to store all the data in the memory. So the space requirements are small.
Algorithms are typically non-iterative so their running time is also low. The
problem with incremental approaches is that the algorithms are mostly order-
dependent. This means that the result of the clustering depends on the order
in which the data is presented to the algorithm.

The last approach represents parallel algorithms. This area is out of scope
of this work.

Divide and conquer data stream clustering

This paragraph will describe a method based on the divide and conquer strategy.
The algorithm was proposed by Guha et al. [60] and later addressed in [119, 59].
It is easier to first explain the algorithm that can process smaller data streams.
It partitions the stream into blocks which are processed separately. Each block
is clustered by an ordinary clustering algorithm. The method by Guha et al.
prefers the local search algorithm for its linear memory requirements. Resulting
intermediate cluster centres are weighted by the number of elements assigned
to them. The algorithm keeps only these centres and discards all other data
from the blocks. The intermediate centres are then clustered again in order to
get the final clustering. The clustering is done with respect to centre weights
so that centres of big clusters have a larger importance.

If the data stream is too large, the intermediate cluster centres may not
fit in the memory. This can be easily solved by allowing multiple passes. The
intermediate centres can be stored on an external memory and then processed
in the same way as the original data stream. Weights for resulting centres
are then computed as a sum of weights of all assigned intermediate centres.
By recursively using the algorithm, it is possible to process a data stream of
virtually any size. It is now straightforward to extend the technique so that
no external memory is required. The algorithm proceeds with clustering blocks
of the data stream and stores the intermediate centres in another block at a
higher level. When this block is full, it is clustered again and resulting centres
are stored at the next level.

Given a block size m, the algorithm maintains at most m intermediate
centres at every level. As soon as there are m centres at any level, they are
clustered again and passed one level higher. At the end, the final result is
found at the top level after clustering all the intermediate centres. Figure 4.8
illustrates the divide and conquer clustering. Blocks in the data stream are
delimited by bold lines. Black dots indicate cluster centres in particular blocks.

33

Chapter 4. Clustering

input data stream

the first level

the second level

Figure 4.8: The divide and conquer clustering.

The number of levels l required to process the entire data stream can be
computed as

l =
log(N/m)
log(m/k)

(4.17)

where N is the number of elements in the whole data stream, m is the block size
and k is the average number of clusters in each block. Cited papers present the
equation without any further explanation. This paragraph shows how it can be
derived. At the zero level, the data stream has N elements which are divided
into N/m blocks. These blocks will be clustered into N/m · k intermediate
cluster centres, which will be divided into N/m · k/m first level blocks. The
situation repeats at higher levels until resulting l level intermediate centres fit
into a single block. This can be expressed as

N/m · k/m · k/m · . . . · k/m = 1 (4.18)

where k/m repeats l times. After a simple rearrangement

N/m = m/k · m/k · . . . · m/k = (m/k)l (4.19)

Taking a logarithm of Equation 4.19 we get

l = logm/k(N/m) =
log(N/m)
log(m/k)

(4.20)

34

Chapter 5

Delaunay Triangulation

The Delaunay triangulation [33] is well known in computational geometry. This
chapter recapitulates fundamental properties and methods of construction. Fur-
ther details may be found for example in [123, 103, 88]. The rest of this chapter
then focuses on methods for building hierarchies in the triangulation and meth-
ods suitable for large data.

Let’s start with a formal definition of a general triangulation. A triangula-
tion T (S) of a set of points S is a partitioning of space into simplices (triangles
in 2D, tetrahedra in 3D) having the following properties

1. vertices of every simplex are a subset of S

2. intersection of arbitrary two simplices is either empty, a common vertex,
or a common edge (or a common face)

3. the set of simplices T (S) is maximal, i.e., it is not possible to add any
other simplex without violating one of the previous conditions

From the last property follows that the boundary of a triangulation is the convex
hull of S. The Delaunay triangulation is a triangulation where the circumcircle
of any simplex is an empty circle, i.e., it does not contain any other point
of S. A circumsphere is used in 3D and a circumscribed hypersphere in any
higher dimension. The Delaunay triangulation is so popular because it has
some nice properties. It maximises the minimum inner angle of the triangles in
2D. In other words, the Delaunay triangulation produces triangles most close
to the equiangular triangle. This property is important because it ensures a
low number of narrow triangles that could cause numerical problems in later
processing. In higher dimensions it minimises the maximal containment sphere
of simplices. In d-dimensional space if no d+2 points lie on a common d-sphere
and no k + 2 points, k < d, lie in a common k-dimensional subspace, then the
Delaunay triangulation is unique.

5.1 Constructing the Delaunay triangulation

There are generally six approaches to construct the Delaunay triangulation.
They are described in the following sections. Alternatively, the Delaunay tri-

35

Chapter 5. Delaunay Triangulation

angulation can be directly obtained from a Voronoi diagram [142, 123]. This is
used very rarely, for instance in [71].

5.1.1 Local improvements

The technique based on local improvements [96] first creates an arbitrary trian-
gulation. It then checks the empty circumcircle criterion for all neighbouring
triangles and swaps their common edge if the criterion is violated. Given two
neighbouring triangles forming a quad, an edge swap is a local modification
such that the edge is replaced by the other quad diagonal. In Figure 5.1 on the
left, the grey triangle does not fulfil the Delaunay property – its circumcircle
contains another vertex. So the bold edge is swapped. Resulting triangles are
shown on the right.

Figure 5.1: Example of an edge swap.

The algorithm of local improvements is guaranteed to converge only in 2D.
Obviously, it is not suitable for large data processing because the whole trian-
gulation must be held in memory. It also does not allow to have any hierarchy
in the triangulation. The time complexity is governed by the number of swaps
after the construction of the initial triangulation. In 2D, it is O(N2) in the
worst case and O(N) expected.

5.1.2 Incremental construction

Quite a different approach is the incremental construction. The fundamental
algorithm [111] starts with an arbitrary point of S and its closest neighbour.
The edge between these two points forms the base for the triangulation. Then
for every outer edge AB of the current triangulation, the algorithm finds such a
point C for which the triangle ABC has an empty circumcircle1. The triangle
ABC is added to the triangulation. This repeats until the whole set S has been
triangulated. The progress of incremental construction is illustrated in Figure
5.2. The algorithm has the worst case time complexity of O(N3) unless some
efficient data structure is used, e.g., a grid as in [20].

1Alternatively, a triangle with the smallest circumcircle may be found. It must inherently
be empty, because otherwise another triangle with a smaller circumcircle would exist.

36

Chapter 5. Delaunay Triangulation

Figure 5.2: The process of incremental construction.

5.1.3 Sweeping construction

A sweeping algorithm for the construction of the Delaunay triangulation was
presented by Fortune [46]. It is rather complicated but the time complexity is
O(N log N) in the worst case. An advantage of incremental construction is that
once a triangle has been created, it is never changed. This allows to process even
large amounts of data. If the algorithm proceeds wisely, the already triangulated
parts can be put away, leaving memory for further data. This technique was
proposed by Isenburg et al. [78] and is described in Section 5.3.

5.1.4 Incremental insertion

Perhaps the most popular approach is the incremental insertion. The algorithm
starts with an artificial super-triangle enclosing all the input points. These are
then successively inserted into the current triangulation, often in random order.

There are two methods of the insertion. The first one [63, 103] locates
the triangle that contains the point being inserted. The triangle is subdivided
into three new triangles formed by two vertices of the original triangle and
the inserted vertex. The triangulation is then “legalised” by edge swaps as
necessary to satisfy the Delaunay criterion. The insertion with swaps is shown
in Figure 5.3. These swaps can affect the whole triangulation in the worst
case. The time complexity of the incremental insertion is then O(N2). But this
happens very rarely, in some special cases designed on purpose to demonstrate
this effect. The expected time complexity is O(N log N) if a good point location
algorithm is used (see Section 5.2).

Another method of insertion is known as the Bowyer-Watson algorithm [144]
with a worst case time complexity of O

(
N

2d−1
d

)
. It first finds and deletes all the

triangles whose circumcircle contains the point being inserted. The resulting
hole is then re-triangulated by creating edges from the hole perimeter to the new
point. New triangles fulfil the Delaunay property and no swaps are necessary.
The insertion with a re-triangulation is shown in Figure 5.4.

The algorithm of incremental insertion is relatively simple and has reason-
able numerical stability. When a point is to be inserted, the algorithm needs
to locate it inside the triangulation. Several methods exist for this. Section 5.2
describes them in more detail. Incremental insertion does not need to have

37

Chapter 5. Delaunay Triangulation

Figure 5.3: Example of point insertion with swaps.

Figure 5.4: Example of point insertion with re-triangulation.

all the data at the beginning. It is only necessary to know the bounding box
in order to construct the initial super-triangle. All the above properties make
incremental insertion well suitable for processing large data sets.

5.1.5 Divide & conquer

The divide & conquer strategy is a well known approach and is often used for
large data. The most influential works are [62] with the worst case complexity
of O(N log N), [39] with the expected running time of O(N log log N), and the
algorithm DeWall [20] whose complexity was empirically showed to be sub-
quadratic.

Generally, a divide & conquer algorithm recursively divides the data until
the pieces are small enough to be easily triangulated for example by the incre-
mental construction. Pieces are processed separately. Results are then merged
together to get the complete triangulation. The merging phase is perhaps the
most difficult. The pieces must be sewed together by constructing triangles be-
tween them. Moreover, some edges already present in particular triangulations
may require to be swapped. An example is shown in Figure 5.5.

5.1.6 Higher dimension embedding

The higher dimension embedding [12] is a completely different approach. The
input points in dimension Ed are projected on a surface of a paraboloid con-

38

Chapter 5. Delaunay Triangulation

Figure 5.5: The merging phase of the divide and conquer method.

structed in dimension Ed+1. The projection of 2D point P into 3D point P ′ on
the paraboloid can be written as

P [x, y] �→ P ′[x, y, x2 + y2] (5.1)

A convex hull of the projected points is then constructed. It is proved that
projecting the convex hull back to Ed yields the Delaunay triangulation.

The time complexity of higher dimension embedding is determined by the
complexity of convex hull construction. The popular gift wrapping algorithm
[13] has a complexity of O(N � d+1

2
�+1), which is O(N2) in 2D and O(N3) in

3D. The higher dimension embedding can be used to partition the input data
into pieces so that the borders between them are guaranteed to be edges of
the Delaunay triangulation. This allows to process large data in a divide and
conquer fashion with virtually no merging step [88].

5.2 Point location strategies

Sometimes it is necessary to locate a point inside a triangulation, i.e., to find
the triangle that contains the given point. This is in particular essential for the
incremental insertion algorithm that needs to locate every point being inserted.
Traditional point location techniques are the directed acyclic graph and the
walk. They are described in detail in the following sections. Further methods
include, e.g., a uniform grid [42, 20] or a skip list [147].

5.2.1 Directed acyclic graph (DAG)

Several approaches exist for point location. There is an algorithm based on a di-
rected acyclic graph (DAG) [103]. The DAG is a data structure that tracks the
history of construction of the Delaunay triangulation. It is a tree shaped graph
(a tree with additional edges) whose nodes correspond to triangles. The follow-
ing text uses the terms root and leaf. Although this is not absolutely correct
in a general graph, the meaning of the terms will be obvious and appropriate
nodes are easy to identify as if the graph would be a real tree.

So the root represents the initial super-triangle. Inner nodes stand for tri-
angles that were present in some previous version of the triangulation (recall

39

Chapter 5. Delaunay Triangulation

the incremental insertion algorithm). Leaves correspond to triangles that make
up the current triangulation. Each non-leaf node has children that correspond
to the triangles created either by a subdivision of the node’s triangle, or by an
edge swap. Figure 5.6 shows how the DAG changes during a point insertion.
The point is located inside the triangle T2 which is subdivided, so the node T2
in the DAG gets three new children T4, T5, T6. Then the edge between the
triangles T1 and T4 needs to be swapped, so both the node T1 and T4 get two
new children T7 and T8.

T3T1 T2 T3T1 T2

T6

T6 T6

T4

T4

T5

T5 T5

T6T4 T5

T3

T3 T3 T3

T1

T1 T1

T2

T2

T7

T7

T8

T8

Figure 5.6: Changes in the DAG when a point is inserted into the triangulation.

When a point p needs to be located, the algorithm starts from the DAG
“root”. It inspects its children and finds the node whose corresponding triangle
contains p. The search then continues through that node until a leaf node
is reached. Point p is then located inside the triangle associated with the leaf.
The point location with DAG achieves the optimal time complexity of O(log N)
in the expected case. In the worst case, when the DAG “tree” is extremely
imbalanced, the complexity is O(N). A disadvantage is that the DAG consumes
a lot of memory which makes it inappropriate for processing any large data.
Namely O(N2) memory is required in the worst case, though, the worst case is
very unlikely to occur.

5.2.2 Walk in a triangulation

A different approach for the point location is a walk in the triangulation. The
algorithm starts at an arbitrary spot in the triangulation and traverses triangles
from neighbour to neighbour until it reaches the triangle containing the query
point. There are several methods how the walk may proceed [35]. The last
point inserted into the triangulation is often selected as the starting point for

40

Chapter 5. Delaunay Triangulation

the next walk. To be consistent with [35], this text designates the starting point
q and the query point p.

The straight walk proceeds along the line qp. The algorithm starts with an
arbitrary triangle incident to q and turns around q until it reaches the triangle
intersected by the line qp. Then for each following visited triangle the line qp
goes out of the triangle through the edge e. If p lies on the near side of e,
the current triangle contains p. Otherwise, the walk proceeds to the neighbour
across e. The new vertex of the neighbour is located with respect to the line
qp. This determines through which edge of the neighbour the line qp goes out.
The straight walk is simple unless it has to deal with degenerate cases. Also
numerical stability can be a problem.

The orthogonal walk is different in that it first goes along a horizontal line
from q = (qx, qy) to (px, qy), and than along a vertical line from (px, qy) to
p = (px, py). The advantage of this technique is that while walking only in
axis aligned directions, it does not need to evaluate expensive orientation tests.
Simple greater than/less than comparisons are enough to decide which way to
walk. Only at the end of both the horizontal a vertical passes, a few orientation
test may be necessary to decide precisely.

The visibility walk in its fundamental version starts from any triangle inci-
dent to q. Then for each visited triangle it tests the first edge e whether the
line supporting e separates the triangle from p. If so, the walk proceeds to the
neighbour across e. Otherwise, the next edge is tested. If all three tests fail,
the current triangle contains p.

It is necessary to define some edge ordering for this algorithm. But a much
more serious problem is that for a non-delaunay triangulation, this walk may
fall into an infinite loop. So it cannot be used for example in a constrained
triangulation. Fortunately, there is a simple modification – the stochastic walk
– that overcomes this issue. The only modification is that triangle edges are
tested in a random order. This is proved to ensure that the walk will reach p
in a finite number of steps.

There is one more improvement called the remembering stochastic walk. It
remembers the edge it came through to the current triangle. This edge is then
excluded from the tests, since it has been already tested in the previous step
and it is worthless to do it again. This may spare one orientation test in some
triangles.

Figure 5.7 shows a comparison of the walking strategies – (a) the straight
walk, (b) the orthogonal walk, (c) the stochastic visibility walk. The grey
path shows the triangles visited by each particular walk. In this example, all
strategies visit the same number of triangles. This is not a rule in a general
case.

The worst case complexity of the straight walk and the orthogonal walk
is O(N) per point location. The stochastic walk can have exponential length.
There is an example for every algorithm that demonstrates the worst case [35].
But in practise the expected complexity of all the mentioned walk algorithms
is O

(
d
√

N
)
, where d is the dimension. This is nice, although worse than the

optimal O(log N) complexity of the DAG. The most important is that walking

41

Chapter 5. Delaunay Triangulation

p

q

(a) straight walk

p

q

(b) orthogonal walk

q

p

(c) visibility walk

Figure 5.7: Comparison of the walking strategies.

algorithms need a constant (and very little) extra memory, so they are perfectly
suitable for processing large data.

Devillers [34] proposed a hierarchical approach. The lowest level holds the
complete triangulation T0. Each higher level contains a triangulation of a small
sample of the level below. The walk starts at the highest level k and locates
vertex vk ∈ Tk that is closest to the query point p. The walk then continues at
the levels below (note that also vk ∈ Tk−1) until p is located at the lowest level.
This scheme guarantees O(log N) location time in all cases.

5.3 Streaming Delaunay triangulation

Recently, Isenburg et al. [78] introduced a method for computing Delaunay
triangulation of very large data sets using extremely small amount of memory
compared to the size of input data. The method builds on a non-surprising
observation that most real-world data have a spatial coherence. If the data are
presented in a form of a stream, points lying geometrically close together are
also located close together in the stream.

The proposed method exploits this property to introduce finalisation tags
into the stream. The data set is divided into regions. When all points from a
particular region appeared in the stream, the region is declared finalised and a
finalisation tag for that region is injected into the stream. The Delaunay trian-
gulator then uses these tags to identify areas where no more points will arrive
and so the triangulation will not change. Such finalised parts of triangulation
may be sent to output, freeing memory for further data.

5.3.1 Inserting finalisation tags into the stream

The finalisation algorithm processes the stream in three passes. In the first
pass, it finds the bounding box of the data. A regular grid is then laid over the
data partitioning it into rectangular cells. The second pass counts the number
of points in each cell. These statistics are then used in the third pass. This
time, the algorithm decrements the counters. When a cell’s counter reaches

42

Chapter 5. Delaunay Triangulation

zero, all points from the cell have arrived and the finalisation tag for that cell
is inserted into the stream.

The spatial coherence can be further increased during the third pass. The
algorithm buffers all the points in each cell until the cell’s counter reaches zero.
All points are then output at the same time followed by the finalisation tag.
The increased coherence is well worth the additional memory demands and still
requires far less work than fully sorting all the data.

Many algorithms, such as the incremental insertion, may experience a sig-
nificant drop of performance if input data arrive in an undesired order. To
avoid this it is best to process input points in a random order. So ultimate
spatial coherence is not always the best. Therefore the finalisation algorithm
samples several points from the stream and promotes them to earlier spots in
the stream. This is done locally within each cell and also globally among all
cells.

On the local level the algorithm uses the BRIO [4] which was designed
exactly for this purpose. In the third pass when a cell is finalised and points re-
leased to the output stream, the algorithm moves a sample of randomly selected
points to the front of the chunk.

The global sampling starts in the second phase. The algorithm builds a
quadtree whose leaves are the grid cells, and stores one point from each quadrant
at each level of the tree. During the third pass it moves these sampled points
to early spots in the stream. Points are not moved right to the beginning
because for very large data this would destroy the spatial coherence. Instead
of releasing all the points at once, they are inserted into the stream in a lazy
fashion. When a cell is finalised, the sample points of all its ancestors and
their immediate children in the quadtree are released before the points of the
finalised cell.

5.3.2 Streaming triangulation

The triangulation algorithm uses the common method of incremental insertion.
Conventional programs output triangles after processing all the data. The
speciality of the streaming algorithm is that it outputs a triangle whenever it
determines that the triangle is final, i.e., its circumcircle has no intersection with
any unfinalised cell. Such a triangle is for sure in the Delaunay triangulation
since no point arriving in the future can be inside its circumcircle. A triangle
that is not final is called active.

In addition to the triangulation itself, the algorithm keeps a quadtree that
remembers which cells have been finalised. When a point arrives in the stream,
it is inserted into the triangulation. When a finalisation tag arrives, the algo-
rithm notes the finalised cell, determines which triangles become final, writes
them to the output, and frees their memory. This dramatically reduces the
amount of memory used by the program. Figure 5.8 shows the streaming De-
launay triangulation in progress. The points in the white part have been pro-
cessed and their triangles sent to output. The grey triangles are active. There
are a few representative circumcircles that intersect unfinalised cells. The figure
shows a situation when points are being inserted into the cell in the middle.

43

Chapter 5. Delaunay Triangulation

Figure 5.8: The streaming Delaunay triangulation in progress. The image is inspired
by [78].

The algorithm uses a straight walk to locate a point inside the triangulation.
As can be seen from Figure 5.8, the location may fail because it tries to walk
through a final triangle that is no longer in memory. In such a case the walk
is restarted from a different starting point. Each quadtree leaf maintains some
triangles whose circumcircles intersect the leaf’s quadrant. So the algorithm
finds the quadrant containing the point to locate and restarts the walk from
one of the triangles on the quadrant’s list. If the walk fails again, the algorithm
tries other triangles on the list and then triangles from lists of neighbouring
quadrants. If no walk succeeds, the algorithm resorts to an exhaustive search
through all active triangles. Isenburg et al. claim that this happens for fewer
than 0.001% of points.

When the algorithm reads a finalisation tag, it needs to check which active
triangles become final. It first checks whether the circumcircle of a triangle is
completely inside the cell that was just finalised. This simple test marks many
triangles as final. If this test fails, a circle-rectangle intersection is computed.
The quadtree hierarchy is used to early reject triangles that are still active. If a
triangle’s circumcircle intersects an unfinalised cell, it would be wasteful to test
the triangle again before that cell is finalised. So the triangle is added into the
cell’s list and ignored until the cell is finalised. When the proper finalisation
tag arrives, the triangle is checked again. Tests continue in the quadtree from
the just finalised cell where the triangle was listed.

44

Chapter 6

Contributions

This chapter presents the contributions we made to the current state of the art
of clustering and large geometric data processing. Namely we have improved the
facility location algorithm and adapted the data stream clustering to facility
location. Further, we made modifications to the clustering as well as to the
Delaunay triangulation so that the algorithms can work with an anisotropic
metric based on [140]. We believe that it could bring a new interesting potential
especially to the area of clustering. Anisotropic metrics allow to create non-
spherical clusters that fit a wider variety of shapes.

Currently the greatest deal of work is focused on the hierarchical triangu-
lation. We would like to use it to provide complex geometric models at various
levels of detail in different parts. Another problem we work on is adapting
the clustering to the Euclidean matching. The task is to group points into
pairs so that the clustering could be used for ray tracing acceleration. Both
the hierarchical triangulation and the Euclidean matching is work in progress,
nevertheless, we have already results to present.

6.1 Speeding up the facility location

This is an improvement to the Local search clustering algorithm [16] described
in Section 4.2.3, starting on page 28. It is the facility location approach that
iteratively refines an initial solution by local improvements. Each local search
step involves computing a gain function that determines whether the step is
beneficial and actually improves the solution.

Evaluating the gain function takes O(N) time. It is not bad, however,
O(N log N) local search iterations are necessary to get a constant-factor ap-
proximation to the optimal clustering. This makes the speed of gain evaluation
rather significant. We may speed up the computation by limiting the number
of points that need to be inspected. Given a facility cost fc, any point can
be connected to a facility that is at most fc far away. Otherwise it would be
cheaper to open a new facility at that point. This holds true in the initial
solution as well as during the iterative local improvements.

Let us define the influence area of facility f to be the circle centred at f
with a radius fc. From the above reasoning follows that all the points connected

45

Chapter 6. Contributions

to f must lie within its influence area. So to compute the gain for some facility
candidate, it is sufficient to inspect just those points whose distance is at most
fc, that is the points which fall into the facility candidate’s influence area. When
we take all facilities in a 2 ·fc radius around the facility candidate, and examine
all points connected to those facilities, we can be sure that we inspected all the
points that may be relevant.

An example situation is illustrated in Figure 6.1. Facilities are shown as dots
with their influence area delimited by a dotted circle. The facility candidate
is denoted black. We need to inspect all the points that may lie within its
influence area IA. Such points can only belong to the facilities whose influence
area overlaps with IA. Such facilities (shown as diamonds) lie within the dashed
circle with a radius 2 · fc.

IA

Figure 6.1: Finding points that may lie within the facility candidate’s influence area.

The proposed idea works for points without weights. The situation is a bit
more complicated for weighted points because distances are multiplied by point
weights. Thus a point with a small weight can be connected to a distant facility,
while a point with a big weight should be connected to a nearby facility. Never-
theless, the above idea can easily be adapted to this situation. For each facility
we find the point with the minimal weight wmin. We then set the influence area
radius to fc/wmin which is the farthest distance where the minimal weighted
point can lie. To compute the gain it is then necessary to inspect all the points
assigned to facilities lying at most 2 · fc/wmin away from the facility candidate.
Note that wmin is generally different for each facility so now it is not possible
to take all facilities in some radius. The distance must be checked for every one
separately.

Except the above method there is another possibility to speed up the com-
putation greatly at the cost of decreased accuracy. It is proved [16] that
O(N log N) local search iterations are necessary for a constant factor approx-
imation. We have made experiments with the number of iterations and it
turned out that it can be reduced significantly without major impact on the re-
sult. Only about 0.1N iterations were necessary for uniformly distributed data.
Data with obvious clusters required even less iterations. Figure 6.2 shows a
comparison of clustering the same data with N log N and 0.1N iterations re-

46

Chapter 6. Contributions

spectively. Black dots indicate points assigned to a different facility than to the
closest one. It can be used as an approximate measure of error, but just for the
current set of facilities. No black dots mean an optimal assignment to currently
open facilities. More detailed experiments are documented in our paper [134].

Figure 6.2: Comparison of full and reduced number of iterations.

6.2 From the k-median to the facility location

The data stream clustering method [60] described in Section 4.3.2 on page 33
solves the k-median problem. It computes the facility location repeatedly and
using a binary search it finds such a facility cost that yields exactly k clusters.

The k-median algorithm has the property that it clusters data into exactly
k clusters. The k must be specified in advance. Although this property may be
favourable in some applications, generally we have no idea about the number
of clusters in the data. It is unpleasant and inefficient to guess this value
by a trial-and-error. From this point of view the facility location approach
seems considerably more convenient. It finds a suitable number of clusters
automatically with the possibility to control this by the facility cost parameter.

Based on the above consideration we decided to modify the original method
to facility location, i.e., to compute the clustering just once without searching
for k. Solving the facility location itself seems to be just a part of the original
method, but it is not that simple. Instead of a precise number of clusters we
must set the facility cost. This appears to be the same problem. But if we find
a good default value that yields a natural clustering, the algorithm will then
run on any data without user having to tune the parameter every time.

The facility cost is a counterbalance to point distances. To keep consistent
results for various data, we need a small cost for clustering points for instance
in a unit square, and a high one for points in a [0; 106] range. It follows that
the facility cost must be derived from the range of point coordinates. Based
on our experiments we suggest setting the facility cost equal to the diagonal
of data bounding box. It produces good results (i.e., a clustering that seems
natural to a human observer) in most scenarios. If necessary the facility cost
can be multiplied by a constant to make the clustering either stronger or more

47

Chapter 6. Contributions

Figure 6.3: Comparison of clustering using a facility cost of 2fc, fc and 0.5fc respec-
tively. Images cropped.

moderate and thus adapt the algorithm to special needs. Figure 6.3 illustrates
the effect of scaling the facility cost.

Another problem we had to face was clustering points at higher levels.
Points have weights so all distances are multiplied by some (possibly large)
numbers. If we perform the clustering as usual, a facility would be opened at
almost every point because point weights make them several times farther from
each other. A solution might be to increase the facility cost but point weights
will then grow higher with increasing level and we may encounter numerical
problems. Instead of scaling the facility cost we decided to introduce weight
normalisation.

Points at level zero have a unit weight, causing no problems. It would be
nice to keep weights around one also at higher levels. To achieve this we simply
divide all weights by their average. The average of new weights will be one,
exactly as we wanted. It is important to do the normalisation of all the points
in a block at the same time. This means not earlier then the block is full. One
would think of normalising the weights right after clustering a lower level block
(when passing points to the higher level). But this is wrong. Generally, each
block may have a different number of clusters so the average weight may also
vary. Thus points from different blocks would not be normalised equally.

After processing the whole data stream, the highest level may contain points
that lie close together. These are similar facilities from different lower level
blocks. Such points obviously make up one big cluster so it might be desirable
to group them together. This can be done by simply clustering them once
more. But the standard procedure of weight normalisation would cluster too
much resulting in just several huge clusters. It is therefore advisable to omit
the normalisation and leave weights higher. The clustering then just groups
nearby points together and leaves the others as they are.

48

Chapter 6. Contributions

6.3 Dynamic hierarchical triangulation

The dynamic hierarchical triangulation is the core of our current research. The
triangulation uses the point hierarchy created by the data stream clustering
algorithm which is described in Section 4.3.2 starting on page 33. Initially a
triangulation of the highest level is constructed. Each point at the highest level
represents a cluster of points at a lower level. It is then possible to expand any of
the clusters, insert all its points into the triangulation and thus locally increase
the level of detail. The expansion can indeed continue down to the lowest level.
Nevertheless, we can expand only as many clusters as fit into the memory. It
is therefore possible to collapse clusters that are no longer interesting and thus
free memory for other data.

Figure 6.4 shows a 2D triangulation of the Lucy model originally consisting
of about 10 million vertices. Level 2 of the hierarchy contains just 95 vertices.
The right hand is expanded to level 1 and fingers down to level 0 which is the
full resolution. Triangulations at particular levels are rendered separately in
different colours for visual clearness. Of course our system can also work with
all the points in a single triangulation. The frame on the left shows the whole
model, frames on the right are closeups of the hand and fingers.

Figure 6.4: Example of the Lucy model with the right hand in a higher resolution
and fingers in the full resolution.

An example of clustering a digital elevation map of the whole world can be
found in Appendix B.

Now on how the dynamic hierarchical triangulation works. It is to be noted
that so far the solution is only 2D. The first thing to describe is the format in
which the hierarchy of clusters is stored on a hard disk. Each clustering level is
saved in a separate binary file. This is no problem because even million-sized

49

Chapter 6. Contributions

geometric models can be clustered using only a few levels. So the result will be
just several files with a convenient access to particular levels.

Vertices of each cluster are stored in a continuous block as illustrated in
Figure 6.5 in the bottom row where you can see clusters distinguished by dif-
ferent shades of grey. Each cluster centre is stored at a higher level along with
an address and a size of the block containing points of the cluster. This is seen
in the top row in the figure. Using this structure the triangulation program can
easily load and expand any particular cluster on demand.

the zero level

the first level

the second level

Figure 6.5: Scheme of how the hierarchy of clusters is stored on a hard disk. Cluster
centres at higher levels have pointers to the whole clusters at lower levels.

Expansion of a cluster is not difficult. All points are simply inserted one
by one into the triangulation using the incremental insertion algorithm; see
Section 5.1.4 page 37 for details. We believed it could be possible to insert
a pre-triangulated cluster all at once but it does not seem to be profitable.
Perhaps we will make more research in this direction later.

Collapsing a cluster deserves a more detailed explanation. The algorithm is
based on the technique of removing a vertex from the triangulation. The original
technique removes a vertex along with all incident triangles. The resulting
hole is then re-triangulated. Our algorithm extends the technique in that it
enlarges the hole as much as possible by removing further vertices before the
re-triangulation. The solution is simple, reliable and runs relatively fast. The
algorithm proceeds as follows:

1. create a hole – remove the first vertex

2. enlarge the hole – continue with removing further vertices as long as they
are on the hole boundary

3. re-triangulate the hole

4. if not all cluster vertices has been removed, go to 1

Upon creating the hole the algorithm remembers a chain of vertices along
the hole boundary as well as a chain of neighbouring triangles. The algorithm
then proceeds with removing further points. The chains are updated with each
removal. Figure 6.6 shows a sample situation after removing three points. The
hole is dark grey, removed edges and vertices are white. The chain of vertices
is bold and the chain of triangles is light grey. The important condition is
that a point can be removed only if it lies on the hole boundary. Otherwise

50

Chapter 6. Contributions

another hole will appear. Such holes could later touch each other or merge
together. That would require complicated overhead and it is unlikely to bring
any major improvement to the algorithm. For the same reason we disallow
the degenerate case when a vertex appears more than once in the chain; see
examples in Figure 6.7. If any vertex removal should result in such a situation,
the removal is cancelled.

Figure 6.6: A hole after removing three vertices.

Figure 6.7: Examples of degenerate holes.

When no further vertex can be removed the hole is re-triangulated. We
use a simple ear cutting algorithm. An ear is generally a valid triangle formed
by three subsequent vertices vi, vi+1, vi+2 at the hole boundary. Cutting an
ear means adding the triangle vivi+1vi+2 to the triangulation and removing the
second vertex vi+1 from the boundary. Our implementation goes around the
hole boundary (using the chain of vertices) and it tests ears whether they fulfil
the Delaunay property. Only points in the chain are included in the test. Other
points in the triangulation do not play any role. Ears that pass the test are
cut. Proper triangle neighbourhood is established using the chain of triangles.
Both chains are then updated to reflect the cut ear and the algorithm goes on
until the hole is patched.

51

Chapter 6. Contributions

6.4 Anisotropic metrics

Anisotropic material has variable properties in different directions. A nice ex-
ample is wood – it is very strong along the grain, but transversely, it breaks
easily. Geophysics studies anisotropic materials in connection with variations in
seismic wavespeed or for gas and oil exploration. Also medical ultrasound imag-
ing uses the fact that soft tissues have different echo depending on the angle of
the sound source. Anisotropy is often found in optical properties of minerals
such as the birefringence of calcium crystal. Computer graphics may be inter-
ested in anisotropic surfaces, such as velvet, that change their appearance when
rotated about their normal.

The above examples lead us to the belief that anisotropic metrics will be
an effective feature in both clustering and triangulation. We decided to im-
plement an elliptical metric because it is relatively simple and yet provides
enough flexibility. An elliptical metric can be viewed as an elliptical elongation
of the classical Euclidean space. Concerning clustering, it allows to shape clus-
ters as ellipsoids rather than spheres. Ellipsoids can significantly better match
phenomena like those mentioned in the previous paragraph. The effect on a De-
launay triangulation is that edges tend to go along the direction specified by the
ellipse. This could be useful to prepare the triangulation for later deformations
so as to avoid degenerate cases.

To get even more flexibility we added the possibility to define different ellip-
tical metrics in limited regions of the data. Figure 6.8 shows an example. The
first frame shows the data with three regions defining three different elliptical
metrics as illustrated by the ellipses; standard Euclidean distance is used out-
side the regions. The next two frames show the clusters and the triangulation
created using the specified metrics.

Figure 6.8: Illustration of regions with different elliptical metrics (left). The clustering
and the triangulation computed using the defined metrics (middle and right).

Now on the mathematics how the elliptical distance is computed. The idea
of computing a Delaunay triangulation using elliptical metrics was proposed by
Vigo and Pla [140]. The equations they use are a bit obscure. Namely, point
coordinates are scaled, but it does not matter when computing the triangula-
tion. The following text explains the equations in detail. The algebra regarding
ellipses and their matrix expressions can be found for example in [66].

52

Chapter 6. Contributions

x

y

a
b

φ

Figure 6.9: An ellipse defining the metric.

The following is an intuitive derivation of the equations used for computing
with an elliptical metric. It slightly differs from [140] so as to keep the scale
correct which is especially important for clustering. For the sake of simplicity
we will work in 2D space. The situation for higher dimensions is analogous.

The metric is defined by an ellipse so that any radius of the defining ellipse
has a unit length, i.e., using the elliptical metric the defining ellipse appears
to be a unit circle. The ellipse is defined by its major and minor axes. The
position in space is irrelevant.

The simplest way to use the elliptical metric is to transform points into the
Euclidean space and then to work with them as normal. So we are looking for
a linear mapping M that maps the defining ellipse onto a unit circle. This is
done by a rotation R (to align the ellipse axes with coordinate axes) followed
by a nonuniform scaling S (to scale the ellipse to a unit circle). Note that no
translation is needed since the defining ellipse is centred at the origin. Finally
a reverse rotation RT should be applied. It has no effect on point distances,
however, we do the rotation because the transformation matrix will then be
symmetric which has advantages in algebraic calculations. Please refer to [66]
for more details.

Figure 6.9 shows a defining ellipse as a reference for the following equations.
Assuming a column vector notation, point p is transformed to the Euclidean
space as

p′ = Mp (6.1)

We construct the transformation matrix M as

M = RTSR =

(
cos φ sinφ
− sinφ cos φ

)(
1
a 0
0 1

b

)(
cos φ − sinφ
sinφ cos φ

)
(6.2)

M =

⎛
⎝ 1

a cos2 φ + 1
b sin2 φ

(
1
b − 1

a

)
sin φ cos φ(

1
b − 1

a

)
sinφ cos φ 1

a sin2 φ + 1
b cos2 φ

⎞
⎠ (6.3)

The scaling is where we differ from [140]. They start from the matrix represen-

53

Chapter 6. Contributions

tation of ellipse and so they compute the scaling as

SV igo =

(
b 0
0 a

)
(6.4)

which also results in a circle, but scaled by a factor of ab. As mentioned earlier,
this does not matter when triangulations are computed.

We can now derive how to compute the elliptical distance without trans-
forming the points. Let |pq|E denote the elliptical distance between points p, q.
Let p′, q′ be the points p, q transformed into the Euclidean space. We can write

|pq|E = |p′q′| =
√

(p′ − q′)T(p′ − q′) =
√

(Mp − Mq)T(Mp − Mq) (6.5)

Using linear algebra rules we rearrange the equation as

|pq|E =
√

[M(p − q)]TM(p − q) =
√

(p − q)TMTM(p − q) (6.6)

Now we utilise the fact that the matrix M is symmetric. The elliptical distance
is computed as

|pq|E =
√

(p − q)TM2(p − q) (6.7)

If we look back on how the matrix M was constructed we find out that M2

can be computed as RTSsqrR where Ssqr is the matrix S with its components
squared.

M2 = RTSsqrR =

(
cos φ sin φ
− sin φ cos φ

)(
1
a2 0
0 1

b2

)(
cos φ − sin φ
sin φ cos φ

)
(6.8)

Constructing a triangulation requires the input points to be transformed
into the Euclidean space. This is done using Equation 6.1. There is no need to
transform the points when computing a clustering. The elliptical distance can
be computed directly using Equation 6.7.

6.5 Euclidean matching

The idea was proposed by Jǐŕı Bittner from the CTU in Prague. He thought
the clustering could be used as a space partitioning method for the visibility
culling and occlusion queries for ray tracing acceleration. We would like to
examine whether it could bring better results than traditional approaches such
as a kD-tree.

The problem is that the partition should be binary, i.e., each cluster should
have exactly two members. We made attempts to adapt our clustering algo-
rithm to that demand but it would require substantial changes. Therefore we
decided to implement a special method. After a brief research we identified the
problem as the minimal Euclidean matching. The goal is to group the points
into pairs so that the sum of distances between all pairs is minimal. See Figure
6.10 for an example. There is the Edmonds algorithm [40] that finds an optimal
solution in O(N4) time. Gabow [49] proposed a more efficient implementation

54

Chapter 6. Contributions

Figure 6.10: Example of an Euclidean matching.

running in O(N3) time. However, the algorithms turned out to be too intri-
cate to implement just as a trial. We chose to implement a simple heuristics
instead. The algorithm is designed for small data. The data stream processing
and building the hierarchy is handled by our clustering system.

The work described hereafter is a joined work with student Jan Hyka who
participated on the algorithm design and did most of the programming. Let
us briefly describe the progress of the development. We think of the problem
as a graph problem which is formally stated as follows. Given a set of 2N
vertices corresponding to nodes of a complete graph with edge weights equal
to Euclidean distances, find the minimum weight perfect matching. A perfect
matching is a matching where every vertex is incident to exactly one edge of
the matching.

6.5.1 Initial attempts

The most straightforward solution would be a greedy algorithm. It would
successively select the closest pair of points and match them together. How-
ever, this simple approach can go terribly wrong [135]. Next we tried another
greedy algorithm that starts with a complete graph and successively discards
the longest edge. If any edge is the last one incident to a vertex, the edge is
fixed, i.e., it is declared as a part of the matching and is never removed. The
algorithm terminates when all edges have been either removed or fixed. How-
ever, the algorithm may still run in a situation, from where a perfect matching
cannot be achieved [135].

As the next attempt we addressed the problem as a matching in a bipartite
graph. A bipartite graph is a graph whose vertices can be divided into two
disjoint sets U and V such that every edge connects a vertex in U to a vertex
in V , i.e., U and V are independent sets. See Figure 6.11 for an example.
Matching in a bipartite graph is relatively easy to solve by the Kuhn-Munkres
algorithm [92, 115], also known as the Hungarian method, running in O(N3)
time.

The problem is that we generally do not have a bipartite graph. Our idea
was to construct a bipartite graph G = (X ∪ Y,E) by putting all the input
vertices into the first set X = {a, b, c, . . .} and then duplicate them into the
second set Y = {a′, b′, c′, . . .}. The problem is that the result in the bipartite
graph is not always symmetric. If [a, b′] is a pair, then not necessarily [b,a’] is a
pair too. We did not find a solution for that, so we tried yet another approach.

55

Chapter 6. Contributions

Figure 6.11: The bipartite graph where the matching is constructed.

6.5.2 The working algorithm

Despite the previous bad success, we stayed with the Kuhn-Munkres algorithm
and tried a different approach to construct the two sets X and Y . We developed
a Monte Carlo method [112]. It is a stochastic technique for solving problems for
which an analytical solution is unknown or is too complex. In general, a Monte
Carlo method performs statistical simulations using random numbers. To be
more specific, in our case it repeatedly generates random possible solutions and
evaluates their cost. At the end, the best solution is selected.

Each iteration of the Monte Carlo method starts by randomly distributing
all the vertices into two equally sized sets. Each vertex in one set is connected
to all vertices in the other set. The matching is then constructed by the Kuhn-
Munkres algorithm without any problem. This process is run repeatedly; we
recommend doing N iterations [135]. At the end, the solution with the lowest
sum of pairwise distances is accepted. Figure 6.12 shows several instances of
the matching with the best one framed in bold. The number at lower right
shows the sum of distances.

The algorithm can be formally stated as follows. We are looking for the
minimal Euclidean matching Mmin.

1. Initialise the minimal cost cmin to positive infinity.

2. Randomly distribute the vertices into two equally sized sets X and Y .
Make the set of edges E = {{x, y}|x ∈ X, y ∈ Y }, i.e., make an edge from
every vertex x ∈ X to every vertex y ∈ Y .

3. In the bipartite graph G = (X ∪ Y,E) construct matching M by the
Kuhn-Munkres algorithm. Let the cost of the matching be c.

4. If c < cmin, set cmin := c and Mmin := M .

5. While a stopping condition has not been met, go to 2.

6. Output Mmin.

According to our empirical experiments, it is necessary to perform N or
perhaps 10N iterations of the Monte Carlo method. More detailed experiments
can be found in our recent paper [135].

Figure 6.13 shows an example of the matching including the hierarchy. The
first frame shows the matching alone, the second one shows the progress of

56

Chapter 6. Contributions

Figure 6.12: Example of several matching instances tried by the Monte Carlo method.

building the hierarchy, finally the last frame shows a complete tree. Especially
the middle frame demonstrates that the space partitioning works well.

Due to the high complexity of the method, it is not practically possible
to run it directly on large data. We use the hierarchical clustering technique
to process the data in pieces. First, clusters are identified in the data. The
matching is then constructed within each cluster separately. Then a matching
among particular clusters is constructed to merge the results together. The
output is a binary tree that defines the space partitioning for the ray tracing.
Our first implementation is capable of processing 5 million vertices in several
hours. The proposed solution is currently being evaluated by Jǐŕı Bittner.

Figure 6.13: Example of matching and building the hierarchy.

57

Chapter 7

Conclusion

A conclusion comes at the end to summarise presented knowledge and review
the work done so far. An outlook to the future follows where we introduce the
interesting challenges we would perhaps take up next.

7.1 Summary of the work done

This work presented a thorough state of the art concerning large data in com-
puter graphics. It started with a lightweight overview of application areas,
methods of acquisition and general approaches to manipulation. It then con-
centrated on data streams as a technique for processing really huge amounts
of data. The next chapter described fundamental clustering concepts and fur-
ther focused on methods suitable for large data and particularly data streams.
A chapter on Delaunay triangulation was included for completeness since it
is a substantial part of the proposed solution. The chapter recalls the no-
toriously known methods of construction along with point location strategies
and discusses their suitability for large data. It ends with a description of the
streaming Delaunay triangulation as one of the few applications of data streams
in computer graphics.

The last but one chapter presents the contributions we made to large data
manipulation. It was namely the idea to use data stream clustering to hierar-
chically reduce the amount of data. We adapted the algorithm to better fit our
needs. We then developed the dynamic hierarchical triangulation. It utilises
the hierarchy of clusters to provide a triangulation with varying level of detail.
So far the solution is only 2D; we are going to extend it into 3D in the future.

As a step aside we extended the clustering and the triangulation so that
they can compute with anisotropic (elliptical) metrics. It considerably extends
possibilities especially for the clustering since it allows to create elliptically
elongated clusters. These can fit a wider variety of applications where spherical
clusters would be inadequate.

58

Chapter 7. Conclusion

7.2 Perspective to the future

In the future we would like to make further research on the dynamic hierarchical
triangulation. One particular concern is the expansion and collapse of clusters.
We would like to further investigate the possibility of inserting more points of
a cluster at the same time; ideally the whole pre-triangulated cluster. Unfor-
tunately, this does not seem to be possible because some clusters may overlap.
The clustering algorithm cannot ensure that there will be no overlaps due to the
data stream input – data are processed in independent pieces. Upon removing
points, we already can remove more of them at the same time, nevertheless,
there seems to be place for further improvements.

It would be nice during the visualisation, if the cluster expansions and col-
lapses were done automatically based on the distance from the viewer or the
presence on the object contour. We suppose this to be rather easy.

For sure we will work on extending the triangulation to 3D. This will be,
on the other hand, a more difficult task.

To our pleasure we have a good feedback on our clustering of large data.
Our colleague Michal Zemek already uses it for acceleration of tunnel search-
ing in protein molecules [148]. We currently work on a modification for space
partitioning for Jǐŕı Bittner from the CTU in Prague to try it for ray tracing
acceleration. A preliminary result may be seen in Figure 6.13. Another inter-
esting extension comes from this application – to cluster not just points but
also more complex objects such as a triangle soup. This requires to develop a
different distance measure for the clustering algorithm.

A bachelor thesis on clustering in digital images is currently in progress. It
focuses on an application of the clustering for segmentation in digital images and
for image compression. One of the interesting challenges is how to incorporate
the colour information into the distance measure. Yet another formula was
developed for this purpose. A preliminary result of our work can be seen in
Figure 7.1. The original image is on the left, the clustered image is on the
right. The areas of constant colour are the particular clusters. The colour is
the average colour of all the pixels in the cluster. Here we would like to thank
Anders Hast from the University of Gävle, Sweden, for interesting ideas and
inspiration.

Figure 7.1: The original image and the clusters found in it.

59

Chapter 7. Conclusion

We register further interest in the clustering. Our colleague Libor Váša
believes it could contribute to his compression of dynamic triangle meshes. The
task is to cluster vertices of the triangular mesh so that points in a cluster are all
connected by edges of the mesh. In other words, every cluster should represent
a connected subset of the mesh. We have another idea from our colleague
Martin Janda who might use the clustering to reduce the huge amount of data
in digital hologram synthesis. The requirement is not to damage sharp edges.

We realise that perhaps the clustering will not be perfectly suitable for all
of the proposed applications. There are other approaches in solving some of
the tasks and the clustering is presented as an alternative. We will focus on
the applications where the clustering brings perspective results and where the
appropriate colleague is keen to continue with further development.

60

Bibliography

[1] A. Aggarwal, B. Chazelle, L. Guibas, C. Ó’Dúnlaing, and C. Yap. Parallel
computational geometry. Algorithmica, 3(1):293–327, 1988.

[2] M. Ajtai, T. S. Jayram, R. Kumar, and D. Sivakumar. Approximate
counting of inversions in a data stream. In STOC ’02: Proceedings of the
34th annual ACM symposium on Theory of computing, pages 370–379,
New York, NY, USA, 2002. ACM.

[3] K. S. Al-Sultan. A Tabu search approach to the clustering problem.
Pattern Recognition, 28(9):1443–1451, 1995.

[4] N. Amenta, S. Choi, and G. Rote. Incremental constructions con BRIO.
In ACM Symposium on Computational Geometry, pages 211–219, 2003.

[5] G. Ball and D. Hall. ISODATA: A Novel method of data analysis and pat-
tern classification. Technical report, Stanford Research Institute, Menlo
Park, 1965.

[6] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan.
Counting distinct elements in a data stream. Randomization and Approx-
imation Techniques in Computer Science, 2483:952–961, 2002.

[7] A. Baraldi and P. Blonda. A survey of fuzzy clustering algorithms for
pattern recognition. ii. IEEE Transactions on Systems, Man, and Cyber-
netics, Part B, 29(6):786–801, 1999.

[8] J. L. Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9):509–517, 1975.

[9] J. Bezdek. Pattern recognition with fuzzy objective function algorithms.
Kluwer Academic Publishers Norwell, MA, USA, 1981.

[10] J. Bezdek and R. Ehrlich. FCM: The fuzzy c-means clustering algorithm.
Computers & Geosciences, 10(2):191–203, 1984.

[11] M. Botsch, A. Wiratanaya, and L. Kobbelt. Efficient high quality ren-
dering of point sampled geometry. In EGRW ’02: Proceedings of the 13th
Eurographics workshop on Rendering, pages 53–64, Aire-la-Ville, Switzer-
land, 2002. Eurographics Association.

61

Bibliography

[12] K. Q. Brown. Voronoi diagrams from convex hulls. Information Processing
Letters, 9(5):223–228, 1979.

[13] D. R. Chand and S. S. Kapur. An algorithm for convex polytopes. Journal
of the ACM, 17(1):78–86, 1970.

[14] J. Chang and W. Lee. Finding recent frequent itemsets adaptively over on-
line data streams. In Proceedings of the 9th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 487–492. ACM
New York, NY, USA, 2003.

[15] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items
in data streams. Automata, Languages and Programming, 2380:784–794,
2002.

[16] M. Charikar and S. Guha. Improved combinatorial algorithms for the
facility location and k-median problems. In IEEE Symposium on Foun-
dations of Computer Science, pages 378–388, 1999.

[17] S. Chaudhuri, R. Motwani, and V. Narasayya. Random sampling for
histogram construction: How much is enough? In Proceedings of the
1998 ACM SIGMOD international conference on Management of data,
pages 436–447, New York, NY, USA, 1998. ACM.

[18] H. H. Chen and T. S. Huang. A survey of construction and manipulation
of octrees. Computer Vision, Graphics, and Image Processing, 43(3):409–
431, 1988.

[19] F. A. Chudak. Improved approximation algorithms for uncapacitated
facility location. Lecture Notes in Computer Science, 1412:180–194, 1998.

[20] P. Cignoni, C. Montani, and R. Scopigno. DeWall: A fast divide and
conquer Delaunay triangulation algorithm in Ed. Computer Aided Design,
30:333–342, 1998.

[21] J. H. Clark. Hierarchical geometric models for visible surface algorithms.
Communications of the ACM, 19(10):547–554, 1976.

[22] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agarwal,
F. Brooks, and W. Wright. Simplification envelopes. Computer Graphics,
30(Annual Conference Series):119–128, 1996.

[23] G. Cormode, M. Datar, P. Indyk, and S. Muthukrishnan. Comparing data
streams using Hamming norms (How to zero in). IEEE Transactions on
Knowledge and Data Engineering, 15(3):529–540, 2003.

[24] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. Finding hi-
erarchical heavy hitters in streaming data. ACM Transactions on Knowl-
edge Discovery from Data, 1(4):1–48, 2008.

62

Bibliography

[25] G. Cormode and S. Muthukrishnan. An Improved data stream summary:
The Count-min sketch and its applications. LATIN 2004: Theoretical
Informatics, pages 29–38, 2004.

[26] G. Cormode and S. Muthukrishnan. What’s hot and what’s not: Track-
ing most frequent items dynamically. ACM Transactions on Database
Systems (TODS), 30(1):249–278, 2005.

[27] G. Cormode, S. Muthukrishnan, and S. Sahinalp. Permutation editing
and matching via embeddings. Lecture Notes in Computer Science, pages
481–492, 2001.

[28] C. Cortes and D. Pregibon. Signature-based methods for data streams.
Data Mining and Knowledge Discovery, 5(3):167–182, 2001.

[29] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream
statistics over sliding windows. In SIAM Journal on Computing, pages
635–644, 2002.

[30] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Com-
putational Geometry, chapter 14: Quadtrees, pages 291–306. Springer-
Verlag, 2nd edition, 2000.

[31] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Compu-
tational Geometry, chapter 5.2: Kd-Trees, pages 99–105. Springer-Verlag,
2nd edition, 2000.

[32] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Compu-
tational Geometry, chapter 12: Binary Space Partitions, pages 251–265.
Springer-Verlag, 2nd edition, 2000.

[33] B. N. Delaunay. Sur la sphère vide. Izvestia Akademia Nauk SSSR,
7:793–800, 1934.

[34] O. Devillers. The Delaunay hierarchy. International Journal of Founda-
tions of Computer Science, 13:163–180, 2002. special issue on triangula-
tions.

[35] O. Devillers, S. Pion, and M. Teillaud. Walking in a triangulation. In SCG
’01: Proceedings of the seventeenth annual symposium on computational
geometry, pages 106–114, New York, NY, USA, 2001. ACM.

[36] E. Diday and J. Simon. 3. Clustering analysis. Digital Pattern Recogni-
tion, pages 47–94, 1976.

[37] R. Dubes and A. Jain. Clustering methodologies in exploratory data
analysis. Advances in Computers, 19:113–228, 1980.

[38] B. Duran and P. Odell. Cluster analysis: A Survey. Lecture Notes in
Economics and Mathematical Systems, 1974.

63

Bibliography

[39] R. A. Dwyer. A faster divide-and-conquer algorithm for constructing
Delaunay triangulations. Algorithmica, 2(1):137–151, 1987.

[40] J. Edmonds. Maximum matching and a polyhedron with 0,1-vertices. J.
of Res. the Nat. Bureau of Standards, 69B:125–130, 1965.

[41] M. Ester, H. Kriegel, J. Sander, and X. Xu. A Density-based algorithm for
discovering clusters in large spatial databases with noise. In Proc. 2nd Int.
Conf. on Knowledge Discovery and Data Mining, pages 226–231, 1996.

[42] T. Fang and L. Piegl. Delaunay triangulation using a uniform grid. IEEE
Computer Graphics and Applications, 13(3):36–47, 1993.

[43] U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining
to knowledge discovery: An overview. Advances in Knowledge Discovery
and Data Mining, pages 1–34, 1996.

[44] J. Feigenbaum, S. Kannan, and J. Zhang. Computing diameter in the
streaming and sliding-window models. Algorithmica, 41(1):25–41, 2004.

[45] R. Finkel and J. Bentley. Quad trees: A Data structure for retrieval on
composite keys. Acta Informatica, 4(1):1–9, 1974.

[46] S. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica,
2:153–174, 1987.

[47] H. Fuchs, Z. M. Kedem, and B. F. Naylor. On visible surface generation
by a priori tree structures. In SIGGRAPH ’80: Proceedings of the 7th
annual conference on Computer graphics and interactive techniques, pages
124–133, New York, NY, USA, 1980. ACM.

[48] M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy. Towards an adaptive
approach for mining data streams in resource constrained environments.
Data Warehousing and Knowledge Discovery, pages 189–198, 2004.

[49] H. N. Gabow. An efficient implementation of Edmonds’ algorithm for
maximum matching on graphs. Journal of the ACM, 23(2):221–234, 1976.

[50] M. Garland and P. S. Heckbert. Surface simplification using quadric
error metrics. Computer Graphics, 31(Annual Conference Series):209–
216, 1997.

[51] C. Giannella, J. Han, J. Pei, X. Yan, and P. Yu. Mining frequent patterns
in data streams at multiple time granularities. Next Generation Data
Mining, 212:191–212, 2003.

[52] P. Gibbons. Distinct sampling for highly-accurate answers to distinct val-
ues queries and event reports. In Proceedings of the International Con-
ference on Very Large Data Bases, pages 541–550, 2001.

64

Bibliography

[53] A. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, and
M. Strauss. Fast, small-space algorithms for approximate histogram main-
tenance. In Proceedings of the 34th annual ACM symposium on Theory
of computing, pages 389–398. ACM New York, NY, USA, 2002.

[54] D. Goldberg. Genetic algorithms in search, optimization and machine
learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1989.

[55] M. Greenwald and S. Khanna. Space-efficient online computation of quan-
tile summaries. In Proceedings of the 2001 ACM SIGMOD international
conference on Management of data, pages 58–66, New York, NY, USA,
2001. ACM.

[56] J. P. Grossman and W. J. Dally. Point sample rendering. In G. Dret-
takis and N. L. Max, editors, Proceedings of Eurographics Workshop on
Rendering, pages 181–192. Springer, 1998.

[57] S. Guha and S. Khuller. Greedy strikes back: Improved facility location
algorithms. In SODA: ACM-SIAM Symposium on Discrete Algorithms,
pages 649–657, 1998.

[58] S. Guha, N. Koudas, and K. Shim. Data-streams and histograms. In
Proceedings of the 33rd annual ACM symposium on Theory of computing,
pages 471–475. ACM New York, NY, USA, 2001.

[59] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan.
Clustering data streams: Theory and practice. IEEE Transactions on
Knowledge and Data Engineering, 15(3):515–528, 2003.

[60] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering data
streams. In IEEE Symposium on Foundations of Computer Science, pages
359–366, 2000.

[61] S. Guha, R. Rastogi, and K. Shim. CURE: An efficient clustering algo-
rithm for large databases. In ACM SIGMOD International Conference
on Management of Data, pages 73–84, 1998.

[62] L. Guibas and J. Stolfi. Primitives for the manipulation of general sub-
divisions and the computation of Voronoi diagrams. ACM Transactions
on Graphics, 4(2):74–123, 1985.

[63] L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremental
construction of Delaunay and Voronoi diagrams. Algorithmica, 7(1):381–
413, 1992.

[64] A. Gupta and F. X. Zane. Counting inversions in lists. In SODA ’03:
Proceedings of the 14th annual ACM-SIAM symposium on Discrete algo-
rithms, pages 253–254, Philadelphia, PA, USA, 2003. Society for Indus-
trial and Applied Mathematics.

65

Bibliography

[65] J. A. Hartigan. Clustering Algorithms. John Wiley & Sons, 1975.

[66] J. Holenda. O matićıch. Vydavatelský servis, Plzeň, 2007.

[67] H. Hoppe. Progressive meshes. Computer Graphics, 30(Annual Confer-
ence Series):99–108, 1996.

[68] H. Hoppe. Smooth view-dependent level-of-detail control and its appli-
cation to terrain rendering. In VIS ’98: Proceedings of the conference
on Visualization ’98, pages 35–42, Los Alamitos, CA, USA, 1998. IEEE
Computer Society Press.

[69] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Mesh
optimization. Computer Graphics, 27(Annual Conference Series):19–26,
1993.

[70] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P. Kirchner, and
J. Klosowski. Chromium: A Stream-processing framework for interactive
rendering on clusters. ACM Transactions on Graphics, 21(3):693–702,
2002.

[71] A. Imiya and T. Sakai. Combinatorial properties of scale space singular
points. Combinatorial Image Analysis, pages 333–346, 2006.

[72] P. Indyk. Algorithms for dynamic geometric problems over data streams.
In STOC ’04: Proceedings of the 36th annual ACM symposium on Theory
of computing, pages 373–380, New York, NY, USA, 2004. ACM.

[73] P. Indyk. Stable distributions, pseudorandom generators, embeddings,
and data stream computation. Journal of the ACM, 53(3):307–323, 2006.

[74] M. Isenburg and P. Lindstrom. Streaming meshes. In Visualization ’05,
pages 231–238, 2005.

[75] M. Isenburg, P. Lindstrom, S. Gumhold, and J. Shewchuk. Streaming
compression of tetrahedral volume meshes. In Proceedings of Graphics
Interface 2006, pages 115–121. Canadian Information Processing Society
Toronto, Ontario, Canada, 2006.

[76] M. Isenburg, P. Lindstrom, S. Gumhold, and J. Snoeyink. Large mesh
simplification using processing sequences. IEEE Visualization, 2003,
pages 465–472, 2003.

[77] M. Isenburg, P. Lindstrom, and J. Snoeyink. Streaming compression of
triangle meshes. In ACM SIGGRAPH 2005 Sketches, page 136, New
York, NY, USA, 2005. ACM.

[78] M. Isenburg, Y. Liu, J. R. Shewchuk, and J. Snoeyink. Streaming com-
putation of Delaunay triangulations. ACM Transactions on Graphics,
25(3):1049–1056, 2006.

66

Bibliography

[79] A. Jain and P. Flynn. Image segmentation using clustering. Advances
in Image Understanding: A Festschrift for Azriel Rosenfeld, pages 65–83,
1996.

[80] A. Jain and J. Mao. Neural networks and pattern recognition. Computa-
tional Intelligence: Imitating Life, pages 194–212, 1994.

[81] A. K. Jain and R. C. Dubes. Algorithms for clustering data. Prentice-
Hall advanced reference series. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1988.

[82] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A Review.
ACM Computing Surveys, 31(3):264–323, 1999.

[83] K. Jain and V. V. Vazirani. Primal-dual approximation algorithms for
metric facility location and k-median problems. In IEEE Symposium on
Foundations of Computer Science, pages 2–13, 1999.

[84] C. Jin, W. Qian, C. Sha, J. Yu, and A. Zhou. Dynamically maintaining
frequent items over a data stream. In Proceedings of the 12th international
conference on Information and knowledge management, pages 287–294.
ACM New York, NY, USA, 2003.

[85] V. Karamcheti, D. Geiger, Z. Kedem, and S. Muthukrishnan. Detecting
malicious network traffic using inverse distributions of packet contents.
In MineNet ’05: Proceedings of the 2005 ACM SIGCOMM workshop on
Mining network data, pages 165–170, New York, NY, USA, 2005. ACM.

[86] L. Kaufman and P. Rousseeuw. Finding Groups in Data: an introduction
to cluster analysis. John Wiley & Sons, 1990.

[87] B. King. Step-wise clustering procedures. Journal of the American Sta-
tistical Association, 62(317):86–101, 1967.

[88] J. Kohout. Selected problems of parallel computer graphics. Technical
report, University of West Bohemia, Univerzitńı 22, Pilsen, 2004.

[89] J. Kohout. Delaunay Triangulation in Parallel and Distributed Environ-
ment. PhD thesis, University of West Bohemia, Pilsen, Czech Republic,
2005.

[90] Y.-M. Koo and B.-S. Shin. An Efficient point rendering using octree and
texture lookup. In Computational Science and Its Applications - ICCSA
2005, volume 3482 of Lecture Notes in Computer Science, pages 1187–
1196. Springer, 2005.

[91] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman. Analysis of a local
search heuristic for facility location problems. In SODA: ACM-SIAM
Symposium on Discrete algorithms, pages 1–10, Philadelphia, PA, USA,
1998. Society for Industrial and Applied Mathematics.

67

Bibliography

[92] H. W. Kuhn. The Hungarian method for the assignment problem. Naval
Research Logistic Quarterly, 2:83–97, 1955.

[93] Lakes Environmental – Digital Terrain Data. http://www.weblakes.com/

lakesdem.html.

[94] A. Lakhina, M. Crovella, and C. Diot. Mining anomalies using traf-
fic feature distributions. SIGCOMM Computer Communication Review,
35(4):217–228, 2005.

[95] G. Lance and W. Williams. A General theory of classificatory sorting
strategies: 1. Hierarchical systems. The Computer Journal, 9(4):373–380,
1967.

[96] C. Lawson. Software for c1 surface interpolation. Mathematical Software,
3:161–194, 1977.

[97] J. Levenberg. Fast view-dependent level-of-detail rendering using cached
geometry. In VIS ’02: Proceedings of the conference on Visualization ’02,
pages 259–266, Washington, DC, USA, 2002. IEEE Computer Society.

[98] M. Levoy and T. Whitted. The use of points as rendering primitives.
Technical Report TR 85-022, Department of Computer Science, Univer-
sity of North Carolina at Chapel Hill, 1985.

[99] J.-H. Lin and J. S. Vitter. Approximation algorithms for geometric me-
dian problems. Information Processing Letters, 44:245–249, 1992.

[100] P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges, N. Faust, and G. A.
Turner. Real-time, continuous level of detail rendering of height fields. In
SIGGRAPH ’96: Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques, pages 109–118, New York, NY, USA,
1996. ACM.

[101] D. Luebke and C. Erikson. View-dependent simplification of arbitrary
polygonal environments. Computer Graphics, 31:199–208, 1997.

[102] D. Luebke, B. Watson, J. D. Cohen, M. Reddy, and A. Varshney. Level
of Detail for 3D Graphics. Elsevier Science Inc., New York, NY, USA,
2002.

[103] M. O. M. de Berg, M. van Kreveld and O. Schwarzkopf. Computational
Geometry: Algorithms and Applications. Springer-Verlag, 1997.

[104] J. B. Macqueen. Some methods for classification and analysis of multi-
variate observations. In Proceedings of the Fifth Berkeley Symposium on
Mathematical Statistics and Probability, pages 281–297, 1967.

[105] P. Mahalanobis. On the generalized distance in statistics. Proceedings of
the National Institute of Science of India, 12:49–55, 1936.

68

Bibliography

[106] M. Mahdian, E. Markakis, A. Saberi, and V. Vazirani. A greedy facility
location algorithm analyzed using dual fitting. Lecture Notes in Computer
Science, 2129:127–137, 2001.

[107] G. S. Manku and R. Motwani. Approximate frequency counts over data
streams. In VLDB ’02: Proceedings of the 28th international conference
on Very Large Data Bases, pages 346–357. VLDB Endowment, 2002.

[108] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information
Retrieval. Cambridge University Press, July 2008. Also available online
at http://informationretrieval.org/.

[109] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information
Retrieval, chapter 17 Hierarchical clustering. Cambridge University Press,
July 2008. Also available online at http://informationretrieval.org/.

[110] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information
Retrieval, chapter 16 Flat clustering. Cambridge University Press, July
2008. Also available online at http://informationretrieval.org/.

[111] D. H. McLain. Two dimensional interpolation from random data. The
Computer Journal, 19(2):178–181, 1976.

[112] N. Metropolis and S. Ulam. The monte carlo method. Journal of the
American Statistical Association, 44(247):335–341, 1949.

[113] A. Meyerson. Online facility location. In FOCS ’01: IEEE Symposium
on Foundations of Computer Science, pages 426–431, Washington, DC,
USA, 2001. IEEE Computer Society.

[114] R. Michalski, R. Stepp, and E. Diday. A recent advance in data analy-
sis: Clustering objects into classes characterized by conjunctive concepts.
Progress in Pattern Recognition, 1:33–55, 1981.

[115] J. Munkres. Algorithms for the assignment and transportation problems.
Journal of the Society for Industrial and Applied Mathematics, 5(1):32–
38, 1957.

[116] J. Munkres. Topology. Prentice Hall, 2nd edition, December 1999.

[117] S. Muthukrishnan. Data Streams: Algorithms and Applications. Now
Publishers Inc, 2005. Also issued as Foundations and trends in the-
oretical computer science, 1(2), 2005. Manuscript available at http:

//www.cs.rutgers.edu/~muthu/stream-1-1.ps.

[118] R. T. Ng and J. Han. Efficient and effective clustering methods for spa-
tial data mining. In J. Bocca, M. Jarke, and C. Zaniolo, editors, 20th
International Conference on Very Large Data Bases, pages 144–155, Los
Altos, CA 94022, USA, 1994. Morgan Kaufmann Publishers.

69

Bibliography

[119] L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha, and R. Motwani.
Streaming-data algorithms for high-quality clustering. In IEEE Interna-
tional Conference on Data Engineering, pages 685–694, 2002.

[120] R. Pajarola. Efficient level-of-details for point based rendering. In Com-
puter Graphics and Imaging, pages 141–146. IASTED/ACTA Press, 2003.

[121] R. Pajarola. Stream-processing points. In IEEE Visualization, pages
239–246. IEEE Computer Society, 2005.

[122] N. H. Park and W. S. Lee. Statistical grid-based clustering over data
streams. ACM SIGMOD Record, 33(1):32–37, 2004.

[123] F. Preparata and M. Shamos. Computational geometry: An Introduction.
Springer, 1985.

[124] E. Rasmussen. Clustering algorithms. Information retrieval: Data struc-
tures and algorithms, pages 419–442, 1992.

[125] K. Rose, E. Gurewitz, and G. C. Fox. Deterministic annealing approach
to constrained clustering. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 15:785–794, 1993.

[126] J. R. Rossignac and P. Borrel. Multi-resolution 3D approximations for
rendering complex scenes. In Geometric Modelling in Computer Graphics,
pages 455–465. Springer Verlag, 1993.

[127] S. Rusinkiewicz and M. Levoy. QSplat: A Multiresolution point ren-
dering system for large meshes. In SIGGRAPH ’00: Proceedings of the
27th annual conference on Computer graphics and interactive techniques,
pages 343–352, New York, NY, USA, 2000. ACM Press / Addison-Wesley
Publishing Co.

[128] E. Ruspini. A new approach to clustering. Information and control,
15(1):22–32, 1969.

[129] M. Sainz and R. Pajarola. Point-based rendering techniques. Computers
& Graphics, 28(6):869–879, 2004.

[130] D. Schmalstieg and G. Schaufler. Smooth levels of detail. In In Proc.
of IEEE 1997 Virtual Reality Annual International Symposium, pages
12–19. IEEE Computer Society Press, 1997.

[131] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen. Decimation of triangle
meshes. Computer Graphics, 26(2):65–70, 1992.

[132] D. B. Shmoys. Approximation algorithms for facility location problems.
In APPROX ’00: Approximation Algorithms for Combinatorial Optimiza-
tion, volume 1913 of Lecture Notes in Computer Science, pages 27–33,
London, UK, 2000. Springer-Verlag.

70

Bibliography

[133] D. B. Shmoys, É. Tardos, and K. Aardal. Approximation algorithms for
facility location problems (extended abstract). In ACM Symposium on
Theory of Computing, pages 265–274, 1997.

[134] J. Skála and I. Kolingerová. Clustering geometric data streams. In
SIGRAD 2007, pages 17–23, 2007.

[135] J. Skála, I. Kolingerová, and J. Hyka. A Monte Carlo solution to the
minimal Euclidean matching. In ALGORITMY 2009, pages 402–411,
2009.

[136] P. H. A. Sneath and R. R. Sokal. Numerical taxonomy: The principles
and practice of numerical classification. W.H. Freeman, San Francisco,
1973.

[137] Stanford CG laboratory data archives. http://graphics.stanford.edu/

data/.

[138] G. Turk. Re-tiling polygonal surfaces. Computer Graphics, 26(2):55–64,
1992.

[139] USGS (U.S. Geological Survey) EROS. http://edc.usgs.gov/products/

elevation/.

[140] M. Vigo Anglada and N. Pla Garcia. Computing directional constrained
Delaunay triangulations. Computers & Graphics, 24(2):181–190, 2000.

[141] The Visible human project. http://www.nlm.nih.gov/research/visible/.

[142] G. Voronoi. Nouvelles applications des parametres continus a la theorie
des formes quadratiques. J. reine angew. Math, 134:198–287, 1908.

[143] The Walkthru project. http://www.cs.unc.edu/~walk/.

[144] D. F. Watson. Computing the n-dimensional Delaunay tessellation with
application to Voronoi polytopes. The Computer Journal, 24(2):167–172,
1981.

[145] WebGIS – Free Terrain Data. http://www.webgis.com/terr_world.html.

[146] K. Xu, Z.-L. Zhang, and S. Bhattacharyya. Profiling internet backbone
traffic: Behavior models and applications. SIGCOMM Computer Com-
munication Review, 35(4):169–180, 2005.

[147] M. Zadravec and B. Žalik. An Almost distribution-independent incremen-
tal Delaunay triangulation algorithm. The Visual Computer, 21(6):384–
396, 2005.

[148] M. Zemek, J. Skála, I. Kolingerová, P. Medek, and J. Sochor. Fast method
for computation of channels in dynamic proteins. In Vision, Modeling,
and Visualization 2008, pages 333–342, 2008.

71

Bibliography

[149] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An efficient data
clustering method for very large databases. In ACM SIGMOD Interna-
tional Conference on Management of Data, pages 103–114, 1996.

72

Appendix A

Pseudo-codes

This part presents pseudo-codes for the Local Search clustering algorithm.

A.1 The gain function

The gain function is the core of the Local Search clustering algorithm. Here is
a detailed pseudo-code of the function.

function gain(point p)

variables

p the point for which to compute gain
gain determines whether to open a facility at p
facilityCost global read-only variable, the facility cost
distanceSpare the distance we spare by reassigning a point to p
listReassign the list of points that should be reassigned to p
closeSpare the cost we can spare by closing a facility and reassigning its

points to p
listClose the list of facilities that should be closed and their points

reassigned to p
f.accumulator the accumulator of costs for reassigning points from facility f

to facility p

code

if there is already a facility at p
gain = 0

else
gain = - facilityCost

// compute distance spares
for each point q in the input set (not excluding p)
{

// find the current facility
fq = facility for q

73

Appendix A. Pseudo-codes

// compute the difference between the distances
// to the current facility and to the facility candidate
distanceSpare = distance(q, fq) - distance(q, p)

if distanceSpare > 0
// we will spare by reassigning q to p
add q to listReassign
gain += distanceSpare

else
// add the cost to the facility accumulator
fq.acculumator += distanceSpare
// note that distanceSpare is negative
// (now it is a cost, not a spare)

}

// compute close spares
for each facility f
{

// facilityCost is what we can spare by closing f,
// accumulator holds the cost for reassigning points from f to p
closeSpare = facilityCost + f.accumulator
// note that f.accumulator is negative
// (it is a cost for the reassignments)

if closeSpare > 0
// we will spare by closing f
add f to listClose
gain += closeSpare

}

A.2 The Local Search clustering algorithm

The following pseudo-code describes the complete Local Search algorithm from
a higher level point of view.

generate initial solution

// local search improvements
repeat N log N times
{

pick a point p at random

compute gain(p)

if gain(p) > 0
perform reassignments

}

74

Appendix B

Clustering of the world

This example shows the clustering of 22 million points of the digital elevation
map of the whole world. The data can be obtained from one of the following
sites [145, 93, 139]. The processing was done in three levels (the input stream
plus two more levels) and took about half an hour on a Pentium 4 3.2 GHz
processor.

Figure B.1 shows the first level (the input stream is level zero) of the cluster-
ing containing about 80 000 points. You may notice negligible breaks between
some clusters. This is because the data are provided in 33 blocks. Little dis-
continuities may occur where the blocks meet.

75

Appendix B. Clustering of the world

Figure B.1: Clustering of the whole world.

76

Appendix C

Professional activities

Reviewed publications

J. Skála, I. Kolingerová, and J. Hyka. A Monte Carlo solution to the minimal
Euclidean matching. In ALGORITMY 2009, pages 402–411, 2009.

M. Zemek, J. Skála, I. Kolingerová, P. Medek, and J. Sochor. Fast Method
for Computation of Channels in Dynamic Proteins. In Vision, Modeling, and
Visualization 2008, pages 333–342, 2008.

J. Skála and I. Kolingerová. Clustering geometric data streams. In SIGRAD
2007, pages 17–23, 2007.

Other technical publications

J. Skála. Tvorba zásuvných modul̊u pro Adobe Photoshop. Students’ bulletin,
University of West Bohemia, Univerzitńı 22, Pilsen, 2008.

J. Skála. Úprava nahrávky z televizńı karty. Available online at http://

informatika.zcu.cz/pro_studenty/zajimavosti/uprava_nahravky.html, 2007.

J. Skála. Masking images for DTP needs: Implemented as Adobe Photoshop
plug-in. Master’s thesis, University of West Bohemia, Univerzitńı 22, Pilsen,
2006. Supervisor Petr Lobaz.

Stays abroad

University of Maribor, Slovenia, November 15–21, 2007

MADALGO Summer School 2007 on DATA STREAM ALGORITHMS, Århus,
Denmark, August 19–24, 2007

77

Appendix C. Professional activities

Significant scientific talks

Hierarchical Triangulation of Clustered Data. At the University of West Bo-
hemia, Pilsen, Czech Republic, June 4, 2008.

Clusterováńı data streamů a hierarchická triangulace. At the VŠB – Technical
University of Ostrava, November 26, 2008.

Hierarchical Clustering of Large Geometric Data. At the University of Maribor,
Slovenia, November 11, 2007.

Poster Clustering geometric data streams. At the MADALGO Summer School
2007 on DATA STREAM ALGORITHMS, Århus, Denmark, August 20, 2007.

Clustering Geometric Data Streams. At the University of West Bohemia,
Pilsen, Czech Republic, May 29, 2007.

Participation on scientific projects

Triangulated Models for Haptic and Virtual Reality. Project leader Ivana
Kolingerová. Funded by The Czech Science Foundation (GACR), project code
201/09/0097.

VIRTUAL – Virtual Research-Educational Center of Computer Graphics and
Visualization. Project leader Václav Skala. Funded by The Ministry of Educa-
tion, Youth and Sports (MSMT), project code 2C 06002.

Bilateral Cooperation in Computational Geometry Research for Visualization.
Project leader Ivana Kolingerová. Funded by The Ministry of Education, Youth
and Sports (MSMT), project code KONTAKT 5/2005-06.

CPG – Center of Computer Graphics – National Network of Fundamental Re-
search Centers. Project leader Václav Skala. Funded by The Ministry of Edu-
cation, Youth and Sports (MSMT), project code LC 06008.

Other scientific or academic activities

Data Stream Hierarchical Clustering Library. Authorised software made freely
available to the public.

Adviser for the bachelor thesis Využit́ı shlukováńı pro digitalizované obrazy by
Pavel Hulej. Supervisor Ivana Kolingerová.

78

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

