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Abstract

The theme of this work is manipulating large data in the field of computer
graphics. Generally, large data appear in many scientific disciplines ranging
from weather forecasting to marketing analyses. The computing power of mod-
ern computers still increases but so do the demands to process larger and larger
data sets. The main memory is in principle insufficient to hold all the data
at the same time so techniques are developed to handle the data in pieces.
Random access is unacceptable in such cases so special, so called out-of-core,
methods are used to process the data.

Data stream algorithms are frequently used for efficient computations on
large data. The algorithms are characterised by processing the data as a con-
tinuous stream in one or very few linear scans. Streaming algorithms were
getting more attention in the last few years, however, they are not much used
in computer graphics.

This work first describes the state of the art concerning large data and data
streams. An overview of clustering and a Delaunay triangulation follows. Next
we propose a solution for manipulation with large geometric data. It is based on
a clustering that identifies groups in the data. Each group is then replaced by
a representative which reduces the data significantly. A data stream approach
is used to cluster really huge data. A hierarchy of clusters is built which is then
used by the dynamic hierarchical triangulation. It constructs a triangulation
of the clustered data. By switching between clusters and their representatives,
the level of detail can be changed in various parts of the data.

Several more improvements are presented. The clustering algorithm was
adapted. Both the clustering and the triangulation can use anisotropic metrics
if suitable for any specific problem. A concept is presented how to modify the
clustering to do space partitioning for ray tracing acceleration.

This work was supported by the following projects:
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Chapter 1

Introduction

In my PhD study I research algorithms for manipulation with large geomet-
ric data. I believe it is a prospective field because computer graphics deals
with large data in many applications, ranging from rendering high definition
photorealistic images for film industry, to visualisation of scientific data from
complex measurements and simulations in geography or medicine. More about
large data in computer graphics can be found in Chapter 2.

As technology goes forward, the amount of data that is to be processed also
increases. We have larger memories, more powerful processors, can acquire and
transmit data faster. But we can always produce more data than our computers
can reasonably process. Thus new techniques are being developed to handle
such large amounts of data. Since the beginning of computers, there are data
that by far exceed the amount of available main memory. The processing is
therefore done either online without storing all the data, or so called out-of-
core which means using a slow (but large) external memory like an array of
hard drives or tapes. Random access is extremely inefficient in such situations
and even impossible for online streams. This is why data stream algorithms are
now being researched extensively.

Data stream algorithms emerged in the last few years starting perhaps in
1970’s. A brief history could be found for example in [117]. First streaming ap-
plications were concerned with sorting and searching. Nowadays, data stream
algorithms are used in many areas for complex analyses of massive data. Many
applications emerge from the great expansion of Internet. The traffic is perma-
nently monitored to keep the network running, detect weak points and possible
intrusions or abuses. A strong demand comes from marketing that needs statis-
tics on browser clicks or user queries. This leads to another large application of
data streams. Financial and banking analyses, stock market monitoring, trend
tracking and forecasting. Take the exploration of natural phenomena as the last
example. Large data need to be processed in astronomy, meteorological surveys
or seismic observations. You can read more about data streams in Chapter 3.

So far, data stream approaches were not much employed in computer graph-
ics. Even though it is an area that does deal with huge data and the streaming
approach would be often natural. There are techniques to handle large data in
computer graphics. However, not much of them could process extremely large
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data that do not fit into the main memory. The streaming approach still seems
to be on the edge of interest. Considering that it proved useful in many ar-
eas described above, we! decided to adopt the data stream approach to master
large geometric data.

The target of my research is to develop algorithms that allow to manipulate
huge graphics data. We decided to address this task by means of clustering.
Our concept is to use clustering to identify groups with similar features in the
data. Such groups can be then replaced by a single or a few representatives,
thus reducing the amount of data significantly while preserving all important
features. This is the major difference from ordinary sampling. Another great
advantage over sampling is that we have a cluster associated with each repre-
sentative. If we store the clusters in an external memory, we can later return
arbitrary cluster back to the data. It is thus possible to restore selected parts
of the data to the original state for a more precise examination. Another pos-
sibility is to process the clusters separately and then aggregate the results for
the whole data set.

For really large data the clustering solution alone would not be sufficient.
Here comes the data stream approach into account. We use a data stream
clustering technique that can process gigantic data using just a small amount
of memory. The cluster representatives are eventually clustered over and over
until the data are reduced to a manageable size. So the data stream clustering
intrinsically creates a hierarchy which is another great feature. We get a hierar-
chical model of the data so we can later put back clusters at various levels and
thus control the level of detail. An extended description of clustering techniques
including the data stream solution can be found in Chapter 4.

We are currently working on a dynamic hierarchical triangulation that
utilises the cluster hierarchy. So far it is intended for visualisation but it could
be used for further scientific computing as well. The program starts with a
triangulation of the top level, i.e., all clusters are replaced by a representative.
When a cluster is put back, its points are inserted to the triangulation so the
detail is increased. Of course further clusters can be inserted up to the limit
of available memory. Clusters can be later selectively removed to save memory
for other data. Fundamentals of the Delaunay triangulation are discussed in
Chapter 5. The dynamic hierarchical triangulation is described in Section 6.3.

Chapter 6 discusses our further contributions to the current state of the art.
We made improvements to the clustering algorithm. These are rather details
so please refer to Sections 6.1 and 6.2 if interested. In order to extend the
potential of the clustering and the triangulation, we integrated the possibility to
compute with anisotropic distance measures. We selected namely the elliptical
metrics which, though relatively simple, offers a good flexibility. The work is
documented in Section 6.4. Based on a positive feedback on the hierarchical
clustering, we are currently developing a method that could be used for space
partitioning for ray tracing acceleration. Our research so far is documented in
Section 6.5.

Chapter 7 concludes this work and sketches our plans for the future work.

'Me and my Ph.D. study advisor.



Chapter 2

Large Geometric Data

Large data may be found in many application areas such as databases, sensor
networks, network traffic monitoring or market statistics. It is also intensively
studied in computer graphics. This chapter gives a general overview of selected
methods for large geometric data acquisition and manipulation. Especially
for the manipulation, there are many profoundly different approaches. This
chapter mentions the fundamental techniques and gives a basic overview of
their function. Following chapters concentrate on selected particular methods
in detail. It is to be noted that this work focuses on large data in computer
graphics, especially data of a geometric character. Other areas such as video
processing are not covered in the text.

The term of large data has a continually evolving meaning as new technolo-
gies are discovered and brought to practise. This applies both to data acqui-
sition and manipulation. The Stanford 3D Scanning Repository [137] offers a
good example. The famous Stanford Bunny was scanned in 1994. With its
36 000 vertices it was considered quite a large model. In 1999 several Michelan-
gelo’s statues were scanned, including the Atlas with about 250 million vertices.

Today geometric models are often even larger. Let us mention for example
terrain models. Today, even the whole world is available in digital form [93, 139].
The digital elevation map has a size of 1.9 GB, the resolution is about 900 m
per pixel. Visualisation of large detailed models is required in medicine, for
example in The Visible Human Project [141]. The data from the year 2000
contain 58 GB of high resolution images. Further large models can be found in
industry, see for example The Walkthru Project [143]. The model of the Double
Eagle Tanker consists of 82 million triangles. And we must not forget the film
industry and computer games.

2.1 Large data acquisition

A lot of large geometric models come from scanning real-world objects. Today
it is most often done using a laser scanner. The technology is called LIDAR
(LIght Detection And Ranging). It is an optical scanning technology that emits
laser pulses and detects the reflected light. The principle is common with a
radar with the difference that LIDAR uses light instead of radio waves. This
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way it is possible to capture a full 3D shape of virtually any object. It is even
possible to mount such a device on an aeroplane and make a large detailed scan
of Earth’s surface. Satellite photography is used to record wide areas. Other
scanning methods producing large data could be found in medicine, namely the
computer tomography and the magnetic resonance. A typical scan could have
256 x 256 x 256 or 512 x 512 x 512 samples.

There are also applications working with synthetic data generated by the
computer. These include various simulations, for example the finite element
method. Another area is concerned with computing statistics from large data.
The data often comes from real-time measuring of network traffic, monitoring
market transactions, etc. The input arrives continuously over time and is often
too large to be processed completely and exactly, so approximate algorithms
must be employed. It is not the common case for geometric data so this problem
is not further discussed in this text.

2.2 Large data manipulation

This section summarises different approaches to the manipulation with large
geometric data. The list of the methods mentioned here has no ambition of
being complete. The most relevant techniques are discussed and their funda-
mental principles are explained. Nevertheless, there are many other special
approaches. Detailed description of every method would be beyond the scope
of this document.

2.2.1 Processing the entire data set

In some cases it is necessary to process the entire data set; nothing could be
omitted. If the data set is too large, the only possibility is to process it in
pieces. There are generally two possible approaches to this task. The first one
is to use a parallel and/or distributed computing to distribute the data among
several (or several thousands) processing units. More on parallel and distributed
processing of geometric data could be found for example in [1, 89]. Another
approach also processes the data in pieces but on a single computer. This is
the first step to the so called data stream approach. Streaming algorithms are
discussed in detail in Section 3.

2.2.2 Reducing the amount of data

There are such situations when it is not necessary to deal with all the data at
the same time, so it is possible to consider just a subset of the original data.
This is mostly the case of visualisation or performing some local computations
on the data. Generally, there are two ways how to reduce the amount of data.
The first approach defines a region of interest, takes only that part of the data
and discards everything else. It keeps all information about a limited region.
Like if you take a single page (or several individual pages) of a large map.
This technique is well suitable for both visualisation and local computing. The
second approach takes the data as a whole but in a lower resolution. It keeps



CHAPTER 2. LARGE GEOMETRIC DATA

the most important information about all regions. Like if you take a map with
a lower ratio scale. This technique is particularly suitable for visualisation.

Clipping and culling

Selectively discarding unnecessary data is basically done by clipping and culling.
These techniques differ in the way how particular regions are selected to be
discarded or not. See Figure 2.1. Clipping removes those regions that are out
of the current scope. For example, when you are virtually overlooking a digital
terrain, you do not need to render what is behind your back. Culling removes
those parts that are unimportant from the nature of the data. Back to the
example with a terrain, when looking at a hill, you cannot see what is behind.
This is called occlusion culling. You even cannot see the other side of the hill
itself. This is the back face culling.

viewer

removed by clipping removed by culling

Figure 2.1: Parts of a scene removed by clipping and culling.

Various methods exist to speed up both clipping and culling. Those funda-
mental include space subdivision — quadtrees [45, 30], octrees [18] and kD-trees
[8, 31]. More advanced methods, such as the binary space partitioning [47, 32],
are used especially for the culling. A detailed description of such techniques
would be beyond the scope of this work.

Simplification

Even after applying clipping and culling the amount of data may be still too
large. Simplification is used in such cases. It is a way how to handle all the
required data at the cost of reduced quality. This technique is especially useful
in visualisation applications.

The simplification involves removing insignificant detail from the model.
The fundamental approach by Shroeder et al. [131] uses the technique of ver-
tex removal, also referred to as vertex decimation. It simplifies the model by
successively removing a vertex and patching the resulting hole as illustrated in
Figure 2.2. To avoid degeneracies in the model it is necessary to check whether
the vertex removal would not change the topology of the model. Preserving the
topology is a valuable property for example in medical applications.

Turk [138] proposed an interesting method that could be named mesh re-
sampling. Unlike most other methods, this one generally does not use any of
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Figure 2.2: Example of a vertex removal. The marked vertex has been removed.

the original vertices. It places random samples on the mesh surface instead.
The sampling could be either uniform or with increasing density in the areas
of higher curvature. Next a new mesh must be constructed from the samples.
Turk uses a very elegant and robust method. First the newly sampled vertices
are inserted into the original mesh. This is done by simple triangle subdivision
since the new vertices has been sampled from the mesh surface. The original
vertices are then successively removed similarly as in decimation. The method
guarantees that the topology will be preserved. Turk further presents how to
interpolate between the resampled models.

Another method is the edge contraction or edge collapse. It replaces two
incident vertices by a single one. All the edges that were connected to both
original vertices are connected to the new vertex. Figure 2.3 shows an example.
Edge collapse is an essential part of the algorithm by Hoppe et al. [69]. They

Figure 2.3: Example of an edge contraction. The marked edge has been contracted.

define an energy function that models the competing requirements of compact
representation and geometric fidelity to the original mesh. The simplification
is then solved as an optimisation problem to minimise the energy function.
After the edge contraction the question is where to place the new vertex.
Simple algorithms use the midpoint between the removed vertices. Advanced
techniques try to minimise the error incurred. This leads to the question of
error measure. Simplification algorithms need to evaluate the error incurred
by removing a particular vertex or contracting an edge, so as to decide which
vertices to remove or which edges to contract. The error of removing a single
vertex is often measured as a distance of the vertex from an average plane of its
neighbours. For edge contraction, the distance between the involved vertices is
used. Alternatively, the change in object volume may be measured. The vertices
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are placed into a priority queue according to their associated error which is
continuously updated as the simplification proceeds. Vertices are simplified in
the order of minimal error until the model is reduced to a desired size or until
an error threshold is reached.

Garland and Heckbert [50] proposed an analogous method to the edge con-
traction — the pair contraction. It differs in that it can merge any two vertices,
being incident or not. This way the topology may change dramatically and
even independent objects may be joined together. This yields nice results when
a drastic simplification is required. The algorithm uses quadric error metrics
to evaluate possible contractions. The error is computed as a quadratic form
which allows to compute the right replacement for the two contracted vertices
and generally achieves good quality simplifications.

Cohen et al. [22] proposed a technique of simplification envelopes. It is a
general framework within which various existing simplification algorithms can
run. Simplification envelopes are a generalisation of offset surfaces. They allow
to generate mesh approximations that are guaranteed not to deviate from the
original mesh by more than a pre-specified amount. Precisely speaking, all
vertices of the simplified model will be within a distance € from the original
and vice versa. Topology is also guaranteed to be preserved. The algorithm
surrounds the original mesh with two envelopes and then performs simplification
within this volume. The envelopes are constructed by offsetting each vertex of
the original mesh in the direction of its normal and in the opposite direction
by €. If should any self-intersection occur, the offset € is reduced so as to avoid
that. The authors present two methods for computing the envelopes as well as
two simplification algorithms that can actually be used within the framework.
Simplification envelopes inherently ensure that sharp edges will be preserved.

The simplification envelopes are particularly associated with the Hausdorff
distance which is commonly used to measure the difference between the original
and the simplified model. Let X and Y be two point sets representing some
objects and let d be any metric. The (directed) Hausdorff distance from X to
Y is defined as

dn(X,Y) = max{min{d(x, y)}} (2.1)
It is the maximum of distances from any point = € X to the closest point y € Y.
The (symmetric) Hausdorff distance between X and Y is then defined as

dg(X,Y) = max{d,(X,Y),dn(Y, X)} (2.2)

Simply speaking, the Hausdorff distance is the greatest local difference between
the two objects.

2.2.3 Large data visualisation

This section describes techniques of large data visualisation. Many of the above
mentioned approaches could be used for visualisation as well. But they are
rather general and image rendering is just one of their possible applications.
The algorithms described in this section were developed primarily for the visu-
alisation purposes.

10
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Level of detail

The idea of using a simpler representation of objects to improve rendering frame
rate was first proposed in [21]. Level of detail techniques [102] are now often
employed to render complex scenes efficiently. Not all objects present in the
scene need to be rendered at full resolution. Distant objects are too small
for the fine detail to be visible. Similarly, fast moving objects do not need
to be rendered in high detail. Therefore simplified models are used to reduce
system load. However, if an object slows down or gets close to the viewer, a
more detailed model should be used. So the rendering system must be able to
dynamically select a model in the appropriate resolution, thus control the level
of detail. Figure 2.4 shows a model at several different resolutions.

Figure 2.4: Example of a model at four different levels of detail. Images adopted
from [67].

In earlier times, lower resolution models were prepared by hand. This had
the advantage of perfect quality. The modeller person knows best which details
should be preserved and which can be dropped. But the handwork is rather slow
and expensive so automatic methods are used nowadays. The handmade models
usually had discrete levels of detail. It means that there was the original finest
model plus two or three simplified ones. Such models can be easily handled
but the so called popping effect may appear when switching between particular
levels of detail. It means that the substitution of simplified models could be
noticeable for the viewer and often even disturbing. Automatic methods [100,
130] can generate smooth transitions by gradually increasing or decreasing the
amount of detail in the model. Sophisticated view-dependent methods [68, 97]
can even change the detail depending on the view direction, keeping high detail
only in the near parts and on the silhouette where fine details are well visible.

Most simplification algorithms can be used for the level of detail. Among
them the technique of progressive meshes [67] is especially remarkable. The
images in Figure 2.4 come from a progressive mesh. The goal is to find such
a mesh M that both accurately represents the original object and has a small
number of vertices. This can be expressed as a minimisation of an energy
function

E(M) = Fgist (M) + Erep(M) + Espm'ng(M) (23)

The Egjis term measures the distance of the mesh from the original, the F,.,
term is a penalisation for the number of vertices, and the Ep.py term is to
regularise the optimisation problem. Please consult [67] for more details.

11
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The algorithm is based on [69] though it uses a modified energy function
and performs only edge collapses (no edge splits or edge swaps). The key
is that an edge collapse is invertible. The inverse transformation is called a
vertex split which adds a new vertex and two faces. A mesh is then stored
in a much coarser version together with a sequence of vertex splits. They
indicate how to incrementally refine the mesh exactly back into the original
mesh. The representation thus defines a continuous sequence of meshes of
increasing accuracy, from which approximations of any desired complexity can
be retrieved. Moreover, geomorphs can be constructed between any two such
meshes. A geomorph is basically a linear interpolation between two models.
It makes very smooth transitions between them. Progressive meshes naturally
support progressive transmission, they permit selective refinement and could
be used as a mesh compression.

Point based rendering

Points as rendering primitives were first discussed in [98]. The point based
rendering got an increased popularity later [56, 127, 11]. A comparison of
various point based rendering techniques may be found in [129]. As the name
suggests the point based rendering uses points or similar very simple primitives
to render complex 3D models. Every point is defined by its coordinates and
preferably has also a normal vector corresponding to the surface from where it
was sampled. Optionally, the point colour may be specified. Unlike conventional
triangle meshes, it works with just the points without connectivity. It does
not require any information about point adjacency. So there is no need for a
demanding and possibly unstable triangle mesh construction. This spares a lot
of time as well as memory because there is no need to store the mesh. For large
models, the problem is not only to compute the reconstruction. The problem
is even to hold the whole triangle mesh in the memory.

The point based rendering displays just individual points. It is therefore
necessary to render the points large enough so that they overlap and there are
no gaps between them. Otherwise the rendered model would have holes in its
surface. If the rendering is correct, points fill the whole surface smoothly as
seen in Figure 2.5.

The most common primitives are indeed points. Do not confuse points with
pixels. A point is a spot that could be rendered several pixels large. Using
programmable graphics, the point size can be adjusted according to the actual
projected screen size. Rendering a spot is of course much easier then rasterising
a triangle, evaluating the lighting model in all three vertices and interpolating
the colour. Sprites!' are more flexible primitives in that a texture can be mapped
on them. The most complicated primitives are quads or triangles, still with no
connectivity among them. Textures with alpha channel are mapped onto them
so points can be rendered for example as disks oriented according to the surface
normal.

Rendering points is simple and allows to display even large models. But
it is still profitable to employ acceleration techniques such as an octree [90].

!Small 2D images integrated into a 3D scene.

12
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Figure 2.5: The point based rendering. Overlapping points covering a surface.

Additionally, it allows to control the (view dependent) level of detail, do the
view-frustum and the back-face culling [120]. The octree is traversed as usual.
If a node lies outside of the view frustum, or if a node is determined as back-
facing, or if the screen-projected size of a node is smaller than a threshold, then
the sub-tree under the node is not taken into account.

Vertex clustering

Rossignac and Borrel [126] proposed a simplification method that uses vertex
clustering to render complex scenes. Perhaps a more precise expression would
be vertex quantisation. The scene is uniformly divided by a grid. The grid
resolution controls the amount of simplification. Vertices falling into one grid
cell form a cluster which is then replaced by a single representative vertex. This
could be either the centre of mass of the cluster or the most significant vertex.

The significance of vertices is evaluated by their visual importance. Impor-
tant vertices are those that

1. have a high probability of lying on the object’s silhouette from an arbitrary
viewing direction

2. bound large faces that should not be affected by the removal of small
details

The first criterion may be efficiently estimated by the inverse of the maximum
angle between all pairs of incident edges. The second criterion may be estimated
by the longest edge incident to the vertex.

The notable property of the algorithm is that it does not simplify objects
separately. If two objects are close together so that some of their vertices fall
into a single grid cell, the objects will be merged together. Manifold topology
is not required and not guaranteed to be preserved.

An example of the method results can be seen in Figure 2.6. The top image
shows an object vanishing into a distance with decreasing level of detail. The
bottom image shows all the instances at the same size.

13



CHAPTER 2. LARGE GEOMETRIC DATA

Figure 2.6: Examples of different level of detail obtained by the clustering. Image
adopted from [126]; colours adjusted.

Luebke and Erikson [101] proposed a hierarchical dynamic simplification.
It is a similar but more advanced approach. It also uses vertex clustering (but
can use any other simplification algorithm) to create the so called vertez tree.
The tree defines how vertices (possibly from different objects) will be merged
together to simplify the scene. Each node in the tree contains one or more ver-
tices. The algorithm may collapse all of the vertices within a node into a single
representative vertex. Triangles whose corners have been collapsed together are
removed. Likewise, a node may be expanded by replacing the representative
vertex by the original node’s vertices. The triangles that were removed become
visible again. The vertex tree is queried dynamically at run time to generate the
desired degree of simplification. The algorithm uses a screen space error metric
that measures the error in pixels and therefore perfectly reflects the distortion
that is actually visible.

14



Chapter 3

Data Streams

The concept of data streams is versatile and can be used in an extremely wide
area of applications. Typical tasks include detecting outliers, extreme events,
intrusions, track trends and perform analyses. Data streams are often found in
connection with computer networks [85, 94, 146], namely monitoring the traffic
or computing statistics of browser clicks and user queries. More applications
include astronomical [48], satellite and meteorological surveys, financial obser-
vations [48] such as stock exchange and currency trades. An increasing interest
emerges also in computer graphics [70], particularly in computational geometry
[44, 121, 74, 78, 75].

The following section starts with an informal definition of data stream and
an on-the-surface discussion of diverse concepts adopted in different disciplines.
Classical model problems are presented. Although simple, they can be inspiring
for solving practical tasks. Fundamental techniques frequently used in data
stream processing are introduced. The second section focuses on data streams
in computer graphics.

3.1 Data stream fundamentals

From a general point of view, data stream is a sequence of data. Every ap-
plication branch then has different specifications, expectations and limitations
posed on the stream. A comprehensive overview can be found in [117]. There
are essentially three challenges that may be concerned — to transmit the data
to the program, to compute sophisticated functions on large pieces of input in
an acceptable time, and to store the presented information long-term. Either
of the tasks may be demanded, or all of them.

In most cases the amount of data in the stream is extremely large so it is hard
to store it or to compute complex functions by conventional algorithms. Let N
be the length of the stream, i.e., the number of distinct pieces of information,
which is often supposed to be known. Data stream algorithms are usually
allowed to use O(N?), a < 1, or O(log N) memory.

The data stream can be stored on hard drives or tapes. This is the offline
variant [78]. Processing time is not critical and it is possible, though discour-
aged, to do multiple passes over the data. Random access is prohibited. Offline

15



CHAPTER 3. DATA STREAMS

data streams allow to compute complex analysis on them. This is a common
case in computer graphics. By contrast, in online data streams [55] data arrive
at a very high rate so it is hard and usually impossible to process them exactly.
Approximate algorithms must be used. This is a common scenario in computer
networks.

3.1.1 Motivation puzzles

This is a list of typical problems being solved in the data stream model. Many
real world tasks can be directly mapped to them. The techniques how to solve
them are discussed in Section 3.1.3. For more details see for example the nice
survey [117].

A traditional task is finding missing numbers. Let 7m be a permutation
of {1...n} and let m_; be 7 with one number missing. Paul shows Carole
a stream consisting of 7m_1[i] in the increasing order of i; Carole’s task is to
determine the missing number m. Of course she is not allowed to memorise all
the numbers. This is a rare data stream problem that can be solved exactly.
Carole maintains a sum of the presented numbers 23:1 m_1[j]. The sum of all

N(N+1)
2

the numbers {1...n} is easy to compute as , s0 the missing number can
be computed as

-1
m=YEED 5 (3.1)

7=1

Variants exist for more missing numbers [117]. Let m_5 be a permutation
with two missing numbers m; and ms. Carole now needs to maintain more
information. A simple solution would be to maintain a sum and a product of
the presented numbers. Carole then gets

N-2
mi+my = w — > moaff] (3:2)
j=1
N-2
mimyog = n! — H 7T_2[j] (33)
j=1

which is a simple system of equations. However, Carole can use far fewer bits
by tracking the sum and a sum of squares. The solution is then obtained from
the equation system

N-2
NEAD 5 ol (3.4)
j=1

mi + meo

N-2
mi by = NEIUENED 5 gy 5)

j=1

This scheme can be extended to k missing numbers.

Further tasks commonly solved in data streams are counting distinct ele-
ments and detecting duplicate values [52, 6, 23]. Another problem is to find
the majority value [15, 26] which is the value repeated most frequently. Closely
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related are the so called iceberg queries [107, 51, 14, 84] looking for items that
are repeated more frequently then a specified threshold. A common task is to
compute a histogram [17, 58, 53] or quantiles [55].

3.1.2 Data stream models

There are three traditional data stream models [117] that can be applied to
a majority of real world problems. Let ai,ao,... be the input stream that
describes an underlying signal A, suppose A : [1...N] — R for simplicity.
Models differ in how the stream describes the signal. In the time series model
a; = Ali], i.e., a; present absolute values of the signal in the increasing order of
i. This is suitable for observing some quantity at regular intervals.

In the cash register model a; are increments to A[j]. Let A; be the state
of the signal after seeing i items of the stream. Let a; = (j,1;), I; > 0, then
A;lj] = Ai—1[j] + ;. Multiple a; can increment the same A[j] over time. The
cash register model is suitable for instance for web server access monitoring
because a single client may access the server multiple times.

The turnstile model differs in that a; are updates to A[j]. Let a; = (j, U;),
U; € R, then A;[j] = A;_1[j] + U;. This model is appropriate for dynamic
systems with inserts and deletes, but it is often hard to find good solutions.
A modification is the strict turnstile model where Vi : A;[j] > 0. The model is
suitable for example for a database where it is not possible to delete an item
not present.

There are more advanced models for special situations. Permutation stream-
ing is a special case of the cash register model in which items do not repeat.
The input stream is a permutation of some set and the items arrive in an un-
ordered way. The task may be to estimate various permutation edit distances
[27] or to estimate the number of inversions in the permutation [2, 64]. This
could be used for example to detect packet retransmissions in a network traffic.

In the case of a synchronised streaming [117] a function is to be computed
on two signals given as streams, e.g., estimating the edit distance of two strings.
Windowed streaming [29] is used to emphasise the recent history of the stream.
A sliding window of width w is defined and the algorithm focuses only on the
data within the window, i.e., the most recent w items from the stream. This is
a common practise for example in fraud detection. A variant [28] of the model
is to age the input signal and to consider older records with a lower significance.
Another variant [24] considers recent items of the stream at a fine granularity
while the distant past is aggregated.

3.1.3 Typical data stream techniques

Many data stream algorithms are based on one of several fundamental tech-
niques. Shedding is the simplest, often used on very fast and massive online
data streams. It just blindly samples the data at a lower frequency. True sam-
pling, as it is used in data streams, carefully selects which data to retain and
which to drop [17, 55, 52, 107]. The sliding window has already been mentioned
in Section 3.1.2.
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Advanced techniques such as sticky sampling and lossy counting [107] are
used for example to determine how frequently particular elements occur in the
stream. Sticky sampling draws a sample set of distinct elements and counts how
many times each of them appeared. The sample set is continuously refreshed
to drop sporadic elements and to include new ones appearing in the stream.
Lossy counting is a bucketing technique, i.e., it divides the stream into pieces
(buckets) and processes them one after another. It counts all distinct elements
in a bucket. Before proceeding to the next one, all the counters are decremented
and elements whose counter reached zero are dropped. The sketching technique
[53, 15, 23, 25, 26, 73] computes summary information on the stream. It allows
various queries to be approximately answered very quickly.

3.2 Data streams in computer graphics

With an increasing size of geometric models, data stream approaches are get-
ting into consideration especially in computational geometry [72]. Isenburg et
al. [78] proposed a streaming computation of Delaunay triangulation. Their
method is described in detail in Section 5.3.2. This section focuses on two more
applications of data streams [74, 121]. The streaming approach is not much
used in computer graphics so far. There are several more streaming algorithms
proposed by Isenburg et al. [76, 77, 75]. They often rely on the data to be
approximately sorted. Otherwise, some external pre-sorting must be done.

3.2.1 Streaming meshes

Geometric models are usually stored in the common format comprising of a list
of vertices followed by a list of triangles. There is no ordering required so a
triangle may reference vertices from both ends of the vertex list, as well as a
vertex may be referenced by triangles from both ends of the triangle list. It is
especially notable for instance at the Stanford bunny [137] where both triangles
and vertices are heavily scattered. This bad topological coherency is not well
suitable for huge gigabyte-sized models since any processing algorithm would
need random access to either of the lists. It prohibits the stream processing
and makes cashing inefficient.

Isenburg and Lindstrom proposed streaming meshes [74] to overcome this
problem. The idea is to interleave vertices and triangles so that some algorithm
processing the mesh will come to the right vertices when they are needed.
Vertices that will not be needed anymore are finalised, i.e., marked that they
can be freed from memory. An algorithm processing an interleaved mesh can
thus hold just the vertices that are actually needed. It uses little memory and
does not need random access to the whole mesh.

Isenburg and Lindstrom suggest two variants of streaming meshes. The
pre-order format introduces a vertex just before the triangle that references it
for the first time. The vertex is finalised as soon as it is referenced by the last
incident triangle. The post-order format first introduces triangles. As soon
as all triangles incident to a vertex are present, the vertex is introduced and
implicitly immediately finalised.
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Many mesh generating applications work in such a way that the output can
be easily stored in the streaming format. Authors also propose methods how
to reorganise existing models.

3.2.2 Stream-processing points

A framework for stream-processing points was proposed by Pajarola [121]. The
input is a point cloud sorted along one direction. The algorithm then sweeps the
data along that direction and processes them as a stream. Points are sequen-
tially loaded into the memory where stream operators (see bellow) are applied
to them. Many operations such as normal computation cannot be performed
on isolated points. Therefore a working set is maintained where points accu-
mulate and their local neighbourhood is available. As soon as a point cannot
contribute anymore to any operation, it is released from the working set and
written to the output. Eventually, a buffer and a deferred write may be used
to preserve the global stream ordering.

Pajarola introduces stream operators as functions computed on a single
point using only a local neighbourhood. They are applied to the points that have
all necessary neighbours present in the working set. Pajarola introduces several
elementary operators that are particularly important for processing raw point
clouds. Except the elementary I/O operators, they are k nearest neighbours,
normal computation, curvature estimation, splat size estimation (for the point
based rendering; see Section 2.2.3), and fairing (smoothing). The power of
the stream-processing framework consists in that the stream operators can be
concatenated and thus a complex computation on the data can be performed in
a single pass. The operators are implemented as modules with input and output
buffers. A module starts computing when it has enough data in the input buffer.
Processed points are passed to the output buffer. This way modules hand over
the data efficiently as the computation proceeds.
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Chapter 4

Clustering

Over the years, clustering has evolved into a really general concept. It is used in
various data analysis [37, 5], data mining [43] (specially mining large databases
[118, 149]), information retrieval [124], image segmentation [79], pattern recog-
nition [7] and other scientific fields [81, 82]. It can also be found in non-technical
disciplines such as archeology or marketing.

Clustering means, in principle, grouping similar elements together. Depend-
ing on the area of application, elements could be anything — from points in 1D
space! to 3D objects, entire images, documents or data base entries. Each
element is described by a characteristic vector. Points are specified by their
coordinates. For more complex elements some abstraction is needed to get a
suitable representation. This work focuses on clustering of points in 3D. We
are going to investigate also more complex objects, surely triangles. The future
work is outlined in Section 7.2.

A majority of clustering tasks are NP-hard problems so most algorithms
produce only approximate results.

A comprehensive overview of clustering can be found for example in [38,
65, 37, 81, 82, 108]. This chapter will briefly introduce the main concepts of
clustering. It will then concentrate on the facility location problem and methods
for clustering large data.

4.1 Distance measures

To measure a similarity between elements, it is necessary to determine a dis-
tance measure. By far the most common is the Euclidean distance. Given
two elements x; = {z;1,%i2,...zip}, X; = {x1,2j2,...2jp} in D dimensional
space, the Euclidean distance is defined as

d(Xi, Xj) = (Xi — Xj)2 (41)

It works well for compact spherical clusters. Different measures are used for
special applications, e.g., to detect clusters of a complex shape or for pattern

!Clustering the depth information for rendering.
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matching. The Minkowski metric is a generalisation of the Euclidean distance
and is defined as
dp(xi, %) = {f (xi — %;)P (4.2)

Anisotropic metrics can be used to find clusters of non-spherical shape. This
is discussed in detail in Section 6.4. The Mahalanobis distance [105] can be
used if there is a correlation between elements of the characteristic vector. It is
suitable for classification of elements into classes. A covariance matrix ¥ of each
class is computed from known samples. The Mahalanobis distance between an
element x; and a class with a mean x; is then defined as

dus (%0 %5) = 1/ (xi — x;)TEL(x; — x;) (4.3)

The Hausdorff distance [116] can be used to measure the distance between sets,
e.g., for point set matching. Given two sets A and B and an arbitrary metric
d, the (oriented) Hausdorff distance from A to B is defined as the maximal
distance from an arbitrary point a € A to the closest point b € B. Written in
the form of equation

dn(A,B) = max{min{d(a,b)}} (4.4)
From the properties of minimum and maximum operators follows that the dis-
tance is not symmetric. The general Hausdorff distance between A and B is
defined as

dn (A, B) = max{d,(A,B),d,(B,A)} (4.5)

Following sections assume the use of the Euclidean distance. It is the most
common measure, very simple and works well in many scenarios.

4.2 Clustering approaches

A large amount of clustering techniques exist. This section gives an overview
of various different approaches. The most common algorithms are described in
more detail. For further information please refer for example to [82, 108].

Clustering algorithms can be divided, according to some particular principle
of their function, into two opposed courses. Following paragraphs list several
such divisions.

Clustering algorithms can be either partitional or hierarchical. Partitional
approaches divide the data into an exact number of clusters (partitions). Hi-
erarchical algorithms create a hierarchy of small clusters grouped into larger
clusters forming a tree structure called dendrogram. The degree of clustering
can be than controlled by going up and down in the hierarchy. Figures 4.1
and 4.2 show examples of partitional and hierarchical clustering of the same
data. The dashed line in the dendrogram in Figure 4.2(b) shows from which
level of the hierarchy the clustering in Figure 4.2(a) was created.

Another possible division is to agglomerative and divisive or partitional al-
gorithms. An agglomerative approach [95, 87, 136] starts with each element in
a single cluster. These are then successively merged according to a similarity
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Figure 4.1: An example of a partitional clustering.
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Figure 4.2: An example of a hierarchical clustering with a dendrogram on the right.

measure until a stopping condition is met. The algorithm usually stops when
a desired number of clusters has been reached, or when there is such a low
similarity between existing clusters that no further can be merged. A divisive
approach [104, 5] works vice versa. It starts with all the data in one large
cluster. It is then repeatedly split according to a dissimilarity measure. Again
the algorithm stops when there is a predetermined number of clusters or when
existing clusters are homogeneous enough so that no further splits are necessary.

The clustering can be either hard or fuzzy. Hard clustering [104] assigns
each element into exactly one cluster. Fuzzy set theory was first applied to
clustering in [128]. Fuzzy clustering [10, 9] determines a degree of membership
in several clusters for each element. It is then possible to get a hard clustering
by assigning each element into the cluster with the largest membership value.

Clustering algorithms can be deterministic or stochastic. Stochastic tech-
niques [104] usually use some random search among all possible solutions. Such
algorithms do not always yield an optimal solution but often guarantee a con-
stant factor approximation. A great benefit is that randomised algorithms
mostly run rather fast and thus are perfectly suitable for processing large
amounts of data.

The clustering method may process the data all at once or work incremen-
tally. If the algorithm works with all the data together it can in principle
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produce more precise results. Incremental algorithms [60] can be faster and
have much lower memory requirements which is again a great benefit when
processing large data. The low memory requirements come from the fact that
the algorithm does not need to store all information about the data processed so
far. It is only necessary to hold summary information about particular clusters
which can be orders of magnitude smaller than all the data contained in them.
The notion of cluster representation was introduced in [38] and was sub-
sequently studied in [36, 114]. There are two major cluster representations —
centroid based and sample based. The centroid based approach stores just the
centre of each cluster and possibly the number of elements contained within.
This is a very compact representation but completely sufficient for many appli-
cations. The sample based approach stores several well chosen representatives
for each cluster, e.g., points at the border of the cluster. This requires more
memory but also gives more information in particular about the cluster shape
and possibly about how elements are distributed within the cluster. Figure 4.3
shows the difference between the centroid based representation (on the left) and
the sample based representation (on the right). There is a single cluster in both
figures. Crosses show the summary information stored about the cluster.

Figure 4.3: The centroid based cluster representation on the left, and the sample
based representation on the right.

Following sections describe some of the most common clustering algorithms
in detail. Namely two examples of the hierarchical agglomerative clustering
— the single-link and the complete-link algorithm. Then the famous k-means
algorithm and finally the facility location. Except these, a vast amount of
other methods exist. Many of them are modifications and/or combinations of
the methods described here.

Further, there are different approaches based on genetic algorithms [54], sim-
ulated annealing [125], tabu search [3] or artificial neural networks [80]. They
have good theoretical properties. Evolutionary approaches (genetic algorithms
and simulated annealing) are globalised search techniques. This ensures that
they do not remain stuck at some local optimum. All of the four approaches give
solutions very close to optimum. Unfortunately, these methods do not perform
so well in practise. They are sensitive to the initial setting of learning/control
parameters which is impractical. Neural networks are often order-dependent
which means that they can produce different results for different input order-
ing. Perhaps the biggest problem of all the methods is that they are too slow,
especially genetic algorithms which also require a lot of memory. They are thus
used only for small data sets of about hundreds or thousands of elements.

23



CHAPTER 4. CLUSTERING

4.2.1 Single-link and complete-link

Single-link [136] and complete-link [87] are hierarchical agglomerative clustering
approaches. They are non-incremental, deterministic and do the hard cluster-
ing. They differ in the way they measure the similarity between clusters. The
single-link algorithm defines the distance between two clusters as the minimum
pairwise distance between the elements of the two clusters, i.e., the similarity
of the clusters is measured as the similarity of their most similar members.
By contrast, the complete-link algorithm uses the maximum pairwise distance,
i.e., the similarity of the clusters is measured as the similarity of their most
dissimilar members.

The single-link algorithm is more versatile but tends to produce straggly or
elongated clusters. This could be unpleasant but in some scenarios it is very
useful to detect non-spherical clusters. The complete-link algorithm produces
compact clusters. Which algorithm works better depends on the nature of
input data. Figure 4.4 shows a comparison of both approaches. The single-link
algorithm (a) correctly detects the cluster at the top but merges the two clusters
at the bottom. On the contrary, the complete-link algorithm (b) separates the
two bottom clusters but also splits the top cluster.

SN
(4

(a) single-link (b) complete-link

Figure 4.4: A comparison of the single-link and the complete-link approach.

A few terms of graph theory will be necessary for the following text. A
connected graph is a graph where there is a path connecting each pair of points.
A connected component of a graph is a maximal set of connected points such
that there is a path connecting each pair. A clique in a graph is a set of points
that are completely linked together.

The single-link algorithm can be summarised as follows

1. Start with each element in a distinct cluster. Compute distances between
all pairs of elements.

2. Take these distances in an ascending order. For each such distance d form
a graph where pairs of elements closer than d are connected by an edge.
When all the elements form a connected graph, stop.
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3. The result is a hierarchy of graphs where an arbitrary similarity level can
be selected. The clusters are the connected components of the appropriate
graph.

The complete-link algorithm basically works the same way. The difference is
that the second phase is terminated when all the elements form a single clique.
When a graph is selected from the hierarchy, clusters are the mazimal cliques
of the graph.

The time complexity of both algorithms is O(N?log N), whereas the single-
link can be improved to O(N?). Nevertheless, both algorithms must compute
N? distances which is the most demanding part of the computation. More on
the complexity analysis can be found in [109].

4.2.2 k-means

The k-means [104] is for sure the best known clustering algorithm. It gained
popularity for its simplicity, short running time and low memory requirements.
It is a partitional non-incremental stochastic algorithm. It does hard clustering
but there is a modification fuzzy c-means [10] that does fuzzy clustering.

The k-means algorithm works as follows

1. Choose k cluster centres either randomly or based on some heuristics.
2. Assign each element to the closest cluster centre.
3. Recompute cluster centres as centroids of particular clusters.

4. While a convergence criterion is not met, go to step 2. Typical conver-
gence criteria are no (or minimal) reassignments between clusters or a
low decrease in the squared error (i.e., a sum of squared distances to the
cluster centres).

The algorithm has a time complexity of O(NkI) [110], where I is the num-
ber of iterations. Practical experience shows that far less than N iterations
are necessary to achieve convergence. The algorithm has some disadvantages.
Perhaps the most significant one is that it is necessary to determine the number
of clusters k prior to starting the algorithm. It could be solved by running the
algorithm several times with different settings and choosing the best result (the
minimal squared error). But this considerably increases the running time. Next
problem is that for some bad initial configuration the algorithm may converge
to a local optimum. There are methods [110] for choosing the initial cluster
centres so that the global optimum is reached with high probability.

Another approach is to allow cluster splitting and merging according to
some additional criteria. This should solve both the above mentioned problems
(the choice of k as well as the initial seed). One example of such an approach
is the ISODATA algorithm [5]. The question is then how to balance the split-
ting/merging criteria.

In addition to the mentioned modifications, there are several more. Namely
the k-median algorithm with the restriction that cluster centres can only be
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chosen among input data elements. A comparison of the k-means and the
k-median can be seen in Figure 4.5. In case of the k-median, the exact geometric
centre is shifted to the closest data element. There are other modifications that
use different distance measures or cluster representations [110, 10].

(a) k-means (b) k-median

Figure 4.5: A comparison of the k-means and the k-median algorithm.

4.2.3 Facility location

The facility location problem is a special clustering task. The general formula-
tion is as follows. Let I’ be the set of so called facilities and C' be the set of
clients (in some literature expressed as D as for demand nodes). Every client
should be serviced by (connected to) a facility. The problem is to determine
which facilities to open and which clients should they service. The facility
cost must be payed for opening a facility. The service cost must be payed for
connecting clients to facilities (mostly based on the distance). The problem
has a direct real life application. Imagine there are some cities that need to
be supplied with electricity and there are several potential locations where a
power plant could be built. Building a power plant everywhere would be too
expensive; as well as connecting all the cities to a single one. It is to be deter-
mined where to build a power plant and where to connect particular cities. It
is necessary to find such a balance to minimise the overall costs.

Expressing the problem in a mathematical way, the task is to minimise the
overall clustering cost () defined as

Q = Z fC + Z Cij (4.6)
jeF eC

where fcis the facility cost, and ¢;; is the distance between a client ¢ € C' and its
facility j € F'. Distances are generally considered non-negative, symmetric and
satisfying the triangle inequality. It is to be noted that generally there are no
restrictions on the set of facilities F'. It can be independent of C, a subset of C,
or equal to C'. There are some specialisations of the facility location problem.
Facilities may have different facility costs and may have limited capacities to
service just a certain number of clients. These specialisations are not considered

in the following text.
To compute an ordinary clustering of a set P, simply set C'= P and F = P.
Unlike the k-means algorithm, there is no need to specify the number of clusters
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in advance. It is, however, necessary to choose the facility cost. It determines
how the clustering will look like. A high value will produce a clustering with a
low number of large clusters. Facilities are expensive so only a few of them will
be opened and a lot of clients connected to each of them. On the other hand, a
low facility cost will result in many small clusters. Facilities are cheap so a lot
of them will be opened and clients distributed among them. Recommendations
on how to set the facility cost can be found in Section 6.2 on page 47.

Following sections describe three different approaches to solve the facility
location problem. A brief overview of them may be found in [132].

Linear programming rounding

The method was introduced by Shmoys et al. [133] based on the work by Lin
and Vitter [99]. It was later extended and improved in [57, 19]. The approach
is based on a linear programming relaxation. Let C' be the set of clients and
F be the set of facilities. We allow I’ = C. Let ¢;; denote the distance of the
client i € C to the facility j € F. Let x;; = 1 if the client 7 is connected to
the facility j; x;; = 0 otherwise. Finally, let y; = 1 if the facility j is opened;
y; = 0 otherwise. The facility location problem can be then formulated as an
integer program

M-1
minimise Z Z CijTij + Z fe-y; (4.7)

i€C jeF j=0

subject to
dwy=1 VjeF (4.8)
1eC

Tij < Yj VieC,jeF (4.9)
zi; €{0;1}  VieC,jeF (4.10)
y; € {0;1} VjeF (4.11)

whereas 4.8 ensures that each point will be connected to exactly one facility
and 4.9 ensures that it will be connected to an open facility. If we let x;; and y;
be any positive real numbers we get a linear relaxation of the integer program.
This can be solved in polynomial time. The fractional solution is then rounded
to the integer solution while increasing the clustering cost by a small constant
factor. The proof may be found in [133].

Primal-dual algorithm

There is a related approach also based on linear programming. It was intro-
duced by Jain and Vazirani [83] and later addressed by Charikar and Guha [16]
and Mahdian et al. [106]. The method again starts with an integer program
stated by Equations 4.7—4.11 and its linear relaxation. A dual program is then
constructed as
maximise Z o (4.12)
eC
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subject to
o — 51']' < Cij Vi € C,] eF (413)
Y Bij<fc VjeEF (4.14)
eC
a; >0 Vie O (4.15)
ﬁij >0 Vie(C,jeF (4.16)

The solution of this dual linear program gives the solution to the original prob-
lem. There is an intuitive interpretation of the dual variables a; and 3;;. The
«; can be understood as a total contribution of the client ¢ towards opening
some facility and connecting the client to it. This can be divided to ¢;; for
connecting ¢ to the facility j and (3;; for opening the facility; see Equation 4.13.
Equation 4.14 describes how several clients pay for opening a facility.

Based on the dual linear program and the interpretation of dual variables, an
algorithm can be formulated. The original primal-dual algorithm was proposed
in [83]. The following description is, however, based on [106] which is a slightly
easier and more intuitive modification. A notion of time is introduced. The
algorithm starts at the time 0. Initially, all clients are unconnected, all facilities
are closed and o; = 0 Vi € C. While C # (), for every client 7 € C, increase the
parameter «; simultaneously at a unit rate (say by 1 in a unit time), until one
of the following events occurs.

1. For an unconnected client ¢ and an open facility j, the equality o; = ¢;;
comes true. In this case, connect the client i to the facility j and remove
1 from C.

2. For a closed facility j, > ;cc Bij = > icc max(0, o —¢;j) = fe. This means
t