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Abstract 

The road traffic density on highways and especially in cities is permanently increasing. 
An important tool, which can be used for analysis and controlling of traffic networks, is 
the computer simulation. However, in order to be performed in suitable time, a detailed 
simulation of a large traffic network (e.g. whole city) requires a great amount of 
computational power. A way how to obtain sufficient power for the simulation is to 
adapt it for distributed computing environment. 

In this work, the common issues of distributed traffic simulation are discussed.  Because 
on of the main bottlenecks of every distributed application is the communication among 
its particular processes, we focus mainly on inter-process communication. Besides the 
description of commonly used approaches, we present also several modifications to the 
communication protocol, which cause significant reduction of inter-process 
communication. The resulting communication protocol has been tested on the Java 
Urban Traffic Simulator (JUTS), which is being developed at our department. However, 
in final stage, our communication protocol will be applicable for general time-stepped 
simulations. The results of the tests, which have been so far performed, are also 
presented in this work. 
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1 Introduction 

The road traffic density on highways and especially in cities is permanently increasing. 
An important tool for the managing of the road traffic is the computer simulation. It 
helps to analyze existing traffic networks and to improve their performance. It is also 
possible to predict the behavior of the traffic by a traffic lane closure or by a traffic 
accident. Simulation of road traffic is also useful throughout the designing of new 
traffic structures, where they help to predict the future behavior of the new structures 
and their integration into the current traffic network. 

In order to model the real traffic situations as accurate as possible, the simulation must 
be very detailed. Moreover, in many cases, multiple executions of the simulation are 
necessary to guarantee the required fidelity of statistical results. However, although the 
computing power of the computers is increasing day by day, it is still not possible to 
perform a detailed simulation of a large traffic network on a single-processor computer 
in suitable time. A way how to speedup the simulation is to adapt it for distributed 
computing environment. In that case, the combined power of more single-processor 
computers connected via a computer network is utilized. In that case, the simulation is 
divided into number of processes, which are then performed on particular computers 
(nodes) of the distributed computer. 

One of the main bottlenecks of any distributed application is the communication among 
its particular processes. The communication is necessary for synchronization of the 
simulation and for exchange of necessary data between the particular processes. 
Because this inter-process communication is relatively slow, it influences negatively the 
resulting performance of the distributed simulation. Hence, it is desirable to reduce it to 
the necessary minimum. 

In this work, the basic issues of distributed traffic simulation and commonly used 
solutions of these issues are described. Although all problems are discussed quite 
closely, we focus mainly on inter-process communication, because the design of an 
efficient communication protocol is the main aim of our work. Several adjustments, 
which cause significant reduction of inter-process communication, has been already 
invented and tested. The tests have been performed on the Java Urban Traffic Simulator 
(JUTS), which is being developed at our department. However, the resulting 
communication protocol will be applicable for general distributed time-stepped 
simulations. The results of the tests performed so far are also presented in this work. 
Moreover, several other modifications to the communication protocol have been 
proposed. They are also described in this work. 

In chapter 2, the basics of the general simulation are briefly described. The specifics of 
the simulation of the road traffic along with the description of the JUTS system are 
introduced in chapter 3. Chapter 4 describes the main issues of the general distributed 
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simulation. In chapter 5, the specifics of the distributed traffic simulation are described 
in detail. Chapter 6 is focused on reduction of inter-process communication and the 
achieved results are presented in chapter 7. Chapter 8 gives a brief survey of the 
possible modifications to the communication protocol, which are the main aim of our 
future research. The work is concluded in chapter 9. 
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2 Simulation Basics 

First, we mention the basic principles of a computer simulation. A computer simulation 
is some sort of computation that models the behavior of a real or hypothetical system 
over time. The simulation is performed on a model of the system. The model must 
contain all features, which are important for objective of examination, but there are 
always some simplifications compared to the original system. The simplifications are 
necessary, because we have only limited pool of resources (like time, computer power 
etc.) to commit the simulation. On the other hand, the simulations must provide “the 
same” results as the original system (with acceptable statistical variation), so, they can 
be used to make some useful conjectures regarding the model, which are also applicable 
to the system itself [1]. 

The computer simulations can be classified from several points of view. The most 
important divisions are according to the purpose of the simulation and according to the 
way the simulation time is elapsed. 

2.1 Purpose of the Simulation 
According to the purpose of the simulation, the simulations can be classified as 
analytical ones and virtual environments.  

2.1.1 Analytical Simulation 
The analytical simulations are used to model existing or designed system from the real 
world. Their goal is to analyze the behavior of the system at current conditions or 
predict its behavior at changed conditions. In case of existing systems, the results can be 
used to improve the performance of the system. If some new system is designed, the 
simulation is a cheap way to examine whether the system would perform required 
functions. So, it can be decided whether the further development should continue or not.  

Analytical simulations usually attempt to obtain concrete and precise statistical data 
from system they are modelling. In some cases, many executions of the simulation are 
needed to guarantee required fidelity of the statistical results. Thus, analytical 
simulations often execute as fast as possible. They also often include limited or no 
interaction with user during execution of the simulation program. So, the users can 
merely analyze statistical results after the execution is completed. In some cases, the 
progress of the simulation can be visualized, but the user still plays the role of external 
observer [2]. In this work, we will deal only with analytical simulations. Hence, they 
will be simply referred as simulations. 
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2.1.2 Virtual Environments 
Besides the analytical simulations, there exist the virtual environments. The virtual 
environments are simulations, which attempt to create computer-generated worlds, in 
which human and artificial participants are embedded. The users (humans) directly 
influence the simulation during its execution. Unlike the analytical simulations, the time 
must advance approximately at the same rate as the real time in order to ensure that the 
virtual environment seems to be realistic for human participants. The most common use 
of these environments is training (e.g. training of military and civil pilots) and fun (e.g. 
world wide internet games) [2]. We will not consider this type of simulation further. 

2.2 Time-Flow Mechanism 
The latter classification of the simulations determines, in which way the simulation time 
is advanced (so-called time-flow mechanism). The simulation can be either continuous 
or discrete. 

In a continuous simulation, its state is changing continuously during its execution. The 
behavior is often described by set of differential equations, so the simulation state can 
be computed for any single unit of time. A typical example can be the weather 
forecasting model [2]. 

In a discrete simulation, its state changes only at discrete points in simulation time. 
There are two most common types of discrete simulations – the time-stepped and event-
driven simulations. 

2.2.1 Time-Stepped Time-Flow Mechanism 
In a time-stepped simulation, the simulation time between the beginning and the end of 
the execution is subdivided as a sequence of equal-sized time steps. The simulation time 
is then elapsed from one small interval (e.g. one second) to another. In every step, new 
values of every state variable (which determine the state of the simulation) are 
recomputed, although some of them may not be changed. Events in the simulation, 
which occurs in one time step are often consider as simultaneous and assumed not to 
have effect on each other [2]. 

2.2.2 Event-Driven Time-Flow Mechanism 
Unlike a time-stepped simulation, an event-driven simulation does not compute new 
value of every state variable in each time step. The simulation advances in time by 
interpreting events from the evens list. An event incorporates some actions (determining 
which state variables should be changed and how) and a time-stamp (determining when 
the actions should happen). So, the simulation time elapses from one time stamp to 
another [2]. 
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3 Traffic Simulation 

Now, as we discussed the issues of the general simulation, we can focus on the specifics 
of the simulation of the road traffic. 

3.1 Level of Detail 
The simulations of the road traffic can be classified according to several aspects. 
However, the most common division can be performed according to the level of detail 
(level of vehicles’ representation). The traffic simulations can be divided as: 

• Macroscopic simulation 
• Mesoscopic simulation 
• Microscopic simulation 

All three types of traffic simulation are briefly described in following sections. 

3.1.1 Macroscopic Simulation 
The macroscopic simulations deal only with aggregate traffic flows across the streets. 
The flow is described for example by the mean speed and concentration, no individual 
vehicles are considered. These models are the oldest and simplest ones [3]. They are 
widely used and exist in many modifications [4]. Because of their simplicity, they are 
least computation-consuming. Hence, in most cases, a single-processor computer 
nowadays is able to provide sufficient power to perform macroscopic simulation in 
suitable time [5].  

3.1.2 Mesoscopic Simulation 
The mesoscopic simulations add some characteristics of individual vehicles to the 
model, but the simulation is computed for groups of vehicles traveling along similar 
paths. The examples of this approach are gas kinetic models [6] and queuing networks 
models [7]. 

3.1.3 Microscopic Simulation 
In the microscopic simulation, every individual vehicle is modelled as a single 
simulation object. These simulated vehicles then drive along the streets, change traffic 
lanes and their driving directions and interact with each other. So, each simulated 
vehicle has its own immediate position, speed, acceleration, and so on. The most 
important models in this area are the car following model [8] and cellular automaton 
model [9]. A branch of this type of traffic simulation is so-called nanoscopic simulation, 
which in addition involves individual behavior of the drivers. For more details, see [10].  
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Because the microscopic simulations model the real traffic at high level of detail, they 
are more useful than macro- or mesoscopic simulations for estimation of detailed traffic 
characteristics such as delays or queues lengths. For the same reason, the microscopic 
simulations are also much more computation- and time-consuming. The simulation of 
large areas (e.g. entire cities) on a single-processor computer often requires unbearable 
amount of time.  Distributed execution is a way how to achieve suitable performance of 
large-scale microscopic traffic simulations. Possible approaches to this are discussed 
further in the text. 

3.2 Time-Flow Mechanism of Traffic Simulations 
Regardless to the level of detail, every type of traffic simulation must use a mechanism 
for advancing of simulation time. The time-flow mechanisms were discussed in section 
2.2. In the field of traffic simulation, the discrete time-stepped model is most common. 
The simulation time is divided into equal-sized time intervals (time steps), typically one 
second long. In every time step, the positions of the vehicles and other state variables of 
a microscopic simulation or the attributes of traffic flow of a macroscopic simulation 
are computed. After all necessary computations are complete, the simulation proceeds 
with next time step and so on. 

The time-stepped approach is very convenient for the microscopic traffic simulation 
where every single vehicle is considered. In every time step, every vehicle has known 
position, speed, acceleration, and so on. The vehicles can interact among each other in 
every single part of the traffic network, not only at crossroads, but in traffic lanes as 
well. For example a faster vehicle must slow down if there is a slower vehicle in the 
way. These interactions are important for the simulation and there can be hundreds of 
them in every time step. With event-driven approach, there would be a large amount of 
events that would simulate the vehicle interactions. This would lead to very ineffective 
execution of the simulation. Consequently, the time-stepped approach is used in most 
microscopic traffic simulations, for example [11], [12], and [13]. 

When the simulation is focused on the crossroads and the lane interactions of the 
vehicles are neglected, the event-driven approach can be easily used. For example, 
every crossroad would be simulated as single logical process. The arrivals and 
departures of the vehicles would be represented as events. Every departure event 
processed in one crossroad would cause an arrival event in a neighbouring crossroad. 
Although event-driven approach is convenient in this case, the time-stepped approach 
can also be used, as shown in [14]. The event-driven approach is used in [15]. 

3.3 Traffic Model in the JUTS System 
Now, as we discussed the issues of the general traffic simulation, we can proceed with 
description of the single-processor version of the JUTS system. The JUTS system is a 
discrete time-stepped simulator of urban traffic at microscopic level of detail. 

Throughout the development, the communication protocol for distributed computing 
environment, which is described in further chapters of this work, is tested on the JUTS 
system. However, in final stage, the communication protocol will be applicable for 
general distributed time-stepped simulation. 
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3.3.1 Movement of the Vehicles 
As has been said, the traffic model in the JUTS system is the microscopic one. So, every 
single vehicle moving in the road is modelled as an object, which has its own immediate 
position, direction, speed, and acceleration. For the vehicle movement, the basics of 
Nagel-Schreckenberger’s cellular automata model are used [16]. Because this model 
was originally constructed only for highways and freeways, several modification were 
necessary to meet urban traffic simulation requirements. The resulting model will be 
now briefly described, more precise description can be found in [17], [18], and [19]. 

The simulated vehicles are moving in the model of real traffic network, which is 
described in following section. The elements of traffic network, in which the vehicles 
are moving, are internally divided into equal-sized traffic cells. Each cell can be either 
empty or occupied by a single vehicle. The length of the cell is set to 2.5 meters. This 
division is smooth enough for urban traffic conditions. It also enables to distinguish the 
types of the vehicles. For more realistic simulation, there are six types of vehicles, 
which differ in the length. These types represent all common known vehicles (see 
Table 1). 

Table 1: Vehicle types and their lengths 

Vehicle type Length [cells] Length [m] 
Motorcycle 1 2.5 
Passenger vehicle 2 5.0 
Van 3 7.5 
Minibus 4 10.0 
Bus and truck 5 12.5 
Lorry 6 15.0 

 
As can be seen in Table 1, a vehicle can occupy from one to six cells. The whole 
simulation is discrete. So, in each time step, every vehicle moves from one group of 
cells to another. It is not possible for the vehicles to be placed somewhere between the 
cells. Hence, the speed of the vehicle movement must be also discrete and represented 
in cells per time step (cpts). The speed has to be changed according to the actual road 
situation in the immediate surrounding of the vehicle. For this purpose, there are four 
rules for speed modification: 

1. Acceleration 
2. Deceleration 
3. Randomization 
4. Move 

The first rule says that the vehicles want to accelerate to the maximum speed. The 
second rule represents the necessary slow down if there is a road-block in the front of 
the vehicle (e.g. slower vehicle). The third rule represents random adjustment to the 
final speed, which simulates the natural speed fluctuations caused by a human factor 
and road conditions. The last rule only shifts the vehicle according to the final value of 
speed calculated following the first three rules [17]. The final movement of two vehicles 
of different lengths and velocities is depicted in Fig. 1. 

 
Fig. 1: Movement of two different vehicles 
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There is one problem with the vehicle movement, which is not obvious in the one-lane 
scenario depicted in Fig. 1. Sometimes, the trajectory of a vehicle longer than one cell is 
more complicated than a straight line. In that case, it may not be sure, in which cells the 
tail pieces of the vehicle should be put. This problem is solved by the head leading 
algorithm. Its main idea is that the tail pieces of the vehicle are shifted over the same 
way that the head piece was shifted before. The algorithm is described in [17], [18], and 
[19] in detail. 

3.3.2 Traffic Network Structure 
As we discussed the movement of the vehicles in the JUTS system, we can continue 
with the description of the traffic network. There are four types of traffic network 
elements: 

• Road 
• Crossroad and roundabout 
• Parking 
• Generator and terminator 

The basic element is the road, on which the most of the simulation is performed. Each 
road is composed of one or more unidirectional traffic lanes. As has been said in 
previous section, the traffic lanes are internally divided into traffic cells, in which the 
simulated vehicles are moving [17]. 

Other important elements are the crossroads and the roundabouts. These elements 
interconnect the particular roads and thereby form a complex traffic network. The 
movement of the vehicles in these elements is quite complicated, but it is based on 
similar principles like the road movement.  

The parking only represents amount of parking places in corresponding parts of the 
traffic network. The last two important objects are the generator and the terminator. 
These objects are located at the edges of the simulated area. Their task is to maintain the 
interaction of the simulated area with its surroundings. The generators create vehicles 
ingoing to simulated area from surroundings according to the specified stochastic 
distribution and insert them into the ingoing traffic lanes. The terminators then remove 
the vehicles that are leaving the simulated part of traffic network from the outgoing 
traffic lanes [17]. The example of a small traffic network is depicted in Fig. 2. 

 
Fig. 2: Example of a small traffic network 
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3.3.3 Hybrid Traffic Simulation 
As mentioned before, the JUTS system is a microscopic traffic simulator. However, a 
hybrid traffic model, which represents different areas of traffic network in a different 
level of detail, is presently under construction. This allows us to simulate larger areas at 
macroscopic level of detail and only small specific areas of interest at microscopic level 
[20]. 

In the macro-JUTS model, there are also the same elements of traffic network as in the 
micro-JUTS model (road, crossroad, generator, and terminator), but their inner structure 
is adapted for the needs of macroscopic simulation. For interconnection of both micro 
and macro models, there is a special object called convertor, which performs conversion 
of traffic flows (from micro to macro and vice versa). For more information about the 
JUTS hybrid traffic model, see [20] and [21]. 
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4 Distributed Simulation 

As has been said before, although the computing power of the computers is still 
increasing, there are still simulations, which are too computation consuming to be 
performed on a single-processor computer in suitable time (e.g. a detailed simulation of 
large traffic network). A way how to obtain sufficient power for the simulation is to 
adapt it for multiprocessor hardware. In that case, each processor computes part of the 
simulation parallel to other processors. Each processor performs the computations of the 
assigned part of the simulation locally. It communicates with other processors only if it 
needs information from another part of the simulation. 

4.1 Performance of the Distributed Simulation 
The main reason for utilization of multiprocessor hardware is the increase of the 
simulation speed. If the adaptation of the simulation for the multiprocessor computer 
shall be meaningful, the enhancement of the simulation speed must be significant. There 
are several parameters, which describe the performance of the general parallel or 
distributed algorithms. They can be also used for evaluation of the multiprocessor 
simulation speed. The main two parameters are briefly described in following sections. 

4.1.1 The Speedup of the Simulation 
The speedup expresses the rate between the speed of simulation on the single-processor 
computer and the speed of simulation on the multiprocessor computer by utilization of p 
processors. It can be calculated as: 

 
p

s

T
T

S = , (1) 

where S is the speedup, Ts is the computation time on the single-processor computer and 
the Tp is the computation time on the multiprocessor computer [22]. 

4.1.2 The Efficiency of the Simulation 
The efficiency (η) is the rate between the speedup and the number of utilized processors 
[22]. It can be expressed as: 

 
p
S

=η , (2) 

where η is the efficiency, S is the speedup and p is the number of processors utilized for 
computations. For example, if the simulation execution on the single-processor 
computer lasts 100 seconds and on the four-processor computer 50 seconds, the speedup 
is 2.0 and the efficiency is 0.5.  
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4.2 Multiprocessor Hardware 
There are several types of multiprocessor computers. However, the most common 
classification can be done according to the physical area occupied by the computer as: 

• Parallel computers 
• Distributed computers 

Both types are briefly described in following sections. More precise description of the 
multiprocessor hardware can be found for example in [2] and [23]. 

4.2.1 Parallel Computers 
Parallel computers consist of multiple processors and other components, which are 
incorporated in one working unit. They are spatial compact (usually in one cabinet) and 
mostly homogenous (CPU of one type) [24]. Because the physical distances between 
processors are short, the communication latency is relatively low (less than 100 
microseconds) [2]. 

According to the main memory distribution, the parallel computers can be classified as 
shared-memory computers and distributed memory computers. The shared memory 
allows using of simpler communication protocols among the processors. All processors 
can read and write values to the shared variables. It is only necessary to synchronize the 
access to these variables. The main disadvantage of the shared memory is that it reduces 
the possible maximum number of processors. Therefore, parallel computers with 
distributed memory are constructed when mass parallelism is needed (hundreds or 
thousands of processors). In this type of computers, the only possible way to maintain 
communication among all processors is the message passing [2]. 

In our work, we focus on the communication protocol for the distributed applications. 
Hence, the parallel computers will not be considered further. 

4.2.2 Distributed Computers 
Distributed computers originate from connection of several single-processor computers 
by communication links and cover a much broader area. They can be spread in a single 
building or university corpus or in larger area like city, state, or even whole world. The 
particulars computers in the distributed network are usually heterogeneous stand-alone 
machines with their own memory and I/O devices. These stand-alone machines can be 
ordinary workstations (e.g. in university labs) interconnected by means of ordinary 
Ethernet. In that case, no additional hardware costs are needed. The particular 
computers of the distributed computer are referred as nodes. 

The main disadvantage of the distributed computer is relatively high communications 
latency. Because of the physical distances between particular computers the 
communication latency can be from hundreds of microseconds up to seconds. For the 
same reason, there can be no shared memory. So, like the parallel computer with 
distributed memory, the only manner of communication between particular computers is 
the message passing [2].  

In this work, we will consider only the distributed computers and therefore only the 
distributed simulation. There are two main issues of the distributed simulation – the 
decomposition and the synchronization of the simulation. Both are described in 
following sections. 
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4.3 Decomposition 
The decomposition determines how the simulation shall be divided into processes, 
which will be then preformed on particular nodes of the distributed computer. The 
appropriate decomposition is vital for resulting performance of the simulation. Right 
decision is highly application-dependent, but most common decompositions are: 

• Task parallelization 
• Spatial decomposition 
• Temporal decomposition 

All three approaches to the decomposition are briefly described in following sections. 

4.3.1 Task Parallelization 
By utilization of the task parallelization, the whole simulation program is decomposed 
into several modules. Each module is then performed on different node of the 
distributed computer. This approach is quite straightforward. However, the simulation 
speed is limited by the slowest module. So, it is necessary for all modules to consume 
similar amount of computing power and time. If one module consumes major part of 
computing power, this approach to the decomposition will not help much [14]. 

4.3.2 Spatial Decomposition 
The spatial decomposition means that all modules of the simulation program are 
distributed among all nodes. So, the whole simulation program runs as a process on 
each node of the distributed computer. Each process then simulates assigned part of the 
simulation. For example, in traffic simulation of a city, every simulation process would 
run on a node and would simulate one part of city traffic network with its vehicles. This 
approach is straightforward if the original simulated system can be “easily” divided into 
parts according to space [14].  

Like the task parallelization, it is necessary for all simulation processes to consume 
similar amount of computing power in order to run at “the same” speed. The 
computation within one simulation process can be performed locally, only when some 
event from a process affects another simulation process, the communication is needed. 
In order to achieve good performance of the resulting simulation, the communication 
among the processes of the simulation should be minimal. Hence, if it is possible, the 
simulation should be divided in way that most of the computations can be performed 
within every process itself and the events affecting other simulation processes should be 
relatively rare. 

4.3.3 Temporal Decomposition 
In some cases, where no spatial decomposition can be found, the temporal 
decomposition can be used. By this approach, the simulation is divided into (equal-
sized) time intervals. Every computer then performs entire simulation, but only for one 
time interval.  

The main problem of this approach is to ensure that the states of the simulation 
computed at the time interval boundaries match. This seems to be quite difficult, since 
how can be computed initial state of some interval without known final state of previous 
interval? In some applications, there are points in the simulation time, where the state is 
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known or can be easily computed. So, the only thing to do is to divide the simulation in 
these points. When such points in time cannot be found, another approach can be used. 
Every node of the distributed computer computing some time interval of the simulation 
“guesses” the initial state of its interval and performs the simulation based on this guess. 
After all intervals are computed, there can be mismatches between the final and initial 
states of the neighbouring intervals. In that case, the computed final state of the first 
interval is used as the initial state of the second interval and the simulation of the second 
interval is recomputed. Then the correct final state of the second interval can be used as 
the initial state of the third interval and so on. By the recomputation of each interval, if 
there is match between the current computed state and previous computed state, the 
recomputation process can be stopped, because the remainder of the computation will 
be identical to the previous computation. The approach of temporal decomposition is 
limited to a handful of applications, such as queuing networks or Petri nets [2]. 

4.4 Synchronization 
As we discussed the possible approaches to the simulation decomposition, we can 
proceed with the latter problem of the distributed simulation, which is its 
synchronization. Although it was said that it is convenient for all simulation processes 
distributed among particular nodes of the distributed computer to run at approximately 
same speed, their exact speed cannot be guaranteed neither predicted. Because the 
simulation processes need communicate among each other, the differences in their 
speeds can cause serious errors in the whole simulation.  

For example, we consider an event-driven simulation where every simulation process 
advances its time autonomously. It is possible for one simulation process to receive 
message from another process with an event, which contains time-stamp less than the 
process’ current simulation time. This event should be processed in the “past” and it 
could affect already processed events.  

Another example can be seen in a time-stepped simulation. If every process advances its 
time autonomously, the messages from one process can arrive to another process in 
incorrect time step (past or future) and the whole simulation can produce incorrect 
results.  

These violations of time causality, which cannot happen in a nonparallel simulation, are 
referred as causality errors [2]. In order to avoid these errors, every distributed 
simulation program must have some synchronization mechanism, which guarantees that 
each simulation process advances its time with respect to all other processes and the 
whole simulation produces the same results as a nonparallel execution of the simulation. 

The problem of synchronization is the key issue of the distributed simulation. There 
exist a lot of synchronization mechanisms, which differ in efficiency and applicability. 
The selection of an appropriate synchronization mechanism closely depends on the 
time-flow mechanism used in the simulation. 

4.4.1 Synchronization of Event-Driven Simulations 
The synchronization mechanisms for event-driven simulations can be classified 
according to the approach to the causality errors as:  

• conservative synchronization mechanisms 
• optimistic synchronization mechanisms 
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Conservative mechanisms strictly avoid causality errors. Every simulation process can 
advance its time (process next event from event list) only if it is “safe”. This means that 
no event with less time stamp than the first event in the event list of the simulation 
process will arrive from another simulation process. Hence, the key problem the 
conservative mechanism must solve is to determine, whether it is safe to process an 
event or not.  

The approach to achieve this can be either synchronous or asynchronous. In an 
asynchronous approach, there is no global mechanism, which could control the 
advancement of time in the particular simulation processes. The simulation processes 
only informs each other about the minimal time stamp of the next event they will send. 
This is the main idea of an asynchronous synchronization mechanism called null-
message protocol. For further information see [2]. 

Synchronous conservative mechanism uses the synchronization construct of barrier 
known from general parallel programming (for details see [22]). The computation of 
every simulation process consists of two phases. In first phase, the simulation processes 
identify the events, which can be safely processed. In second phase, these events are 
processed. After each phase, the simulation processes are synchronized at the barrier. 
The synchronization means that no simulation process can proceed with next phase, 
unless all processes have finished the current phase. 

Unlike conservative approach to the synchronization, with the optimistic 
synchronization mechanism, the causality errors are possible, but a mechanism is 
provided to enable detecting of these errors and repairing them. The first and still most 
well-known optimistic mechanism is called Time Warp. The basic idea is quite simple. 
For every message sent in the simulation, a so-called anti-message is generated. When 
some message causes a causality error in a process, this message must be cancelled in 
order to repair the error. This could be a problem, because the cancelled message could 
already cause some other messages to be generated. However, the cancellation of the 
message can be done easily by sending the anti-message to the same process. The 
messages caused by cancelled message can be also cancelled by sending corresponding 
anti-messages to correct processes. It should be noted that there is no global mechanism, 
which control the time advancement of particular processes. The processes run 
autonomously until a causality error is detected. It should be also noted that the 
cancellation of messages is quite computation-consuming. So, the causality error must 
be rare in order to achieve good performance of the resulting simulation. 

The use of conservative and optimistic synchronization remains highly application-
dependent. The conservative protocols offer simple simulation executive, but the 
possible parallelization is application-dependent. On the other hand, the optimistic 
protocols are more robust and less application-dependent, but they require complex 
simulation executive [2]. 

4.4.2 Synchronization of Time-Stepped Simulations 
In the field of time-stepped simulations, there is one synchronization mechanism, which 
is used most often – the synchronous conservative mechanism called master-slave 
approach. 

The mechanism is similar to the synchronous conservative mechanism for event-driven 
simulations (see previous section). There is one master process and number of slave 
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processes. The master process controls the time advancement of the slave processes and 
the slave processes performs the computations of the assigned parts of the simulation. 
More precisely, the master process provides the barrier, on which the slave processes 
are synchronized at the end of every time step. Hence, all slave processes perform at the 
same moment the same time step and no causality errors are possible. 
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5 Distributed Traffic Simulation 

Now, as we discussed the issues of the traffic simulation and general distributed 
simulation, we can proceed with the description of the distributed traffic simulation. 
The issues of the general distributed traffic simulation will be discussed in this chapter, 
as well as the concrete solutions used in the distributed version of the JUTS system. 

5.1 Decomposition of Traffic Simulation 
The decomposition of a general simulation was discussed in section 4.2. In this section, 
we will discuss the usability of the particular decomposition types in the field of 
distributed traffic simulation. 

5.1.1 Task Parallelization of Traffic Simulation 
Task parallelization is hardly suitable for the traffic simulation, because the modules of 
the simulation program often consume unequal amount of computing time. The major 
part of the computing power is consumed by the vehicle movement module. The 
requirements of other modules like map depiction or statistical results collection are 
negligible, so, the speedup of the simulation would be minimal.  

However, a sort of task parallelization can also be uses in some special cases. The 
example can be seen in [15], where the whole simulation incorporates heterogeneous 
modules. The traffic simulation module models urban street traffic flow on microscopic 
level, second module is a man-in-the-loop driving simulator and third module visualize 
entire simulation. Every module is performed on different computer, so, it can be 
assumed as a task-parallelized simulation. 

5.1.2 Spatial Decomposition of Traffic Simulation 
The most common way how to decompose a traffic simulation is the spatial (or domain) 
decomposition. The whole simulated traffic network is divided into number of sub-
networks and every simulation process then performs the simulation of one assigned 
traffic sub-network. The movement of the vehicles within every sub-network is 
computed locally. The communication is needed only when a vehicle has to pass to the 
neighbouring sub-network. The main problem is that it is relatively difficult to divide 
the network into sub-networks, which would be approximately equally computation-
consuming. This is necessary, because the slowest sub-network determines the resulting 
speed of entire simulation. There are several solutions of this problem, which will be 
discussed next. 

The easiest solution is to divide the traffic network into equal-sized pieces. This 
approach is used for example in ParamGrid [12]. The whole traffic network is divided 
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into a grid, arranged in rows and columns, of smaller rectangular geographic areas. The 
whole traffic network can be then watched on a grid of monitors. The main 
disadvantage is that the number of vehicles in every geographic area can be very 
different, because of various road densities and also various traffic densities in the 
roads. The latter problem is that large amount of roads can be affected by the cut, 
because the number of roads that are crossing the boundaries of the sub-networks is not 
considered during network division. However, this approach is suitable if the road 
density is more or less uniform or for testing purposes. 

There are some more sophisticated methods of traffic network division. One is used in 
TRANSIMS [11]. In this simulator, the whole traffic network is divided into sub-
networks of similar size. The size is measured as accumulated length of the roads 
associated with the sub-network. By the division of traffic network, the number of 
divided roads and the number of sub-networks’ neighbours are minimized. For this 
purpose, the graph partitioning methods are used (e.g. orthogonal recursive bi-section). 

An interesting approach can be seen in the implementation of the traffic simulator vsim 
[25]. In this case, the traffic network is divided according to the number of vehicles 
passing along the particular traffic lanes. In vsim, the numbers of vehicles are collected 
after one simulation run. Similar method can be also used in the distributed version of 
the JUTS system. For testing purposes, we can exploit the real traffic intensity data 
measured at all crossroads with traffic lights of Pilsen city, which are at our disposal 
[26]. From this data, we can make quite accurate estimation of traffic densities along 
particular traffic lanes. These densities can be used for uniform network division. 
However, for the preliminary test, the division of the traffic network into equal-sized 
pieces is utilized. 

Another question, which needs to be solved by the division of traffic network, is where 
the traffic lanes of the network should be divided. The cut can be performed either in 
the middle of the traffic lanes, or between the lanes and the crossroads. Both of these 
possibilities are commonly used, the first one for example in TRANSIMS and the 
second one in vsim. In the distributed version of the JUTS system, the first approach 
will be used, because an immediate surrounding of a crossroad is more interesting from 
a traffic analysis viewpoint and it should not be divided between two or even more sub-
networks. 

5.1.3 Temporal Decomposition of Traffic Simulation 
Although the spatial decomposition is most common in the field of traffic simulation, 
there are also several attempts to use the temporal decomposition. An example can be 
seen in [27]. The main advantage of this approach is possible utilization of massive 
parallelism, because there is no need for communication among processes during the 
parallel computation. The main disadvantage is that, after the computation of all 
temporal intervals, the states on the boundaries of the intervals may not match, 
especially in traffic simulation, which exhibits very complex states. Hence, after the 
computations of all intervals are complete, the so-called fix-up computations are needed 
to match the states on interval boundaries. 

Unfortunately, the fix-up process is efficient only if the matching states are found 
quickly. In the worst case scenario, the matching states are not found at all, and all 
intervals must be recomputed. In that case, the parallel simulation degrades to the 
sequential simulation. As it is shown in [27], the states on the boundaries of temporal 
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intervals match quiet quickly for low traffic density. However, for higher traffic 
densities, the convergence of the states is not sufficient. A solution of this problem, 
which is used in [27], is the approximate state matching. This method enables to 
increase the performance of the simulation by cost of an introduced error. The states on 
the interval boundaries do not have to match exactly, it is sufficient, if they are “close 
enough”. These similar states are found much faster than the identical states, but some 
error is introduced into the results. 

As it is obvious from previous paragraph, the temporal decomposition of the traffic 
simulation is indeed possible, but is at least problematic. We will not consider it further. 

5.2 Inter-Process Communication 
The inter-process communication is one of the main bottlenecks of every distributed 
application. In the distributed computing environment, the only means of 
communication is the message passing, which is relatively slow and has high 
communication latency (depending on mutual distances of particular nodes of the 
distributed computer) [2].  

5.2.1 Inter-Process Communication Requirements 
To achieve good performance and sufficient speed-up of the distributed simulation, the 
communication among its particular processes should be minimal. If we consider the 
most common spatial decomposition of the traffic network, the inter-process 
communication is necessary for synchronization and for transfer of vehicles between the 
neighbouring traffic sub-networks. The synchronization is discussed in section 5.3, the 
transfer of vehicles between the sub-networks is described here. 

In order to minimize the communication necessary for transfer of vehicles, the number 
of traffic lanes affected by the network division should be minimal. This should be 
considered already during the decomposition of the traffic network (see section 5.1). 
However, even if the traffic network is well divided and number of traffic lanes affected 
by the cut is small, there are still vehicles, which need to be transferred from a sub-
network to another. 

5.2.2 Implementation in the JUTS System 
In the distributed version of the JUTS system, the communication links are maintained 
between the neighbouring traffic sub-networks because of the vehicle transfer. The 
vehicles are transferred in the form of messages from the source sub-network to the 
target sub-network. 

Besides the transfer of vehicles, it must be also possible to notify a neighbouring sub-
network that a traffic lane is congested and cannot receive any vehicles. For this 
purpose, the lane-block message is introduced [28]. Compared to the vehicles, these 
messages travel in opposite direction. If a lane-block message is received, the 
corresponding traffic lane becomes temporally blocked and no vehicles are permitted to 
pass to the neighbouring sub-network. If the lane-block message is received again, the 
blocked traffic lane becomes disposable again. For both vehicle and lane-block 
transfers, the modified terminators and generators are used (see Fig. 3). 
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In general, the neighbouring traffic sub-networks are interconnected by set of traffic 
lanes with various travel directions. So, in a time-step, multiple vehicles and lane-blocks 
can be sent from a sub-network to one of its neighbours. It would be an inefficient 
solution to send each vehicle or lane-block as a separate message because of the 
communication overhead. Hence, all vehicles and lane-blocks determined for one 
neighbouring sub-network are stored in a buffer. At the end of every time step, the 
buffer is checked. If it is not empty, the content of the buffer is sent as one message to 
the corresponding neighbouring sub-network. There is one buffer for each neighbouring 
sub-network. So, the maximum number of messages sent by a traffic sub-network in a 
time step corresponds to the number of its neighbours [29]. 

The transfer of vehicles and lane blocks is depicted in Fig. 3. There are two 
neighbouring traffic sub-networks interconnected by two traffic lanes with opposite 
travel directions (the lane 2 conducts from the sub-network 1 to sub-network 2 and the 
lane 1 conducts from the sub-network 2 to sub-network 1). Every end of each lane is 
equipped by special generator or terminator according to the travel direction in the lane. 

The lane 1 in the sub-network 1 is congested, so the lane-block is stored to the buffer (a) 
by the special generator (G). In the lane 2 in the sub-network 1, a vehicle is passing to 
the sub-network 2. So, it is removed from the lane (b) by the special terminator (T) and 
the vehicle’s description is stored to the buffer (c). At the end of the time step, the 
content of the buffer is packed into a message and sent to the sub-network 2 (d). In the 
sub-network 2, the message is received (e). The lane-block is forwarded to the 
corresponding terminator and the lane is blocked (f). The vehicle’s description is also 
forwarded to the corresponding generator (g). The generator then creates the vehicle 
according to the received description and inserts it in the lane (h). 

 
Fig. 3: Transfer of vehicles and lane blocks between two traffic sub-networks 

The described solution of the communication between the traffic sub-networks is 
consistent with traffic network structure of the JUTS system. There is one problem 
however, which is caused by the various lengths of the simulated vehicles. Because a 
vehicle can be up to six cells long, it is theoretically possible for it to be simultaneously 
on two traffic sub-networks (see Fig. 4). However, from the implementation point of 
view, it is impractical to split a vehicle into two pieces in one time step and link these 
pieces together in next time step.  
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Fig. 4: A long vehicle passes between two neighbouring sub-networks 

This problem can be solved easily. The terminator waits until the whole vehicle 
disappears from the road in the sub-network 1. Then it stores the vehicle description in 
the buffer together with the information about the vehicle shift. The shift value 
represents the distance in cells, which the head piece of vehicle would travel if the road 
will not be divided. After the vehicle description reaches the corresponding generator in 
the sub-network 2, the vehicle is generated and then immediately moved forward 
according to the shift value sent in the message. 

It should be also noted that the maximal number of the vehicles, which can be 
transferred from the sub-network 1 to the sub-network 2 is not limited by the number of 
the traffic lanes conducting from the sub-network 1 to the sub-network 2. For example, 
if two vehicles in one traffic lane are traveling at high speed tight one after another, they 
are able to pass the boundary between the sub-network 1 and 2 in the same time step. In 
that case, both vehicles must be transferred to the sub-network 2 (see Fig. 5). Hence, the 
capacity of the buffer for every particular sub-network must be several times greater 
than the number of lanes conducting to the sub-network. Also, the massage must be able 
to incorporate more than one vehicle from one particular traffic lane. 

 
Fig. 5: Two vehicles pass between neighbouring sub-networks in one time step 

5.3 Synchronization of Traffic Simulation 
As has been said before, the synchronization is necessary for correct mutual running of 
the simulation processes. So, the simulation can advance in time without any causality 
errors. Also, the distributed simulation must give the same results as any sequential 
execution of the simulation [2]. 
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5.3.1 Master-Slave Approach in the JUTS System 
As has been said in section 4.4.2, the most often used synchronization mechanism for 
general time-stepped simulation is the master-slave approach. It is also widely used in 
the field of distributed traffic simulations and it is also utilized in the distributed version 
of the JUTS system. 

By this approach, there is one master process and number of slave processes. Each 
process performs the simulation of one assigned traffic sub-network locally. After the 
slave process finishes the computation of one time step, it sends the vehicles and lane-
blocks to its neighbouring slave processes, if needed. Then it sends a notification 
message to the master process and waits. After the master process receives notifications 
from all slave processes, it broadcasts the permission to continue with next time step to 
all slave processes. So, the synchronization requires two messages per time step for 
every slave process [29]. The whole communication scheme is depicted in Fig. 6. 

 
Fig. 6: The master-slave approach in the distributed version of the JUTS system 

5.3.2 Commonly Used Synchronization Mechanisms 
Most of the distributed traffic simulation uses an implementation of the master-slave 
approach. For example, the TRANSIMS [11] and vsim [25] simulators utilize an 
implementation, which is very similar to that one used in the distributed version of the 
JUTS system (see previous section). Because this type of synchronization requires two 
messages (a notification and a permission message) per time step for every slave 
process, the total number of messages is equal to 2p if there are p slave processes. So, 
the number of messages increases linearly with increasing number of slave processes. 
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The master-slave approach represents the centralized synchronization mechanism. It is 
also possible to use a distributed synchronization method where no central master 
process exists. This approach is used for example in ParamGrid [12]. In this case, each 
working process broadcasts a message with its identification number and the time stamp 
of current finished step in every time step to all other processes. Each process then waits 
until it receives messages with the same time stamp from all other processes.  

This synchronization mechanism has the advantage of no central point of the 
simulation. However, the number of messages necessary for synchronization per one 
time step can be expressed as follows: 
 ( ) ppppM s −=−⋅= 21 ,  (3) 

where the Ms is the total number of messages per one time step and p is the number of 
processes. As it is obvious from the equation (3), the number of messages depends 
quadratically on the number of processes. Already for four processes, this approach 
requires more messages than the master-slave approach. Hence, we can consider the 
master-slave approach as the more efficient solution than the distributed 
synchronization method. 

5.4 Middleware for Inter-Process Communication 
As arise from the previous chapter, the inter-process communication in the simulation is 
needed for the synchronization and for the transfer of vehicles from one traffic sub-
network to another. The communication protocol can be implemented in many ways. It 
is possible to implement one’s own communication protocol. However, the most 
common approach is to utilize an existing middleware, which is a layer that provides 
services for inter-process communication. The main advantage of this approach is the 
strict separation of the communication and the business logic of the simulation. 

The majority of the distributed traffic simulations use any common middleware. The 
middleware commonly used in distributed traffic simulations are for example the 
CORBA (Common Object Request Broker Architecture) [12] or the HLA (High Level 
Architecture) [15]. 

In the distributed version of the JUTS system, we also want to use an appropriate 
solution of inter-process communication. Because the JUTS system is written in the 
Java programming language, the selected middleware must be applicable for programs 
written in this language. The possible middleware are briefly discussed in following 
sections. More precise description can be found in [28]. 

5.4.1 TCP/UDP Sockets 
The utilization of sockets is a low-level way, how to maintain communication among 
processes of a distributed simulation. Sockets are a standard abstraction of computer 
network connections and are implemented in many programming languages including 
Java. 

There are two types of services – the connectionless UDP (User Datagram Protocol) and 
the connection-oriented TCP (Transmission Control Protocol). In the UDP, there is no 
concept of stream or connection between the two communicating computers. The data 
are sent in datagrams (UDP packets) and there is no guarantee of their delivery. The 
datagrams can arrive out of order, get lost, or be duplicated. The UDP protocol is 



Tomáš Potužák   Distributed Traffic Simulation 
 

 
University of West Bohemia   27 

unreliable and therefore there is no reason to use it in the JUTS system. We will not 
consider it further. 

The TCP is a protocol, which provides reliable communication among computers. The 
TCP creates connections and uses them for exchanging of data streams. The protocol 
guarantees reliable transfer of data from sender to receiver. The data packets also arrive 
in order they were send [30]. Because the TCP protocol is reliable, it could be used in 
distributed version of JUTS system. 

Because the TCP sockets support only the transfer of raw data, there is no overhead 
caused by additional features like object serialization. Therefore the main advantage of 
the sockets is the speed of communication. The main disadvantage is that the protocol 
for encoding and decoding of transferred data must be implemented in application level 
along with business logic of the simulation. This approach can be error-prone. From this 
point of view, the TCP sockets cannot be considered as a middleware, since it does not 
guarantee the separation of the communication from the rest of the simulation. On the 
other hand, because the TCP is a low-level and therefore very fast solution of inter-
process communication, it is considered as a good solution for the distributed version of 
the JUTS system. 

5.4.2 RMI 
The RMI (Remote Method Invocation) is an object-oriented version of RPC (Remote 
Procedure Call) incorporated in the Java Core API. The RMI uses the object-oriented 
paradigm in the distributed environment. By its utilization, it is possible to invoke a 
method on an object that resides in different JVM (Java Virtual Machine). Moreover, 
the invocation of a remote method is very similar to the invocation of a local method. 
All common mechanisms known from local computing (e.g. propagation of exceptions, 
garbage collection) are provided. 

In the RMI communication, there are two processes – the client, which makes the 
invocation of a remote method, and the server, which executes the method and returns 
the result. The RMI protocol uses a local surrogate object (stub), which is the client’s 
local representative for the remote object. The client makes invocation on the local stub, 
which is responsible for carrying out the method invocation on the remote object [30]. 

The RMI uses the TCP sockets for data transfer. Hence, by every method invocation, 
the parameters and method’s name must be encoded into stream of bytes on the client 
side, transferred via the TCP sockets, and than decoded on the server side. The result is 
transferred from the server to the client in similar way. 

So, the RMI must implement a mechanism for object serialization and also for 
distributed garbage collection and distributed propagation of exceptions. These 
additional features bring an overhead into the communication. Hence, the RMI is slower 
than the TCP sockets. On the other hand, no additional features (encoding and decoding 
of transferred data) must be implemented in the business logic of the simulation. So, the 
inter-process communication is quite comfortable and transparent. Hence, the RMI 
seems to be even better solution for the JUTS system than the TCP sockets if the speed 
difference between the RMI and the TCP sockets were negligible.  

However, the performances of both RMI and TCP have been tested and compared (see 
section 7.1). The results show that the communication using TCP is from 3.5 to 29 
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times faster than the communication using RMI. On the other hand, the RMI hides the 
communication details and therefore is less error-prone than the TCP. A way how to 
exploit the advantages of both solutions is a compromise. The RMI is used throughout 
the development of the distributed version of the JUTS system. After the debugging of 
the simulation program, slower RMI will be replaced by the faster TCP [28]. 

The comparison of communication speeds of the RMI and TCP sockets can be found in 
section 7.1. 

5.4.3 CORBA 
The CORBA (Common Object Request Broker Architecture) is an alternative to the 
RMI. It is a standard language- and platform-independent architecture for distributed 
object systems. Using CORBA, objects written in different programming languages can 
interoperate each other [30]. 

The functionality of CORBA is similar to RMI. It also uses the stubs for local 
representation of remote objects. However, because the cooperating objects can be 
written in different languages, the CORBA executive is far more complex than the RMI 
executive. Hence the CORBA is slower and less transparent than the RMI. So, there is 
no reason for using it in the JUTS system [28]. 

5.4.4 HLA  
The last solution, which will be mentioned, is the HLA (High Level Architecture). The 
HLA was originally developed for interconnection of various man-in-loop simulators 
into one distributed virtual environment, which could be used for training of military 
personnel. More information can be found in [31]. Since then, the HLA has been widely 
used as middleware in various simulations both in military and commercial sectors. 

Similar to CORBA, the HLA executive enables interconnection of heterogeneous 
simulations. It is even possible to connect a real component into the simulation. 
However, because of this commonness, the HLA executive is very complex and 
therefore slower than RMI. Because there is no need for special abilities of the HLA in 
the distributed version of the JUTS system, there is no reason to use it [28]. 
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6 Reduction of Inter-Process Communication 

As has been said before, the inter-process communication in the distributed version of 
the JUTS system is necessary for transfer of vehicles and lane blocks and for 
synchronization of particular simulation processes. The concrete implementation of the 
inter-process communication in the JUTS system is described in sections 5.2 and 5.3. In 
order to improve the resulting performance of the distributed simulation, we will now 
focus on reduction of the inter-process communication.  

6.1 Number of Messages Sent per One Step 
First, we will calculate the maximum number of messages, which can be sent per one 
time step. We consider that, for synchronization of the simulation, the master-slave 
approach is used. So, there is one master process and p slave processes. Every particular 
slave process is connected to the master process in order to enable transfer of 
synchronization messages. Moreover, the communication links are also maintained 
between the neighbouring slave processes in order to enable the transfer of vehicles and 
lane blocks. Under these circumstances, the maximum number of messages sent per one 
time step can be expressed as follows: 

 ∑
=

+=+=
p

i
its npNNN

1
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where Ns is the number of messages necessary for synchronization, Nt is the maximum 
number of messages necessary for vehicle and lane block transfer, and ni is the number 
of neighbours of the ith slave process. For the synchronization, two messages are 
necessary per every time step (one notification and one permission message). The 
maximum number of messages sent by a slave process to another slave process is equal 
to the number of its neighbours. This value depends on division of the traffic network. 
In a real case, a slave process has approximately from four to six neighbours [12], [14]. 

Throughout the development of the distributed version of the JUTS systems, two 
enhancements of the communication protocol were proposed and implemented. Both 
are focused on reduction of the communication necessary for the vehicle transfer. These 
enhancements are described in following sections in detail. The possible approaches to 
the reduction of the communication necessary for the synchronization of the particular 
simulation processes are mentioned in section 8.4 and 8.5. 

6.2 Traffic Flow Characteristics Transfer 
For high traffic densities, the number of messages sent by a slave process to its 
neighbours reaches the maximum value in almost every time step. This means the 
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intensive communication among the slave processes. However, this communication can 
be considerably reduced. 

6.2.1 Main Idea of the Traffic Flow Characteristics Transfer 
For the reduction of inter-process communication, we can utilize the main idea of the 
so-called dead reckoning. This technique is used in the HLA [31] and its ancestors. As 
has been said, the HLA is a distributed simulation executive, which enables the 
interconnection of various man-in-loop simulators in one distributed virtual 
environment. The dead reckoning is used for projection of the other simulation’s 
participants to the field of view of each participant. To reduce the communication 
necessary for update of all participants’ positions, the dead reckoning is used. It 
interpolates the trajectories of all participants in a participant’s field of view according 
to their last known position. Only if the interpolated movement is too different from the 
real one, the synchronization message with current position is sent [32]. 

A similar approach is used in the distributed version of the JUTS system for the 
reduction of vehicle passing between the sub-networks. The transfer of vehicles is still 
provided by the special terminators and generators (see section 5.2.2). Instead of 
sending the particular vehicles, it is possible to send only the characteristics of traffic 
flow (e.g. vehicle density, mean speed). These parameters are calculated by the 
terminator according to the passing vehicles, and then sent to the corresponding 
generator instead of vehicles. The generator can then create new vehicles according to 
the received characteristics [32]. 

The main advantage of this approach is that, besides the beginning of the simulation, the 
characteristics must be sent only if they change. If the characteristics are more or less 
constant, no inter-process communication is needed. The generator can create the 
vehicles according to last received values. Only if the difference between the actual 
traffic flow and the last sent characteristics reaches certain threshold, the message with 
new values is sent from the terminator to the corresponding generator [32]. 

There are also some disadvantages. The traffic flow in front of the terminator 
(terminated traffic flow) and the traffic flow behind the corresponding generator 
(generated traffic flow) have indeed the same characteristics, but they are not identical. 
If a vehicle is removed from the road by the terminator, is does not need to be 
immediately generated by the corresponding generator [32].  

There is also a little inaccuracy if the traffic flow characteristics changes less than the 
defined threshold. In that case, the characteristics messages will not be sent and the 
generator will produce the vehicles according to the old values [32].  

Moreover, the characteristics are calculated from the number of last terminated vehicles, 
in order to moderate the immediate random fluctuations in the traffic flow. 
Consequently, a change of the terminated traffic flow does not take effect in the 
generated traffic flow immediately, but after a short period of time, designated as a 
delay [29]. However, the mentioned problems can be minimized by appropriate settings 
of the threshold (see section 7.2). 
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6.2.2 Implementation of the Characteristics Transfer 
The transfer of characteristics is very similar to the transfer of vehicles described in 
section 5.2.2. All characteristics determined for each neighbouring sub-network are 
stored in the buffer. At the end of a time step, the content of the buffer is sent as one 
message. It should be noted that it is still necessary to use lane blocks as an indication, 
that a traffic lane is congested and cannot receive any vehicles. The lane blocks are also 
stored in the corresponding buffers, similar to the transfer of vehicles [29]. 

The inner structure of the characteristics message is quite different from the vehicle 
message. The traffic flow in the JUTS system can be described by three parameters – 
the temporal density of the vehicles (how many vehicles passed through the terminator 
per time step), the mean speed of the vehicles, and the array with distribution of vehicle 
lengths. The mean length would be inadequate, because it does not describe the real 
length of the vehicles. For example, if there are two vehicles with lengths 1 and 6, the 
mean length is 3.5, which is far from the real lengths of the vehicles. Hence, the 
characteristics message incorporates a variable for vehicle density (lambda), a variable 
for mean speed and an array for vehicle lengths. So, a characteristics message is a bit 
longer than a vehicle message, which incorporates only three integer variables [29]. 

The vehicle lengths and the mean speed are calculated according to last Nv vehicles, 
which passed through the terminator. The vehicle density is calculated according to the 
number of vehicles passed through the terminator within Ns last steps. As had been said, 
the characteristics should be sent to the corresponding generator if the difference 
between the last sent and actual characteristics reaches certain threshold. Because the 
three described parameters are independent each other, it is desirable to have separate 
threshold for each of them. The thresholds can be designated as Td, Tl, and Ts for the 
vehicle density, lengths, and speed, respectively. So, the characteristics message is sent 
when at least one of the thresholds is reached. The correct setting of the thresholds and 
the Nv and Ns constants is a compromise between the number of sent characteristics C 
and the difference between the terminated and generated traffic flows. The optimal 
values of the thresholds and constants have been determined by set of tests, which are 
described in section 7.2. 

The performance of the characteristics transfer has been intensively tested and 
compared to the vehicle transfer. The test and results are described in section 7.3. 

6.3 Adaptive Vehicle Density Transfer 
The communication protocol, which uses the transfer of traffic flow characteristics 
instead of transfer of particular vehicles, can be improved in order to achieve additional 
reduction of the inter-process communication. 

As has been said, there are three parameters, which describe the traffic flow (see 
previous section). For each parameter, there is a separate threshold. If one of the 
thresholds is reached, the characteristics message with all three parameters is sent. 
Throughout the testing of the characteristics transfer (see section 7.3), it was determined 
that the majority of messages is sent because of the vehicle density. It is the most 
fluctuating parameter and also the most important one, because it determines the 
distribution of the vehicle in the traffic lanes.  
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The fluctuations of the latter two characteristics – the mean speed of the vehicles and 
lengths of the vehicles – are less frequent. Moreover, the majority of changes to these 
two characteristics are transferred when the transfer of vehicle density is needed. 
Consequently, the number of messages sent only because of the speed or lengths of the 
vehicles is minimal. For this reasons, we will focus on the reduction of the vehicle 
density transfer. 

6.3.1 Main Idea of the Adaptive Vehicle Density Transfer 
In the real traffic network of a city, a large number of crossroads is equipped by traffic 
lights. These traffic lights cause periodical changes of the vehicle density in the traffic 
lanes outgoing from the crossroad. If such traffic lane conducts to a neighbouring sub-
network, the periodical behavior of the vehicle density can be learned by the traffic 
terminator at the end of the lane and the corresponding generator. After the behavior of 
the vehicle density is learned from a traffic lights cycle, it can be predicted in the next 
cycle. The generator can then generate the vehicles according to the predicted vehicle 
density. In that case, the communication is necessary only for corrections of the 
prediction. These corrections are necessary because of the random fluctuations in the 
traffic flow [33]. 

The described approach corresponds to the time series prediction problem. However, 
there are several specific conditions. First of all, the learning process must be fast. In an 
ideal case, the generator should be able to predict the vehicle density after one cycle of 
traffic lights. Nevertheless, the learning process must be in progress throughout the 
whole simulation run, because the behavior of the vehicle density can change in time 
(e.g. because of rush hours). Also, the generator must be able to learn and predict the 
vehicle density behavior only with limited communication with the terminator. The last 
requirement is necessary, in order to achieve communication savings [33]. 

6.3.2 Utilization of an Artificial Neural Network 
For the time series prediction, the artificial neural networks are often used [34].  The 
artificial neural networks are the class of mathematical algorithms, which are originally 
based on biological networks found in living organisms [35]. Unlike the ordinary 
computer calculations, the neural networks require no formal definition of the 
algorithm. The required functionality of the network is gained by the process of 
learning. 

There are many types of neural networks. For the time series prediction, the multi-layer 
perceptron networks are often used [36]. A perceptron network consists of several 
interconnected neurons (perceptrons), which are organized in layers. Each neuron 
incorporates m weighted inputs. These inputs are summed and then transformed by the 
threshold function into a single output. The network is learning by modifying the 
weights of particular neurons’ inputs. The neural network, which is able to predict 
future values of the time series, is depicted in Fig. 7. 

As can be seen in Fig. 7, the prediction (xt+1) is made according to (n+1) previous 
values of the time series (xt – xt-n) [37].  However, this is a problem for our prediction of 
the vehicle density. By the utilization of a perceptron network, the (n+1) past values of 
vehicle density are needed for prediction of the next value. Hence, in every time step, a 
value of the vehicle density must be transferred between the terminator and the 
generator. Obviously, this approach would lead to no communication savings. 
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Theoretically, this problem can be evaded, because the predicted values of the network 
can be used also as inputs for next prediction. However, in that case, the inaccuracy of 
the prediction increases considerably in every time step. Thus, large number of 
corrections is needed and the communication is not reduced at all [33]. 

 
Fig. 7: An example of the perceptron network for time series prediction 

Moreover, the perceptron network must be learned first, before it could make any 
prediction. The learning process lies in the submission of the training input values to the 
network and checking of its output. If the output is too different from the required one, 
the weights are adjusted, in order to decrease the error [35]. This procedure must be 
done before the utilization of the network for prediction. There are also methods for on-
line training of the networks when the network is learning continually [36]. Still, the 
learning process requires many samples of input values and corresponding required 
output values, which are unavailable for the generator. Hence, the utilization of an 
artificial neural network is not suitable for our prediction of the vehicle density. 

6.3.3 Traffic Lights Cycle Recording 
To find a suitable solution of prediction of the vehicle density, we will focus on the 
traffic lights cycle, which is causing the periodical behavior of the vehicle density. In 
many cases, the traffic lights cycle is static. This means that the cycle length and also 
the length of the particular green and red periods are constant. A more advanced 
alternative is the dynamic cycle with constant length. This means that the cycle length is 
constant, but the particular green and red periods can change according to the number of 
passing vehicles. These two types of cycles are used in traffic lights of Pilsen city, 
whose traffic network is used for the tests of the JUTS system. The most general type of 
traffic lights cycle is the dynamic one with varying cycle length [38]. Presently, this 
type of traffic lights cycle is not considered in the simulation [33]. 

If we consider only the constant lengths of the traffic lights cycles, the behavior of the 
vehicle density can be easily recorded as an array of values with the length 
corresponding to the length of the cycle. This record of the vehicle density behavior can 
be then used for prediction of the vehicle density behavior in the next cycle [33]. 
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Fig. 8: The recording of the vehicle density by the terminator 

Consider now the situation depicted in Fig. 8. There is a crossroad with traffic lights 
(C), which are affecting the behavior of vehicle density in the terminator (T). At the 
beginning of the simulation, the terminator determines the length of traffic lights cycle 
from the crossroad and sends it to the generator (G). Throughout the simulation, the 
terminator records the current vehicle density into an array (a) and compares it with the 
corresponding density from the last cycle. If the difference reaches certain threshold, the 
terminator packs the whole array using RLE (Run Length Encoding) compression and 
sends (b) it to the generator. The generator unpacks the array (c) and uses it for 
prediction of the vehicle density (d). The algorithm is described by pseudo-code in Fig. 
9 and Fig. 10. 

 
Fig. 9: The pseudo-code for the terminator 

In the terminator, there are two thresholds. The DESITY_THRESHOLD is the threshold 
of the difference between the last sent and current vehicle density. By the characteristics 
transfer (see section 6.2), if this threshold was reached, the vehicle density would be 



Tomáš Potužák   Distributed Traffic Simulation 
 

 
University of West Bohemia   35 

sent to the generator. By the adaptive vehicle density transfer, the array with recorded 
vehicle densities is sent only if the second condition is also satisfied. This occurs if the 
difference between the current density and the density recorded in the last cycle reaches 
the ADAPTIVE_THRESHOLD or the cycle has not been recorded yet. The second 
threshold is set only to 15 %, because it increases the difference between the terminated 
and generated traffic flow considerably [33]. 

 
Fig. 10: The pseudo-code for the generator 

In the generator, the received array with vehicle densities is being used for prediction of 
the current vehicle density. Consider now the situation that the cycle length is 60 steps 
and the array is received in 40th step of the cycle. In that case, the first 40 densities are 
recorded from the current cycle and the remaining 20 densities are recorded from the 
previous cycle. The last known density of the current cycle is that one from the 40th 
step. For this reason, if the prediction for the 45th step shall be computed, it is calculated 
as the weighted average from the density in 40th step (recorded in current cycle) and the 
density from 45th step (recorded in previous cycle). The weights are represented by 
function decrease() (see Fig. 10). Its value decreases with increasing distance from 
the last known density of current cycle (density from 40th step in our example). After 
several steps, its value reaches zero, and the prediction is calculated only from the array 
of densities [33]. 

6.3.4 RLE Compression of the Recorded Vehicle Densities 
By utilization of the characteristics transfer (see section 6.2), one value of vehicle 
density is transferred in every message. By utilization of the adaptive vehicle density 
transfer, the whole array of values is transferred in the message. So, the message is 
considerably longer. To minimize the message length, the array is compressed using the 
RLE compression [33].  

Because the values of the vehicle density are real, the values must be transformed to the 
integer first. The vehicle density is calculated from ten last steps (see section 7.2). So, 
the density multiplied by ten give us the number of vehicles passed in ten last steps (i.e. 
small integer number). These values can be stored in a byte array, because the range of 
a byte is sufficient. In the resulting byte array, there are many repeating values, because 
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the vehicle density is not changing in every time step. Hence, the RLE compression can 
reduce the length of the array considerably [39]. 
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7 Tests and Results 

The proposed enhancements of the communication protocol (see previous chapter) have 
been intensively tested. In this chapter, the performed tests and their results are 
presented.  

In the first section, the comparison of the RMI and TCP speeds is discussed. The second 
section describes the tuning of the characteristics transfer parameters. The third section 
is focused on the performance of the characteristics transfer. In the fourth section, the 
performance of the transfer of characteristics messages and adaptive vehicle density 
messages is compared. Finally, in the fifth section, the performance of the adaptive 
vehicle density transfer in comparison with characteristics and vehicle transfer is 
discussed. 

All described tests were performed on a cluster called Hydra, which is available at our 
department. The cluster incorporates one control and ten working nodes. The control 
node includes two processors Intel Xeon 2.8 GHz, 2 GB of RAM and 80 GB of hard 
disk space. Each working node then includes one processor Intel Xeon 3.2 GHz, 2 GB 
of RAM and 80 GB of hard disk space. All nodes are interconnected by 1 Gb Ethernet. 

7.1 Comparison of the RMI and the TCP performances 
The first set of tests was focused on the speed comparison of two most appropriate 
middleware for the distributed version of the JUTS system. As had been said in section 
5.4, the RMI and the TCP sockets seem to be a good solution for the inter-process 
communication in the distributed version of the JUTS system. The use of the RMI 
makes the simulation program more transparent, but it is slower than the TCP sockets.  

In the JUTS system, there are three types of objects that will be transferred via the 
communication links – the vehicles, the lane blocks, and the synchronization messages. 
The object of vehicle incorporates three integer parameters and the object of lane block 
incorporates only one boolean parameter (see Fig. 11). The synchronization message 
can be empty. So, it can be implemented as the transfer of a single character in the TCP 
protocol and as a single invocation of a method without arguments in the RMI protocol 
[28].  

 
Fig. 11: The UML diagrams of the transferred objects 
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Of course, as has been said in section 5.2.2, all vehicles and lane blocks determined for 
one particular neighbouring sub-network are sent as one message. However, for the 
testing of the speed difference between the RMI and the TCP protocols, this is not 
essential. 

For testing purposes, two small distributed applications in Java 1.6 were written, one 
with utilization of the TCP sockets and second with utilization of the RMI. Both 
applications were transferring all three types of objects (i.e. vehicles, lane blocks, and 
synchronization). The results can be seen in Table 2. All numbers are arithmetic means 
calculated from ten attempts. 

Table 2: Comparison of the speed of the RMI and the TCP protocols 

 Computation time [ms]  
Object type \ object count 102 103 104 105 

Vehicle 75 473 3081 28253 
Lane block 77 454 3022 27894 R

M
I 

Synchronization 47 299 2384 20556 
Vehicle 21 60 210 1572 
Lane block 22 59 207 1530 TC

P 

Synchronization 5 28 119 708 
 
As can be seen in the Table 2, the communication using TCP sockets is much faster 
then the communication using RMI. The TCP is 3.5 times faster than the RMI in the 
best case scenario and even 29 times faster in the worst case scenario. On the other 
hand, the RMI hides the communication details and therefore is less error-prone than 
the TCP. A way how to exploit the advantages of both solutions is a compromise. The 
RMI can be used throughout the development of the distributed simulation. After the 
debugging of the simulation program, the slower RMI can be replaced by the faster TCP 
[28]. 

7.2 Thresholds Setting of the Characteristics Transfer 
After we discussed the appropriate middleware for the distributed version of the JUTS 
system, we can proceed with the setting of the characteristics transfer protocol. As has 
been said in section 6.2.2, there are three thresholds and two constants, which need to be 
set. 

 
Fig. 12: The division of traffic network for tests of characteristics transfer 

For all tests of the characteristics transfer, two slave processes and one master process 
were used. The traffic network was composed of number of parallel traffic lanes, which 
are conducting from slave 1 to slave 2 (see Fig. 12). There are no crossroads or 
runabouts in the traffic network, but the traffic network incorporates traffic lights for 
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some tests. This simplification of a real traffic network allows us to concentrate on the 
performance of the communication protocol. 

7.2.1 Settings of the Vehicle Density Transfer 
The most important parameter is the vehicle density, because it determines the 
distribution of the vehicles in the traffic lanes. To optimize the transfer of vehicle 
density, the threshold Td and the number of steps Ns must be determined. The threshold 
Td is the difference between the actual and the last sent vehicle density. It is expressed 
in percents and can be calculated according to the equation: 
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where λl is the last sent vehicle density and λa is the actual density. 

The performance of the vehicle density transfer is determined by three values – the 
difference between the terminated and generated vehicles count (Δd), the delay (Δt) 
described in section 6.2.1, and the total number of sent characteristics C. All these 
values should be minimal. If we consider them as equally important, the simple product 
of them will give us the coefficient Kd. According to the coefficient Kd, the particular 
settings of the threshold Td and the number of steps Ns can be compared. 

For the tests, the traffic network with four traffic lanes was used. Two lanes were 
equipped by the traffic lights, which causes the periodical increase and decrease of the 
vehicle density. These periodical changes of the traffic flows allow us to determine the 
delay. To maximize the correctness of the results, the transfer of vehicles speed and 
lengths was suppressed [29]. The results of the tests can be seen in Table 3. 

Table 3: Settings of the vehicle density transfer 

Ns [steps] Td [%] Δd [%] Δt [steps] C Kd 
5 10 9.39 3.48 165 5392 
5 20 5.47 3.65 103 2056 
5 30 4.10 3.22 82 1083 
5 40 3.70 3.67 67 910 
5 50 7.63 5.19 52 2059 
10 10 8.79 3.42 163 4900 
10 20 6.30 3.38 106 2257 
10 30 4.27 3.35 84 1202 
10 40 3.19 3.40 68 738 
10 50 7.21 4.70 51 1728 
15 10 10.26 3.19 166 5433 
15 20 5.27 3.54 104 1940 
15 30 4.53 3.34 83 1256 
15 40 3.75 3.25 64 780 
15 50 7.05 5.25 51 1886 

 
Each line of the table corresponds to one setting of the threshold Td and the number of 
steps Ns. For each setting, ten simulation runs have been performed and the particular 
results have been averaged. In every simulation run, the Δd and the C values were 
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averaged from all four lanes. The Δt value was averaged from two lanes with traffic 
lights. All simulation runs were 500 time steps long.  

The ranges for the threshold Td and the number of steps Ns have been selected according 
to the preliminary tests. For lower values of Ns or Td, the number of sent characteristics 
C increases considerably. For higher values of Ns or Td, the delay (Δt) and the difference 
between the generated and the terminated vehicles count (Δd) increase considerably. 
According to the coefficient Kd, the optimal value of the threshold Td is 40 % and the 
vehicle density should be calculated from last 10 time steps. 

7.2.2 Settings of the Vehicle Lengths Transfer 
The settings of the transfer of vehicle lengths have been determined in similar manner. 
The optimal value of the threshold Tl and the number of vehicles Nv, according which 
the vehicle lengths are calculated, have been searched. The threshold Tl is the difference 
between the actual and the last sent vehicle lengths. It is expressed in percents and can 
be calculated according to the equation: 
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where lli is the last sent portion of the vehicles with length of i and the lai is the actual 
portion of the vehicles with length of i. The coefficient Kl is in this case calculated as 
product of the delay Δt and the number of sent characteristics C.  

For the tests, the traffic network was composed of one traffic lane with uniform traffic 
flow and random lengths of the vehicles. For five time intervals, the length of vehicles 
was set to one, in order to determine the delay Δt. As can be seen in the Table 4, the 
optimal value of the threshold Tl is 50 % and the vehicle lengths should be calculated 
from last 10 vehicles. 

Table 4: Settings of the vehicle lengths transfer 

Nv [vehicles] Tl [%] Δt [steps] C Kl 
5 10 3.51 331 1162 
5 20 3.84 257 987 
5 30 5.31 153 812 
5 40 5.20 124 645 
5 50 23.14 82 1897 
10 10 5.59 320 1789 
10 20 7.63 179 1366 
10 30 8.77 111 973 
10 40 9.21 79 728 
10 50 9.39 57 535 
15 10 8.12 252 2046 
15 20 10.53 143 1506 
15 30 11.98 96 1150 
15 40 13.32 62 826 
15 50 14.81 44 652 
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7.2.3 Settings of the Vehicle Speed Transfer 
The settings of the transfer of vehicles speed have been determined in the same way as 
the transfer of vehicles lengths. The optimal value of the threshold Ts and the number of 
vehicles Nv have been searched. The threshold Ts is the difference between the actual 
and the last sent vehicle speed. It is expressed in percents and can be calculated 
according to the equation: 

 ( ) 100
,max

⋅
−

=
al

al
s ss

ss
T  (7) 

where sl is the last sent mean speed of the vehicles and sa is the actual mean speed of the 
vehicles. The coefficient Ks is in this case calculated as product of delay Δt and the 
number of sent characteristics C.  

Again, the traffic network was composed of one traffic lane. There were performed two 
sets of tests. For the determination of the delay, a uniform traffic flow with gradually 
increasing vehicle speed was used. For the determination of the number of sent 
characteristics C, a real traffic flow with randomly altered vehicles speed was used. The 
summary of both sets of test can be seen in Table 5. The optimal value of the threshold 
is 10 % and the vehicle speed should be calculated from last 10 vehicles. 

Table 5: Settings of the vehicle speed transfer 

Nv [vehicles] Ts [%] Δt [steps] C Ks 
5 10 2.76 74 204 
5 20 7.19 55 395 
5 30 12.71 42 534 
10 10 3.42 54 185 
10 20 9.83 47 462 
10 30 15.37 39 599 
15 10 6.83 59 403 
15 20 14.00 48 672 
15 30 31.57 36 1136 

 

7.3 Performance of the Characteristics Transfer 
After we determined the optimal thresholds for the characteristics transfer, we can 
compare the performances of the vehicle transfer and the characteristics transfer. For 
this purpose, two sets of tests were performed. In the first set of tests, the performances 
of the vehicle and characteristics transfers were tested on traffic networks with various 
number of traffic lanes. In the latter set of tests, the influence of the vehicle density on 
the vehicle or characteristics transfer was investigated.  

7.3.1 Various Number of Traffic Lanes in the Traffic Network 
In the first set of tests, the performance of both vehicle and characteristics transfers 
were tested on a traffic network with 1, 2, 4, and 8 traffic lanes. The traffic densities in 
the lanes were realistic (i.e. from 0.05 to 0.5 vehicles per time step) [26]. The results can 
be seen in Table 6. For each count of traffic lanes (L), both vehicles (V) and 
characteristics (C) transfer (TT) were tested. The observed parameters were the number 
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of sent characteristics or vehicles (C/V), the total number of sent messages (M), the 
total amount of transferred data (D), and the total time of computation (T). The 
messages needed for transfer of the lane blocks (see section 5.2.2) are not considered in 
the tests, because their counts are approximately the same for both vehicle or 
characteristics transfers [29]. 

Table 6: Vehicle and characteristics transfer comparison for various numbers of lanes 

L TT C/V M D [B] T [ms] 
V 294 275 170257 1180 1 C 173 173 117886 1065 
V 563 480 299943 1390 2 C 298 276 191308 1199 
V 1244 751 487518 1583 4 C 638 490 351783 1474 
V 2456 936 652689 1708 8 C 1334 767 590110 1695 

 
The communication savings caused by the use of characteristics transfer are then 
summarized in Table 7. The subscripts of particular savings (S) correspond to 
abbreviations of the parameters in Table 6. 

Table 7: Communication savings summary 

L SC/V [%] SM [%] SD [%] ST [%] 
1 41.16 37.09 30.76 9.75 
2 47.07 42.50 36.22 13.74 
4 48.71 34.75 27.84 7.39 
8 45.68 18.06 9.59 0.76 

 
As can be seen in Table 7, the number of sent characteristics is on average by 46 % 
smaller than the number of sent vehicles. However, the total messages count is only 
reduced by 33 % on average.   

This “inconsistence” can be explained. As has been said in section 5.2.2, by the use of 
the vehicle transfer, all vehicles (and lane blocks) determined for one particular sub-
network are transferred as one message. Also, in one traffic lane, more than one vehicle 
can be transferred to the neighbouring sub-network in one time step. This can happen if 
two or more vehicles in one traffic lane are traveling at high speed tight one after 
another. Then, they are able to pass the boundary between the sub-networks in the same 
time step. In that case, all these vehicles must be transferred to the neighbouring sub-
network (see section 5.2.2). The probability of this phenomenon is inconsiderable. For 
example, in the one lane scenario of our tests, 294 vehicles have been transferred only 
via 275 messages. However, the described situation cannot occur by the use of the 
characteristics transfer. In one traffic lane, only one characteristic can be transferred to 
the neighbouring sub-network in one time step. This fact is also obvious in the one lane 
scenario of our tests – 173 characteristics have been transferred via 173 messages. For 
these reasons, the savings of messages count is less than the difference between the 
number of sent characteristics and vehicles. 

Another observation is that the savings of sent messages have downtrend for the 
increasing number of traffic lanes. That is natural, because with the increasing number 
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of traffic lanes, the probability, that no characteristics transfers are needed in a time 
step, sinks considerably. Still, even for large number of traffic lanes (eight and more), 
the amount of transferred data is reduced, because the transferred messages are shorter. 
The amount of characteristics in the messages by the characteristics transfer is 
approximately by 46 % smaller than the amount vehicles in the messages by the vehicle 
transfer regardless to the number of traffic lanes. 

7.3.2 Various Vehicle Densities in the Traffic Lanes 
The latter set of tests was focused on the influence of the vehicle density in a traffic lane 
on the resulting performance of the characteristics or vehicle transfer. There was only 
one lane in the traffic network, but the tests were performed for various vehicle 
densities (from 0.05 to 0.5 vehicles per time step). The results can be depicted as the 
dependence of the sent messages count on the vehicle density (see Fig. 13). 

 
Fig. 13: Dependence of the sent messages count on the vehicle density in the traffic lane 

As can be seen in Fig. 13, the characteristics transfer is less efficient than the vehicle 
transfer for low vehicle densities (0.2 vehicles per time step and lower). On the 
contrary, the characteristics transfer is more efficient for high vehicle densities (0.25 
vehicles per time step and higher). 

7.4 Transfer Time of Adaptive Vehicle Density Message 
Now, as we finished the testing of the characteristics transfer, we can proceed with the 
testing of the latter enhancement of the communication protocol – the adaptive vehicle 
density transfer (AVDT). The first set of tests is focused on comparison of the 
characteristics message transfer time and the AVDT message transfer time. These tests 
are necessary in order to determine, whether the length of the transferred message 
influences the transfer time of the message significantly. The AVDT messages are 
longer than the characteristics messages, but we assume that the adaptive vehicle 
density transfer requires less messages than the characteristics transfer (see section 7.5). 
So, if the difference between the transfer times of longer AVDT and shorter 
characteristics message is negligible, then the adaptive vehicle density transfer should 
be more efficient than the characteristics transfer. 
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The tests must be performed separately from the traffic simulation in order to eliminate 
the influence of other simulation computations. For this reason, one hundred 
uncompressed arrays with densities were recorded during several simulation runs. These 
arrays were used as testing data. The time necessary for the RLE compression and 
decompression of the array is also included in the test [33]. 

As it was mentioned in section 5.2.2, all characteristics and lane blocks from one traffic 
sub-network to another are sent as one message in a time step. So, one message 
determined for a sub-network can contain several characteristics or AVDT information. 
Hence, the test was performed with messages containing one, three and five 
characteristics or AVDT information. In every test, 10000 messages were sent. The 
results are summarized in Table 8. All values are averaged from ten attempts. 

Table 8: Comparison of the characteristics and adaptive vehicle density transfer times 

Characteristics or ADVT count Characteristics time [ms] ADVT time [ms] 
1 5299 5327 
3 5386 5534 
5 5454 5560 

 
As can be seen in the Table 8, the differences between the transfer times of both types 
of messages are negligible (less than 2 % on average). So, the adaptive vehicle density 
transfer will be more efficient than the characteristics transfer if the saving of the 
messages count will be greater than 2 %. 

The main reason for so little transfer time difference is the communication overhead. 
Besides the useful data (characteristics or AVDT information), certain amount of 
administrative data is transferred as well. These administrative data are utilized by the 
middleware, which is used for inter-process communication. In the RMI (which has 
been used by the tests), these administrative data are used for example for the remote 
propagation of the exceptions or for the remote garbage collection. In the TCP, these 
administrative data are used for maintaining of the socket connection. If the useful data 
are short (i.e. several bytes), the substantial part of the message is occupied by the 
administrative data. So, if the length of the short useful data increases for example two 
times, the increase of the total message length will be considerably smaller (depending 
on the amount of administrative data), as well as the increase of message transfer time. 

By the test, it was also determined that the average length of the compressed array is 
only 13 elements. Because the length of an uncompressed array was 60 elements, the 
average compression ratio is 4.6. 

7.5 Performance of the AVDT 
Now, as we determined, that the difference of transfer times is negligible, we can 
compare the performances of the vehicle transfer, the characteristics transfer, and the 
adaptive vehicle density transfer. For this purpose, two sets of tests were performed. In 
the first set of tests, the performances of all three transfers were tested on the traffic lane 
with various traffic lights cycles. The latter set of tests was focused on the influence of 
the vehicle density in the traffic lane on the performances of the particular transfers. 

Both set of tests were performed on the traffic network divided into two sub-networks. 
There was only one lane in the traffic network, which was conducting from the sub-
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network 1 to the sub-network 2. The vehicle density in the traffic lane was affected by 
nearby traffic lights. The whole situation is depicted in Fig. 14. 

 
Fig. 14: The division of traffic network for testing of AVDT 

7.5.1 Various Traffic Lights Cycles 
First, the performances of all three transfers were tested on the traffic network depicted 
in Fig. 14. The vehicle density in the lane was affected by the traffic lights. Two tests 
were performed with various lengths of the traffic lights cycle. For the third test, the 
traffic lights were switched off. The results for each transfer type (TT) – the vehicle (V), 
characteristics (C), and adaptive vehicle density (A) transfer – are summarized in 
Table 9. The preset variables were the cycle length (CL) and green period length (GL). 
The measured variables were the difference between the terminated and generated 
vehicles count (Δd), the messages count (M), and the total time of the simulation run 
(T). All values in the table were averaged from ten simulation runs, each run was 500 
steps long. 

Table 9: Performances of the tested transfer types 

TT CL [s] GL [s] Δd [%] M T [ms] 
V 60 20 0.00 72 759 
C 60 20 4.91 55 590 
A 60 20 6.89 35 571 
V 120 50 0.00 79 806 
C 120 50 5.37 48 568 
A 120 50 7.84 32 552 
V N/A N/A 0.00 147 949 
C N/A N/A 2.73 68 799 
A N/A N/A 6.41 56 647 

 
As can be seen in Table 9, the adaptive vehicle transfer requires on average by 35 % 
less messages than the characteristics transfer and by 55 % less messages than the 
vehicle transfer for lanes with traffic lights. Even for lanes without traffic lights, the 
adaptive vehicle density transfer requires less messages than the characteristics transfer 
(by 18 % on average). However, the difference between the generated and terminated 
traffic flow increased by 3 % in comparison with characteristics transfer [33]. 

7.5.2 Various Vehicle Density in the Traffic Lane 
In the latter set of tests, the influence of the vehicle density on the transfers was 
investigated. There was one traffic lane with traffic lights (cycle length 60 seconds, 20 
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seconds green period) and the test was performed for various vehicle densities in the 
lane (from 0.05 to 0.5 vehicles per time step). The results are depicted in Fig. 15. 

 
Fig. 15: Dependence of the sent messages count on the vehicle density in the traffic lane 

As can be seen in the Fig. 15, the adaptive vehicle density transfer (AVDT) gives the 
best results for all vehicle densities in the traffic lane. Therefore, it is utilizable for any 
vehicle density and not only for higher vehicle densities like the characteristics transfer 
is (see section 7.3.2). 
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8 Future Work 

In previous chapters, we presented the enhancements of the communication protocol for 
the distributed version of the JUTS system. Our current experiments have been 
performed only on the JUTS system in order to verify the basic theories of our research. 
Our future work will be focused on further development of proposed ideas and their 
generalization for general distributed time-stepped simulations. As a use case of the 
proposed communication protocol, the concrete implementation for the JUTS system 
will be used.  

More concretely, we will continue with the development of an efficient communication 
protocol for general distributed traffic simulation. So far, we have dealt only with the 
reduction of the inter-process communication necessary for the vehicle transfer. In order 
to achieve additional communication savings, three adjustments of the communication 
protocol are proposed – the enhanced characteristics transfer (see section 8.1), the 
hybrid vehicle-characteristics transfer (see section 8.2), and the centralized vehicle or 
characteristics transfer (see section 8.3). 

However, the communication necessary for the vehicle transfer cannot be entirely 
eliminated, because the vehicles must be able to pass between the particular sub-
networks. Hence, we will utilize also another way how to improve the performance of 
the communication protocol, which is the reduction of the communication necessary for 
the synchronization. This approach is briefly discussed in sections 8.4 and 8.5. 

8.1 Enhanced Characteristics Transfer 
The utilization of the characteristics transfer described in section 6.1 reduces the amount 
of transferred data in comparison with the vehicle transfer. As has been said in section 
6.2.2, all vehicles or characteristics determined for one particular neighbouring sub-
network in a time step are sent as one message. So, there is at the most one message 
sent to one particular neighbouring sub-network per one time step. 

As has been said in section 7.3.1, the number of sent characteristics is on average by 
46 % smaller than the number of sent vehicles. This value is independent on the number 
of the traffic lanes conducting between the neighbouring traffic sub-networks. However, 
the savings of the sent messages count have downtrend for the increasing number of the 
traffic lanes. This is natural. The savings of the sent messages count occur when no 
characteristics transfer to the neighbouring traffic sub-network is needed in some time 
steps. However, for the large number of traffic lanes conducting to the neighbouring 
sub-network (eight and more), the number of steps, in which no characteristics transfer 
is needed, sinks considerably. Consequently, also the savings of the sent messages count 
sinks considerably. 
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On the other hand, the reduction of the sent messages count is important because of the 
communication overhead (see section 7.4). The less the messages count is, the smaller 
is also the accumulate communication overhead. So, it is desirable to achieve the 
considerable savings of the sent messages count also for the large number of traffic 
lanes conducting between the neighbouring traffic sub-networks. For this reason, we 
introduce the enhanced characteristics transfer. 

8.1.1 Main Idea of the Enhanced Characteristics Transfer 
By the standard characteristics transfer, the characteristics are sent only for the traffic 
lanes, in which the difference between the actual and the last sent characteristics reaches 
the threshold (see section 6.1). The need for the characteristics transfer occurs 
independently in particular traffic lanes. So, very often, each traffic lane needs the 
characteristics transfer in different time step. Consequently, the messages are sent in 
almost every time step and they contain only one characteristics transfer. 

The basic idea of the enhanced characteristics transfer is to synchronize the 
characteristics transfer of the particular traffic lanes. This means that the characteristics 
will be sent for all traffic lanes conducting between the sub-networks, not only for the 
lanes, in which the difference reaches the threshold. 

More precisely, if one traffic lane needs the characteristics transfer, the characteristics 
transfers of all remaining lanes will be sent in the same message as well. Thus, we will 
ensure that, in all lanes conducting between the sub-networks, the difference between 
the actual and the last sent characteristics is reset to zero. In that case, it is very unlikely 
that a characteristics transfer will be needed in next several time steps. Hence, after the 
time step, in which the message with all characteristics transfers is sent, there will be 
several time steps, in which no characteristics transfer will be needed and no message 
will be sent. So, the considerable savings of the sent messages count will be achieved 
regardless to the number of traffic lanes conducting between the neighbouring traffic 
sub-networks. 

The described enhanced characteristics transfer will be implemented and intensively 
tested in order to verify its applicability. 

8.2 Hybrid Vehicle-Characteristics Transfer 
As has been said in section 7.3.2, the characteristics and vehicle transfers are efficient 
for high and low vehicle densities, respectively.  

8.2.1 Main Idea of the Hybrid Transfer 
In order to exploit advantages of both approaches, we can combine them into one hybrid 
vehicle-characteristics transfer. For traffic lanes with low vehicle densities, the traffic 
transfer will be used and for traffic lanes with high traffic densities, the characteristics 
transfer will be used [29].  

Of course, the traffic density in a traffic lane can alter in time. So, it must be possible to 
switch between both types of transfer according to the actual traffic density in the lane. 
However, because our main goal is the reduction of inter-process communication, the 
switching between transfer types must not require additional messages.  
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8.2.2 Implementation of Hybrid Transfer 
As has been said in section 5.2.2, all vehicles or characteristics and lane blocks 
determined for one neighbouring traffic sub-network are stored in the buffer. At the end 
of every time step, the content of the buffer is sent to target sub-network as one 
message. So, the message is essentially a container for vehicles or characteristics and 
lane blocks. For the switching between the transfer types, we can exploit the fact that 
the message can contain the characteristics and vehicles simultaneously. In that case, it 
is only necessary to implement a module for the terminator, which will decide whether 
use the vehicle or characteristics transfer. The decision will be based on the vehicle 
density in the particular traffic lane.  

So, the terminator will put either the vehicle(s) information or the characteristics 
information into the buffer. At the end of the time step, the content of the buffer will be 
packed into a message and sent to the target traffic sub-network. In the target sub-
network, the message will be unpacked and the vehicle(s) information or characteristics 
information will be forwarded to the corresponding generator. The generator will check 
whether a vehicle or characteristics information arrived. If vehicle information arrives, 
the generator will create the vehicles according to the received information and inserts it 
into the traffic lane. If characteristics information arrives, the generator will update the 
values, according which it is generating the vehicles. 

8.3 Centralized Vehicle/Characteristics Transfer 
For additional savings of inter-process communication, we can exploit the 
synchronization messages. We assume that the standard master-slave approach is used 
for the synchronization of the simulation. In that case, 2p messages, where p is the 
number of slave processes, are necessary for synchronization in every time step, as 
stated in equation (4) (see page 29). Besides the synchronization, the slave processes 
communicate among themselves in order to enable the transfer of vehicles and lane 
blocks. This communication means additional message load per each time step. 

8.3.1 Main Idea of the Centralized Transfer 

 
Fig. 16: Schema of standard master-slave approach 
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The standard schema of the master-slave approach is depicted in Fig. 16. There are 
bidirectional connections between the master and the particular slaves and bidirectional 
connections between the neighbouring slave processes. The total number of messages 
sent per one time step is summarized in equation (4) (see page 29). Because this number 
can be relatively high (for the situation in Fig. 16, the maximum number of messages 
per one time step is six), it is desirable to reduce it. 

 
Fig. 17: Schema of centralized master-slave approach 

This can be achieved by slight modification to the master-slave approach. The number 
of synchronization messages cannot be reduced easily. However, these messages can be 
used for reduction of communication among the slave processes. Instead of maintaining 
connections directly among the slave processes, we can utilize the connections between 
the master and the slave processes. The messages sent from a slave process to its 
neighbouring slave processes can be then “pasted” to the synchronization messages. By 
this approach, the master process takes the role of message router and forwards the 
incoming messages from the slaves pasted to the synchronization messages to the target 
slave processes [40]. The schema of this centralized version of master-slave approach is 
depicted in Fig. 17. 

8.3.2 Implementation of the Centralized Transfer 
In every time step, there are performed following actions: 

• Every slave process performs local computation of current time step. 
Throughout the computations, the vehicles or characteristics and lane blocks 
determined for all neighbouring slave processes are stored in one buffer. 

• After the computations are finished, the slave process packs the content of the 
buffer, inserts it into the notification message and sends this complete message 
to the master process. 

• The master process receives the notification and stores the incorporated vehicles, 
characteristics, and lane blocks into its own buffer. 

• After the master process receives notifications from all slave processes, it packs 
the corresponding vehicles, characteristics, and lane blocks to the particular 
permission messages and sends these messages to the corresponding slave 
processes. 
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It should be noted that the master process must reorganize the content of received and 
sent messages. Every message, which the master process receives, contains vehicles or 
characteristics and lane blocks sent from one source sub-network to all neighbours of 
this sub-network. However, every message, which the master process sends, must 
contain all vehicles or characteristics and lane-blocks from all sub-networks determined 
for one particular sub-network. For this reason, the contents of received messages are 
stored in a “global” buffer and all particular vehicles, characteristics, and lane blocks 
must incorporate the destination information. In that case, the master process will be 
able to find all vehicles, characteristics, and lane blocks determined for one particular 
sub-network in the buffer and send them along with the permission message.  

Because there are no connections between the slaves and the entire communication is 
transmitted via the synchronization messages, the total number of messages is reduced 
to 2p per one time step. Of course, the synchronization messages are longer, because 
they incorporate useful data from the slave processes. However, the transmission of less 
number of longer messages is more efficient than transmission of larger number of 
shorter messages (see section 7.4). Utilization of this approach also means larger load of 
the master process, but this is not a problem since the master process is idle throughout 
the local computations of every time step.  

8.4 Semi-Asynchronous Synchronization 
All adjustments of the communication protocol for distributed traffic simulation 
described in previous sections were based on reduction of the communication necessary 
for the transfer of vehicles, characteristics, and lane blocks. Another way how to 
achieve communication savings is the reduction of the communication necessary for the 
synchronization. 

8.4.1 Main Idea of the Semi-Asynchronous Approach 
As has been said in section 4.4, the synchronization of the simulation is necessary in 
order to avoid or at least handle the causality errors. In the distributed simulation of 
road traffic, the only causality error, which can occur, is the arrival of a vehicle or lane 
block in incorrect time step (past of future). So, the synchronization is necessary 
because of the transfers of the vehicles and lane blocks between the particular sub-
networks. If we want to reduce the communication necessary for the synchronization, it 
is desirable to summarize the basic features distributed version of the JUTS system. 

In the JUTS system, the roads are composed of unidirectional traffic lanes (see section 
3.3.2). The vehicles can only move forward or stand and are allowed to pass only 
between the traffic lanes with the same direction. So, in the road, a vehicle moving in a 
traffic lane cannot influence the movement of the vehicles in the neighbouring lane with 
opposite travel direction. Hence, the traffic in a particular traffic lane is influenced only 
by the vehicles moving in the lane. This approach is common also in other traffic 
simulations [41]. Moreover, all simulated vehicles are limited by maximal speed, which 
is 6 cells per time step (54 km/h) in the JUTS system [17]. 

In section 5.1.2, it is said that the traffic network is divided between the crossroads, in 
the middle of the roads (see Fig. 18). This approach can be slightly modified. Because 
the traffic lanes with opposite direction do not influence each other, the division of the 
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network can be performed also between the crossroad and its outgoing traffic lanes (see 
Fig. 19).  

 
Fig. 18: The standard division of the traffic network in the JUTS system 

The described features of the JUTS system, which are also common for other traffic 
simulators, can be utilized for significant reduction of the communication necessary for 
the synchronization. The basic idea is not to send the vehicles in every time step, but 
only once every several steps. The time period between two successive transfers of 
vehicles is designated as long step. We utilize the fact that the movement of the vehicles 
in the single traffic lane is affected only by the vehicles themselves. Hence, all vehicles, 
which shall be transferred to a neighbouring traffic sub-network throughout the long 
step, are stored in the buffer. After the long step period is elapsed, the content of the 
buffer is packed into a message and sent to the corresponding sub-network. In the target 
sub-network, the message is received, unpacked and the contained vehicles are 
forwarded to the corresponding traffic lanes. There, the vehicles are immediately 
inserted into the traffic lanes and shifted forward according to the distance, which they 
would travel in the time period of long step. 

 
Fig. 19: The modified division of the traffic network in the JUTS system 

Because the synchronization is necessary only because of the transfer of the vehicles 
between the sub-networks, the synchronization would be also necessary only once per 
long step by the vehicle transfer. The length of the long step depends on the minimal 
distance of two neighbouring crossroads, between which the traffic network is divided. 
By the division according to Fig. 19, this distance is maximized, because we utilize the 
length of entire traffic lanes between the neighbouring crossroads. The length of long 
step is expressed in time steps and can be calculated as: 

 
max

min

v
d

Tls = , (8) 

where Tls is the length of the long step, dmin is the minimal distance between the 
crossroads on the boundary of two sub-networks, and vmax is the maximal speed of the 
vehicles. For example, if the minimal distance between the crossroads on the boundary 
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of two sub-networks is 150 meters (i.e. 60 cells) and the maximal speed of the vehicles 
is 6 cells per time step, the length of the long step is 10 steps. 

It should be noted that the semi-asynchronous long step method has nothing to do with 
the super-stepping presented in [42]. The basic idea of the super-stepping is to reduce 
the communication necessary for synchronization in time periods, when only little 
events occurs. The length of the super-step is variable and must be calculated by the 
particular simulation processes. This brings additional overhead to the simulation. 
Moreover, the messages with events are transferred among the simulation processes 
throughout the super-steps. For more information, see [42]. On the other hand, the semi-
asynchronous long step method presented in this section utilizes the equal-sized long 
steps, whose length is determined only once at the beginning of the simulation based on 
the traffic network division. Moreover, there is no communication among the particular 
processes in the time period of the long step. The only communication is performed at 
the boundaries of particular long steps. 

8.4.2 Implementation of the Semi-Asynchronous Approach 
As has been said, the synchronization is necessary only by the transfer of vehicles once 
every long step. So, the synchronization messages are sent in the same time as the 
messages with vehicles. Hence, the utilization of the master-slave protocol with 
centralized vehicle transfer is most appropriate (see section 8.3). In this case, the 
vehicles are transferred by utilization of the synchronization messages. Moreover, the 
only thing, which must be modified, is the insertion of the received vehicles in the 
traffic lane, because the communication protocol is already designed for transfer of 
more vehicles per time step in one traffic lane (see section 5.2.2). 

8.4.3 Advantages and Disadvantages 
The most important advantage is the communication savings. If we use the master-slave 
protocol with centralized vehicle transfer and the length of the long step would be 10 
steps, the communication is reduced to 2p messages per long step and 2p/10 messages 
per time step (p is the number of slave processes). This means the 90 % savings of the 
message count. Of course, the messages will be considerably longer, which means the 
increasing of the transfer time of every message, but not dramatic (see section 7.4). 

Another advantage of the long step method is that, unlike the characteristics or adaptive 
vehicle density transfers, the terminated and generated traffic flows are identical. If a 
vehicle is terminated in the source traffic sub-network and transferred to the target sub-
network, it will be generated and shifted into the correct position. So, after the long step 
period, the transferred vehicle is in the position, in which it would be if the traffic lane 
were not divided. In characteristics or adaptive vehicle density transfers, the terminated 
and generated traffic flows have indeed the same traffic characteristics, but they are not 
identical. If a vehicle is terminated in the source sub-network, it does not have to be 
immediately generated in the target sub-network (see section 6.2.1). From this point of 
view, the characteristics or adaptive vehicle density transfer is comparable to the lossy 
data compression and the long step method to the lossless data compression. 

The main disadvantage of the long step method is the difficult handling of the lane 
blocks. So far, we assumed that the traffic lanes in the target sub-network, in which the 
transferred vehicles are inserted after the long step period, are empty. If there is a 
vehicle queue, the incoming vehicles need not to fit into the lane. So, the modified lane- 
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block messages are needed, which will inform the source traffic sub-network about the 
available space in the traffic lane. Still, because of the length of the long step period, the 
handling of the lane-block messages can be problematic. The extensive test will be 
performed to determine the usability of the semi-asynchronous long step method.  

8.5 Optimistic Synchronization 
Another way, which we want to explore, is the optimistic synchronization of our 
distributed time-stepped traffic simulation. As has been said in section 4.4.1, with the 
optimistic approach, the causality errors are possible, but a mechanism is provided for 
detection and reparation of these errors. So far, this approach is used in the event-driven 
simulations only. 

8.5.1 Usability in the Distributed Time-Stepped Simulation 
Generally, the mechanism for detection and reparation of the causality errors is 
application dependent and brings significant overhead to the simulation [2]. Thus, the 
optimistic approach is utilizable only if the causality errors are rare.  

There are two types of causality errors, which can occur in the distributed version of the 
JUTS system – the late arrival of the vehicles and the early arrival of the vehicles. First, 
we will discuss the late arrival of the vehicles. We can assume that the traffic network is 
not divided in the middle of traffic lane, but between the crossroads and their outgoing 
lanes (see Fig. 19). In that case, if the delay of the vehicles is less than the length of 
long step expressed in equation (8), the vehicles can be inserted to the traffic lane and 
shifted forward according to their delay. The problem occurs, if the delay of the 
vehicles is larger than the length of the long step. In that case, the delayed vehicles 
could have influenced the traffic on nearby crossroad, but they did not, because of the 
delay. In that case, an error is introduced in the simulation. 

The early arrival of the vehicles is less problematic than the late arrival of the vehicles. 
The vehicles that arrive earlier can be stored in buffer and inserted to the corresponding 
traffic lanes in appropriate time-step. From this point of view, the time period of the 
early arrival is irrelevant if the buffer has sufficient capacity.  

As arise from previous paragraphs, a complex mechanism for the recovery from a 
causality error will be necessary only for the extremely late arrival of the vehicles. In 
other cases, the errors can be handled by simple modification of the insertion of the 
vehicles into the traffic lanes. So, it seems that the optimistic approach might be 
applicable for the distributed version of the JUTS system and also for similar time-
stepped traffic simulators. 

8.5.2 Communication Savings 
As has been said in previous section, the optimistic approach might be applicable for the 
distributed time-stepped traffic simulation. However, the elimination of the 
synchronization messages is not sufficient saving of the inter-process communication if 
the vehicles are transfer whenever they arrive to the boundary between two sub-
networks. In order to reduce the communication necessary for the vehicle transfer, the 
aggregation technique similar to that one used in the semi-asynchronous long step 
method will be used (see section 8.4). So, the vehicles from multiple steps determined 
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for one particular sub-network will be aggregated into one message. In that case, the 
overall inter-process communication can be reduced considerably.  

Although the implementation of an efficient optimistic protocol for distributed time-
stepped traffic simulation seems to be feasible from previous paragraphs, all depends on 
the mechanism for the reparation of the causality errors caused by the extremely late 
arrivals of the vehicles. After an efficient mechanism will be invented, we can proceed 
with the optimistic protocol implementation and testing. Only the intensive testing of 
the resulting simulation can verify the applicability of the optimistic approach for the 
distributed traffic simulation. 
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9 Conclusion 

In this work, the distributed simulation of the road traffic was discussed. We described 
main aspects of the general computer simulation and the specific features of the 
computer simulation in the field of road traffic. Then, we proceeded with the description 
of the main issues of the general distributed simulation – the decomposition of the 
simulation into particular process and the synchronization of these processes. We 
believe that this part of the work gives a brief survey of the main issues of the 
distributed simulation and the most common approaches to the solving of these issues.  

In latter part of the work, the issues of the distributed simulation in the field of the road 
traffic are discussed. The decomposition of the simulation, the inter-process 
communication, and the synchronization of the processes were briefly described. 
Besides the existing solutions to the issues of the distributed traffic simulation, which 
are commonly used in various traffic simulators, we described also the approaches, 
which are used in the distributed version of the JUTS system. This simulator of urban 
road traffic is used for our current and future experiments. 

In another part of the work, we focus on the reduction of the inter-process 
communication in the distributed traffic simulation. Currently, two adjustments of the 
communication protocol were proposed, implemented, and tested – the characteristics 
transfer and the adaptive vehicle density transfer. Both adjustments were described in 
detail. There were intensive tests performed in order to determine the performance of 
both adjustments. The results of these tests are also presented in this work.  

The characteristics transfer is based on transfer of traffic flow characteristics instead of 
transfer of particular vehicles. It reduces the communication by 33 % on average and is 
efficient mainly for high traffic densities.  

The adaptive vehicle density transfer also utilizes the transfer of traffic flow 
characteristics. Moreover, the learning and prediction of the periodical behavior of the 
vehicle density is utilized for the additional savings of the inter-process communication. 
This periodical behavior is typical for the traffic lanes equipped by traffic lights. For 
these lanes, the adaptive vehicle density transfer reduces the communication by 35 % in 
comparison with characteristics transfer and by 55 % in comparison with the vehicle 
transfer. 

In the last part of this work, our future research topics are briefly discussed. Our final 
goal is the development of an efficient communication and synchronization protocol for 
the distributed traffic simulation, which would be applicable also for general distributed 
time-stepped simulations. In first stage, we will work on other adjustments of the 
communication protocol, which will cause the additional savings of the inter-process 
communication necessary for the vehicle transfer. We plan to use the enhanced 
characteristics transfer, hybrid vehicle/characteristics transfer, and the centralized 
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vehicle transfer for this purpose. Then, we want to focus on the synchronization of the 
simulation with the aim of the reduction of the synchronization messages count. For this 
purpose, the possibilities of the semi-asynchronous approach and the optimistic 
approach to the synchronization will be explored. The results of this research will be 
summarized in the doctoral thesis.  
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