
Stochastic Semantic Parsing
PhD Study Report

Miloslav Konoṕık

Technical Report No. DCSE/TR-2006-01
May, 2006

Distribution: Public

Abstract

The recent achievements in the area of automatic speech recognition started
the development of speech enabled applications. Currently it is beginning
to be insufficient to merely recognize an utterance. The applications are
demanding to understand the meaning of the utterance. Semantic analysis
(or semantic parsing) is a part of the natural language understanding process.
The goal of semantic analysis is to represent what the subject intended to
say.

The thesis summarizes aspects of semantic analysis with emphasis on the
stochastic approach to semantic analysis. Fundamental stochastic models
along with the training and evaluation of these models are explained in de-
tails. Since, the performance of the system is significantly influenced by the
way of preprocessing, it is also described in the thesis.

Copies of this report are available on
http://www.kiv.zcu.cz/publications/
or by surface mail on request sent to the following address:

University of West Bohemia in Pilsen
Department of Computer Science and Engineering
Univerzitńı 8
30614 Pilsen
Czech Republic

Copyright c© 2006 University of West Bohemia in Pilsen, Czech Republic

i

Contents

1 Introduction 1
1.1 Problem definition . 2

2 Preprocessing 3
2.1 Morphological Tagging . 4
2.2 Lemmatization . 6
2.3 Word Sense Disambiguation 6
2.4 Hierarchical structures . 8
2.5 Pre-parsing . 9

3 Semantic Parsing 11
3.1 Semantic Representation Requirements 11
3.2 Semantic Analysis Based on Expert

Knowledge . 12
3.2.1 Syntax-Driven Semantic Analysis 13
3.2.2 Semantic grammars . 18
3.2.3 Pattern matching . 19

3.3 Stochastic Parsing . 21
3.3.1 Flat Concept Parsing 22
3.3.2 Probabilistic grammars for Semantics 26
3.3.3 Probabilistic Recursive Transition Networks 32
3.3.4 Vector-state Markov Model 33
3.3.5 Model training . 36
3.3.6 Evaluation . 37
3.3.7 Existing Systems . 40

4 Conclusions and Future Work 48
4.1 Aims of Doctoral Thesis . 49

A Definitions of Formal Models 50
A.1 Hidden Markov Models . 50

ii

A.2 Context Free Grammar . 52
A.3 Probabilistic Context Free Grammar 52
A.4 Recursive Transition Networks 54

iii

Chapter 1

Introduction

Speech is the most natural way of human communication. Therefore, there
is an effort to incorporate speech control into human-computer interfaces.
However, nobody likes the idea of remembering a large amount of specific
commands. Hence, the ability of natural language understanding is crucial
for many speech-enabled computer systems.

Natural Language Understanding (NLU) is a process whereby a computer
algorithm extracts the meaning of an utterance and embeds the meaning in
the computer model of the world. Semantic analysis is the first step (apart
from the preprocessing) of the NLU process. The goal of semantic analysis is
to represent what the subject intended to say in a way that would facilitate
the process of contextual interpretation (reasoning about the meaning of the
utterance).

In this thesis, we concentrate on the spoken language dialogue systems
(this work is a part of the project of City Information Dialogue (CID) sys-
tem [Mou04]). A semantic analyzer of a spoken language system must be
able to deal with spontaneous speech effects such as unconstrained formula-
tions, ill formed expressions, repairs, false starts and unknown words. Due
to grammatical problems of spoken input, syntax should not play signifi-
cant role during utterance processing. The CID corpus is in Czech language.
Therefore, the issue of Czech language is considered in the summary of some
methods.

Recent trends in the area of Natural Language Processing (NLP) are
heading towards making all the processes of NLP stochastic. This thesis fol-
lows this trend, therefore it is focused on stochastic semantic parsing (section
3.3). Parsing means taking an input and producing some sort of structure for
it. In this context, the meaning of word parsing is similar to word analysis,
parsing however signifies that the result of semantic analysis is structured.
Indeed, a tree structured output is typical for stochastic semantic parsers.

1

Although stochastic semantic parsing is the main topic of this thesis,
the semantic analysis based on expert knowledge is discussed too (section
3.2). Many of the concepts of stochastic semantic parsing stem from seman-
tic analysis based on expert knowledge. Semantic analysis based on expert
knowledge is also more effective in some cases (see e.g. sec. 2.5).

1.1 Problem definition

This section specifies the problem of semantic parsing by the definition of the
input that enters into the semantic parsing algorithm and the output that
results from the algorithm.

Input: the orthographic transcription of an utterance. The form of the
transcription can be either the most likely transcription of the utterance
or even better a word lattice. Prosody or some nonverbal features may be
included as well. Stochastic semantic analysis methods in particular profit
from the presence of other information sources (prosody, etc.).

Output: the context-independent meaning of the utterance in a suitable
meaning representation. The requirements about the output of semantic
analysis are stated in the section 3.1. In short, the result of semantic parsing
is required to support the contextual interpretation that follows the process
of semantic analysis.

Semantic
parser

Contextual
interpretation

Speech
recognizer

Figure 1.1. The interaction of the semantic analysis system with other modules. The semantic
parser input is indicated as the most likely utterance transcription (top) or a word lattice
(bottom). The output is either a tree (top) or a logic representation (bottom).

2

Chapter 2

Preprocessing

From the description of many understanding-related systems, it follows that
the success of a NLP system depends on details. The preprocessing is one of
the details that can significantly affect the performance of the whole system.

This chapter describes several possible ways of preprocessing which can
be used during the utterance understanding process. Morphological tagging
(section 2.1) is necessary for syntactic analysis (explained in section 3.2.1)
because syntactic analysis does not build the syntactic tree on words but
on morphological tags. When syntactic analysis is not used at all during
the understanding process (frequent case), morphological tags are still being
used as another knowledge source.

Lemmatization (section 2.2) is sometimes being referred to as simple mor-
phological processing because it just transforms a word form to the basic form
of a word. It does not examine morphological categories of a word. Lemma-
tization is useful especially for inflectionally rich languages (Czech, Russian,
...) because it decreases the number of various word forms in the lexicon.

Word sense disambiguation (section 2.3) helps to decrease the ambiguity
in an utterance by distinguishing the sense of a word that was intended to
be used by the speaker. Lower ambiguity means higher performance of the
system.

Hierarchic structures (section 2.4) describe relations that hold among
words in a language. The knowledge of the relations can increase the gener-
alization ability of an understanding model.

Pre-parsing (section 2.5) uses different types of parsers to reliably deter-
mine the structure of isolated parts of an utterance.

3

2.1 Morphological Tagging

The basic unit of a sentence is usually assumed to be the word. The meaning
of a sentence, though, is composed of words, the word itself is also a product
of more primitive parts. The study of morphology concerns the construc-
tion of words from more basic components called morphemes. For example,
the word “unbelievably” consists of the following morphemes: “un”, “be-
lieve”, “able” and “ly”. Morphemes themselves are not very useful in the
utterance understanding process, however, useful information can be derived
from them. The useful information consists of

• lemma

• set of morphological categories

A lemma is the base form of a word. For example the word “flies” has the
corresponding lemma “fly”. The lemma is also called the canonical form of a
word or the dictionary headword. The lemma is used in various applications,
for example if it is needed to reduce the dictionary or to reduce the model
size, etc.

A set of morphological categories describes morphological properties of
words, such as: part-of-speech, number, gender, person, tense, voice, aspect,
negation, degree of comparison, etc. For example the word “flies” has the fol-
lowing values of morphological categories: verb, singular number, 3rd person,
present tense.

A morphological tagger (or simply tagger) is a programm that automat-
ically assigns morphological tags to corresponding words. A tag is the label
used to denote particular values of morphological categories in short. For
example we can have tag “VBZ” to denote the following values of morpho-
logical categories “Verb, 3rd person singular present”. Given this symbolism
the tagger should assign the tag “VBZ” to the word “flies”.

The tags together with the explanation are stored in a so called tagset.
For example, the tag “VBZ” and its explanation was borrowed from the
tagset called the “The Penn Treebank tagset” (described in [Mar93]).

The example in fig. 2.1 illustrates the process of morphological tagging.
The words in the example are tagged with tags from the Penn Treebank
tagset. The tags that were used in the example are listed in table 2.1. For
the complete list, see [Mar93].

A variety of statistical morphological taggers were developed during last
two decades. One of the best taggers is based on hidden Markov models1. It

1For more details, see very good tutorial on hidden Markov models in [Rab89]

4

Is there any tram going to around 11 p.m.Košutka

NPVBZ DT NN VBG TOEX IN CD RB

Figure 2.1. Example of morphological tagging.

Tag Explanation
CD Cardinal number
DT Determiner
EX Existential there
IN Preposition or subordinating conjunction
NN Noun, singular or mass
NP Proper noun, singular
RB Adverb
TO to
VBG Verb, gerund or present participle
VBZ Verb, 3rd person singular present

Table 2.1. Penn Tree bank tagset example

was claimed that taggers based on Markov models can not compete with other
current approaches (mentioned later in this thesis). However, it is shown in
[Tho00] that the tagger based on Markov models performs at least as well
as other taggers. The success of TnT (Trigrams’n’Tags) tagger [Tho00] is
based on the precise solution of “small” details. The choice of smoothing
of a trigram model (TnT uses linear interpolation2), handling of unknown
words (TnT uses suffix analysis, more in [Tho00]) and other details guarantee
good results for this tagger.

The transformation based tagger, described in [Bri95] is interesting on
theoretical grounds. It does not use any statistical model and yet it per-
forms very good. During training it learns transformations that improve the
error rate. There are two components to a transformation: a rewrite rule
and a triggering environment. An example of a rewrite rule for morpholog-
ical tagging is: “Change the tag from modal to noun” and an example of
triggering environment is “The preceding word is a determiner”. The rules
are learned automatically in iterations. Every iteration, the rule that de-
creases the error rate the most is selected. During tagging the rule is applied
whenever the triggering condition is met. Rules have to be applied in the
order that they were learned in.

2Linear interpolation for n-gram models is described in [MS01] – section 6.3.3

5

Other influential taggers include the Maximum Entropy tagger [Rtn99]
and the Feature-based [HH98] tagger. Both these taggers use a log-linear
model. The Feature-based tagger is targeted to inflectionally rich languages
(such as Czech, Russian, etc). Because of the rich morphology, it uses a 15-
position morphological tag (two positions are reserved) where every position
denotes a morphological category (therefore the tags consist of 13 values
of morphological categories). Every category is predicted separately in this
approach.

The ultimate taggers are the so called voting taggers. A voting tagger
consists of several other taggers. During tagging, every tagger “votes” a tag
(or more tags) for a word. The tag that was contained in the most tagger
outputs is voted and assigned to corresponding word.

The state-of-the-art taggers are now able to reach the human tagging
performance. Please note that morphological tagging is often bewilderingly
called the part-of-speech tagging. Morphological tagging is a more appropri-
ate term, since other morphological categories than part-of-speech category
are tagged.

2.2 Lemmatization

The goal of the lemmatization process is to find the basic form of each word
(as was explained in the previous section) in an utterance. Lemmatization is
usually performed together with morphological tagging. When tagger selects
a tag it also selects the corresponding lemma.

Another option is to use the fact that lemmas are not as much ambiguous
as morphological tags. Lemmas are then simply found in a table that contains
the word forms (e.g. flies) and corresponding lemmas (e.g. fly).

2.3 Word Sense Disambiguation

Ambiguity is a big problem because it decreases the performance of syntactic
and semantic parsers (parsers are explained later in this thesis). Word Sense
Disambiguation (WSD) helps to decrease the ambiguity in the input by dis-
ambiguating the senses of words. The task of WSD is to examine words in
context and specify exactly which sense of each word is being used. From
now we will call the target word the word to be disambiguated.

For illustration, we can borrow an example from [JM00]. Consider the
situation where we need to disambiguate the target word “bass” in the sen-
tence: “An electric guitar and bass player stand off to one side, not really

6

part of the scene, just as a sort of nod to gringo expectations perhaps”. The
target word “bass” has (at least) two meanings. It can mean a tone of low
pitch or a fish. The WSD algorithm has to determine which sense is the
correct one.

In this thesis, we concentrate on machine learning approaches to WSD.
The systems based on machine learning are trained to assign words of an
utterance to one of a fixed number of senses. These systems classify words
according to the context in which the words are embedded. In the follow-
ing text we describe the naive Bayes classifier approach. For encoding the
context we use the so called co-occurrence feature vector.

The co-occurrence feature vector consists of integers. Every position in
the vector relates to a word and the integer value signify the number of times
the word occurs in a region surrounding the target word. The region is most
often defined as a fixed size window with the target word at the center. The
words in the set are usually the most frequent words from a collection of
sentences containing the target word. For example3 the most frequent words
from collection of sentences with the word “bass” could be: [fishing, big,
sound, player, fly, rod, pound, double, runs, playing, guitar, band]. Using
these words as features in the co-occurrence feature vector and using the
window size of 10, the example sentence in the beginning can be represented
by the following vector: [0,0,0,1,0,0,0,0,0,0,1,0]. This vector says that words
“sound” and “guitar” are used once in the vicinity of the word “bass” in the
example sentence.

The naive Bayes classifier approach to WSD tries to choose the most
probable sense ŝ given the co-occurrence feature vector V :

ŝ = arg max
s∈S

P (s|V) (2.1)

where S denotes the set of senses appropriate for the target word that is
associated with vector V .

It would be difficult to collect statistic for the equation 2.1 directly so
the Bayes’ rule is applied (equation 2.2). The naive Bayes approach naively
assumes that the features are independent of one another. Making this as-
sumption we can estimate the probability P (V |s) by the product of the
probabilities of its individual features (eq. 2.3). Finally, since P (V) is the

3This example is again borrowed from [JM00] and is based on a real corpus.

7

same for all possible senses, it can be ignored (eq. 2.4).

ŝ = arg max
s∈S

P (V |s)P (s)

P (V)
(2.2)

ŝ ≈ arg max
s∈S

(∏
j P (vj|s)

)
P (s)

P (V)
(2.3)

ŝ ≈ arg max
s∈S

P (s)
∏

j

P (vj|s) (2.4)

The classification then consists in the computation of equation 2.4 that
selects the most probable sense ŝ given the context vector V .

Given the equation 2.4, training a naive Bayes classifier consists of count-
ing the number of times a word from the most frequent set occurs in the
vicinity of a target word:

P (vj|s) ≈ countV S(vj, s)∑
i countV S(vi, s)

=
countV S(vj, s)

countS(s)
(2.5)

The naive Bayes classifier presented here was chosen for demonstration
purposes. WSD is a classification task, therefore any classification algorithm
(stochastic supervised, stochastic unsupervised, symbolic, ...) can be used.
A comprehensive list of WSD methods can be found in [NJ98].

One way to solve the WSD problem is to adapt a morphological tagging
(sec. 2.1) algorithm to use word sense instead of morphological categories.
The algorithms for morphological tagging, however, are not too appropri-
ate for WSD task. To obtain reasonable results a wider context has to be
used, but morphological taggers use a close context to predict morphological
categories.

2.4 Hierarchical structures

The research in computational linguistic shows that it is useful to organize
words of a language in a kind of hierarchy. The hierarchy describes lexical
relations that hold between words. One example of a lexical relation can
be the relation that associates a term with the more general expression of
the term (for instance the term “trolleybus” to the term “public transport”).
This relation is called the hypernym relation. There are other relations, for
example hyponym relation (it is opposite to hypernym relation), part-of and
has-part relation (describes parts of wholes and vice versa), antonym (relates
words with opposite meaning), etc.

8

The usage of such hierarchic relations is wide. In the semantic analy-
sis task, hierarchical relations can be used to help the semantic analysis to
generalize. For example, if the semantic analysis is unable to find a rule to
parse a phrase it can search for a more general term. The rule with the more
general term is more likely to be present in the semantic analysis system.
For example, if the system has no rule to parse the phrase “trolleybus goes
from Slovany”, the phrase “〈PUBLIC TRANSPORT〉 goes from Slovany” is
more likely to be present in the system.

The most widely used lexical database for English is called WordNet
[Fel98]. Each node of WordNet hierarchy consists of a synset of words with
identical (or close to identical) meaning. The relations between synsets in-
clude the ones described formerly in this section and many others (organized
separately for nouns, verbs and others parts-of-speech). The similar project
is being developed at the MUNI4 and is described e.g. in [PS04]. This project
is targeted at Czech language.

2.5 Pre-parsing

This section is concerned with the problem that some phrases could be pro-
cessed more easily by a different algorithm than the one that is used as the
main approach to understanding utterances. For example, a machine learn-
ing based parser (see sec. 3.3) can be used as the main algorithm for parsing
utterances. Although a machine learning based parser is able to reliably
parse variety of natural language phrases, it has problems with very com-
plicated phrases. Such phrases can be parsed by a dedicated parser based
on a small set of hand written rules. The complicated phrases are therefore
pre-parsed by the specialized parser. The main parser then works just with
tokens which represent the complicated phrases.

Typical examples of complicated phrases are time and date phrases. The
specialized parser can be used to translate times and dates into symbolic rep-
resentation of time or date. Such a specialized parser, for instance, translates
the phrase from “twenty five to six” into the “5:35” token.

Other problematic phrases are proper names (e.g. Slovany or Košutka
are proper names and denote districts of the city Pilsen). Here, we can
use a simple dictionary look-up algorithm to identify proper name phrases.
Proper name phrases are then replaced by the token (e.g. token 〈District〉;
‘tram goes to Slovany” → “tram goes to 〈District〉”). Of course, the problem
of proper names is in fact slightly more complicated. The proper names can
also consist of more then one word. The recognition algorithm moreover

4Masaryk University in Brno

9

does not produce capitalized output. Despite of these problems an improved
look-up algorithm [Ben03] can be used.

The pre-parsing techniques are simple but they can significantly increase
the performance of a natural language understanding system.

10

Chapter 3

Semantic Parsing

This chapter presents a number of computational approaches to the prob-
lem of semantic analysis, the process whereby meaning representations are
composed and assigned to input utterances.

In the following, semantic will be restricted to the context-independent
literal representation of sentences or phrases, ignoring phenomena such as
irony, metaphor or conversational implication.

This chapter is organized as follows. At first the requirements that the se-
mantic representation should fulfill are described. Then the main approaches
of the semantic analysis based on expert knowledge are briefly mentioned.
Many of the concepts of analysis based on expert knowledge are used in ap-
proaches that are based on stochastic models. The stochastic models create
the main core of this thesis. First, they are explained theoretically in detail.
Then the methodology of models training and evaluation follows. The the-
oretical explanation is extended by the description of existing systems that
use these theoretical approaches.

3.1 Semantic Representation Requirements

The result of semantic analysis has to be represented in a correct represen-
tation that meets several requirements. The requirements are discussed in
[JM00]. Fulfilling of these requirements could ensure that the following in-
terpretation process will work with proper form of semantic representation.
The incorrect semantic analysis output can disable successful interpretation
of an utterance meaning.

The description of the requirements is shortened in this thesis. For a full
description, see [JM00] – section 14.1. The requirements are:

• Verifiability

11

The natural language understanding system stores its information about
the world in the knowledge base. The verifiability concerns a system
ability to compare the state of affairs described by a representation to
the state of affairs in some world as modeled in a knowledge base.

• Unambiguous Representations
The final representation of an input meaning should be free from any
ambiguity. Regardless of any ambiguity in the raw input, it is critical
that a meaning representation language support representations that
have a single unambiguous interpretation.

• Canonical Form
Any linguistic input that has the same meaning in a domain should
have the same meaning representation. Eg. the utterances ”The tram
is in Bory station at 11 pm” and ”The tramcar arrives in Bory at 23:00”
should have the same representation.

• Inference and Variables
The term inference refers to a system ability to draw valid conclu-
sions based on the meaning representation of inputs and its store of
background knowledge. Variables allow replacing an unknown fact in
representation with a variable.

• Expressiveness
A meaning representation scheme must be expressive enough to handle
all the wide range of subject matter concerning a domain.

For our purposes of statistical parsing (section 3.3) the Canonical Form,
Inference and Expressiveness are crucial to fulfill. The FOPC1 used in the
Syntax-Driven Semantic Analysis (section 3.2.1) meets all the requirements
listed in this section.

3.2 Semantic Analysis Based on Expert

Knowledge

This section briefly describes the semantic analysis systems that are based
on knowledge put into the system by an expert. That means that a human
must make the rules for analysis up and then put them into the system. The
expert uses a so called introspection to make these rules up. Sympathizers of

1First Order Predicate Calculus

12

semantic analysis based on expert knowledge claim that no computer learning
algorithm is capable of introspection and so the rules learned by a computer
learning algorithm can not compete with ones written by an expert.

But, the fact of the matter is that today the majority of semantic analysis
systems are stochastically based (see section 3.3). The reason is the expensive
development of expert systems. The other problem of development these
systems is maintaining the consistency of expert rules. While the amount of
rules is growing, the rules are starting to interact with each other.

The syntax-driven rule-by-rule approach to semantic analysis – discussed
in section 3.2.1 – is attractive on theoretical grounds. From the theoretical
point of view this system fulfils all the requirements that were proposed by
linguists. It produces a rich logically-based representation of the meaning of
a sentence and it allows to capture almost all the phenomena of the natural
language. The insights from linguistics can be readily incorporated into this
system. The problem with the syntax-driven approach is that building such a
system is complex and many theoretical issues arise and slow the development
of the system. Moreover, the purely syntax-driven systems have problems
dealing with real langauge which is often ungrammatical. Thus a wide range
of other systems was proposed.

The semantic grammars approach (section 3.2.2) is a method of writing
grammars in terms of semantic rather than syntactic concepts. Hence, it is
not so prone to have problems with ungrammatical utterances. Section 3.2.3
describes methods that use simple templates for computationally effective
semantic analysis in specific domains.

3.2.1 Syntax-Driven Semantic Analysis

The Syntax-Driven Semantic Analysis ([All95] – chapter 9, [JM00] – chapter
15.1) was the leading approach to the semantic analysis in the 20th century.
The Syntax-Driven Semantic Analysis approach was strongly influenced by
the work of [Mon74] that proposed the semantics for natural languages to be
defined compositionally in the same way as the semantic for formal languages.

In this approach an input is first passed through a syntactic parser to de-
rive its syntactic analysis. This analysis is then passed as input to a semantic
analyzer to produce a meaning representation of an utterance. The mean-
ing representation has to be powerful enough to capture all aspects of the
natural language. The key idea underlying the semantic analysis in this ap-
proach is the principle of compositionality. The principle of compositionality
is strongly related to the lambda calculus that enables to build the meaning
of a phrase from sub-phrases. The emphasized terms from this paragraph
will be described in this section.

13

1 S → NP VP 4 V → serves
2 NP → ProperNoun | Mass-Noun 5 ProperNoun → AyCaramba
3 VP → V NP 6 Mass-Noun → meat

Table 3.1. A simple syntactic grammar

Syntactic Analysis

The syntactic analysis uses a hand made database of context-free rules. The
rules are carefully designed to handle all possible natural language phenom-
ena like agreement2, coordination3, subcategorization4, gaps5 and so on. To
handle all these phenomena easier, the features and unification6 mechanism
is added to a context free grammar.

Table 3.1 shows an example of a simple grammar (without the features
extension) for a fraction of the natural language. Rules express the relation
between the sub-phrases and their syntactic function in a sentence. For
example the rule number 1 says that sentence (S) consists of a noun phrase
(NP) and a verb phrase (VP), rule number 2 means that the noun phrase
(NP) can be a proper noun or a mass noun, rule number 4 says that the verb
(V) rewrites to the word “serves” and so on.

The grammar for natural languages (mainly for English) is defined in
[All95] – chapter 5 or [JM00] – chapter 9 in detail. When the grammar is
defined, a sentence is parsed according to this hand-made grammar by a
standard parser (e.g. CYK, Early etc – for more details see section 3.3.2).
The result of the syntactic parser (see fig. 3.1) is used by the semantic
analyzer (presented further in this section).

Meaning Representation

The First Order Predicate Calculus (FOPC) is used for meaning representa-
tion in this approach. The advantage is that the FOPC provides a computa-
tional basis to satisfy all the requirements raised in section 3.1. In particular,
the inference and variables are the outstanding properties of FOPC.

2Concerns inflectional morphology – the form of one word requires a corresponding
form of another word; for more detail see [JM00] – section 9.6

3Stands for conjoining sentence phrases with conjunctions like and, or, etc.; [JM00] –
chapter 9.5

4Concerns distinguishing predicates according to the arguments they take; [JM00] –
chapter 9.7

5Stands for the movement of a phrase in questions or relative clauses; [All95] – section
5.6

6For explanation of terms feature and unification, see [All95] – chapter 4

14

S

AyCaramba

ProperNoun

VP

meat

Verb

serves

MassNoun

NP

NP

Figure 3.1. The example of a syntactic parse tree.

The FOPC is organized around the notion of the predicate. Predicates
are symbols that refer to the relations that hold among objects in a domain.
A reasonable FOPC representation for the sentence ”I have a car” might look
like the following formula:

Have(Speaker, Car)

This FOPC sentence asserts that the binary predicate Have holds between
the objects Speaker and Car.

But, for the reasons that are presented in [JM00], the meaning represen-
tation should look like this:

∃x, yHaving(x) ∧Haver(Speaker, x) ∧HadThing(y, x) ∧ Car(y)

The reasons why the meaning representation has the presented form
mainly concern fulfilling the requirements stated in the section 3.1. For
the explanation of the form of the representation, see [JM00] – section 14.3.

The principle of compositionality

One of the principal assumptions often made about semantic interpretation
is that it is a compositional process ([All95] – chapter 9.1). This means
that the meaning of a phrase is derived incrementally from the meanings of
its sub-phrases. For example, the meaning of the phrase “I want to go to
Slovany” can be composed from sub-phrases “I want” and “to go to Slovany”.
And the sub-phrase “to go to Slovany” can be composed from “to go” and
“to Slovany” and so on.

Compositional theories have some attractive properties. For instance,
compositional models tend to make grammars easier to extend and main-
tain. Also, the semantic rules can be simpler and can deal with problems at
separate levels.

But this theory also introduces many problems. For example a classic
problem arises from quantified sentences or from the presence of idioms.

15

Lambda calculus

Lambda calculus is a mechanism for applying the compositional approach to
the FOPC. It defines a way how to split a complicated statement into simpler
ones and also a way how to combine two statements into one complex state-
ment. The process of splitting is called lambda abstraction and the process
of combination is called lambda reduction. Lambda calculus is explained in
the following paragraphs first by formal definition and then by an example.

Lambda calculus ([All95] – section 9.1) is a powerful language based on
simple a set of primitives. Formulas in the lambda calculus consist of equality
assertions of the form:

<expresion> = <expresion>

The most crucial axiom in this system for our purposes is:

((λxPx)a) = P{x/a} (3.1)

where Px is an arbitrary formula involving the variable x and P{x/a} is the
formula where every instance of x is replaced by a. From this axiom, two
principal operations can be defined: lambda reduction (moving from left to
right across the axiom) and lambda abstraction (moving from right to left
across the axiom).

The two principal operations are demonstrated by the following example.
Consider the sentence “AyCaramba serves meat” where “AyCaramba” is a
restaurant (borrowed from [JM00]). This sentence has the following logical
form:

∃eIsa(e, Serving) ∧ Server(e, AC) ∧ Served(e,Meat) (3.2)

Now, consider the case when we need to compose the meaning from a noun
phrase “AyCaramba” and a verb phrase “serves a meat”. The noun phrase
“AyCaramba” is a constant denoted by AC. But, how to capture the mean-
ing of the verb phrase “serves meat”? It should be a predicate that is true
of any object that serves meat. Here, we can use the lambda calculus that
provides a formalism for such expressions: This expression is a predicate that
takes one parameter x. This predicate is then true of any object O, such that
substituting O for x in the expression results is a true proposition. Like any
other predicate, you can construct a proposition from a lambda expression
and an argument. In the logical form langauge, the following is a proposition:

(λx∃eIsa(e, Serving) ∧ Server(e, x) ∧ Served(e,Meat))(AC)) (3.3)

Now, we can use the lambda reduction to get the expression 3.2 from the
expression 3.3 by substituting x for AC. The lambda abstraction can produce
the expression 3.3 from the expression 3.2.

16

Semantic Analysis

When the representation formalism and the lambda calculus are defined, the
semantic analysis can be easily explained. The lambda calculus gives us a way
how to build the meaning of a phrase compositionally from sub-phrases.

The semantic in the Syntax-Driven Semantic Analysis approach is defined
by augmenting the syntax rules by the semantic information. Every syntax
rule has a special feature7 called SEM that contains the semantic information
relating to a particular syntax rule. The semantic analysis process consists
of extracting the semantic information from rules and applying the lambda
reduction. The figure 3.2 contains an example of the semantic analysis of the
sentence “AyCaramba serves meat”.

S

AyCaramba

ProperNoun AC

VP

meat

Verb

serves

MassNoun Meat

NP Meat

NP AC

reduction

Figure 3.2. Example of semantic analysis based on syntactic parse tree. The analysis uses
the λ reduction.

Summary of Syntax-Driven Semantic Analysis Approach

This approach provides very effective mechanism for retrieving knowledge
from an utterance and for maintaining this knowledge. But, there is a reason
why this approach is being replaced by stochastic methods (which of course
produce much simpler representation) in some NLP8 areas. The reason is the
incredibly costly development of a Syntax-Drive Semantic Analysis system.
The hand made rules are hard to maintain, hard to extend and hard to
port9 to another domain. The ability of this system to work with spoken
input (full of speech errors) is very questionable. Although there are robust
parsing techniques for this approach, this is still a problem.

The Syntax-Driven Semantic Analysis is the most “clever” system of all
the semantic analysis systems presented in this work. It is able to produce

7The feature system extends a grammar to contain addition information. For definition
of the feature system, see [All95] – chapter 4

8Natural Language Processing
9The term porting stands for the process of adapting a system to different domain than

it was originally developed for.

17

Grammar rule Example
1 TIME-QUERY → when does FLIGHT-NP leave ...
2 FLIGHT-NP → DET FLIGHT-C the flight
3 FLIGHT-C → FLIGHT-N flight
4 FLIGHT-C → FLIGHT-C FLIGHT-DEST flight to Chicago
5 FLIGHT-C → FLIGHT-C FLIGHT-SOURCE flight from Chicago
6 FLIGHT-C → FLIGHT-N FLIGHT-PART flight out
7 FLIGHT-C → FLIGHT-PRE-MOD FLIGHT-C 8 o’clock flight
8 FLIGHT-DEST → to CITY-NAME to Chicago
9 FLIGHT-SOURCE → from CITY-NAME from Chicago

10 FLIGHT-N → flight flight
11 DET → the the
12 CITY-NAME → chicago Chicago

...

Table 3.2. A simple semantic grammar

a rich output based on logical language. However, the problematic develop-
ment of this system prevents it from a wider usage in practice.

3.2.2 Semantic grammars

The semantic grammars ([JM00] – section 15.5, [All95] – section 11.2) were
originally developed for text-based dialogue systems in specific domains. The
principle of semantic grammars is similar to the grammar for syntax pre-
sented in previous section (3.2.1). The difference is that relations are se-
mantically rather than syntactically oriented. But, there is no precise line
between a syntax and semantics in this approach. The syntax and semantics
are freely mixed within a single rule.

Rules in a grammar consist of terminals and nonterminals. The terminals
(denoted by lowercase letters) represent words of an utterance. The nonter-
minals (denoted by uppercase letters) represent semantic categories (that is
the reason why these grammars are called semantic grammars). The rules
and constituents of a semantic grammar are designed to correspond directly
to entities and relations from the domain being discussed. The example (ta-
ble 3.2, adapted from [All95]) presents a simple grammar for a fraction of a
domain of a flight reservation system.

After the manual definition of the grammar, an input utterance can be
parsed according to the grammar. Since the semantic grammar does not
differ from a regular context-free grammar, a standard algorithm for parsing

18

FLIGHT-C (3) FLIGHT-DEST (8)

TIME-QUERY (1)

CITY-NAME (12)

the

DET (11) FLIGHT-C (4)

FLIGHT-N (10)

to Chicagoflight leavedoes

FLIGHT-NP (2)

When

Figure 3.3. The parse tree for the example utterance. The numbers in brackets denote rule
numbers of the example grammar in table 3.2

(e.g. CYK, Early etc – for explanation see section 3.3.2) can be used. The
result of semantic parsing is represented by a parse tree. The parse tree for
the utterance “When does the flight to Chicago leave?” is presented in fig.
3.3. The numbers of the rules that were used during the parsing are in the
brackets.

One of the key motivations for the use of semantic grammars in specific
domains was the need to deal with various kinds of anaphora and ellipses.
The domain specific semantic rules are ideal to capture spoken language phe-
nomena. Semantic grammars also combine aspects of syntax and semantics
in a simple uniform framework. As a result semantic grammars are useful
for rapid development of parsers in limited application domains.

Not surprisingly, there is a number of drawbacks to basing a system on
a semantic grammar. The primary drawback arises from an almost complete
lack of reuse in the approach. Combining the syntax and semantics of a do-
main into a single representation makes the resulting grammar specific to
that domain. Semantic grammars are also susceptible to a kind of seman-
tic overgeneration. Since the semantic grammars do not model the context
of rules they could generate interpretations that are incorrect in a certain
context.

3.2.3 Pattern matching

The pattern matching ([All95] – section 11.2)10 semantic analysis can be used
for very specific domains (e.g. summaries of newspaper stock transactions).
The information in such domains usually falls into a fixed format that can
be represented by a set of patterns. The principle of this approach consists
in determining whether any part of the input matches a pattern from the set
of patterns. If any match is found the information is extracted from specific

10In the [All95], a slightly different terminology is used

19

positions within the pattern. The extracted information is usually stored in
a frame-based11 representation.

Of course, the input utterance may match more than one pattern. Thus,
it is necessary to try to match all the patterns from the set. Once all the
possible patterns have been matched, the final stage of the analysis would
merge the partial patterns.

For illustration, an example borrowed from [All95] is shown. In a domain
where the system must generate summaries of articles reporting terrorist
attacks in South America, the following pattern can be used:

take 〈HUMAN〉 hostage →
(TERRORIST-INCIDENT HUMAN-TARGET 1)

This pattern describes sentences containing the sequence consisting of the
verb take followed by a phrase that describes a human, followed by the
word hostage. When an input sequence matches this pattern the HUMAN-
TARGET slot in a TERRORIST-INCIDENT frame is filled with the infor-
mation contained in the 〈HUMAN〉 phrase.

To make this approach viable, the input must be parsed at least to the
extent of identifying noun phrases (e.g. 〈HUMAN〉 in the previous example)
and producing canonical forms for words (e.g. lemmatization12). A partial
parsing technique can be used here to good effect. The partial parser is
a syntactic parser that parses only certain syntactic categories (e.g. noun
phrases etc). The partial parser takes advantage of the fact that certain
parts of sentences can be parsed fairly reliably.

There are several reasons why not use a full rule-based parser in these
domains: Firstly, it is not currently possible to construct a complete grammar
for realistic domains, so many sentences will be unparsable. In addition, even
if the sentence is parsable, it will likely be ambiguous between many different
interpretations. Secondly, a full parser would be computationally expensive,
specially for a system that processes millions of words a day.

Of course, a practical system would have to do additional processing
rather than simply filling in the slots with the words. For instance, it would
have to reason about dates, preprocess numbers etc.

This approach, while limited to a specific task, is capable of producing
a more successful system than one based on general-purpose techniques. It
takes advantages of the fact that the domain is very limited. For example,
the preposition to usually indicates the recipient of the stock in the stock

11The frame-based representation is used for representing stereotypical information. The
description of the frame-based representation can be found in [All95] – section 13.3

12The term lemmatization is explained in section 2.2

20

transaction domain. However, this needs not to be true in a different do-
main. For instance, in a public transport domain, the preposition to usually
indicates the destination station.

Systems based on these techniques tend to be robust in that they produce
some interpretation for nearly any input. Some systems attempt to gain the
best of both worlds: They first use a full parser and semantic interpreter,
and only if that fails they use pattern-matching techniques to extract what
information they can from the sentence. This has the advantage of handling
some sentences in detail but remaining robust when the full parse fails.

3.3 Stochastic Parsing

It may be foreseen from the description of the rule-based parsers that manual
development of an understanding component by establishing and maintaining
a system of rules is costly. In a stochastic method, semantic knowledge is
usually represented by some kind of a tree (see fig. 3.4). Relations between
semantic labels and the corresponding words are learned automatically from
a large annotated training corpus and stored in the form of model parameters.

Is there any tram going to around 11 pmKošutka

IndefQ VType Travel ToDir District TimeAt Num TM

Vehicle

Is There

TravelReq

Hour

TimeDestPlace

Figure 3.4. A tree representation of semantic knowledge

The central characteristic of tree structured representation is that individ-
ual concepts appear as nodes in a tree, with component nodes attached below
them. For example, Time concept has component nodes TimeAt, Hour, TM
in figure 3.4. The leaves of the tree are words of an utterance. It is often
required that the order of component nodes must match the order of words
they correspond to.

21

3.3.1 Flat Concept Parsing

There is a class of parsing methods which model the semantic parsing as a
linear(flat) process rather than a hierarchic one. These methods are called
Flat concept parsing methods (borrowed from [You02b]) in this work. Since
the output of the semantic parser has to be structured there is a trick that
makes the flat concept parsing to produce structured output (this trick is
explained at the end of this section).

The Flat concept parsing is exactly the same process as the morphological
tagging (described in 2.1). That means that you can take advantage of
existing algorithms for morphological tagging. The main difference between
morphological tagging and flat concept parsing is that instead of assigning
morphological tags to the corresponding words, semantic labels are assigned
to the corresponding words.

Is there any tram going to around 11 pmKošutka

IndefQ VType Travel ToDir District TimeAt Num TMIs There

Figure 3.5. Example of flat concept parsing result.

The figure 3.5 shows a semantically labeled sentence. Some of the general
terms are tagged with identical concepts (e.g. “is” is tagged with concept Is).
A variety of methods (e.g. Hidden Markov Model tagger, Brill’s tagger [Bri95]
etc.) can be used to perform such a semantic labeling. The Hidden Markov
Model (HMM, hereafter) approach is described in the following subsection.

Hidden Markov Models for Flat Concept Parsing

In the noisy channel model (fig. 3.6), the utterance production is modeled
as follows: The user thinks in concepts (C) and produces actual words (W)
in the presence of a noise (speech errors, actual lexeme selection from a
synonymy class etc).

Realization
Concepts Words

Noise

C W

Figure 3.6. The noisy channel model.

22

The statistical decoder (3.4) determines the input concept sequence Ĉ
from which W is most likely arisen (Ĉ is not necessary the same as the
original C). Using Bayes’ rule and with respect to the fact that the word
sequence (W) is fixed we get equation 3.5:

Ĉ = arg max
C

P (C|W) = (3.4)

= arg max
C

P (W |C)P (C)

P (W)
= arg max

C
P (W |C)P (C) (3.5)

where the P (W |C) is often called the lexical model and the P (C) is referred
to as the semantic model.

In this work we assume left-to-right decoding. The actual word/concept
depends only on previous words/concepts. The equation 3.5 can be refor-
mulated by using the chain rule (3.6). Naturally, such model would require
substantial amount of trainable parameters. Therefore, the context(history)
should be limited (3.7).

Ĉ ≈ arg max
C

{
T∏

t=1

P (wt|W t−1
1 , Ct

1)P (ct|Ct−1
1)

}
≈ (3.6)

≈ arg max
C

{
T∏

t=1

P (wt|W t−1
t−m, Ct

t−n+1)P (ct|Ct−1
t−p)

}
(3.7)

where T = |W | = |C| is the length of the utterance, W t2
t1 denotes word

sequence (wt1 , ..., wt2), Ct2
t1 denotes concept sequence (ct1 , ..., ct2), t is “time”

and m, n, p denote lengths of contexts.
If m = 0, n = 1, p = 1 we get conventional 1st order Markov model (as

defined in appendix A.1). But, the 2nd order Markov model (p = 2, see in
eq. 3.8) can be still reliably trained and is more often used for its higher
predictive capability.

Ĉ ≈ arg max
C

{
T∏

t=1

PS(ct|ct−1, ct−2)PY (wt|ct)

}
(3.8)

where PS is the transition probability matrix and PY is the output probability
matrix (see formal definition of Markov model in appendix A.1). Please note
that all the assumptions presented in equations 3.6 – 3.8 involve a certain
level of simplification needed to make the model computationally feasible.

The goal of decoder is to determine the most likely sequence of states
given the input data (W) and model parameters (λ = (PS, PY)):

Ĉ = arg max
C

P (C|W,λ) (3.9)

23

The decoding is usually solved by a variant of Viterbi algorithm (3.10–
3.13) which is an application of dynamic programming13 technique. The most
likely path from the beginning to state i is computed as the maximum of all
previous states multiplied by the transition probability PS and the output
probability PY (follows from 3.6 – 3.8):

1. Initialization:

δi(0) =

{
1 if i = 0, c0 is initial state

0 if i 6= 0
(3.10)

2. Induction:

δi(t) = max
j
{δj(t− 1)PS(ci|cj, ...)}PY (wt|ci) (3.11)

ψi(t) = arg max
j

{δj(t− 1)PS(ci|cj, ...)} (3.12)

3. Most likely state sequence backtracking:

ĉ(T) = arg max
i

δi(T) initialization

ĉ(t− 1) = ψĉ(t)(t) induction (3.13)

where δi(t) is the probability of getting to state ci at time t through the most
likely path, ψi(t) a backpointer which points to the state in time t− 1 from
which the optimal state in time t was reached and ĈT

1 is the resulting state
sequence which most likely generated word sequence W T

1 .
When we come to higher order Markov model the question of pruning

becomes vital. The beam search pruning (3.14) seems to be a good choice of
pruning because it delivers high speedup (approximately by factor of thou-
sands) at the cost of low precision loss.

δi(t)

{
≥ θ maxj(δj(t)) state is preserved

< θ maxj(δj(t)) state is discarded ⇒ δi(t) = 0
(3.14)

where θ is a threshold.
The Markov model could be trained by supervised or unsupervised train-

ing. The supervised training needs a semantically annotated (like in fig
3.5) corpus. Then, the parameter estimation is only a matter of frequency

13Dynamic programming is a class of effective solution methods which compute the
following state based on optimal computation of a previous state.

24

counting and an appropriate smoothing. The 3.15 shows MLE14 of model
parameters.

PS(ct|ct−1, ct−2) =
countC3(ct, ct−1, ct−2)

countC2(ct−1, ct−2)

PY (wt|ct) =
countWC(wt, ct)

countC(ct)
(3.15)

Certainly, these MLE estimates need to be smoothed. Despite the fact
that papers are not usually precise about the details of the implementation
(like smoothing) the good choice of smoothing seems to be the same as in
TnT tagger (presented in section 2.1).

Unsupervised training is a harder task. Although the unsupervised train-
ing allows to significantly reduce the human effort needed to prepare the data,
fully unsupervised training proved to be impossible, because the structures
resulting from unsupervised training bear a little resemblance to any human-
made linguistic structures. Thus, it appears that some priori knowledge must
be present during the unsupervised training. A good balance between priori
knowledge and model performance is shown in [HY05]. This approach is
called abstract semantic annotation and will be described in section (3.3.7 –
Hidden Vector State model) in detail. The actual parameter estimation is
done by using Forward-Backward (Baum-Welch) algorithm (more details in
[Rab89]), which is an application of the EM15 algorithm.

To illustrate the tagging process an example follows. In the HMM se-
mantic tagging approach to flat concept parsing, the utterance “Is there any
tram going to Koutka around 11 pm?” could be tagged according to the
figure 3.7. The model stays in the same state Dummy for first two words,
then it stays in the state VehicleType for next two words and so on.

Is there any tram going to around 11 pmKošutka

Dummy VehicleType Travel ToPlace AtTime

Figure 3.7. HMM semantic tagging.

Although this method is also used as a stand-alone semantic decoder
([Pie92], [Min99]) it suffers from a serious problem. It does not model the
semantics as a hierarchic structure and therefore it is not capable of capturing

14MLE = Maximum Likelihood Estimate
15EM = Expectation Maximization [Dem77]

25

long dependencies. For instance, consider the example sentence borrowed
from [CJ00]. In this example (illustrated in Fig 3.8) we try to predict the
word after from its history. A 3-gram approach (A) would predict the word
after from [7, cents], whereas it is intuitively clear that the strongest predictor
(B) would be [ended], which is outside the reach of even 7-grams.

the contract ended with a loss of 7 cents trading as low as 9 centsafter

A

B

Figure 3.8. Long dependencies illustration.

The use of flat concept parsing

If it is desired to use this approach (incapable of modeling hierarchic struc-
tures) as a stand-alone semantic decoder able of producing structured out-
put, the semantic label itself can be structured. For illustration, we can
borrow an example from [Min99]. Figure 3.9 shows the conversion of seman-
tically labeled sentence “probably sometime between nine and five would be
good” (top) to corresponding semantic tree (bottom). The semantic labels
are structured in this example, the components of a label are enclosed by
parenthesis <>.

Although this approach is surpassed due to its problems by more so-
phisticated approaches (presented later), it is useful to present it here for
two reasons. First, it provides the theoretical basis for Vector-state Markov
Models (3.3.4). Second, it is used to determine the so called preterminal
symbols in probabilistic grammars approach (3.3.2).

3.3.2 Probabilistic grammars for Semantics

A probabilistic context-free grammar (PCFG) for semantics logically follows
from semantic grammars (presented in 3.2.2). Instead of creating the gram-
mar manually, the grammar is inferred automatically from the data. The
form of semantic analysis supported by the PCFG model is presented in
figure 3.10.

In statistical parsing the PCFG has to determine the most likely parse
tree given an input utterance. Because of its recursive nature, the probability
of a parse tree has to be computed recursively. For better understanding,
we first define the probability of a string given a grammar (expressed by

26

<interj>
<temp><point><time_unit>
<temp><interval>
<temp><interval><start_point><time><hour>
<temp><interval>
<temp><interval><end_point><time><hour>
<agree>
<agree>
<agree>

probably
sometime
between

nine
and
five

would
be

good

<interj>

probably sometime between nine and five would be good

<temp>

<point>

<time_unit>

<interval>

<start_point>

<time>

<hour>

<start_point>

<time>

<hour>

<agree>

Figure 3.9. Conversion of structured semantic labels into a semantic tree.

Is there any tram going to around 11 pmKošutka

IndefQ VType Travel ToDir District TimeAt Num TM

Vehicle

Is There

TravelReq

Hour

TimeDestPlace

Figure 3.10. Example of PCFG semantic analysis. Preterminal symbols are marked with green
color.

the β function). Then we use the β function to derive an algorithm for the
computation of the best parse tree.

When we adopt bottom-up approach, we can compute the probability
of a substring given a grammar using inside probabilities (βj(p, q)). Inside
probability formula for binary branching trees is defined in equation 3.16
and stands for probability of nonterminal Nj built up from a sequence of
words W q

p = wp, ..., wq. The β function sums the probability of all ways

27

that a certain constituent (Nj) can be built out of two smaller constituents
by varying what the labels of the two smaller constituents are (Nr,Ns) and
which words each spans (wp, ..., wd and wd+1, ..., wq).

βj(p, q) =
∑
r,s

q−1∑

d=p

P (Nj → NrNS)βr(p, d)βs(d + 1, q) (3.16)

The β function can be easily generalized for trees with general branching
(eq. 3.17). But the notation of generalized formula is complicated.

βj(p, q) =
∑

Q≤d−p+1

∑

{N1...NQ}

∑

IQ
0

P (Nj → N1...NQ)

Q∏
q=1

βq(I(q− 1)+1, I(q))

(3.17)

where N1...NQ varies over all possible right sides of rule Nj and function IQ
0

partitions sequence of words wp...wk into Q+1 parts including the beginning
p − 1 in all possible ways (e.g. let Q = 3 and the partitioned sequence
be {w3, w4, w5, w6} then I3

0 = {2, 3, 4, 6} and I3
0 = {2, 4, 5, 6} and I3

0 =
{2, 3, 5, 6}).

The derivation of the β function for both cases is demonstrated in fig.
3.11

Figure 3.11. Derivation of inside probabilities for a binary branching tree (left) and for a
general tree (right).

After initialization (3.18) we can compute the probability of a string ac-
cording to the formula 3.19.

βp(k, k) = P (Np → wk) ∀k ∈ (1, T) (3.18)

βroot(1, T) (3.19)

where T = |W | is the length of the string.
Now, we focus on the initialization for a moment. Nonterminal symbols

Np in equation 3.18 are called preterminal symbols. Preterminal symbols

28

(marked with green color in fig. 3.10) are the nonterminal symbols just
above the words. After the definition of a lot of independence assumptions
for PCFG (see in appendix A.3), the PCFG is too weak to reliably pre-
dict preterminal symbols because PCFG computes the probability of a rule
P (Np → wk) as P (wk|Nj), so no context is involved. Thus a flat concept
parsing technique (section 3.3.1) can be used to determine the preterminal
symbols. Using the flat concept parsing technique for initialization we need
to redefine the formula 3.18. There are two options how to redefine the for-
mula depending on the style of the result of the flat concept parser. If the
flat concept parsing technique assigns the most probable concept to each cor-
responding word we use the formula 3.20. If it assigns more concepts to each
word with corresponding probability distribution, we use the formula 3.21.

βp(k, k) =

{
1 if Np = ck

0 otherwise
(3.20)

βp(k, k) =P (ck,i|wk) for Np = ck,i (3.21)

where ck/ck,i is/are the concept/concepts assigned to word wk by a flat con-
cept parser and Np is preterminal symbol which refers to the concept ck.

Now, we can use the definition of the β function to find the most likely
parse for an utterance given a grammar. Instead of summing the probabilities
of all ways in which a certain constituent (Nj) can be built, we select the
way with the maximum probability. Thus we substitute Σ for maximum in
3.16 and we get 3.24. The whole algorithm is very similar to the Viterbi
algorithm and is described in 3.22–3.26.

1. Initialization:

δp(k, k) = P (Np → wk) ∀Np ∈ N, 1 ≤ k ≤ T (3.22)

ψp(k, k) = wk ∀Np ∈ N, 1 ≤ k ≤ T (3.23)

2. Induction:

δj(p, q) = max
r,s

max
p≤d<q

(P (Nj → NrNS)δr(p, d)δs(d + 1, q)) (3.24)

ψj(p, q) = arg max
(r,s,d)

(P (Nj → NrNS)δr(p, d)δs(d + 1, q)) (3.25)

3. Most likely parse tree backtracking:

B(ψ1(1, T)) initialization

B(ψj(p, q)) = NODE(Nj, B(left), B(right)) induction

B(wk) = wk termination (3.26)

29

where δj(p, q) is the highest inside probability parse of a subtree rooted in Nj

and spans from wp to wj. ψj(p, q) is a list of three integers recording the form
of the rule application which had the highest probability (similar to back-
pointers in Viterbi). We try to reconstruct the parse tree using the function
B which recursively builds the most likely parse tree from start symbol N1

that spans over entire utterance (w1, ...wT). Function NODE(Nj, left, right)
defines a node with name Nj and with left and right subtree. Functions left
and right take left and right pointer from ψj(p, q). The building of the tree
stops when the leaf (a word of the utterance) is reached.

The initialization step in 3.22 can be computed by 3.20 or 3.21. The
induction step (in 3.24) assumes only binary branching. The generalization
can be done similarly to the generalization of the β function (3.17). Presented
approach assumes bottom-up parsing. The most likely parse tree can as also
be computed by top-down approach using outside probability ([MS01], page
395).

Efficient parsers do not use the basic approach presented in 3.22–3.26
directly, but the approach is improved to be more efficient. The parsing is
usually accomplished by a probabilistic variant of the Chart parsing, CYK16

or Early algorithm in practise. These algorithms share the same core logic
(the so called chart structure) although the mightiest of them, the Early, is
far more complicated.

A basic chart parser [All95] uses a chart structure to record every con-
stituent built during the parsing. The chart structure contains partial-parses
(δj(p, q) values in equation 3.24). The CYK algorithm ([JM00], chapter 12)
is optimized for CFG languages written in Chomsky normal form(CNF)17.
Early algorithm [Ear70] uses so called dot rules to indicate the progress made
in recognizing a rule. Early algorithm is based on the application of Predic-
tor, Scanner and Complementer operators.

All these parsers go left-to-right during parsing. A basic chart parser
and CYK build the parse tree bottom-up. Early builds it top-down. All
these algorithms have the asymptotic time complexity O(T 3), where T is the
number of words in an utterance.

Again, there are two ways to learn the rules and their probabilities. The
simpler way is to use a corpus of already parsed sentences (supervised train-
ing). Such a corpus is called a treebank. We create a new rule each time we
find that a nonterminal N is expanded into a string α in the training set.
The probability of each expansion of a nonterminal N can be computed by

16Cocke-Younger-Kasami
17A formal grammar is in Chomksy normal form iff all rules are of the form: A → BC

or A → a or S → ε, where A,B,C are nonterminals, a is terminal, S is the start symbol
and ε is the empty string.

30

counting the number of times when expansion occurs and then normalizing.

P (N → α|N) =
Count(N → α)∑
γ Count(N → γ)

=
Count(N → α)

Count(N)
(3.27)

When a treebank is unavailable, unsupervised training has to be used.
The standard algorithm for unsupervised PCFG training is called the Inside-
Outside algorithm, which is again an EM training algorithm. The basic as-
sumption is that a good grammar is one that makes the sentences in the
training corpus likely to occur, and hence we seek the grammar that maxi-
mizes the likelihood of the training data. But there are problems. While the
algorithm is guaranteed to increase the probability of the training corpus,
there is no guarantee that the nonterminals that the algorithm learns will
have any resemblance to the kind normally designed by a human. More over
the algorithm usually gets stuck in a local maximum during learning. That
means that the algorithm is very sensitive to the initialization of the param-
eters. The Inside-Outside algorithm and its problems are discussed further
in [MS01] in chapter 11. The section 12.2 in [MS01] contains a solution
to Inside-Outside algorithm problems. The solution is based on a partially
unsupervised learning.

There are several key advantages of a hierarchical model when compared
to a flat model discussed earlier. Firstly, the concepts are linked to a superior
concept (e.g. Station to the SourcePlace, in a public transport domain).
In more complex queries this type of explicit binding can be important.
For instance in the utterance “I want to travel by the tram that goes from
Slovany” it is crucial to attach the source station (Slovany) to the vehicle
(tram) and not to the root of the sentence. Attaching to the root would
mean that the user wants to travel from Slovany and it needs not be true.
A flat concept parse can be adapted to work with shallow dependencies,
but such a deep dependence would be out of its reach. Negative sentences
represent the same problem. Here it is crucial to determine what is negated
and what is not.

Secondly, the ability to create preterminal symbols with distinct model
from making nested hierarchic semantic concepts makes it possible to avoid
fragmenting the training data through arbitrary partitioning of attribute
values. For example, in figure 3.7 the places are divided between arrival
(ToPlace) and departure (FromPlace)18. That means that the model has in
average only half of the examples to learn from. On the contrary, a hierarchic
model links a Place to the Departure or Arrival concept and thus allowing
the learning algorithm to learn the Place concept from all examples.

18The concept (FromPlace) is not shown in the figure.

31

At last but not at least, this model is able to capture long dependen-
cies. The problem of long dependencies was discussed in 3.3.1 – HMM Flat
Concept Parsing.

But, PCFGs also have their problems. In particular, they are significantly
more complex compared to HMMs. Thus they are computationally more ex-
pensive, especially when implementing Inside-Outside algorithm (This algo-
rithm computes the α19 and β functions for all words in all training sentences
for each iteration). PCFGs also suffer from normalization problems because
the probabilities of utterances with complex parse trees consisting of many
nodes are underestimated. It is because the probability of a smaller tree is
higher than the probability of a larger tree (for more details please consult
[MS01] – section 11.1).

3.3.3 Probabilistic Recursive Transition Networks

Probabilistic Recursive Transition Network (PRTN) model is another way of
dealing with recursion that is strongly related to PCFG. In fact without any
extension, these two formalisms are equivalent and have the same algorithms
for training and decoding.

The recursive transition network (RTN) principle is based on FSA20. The
difference between a RTN and a FSA lies in how the nonterminals are hand-
led. In a RTN, every time the machine comes to an arc labeled with a
nonterminal, it invokes a subroutine associated with that nonterminal. The
subroutine invocation process places current state onto a stack, jumps to the
nonterminal network and then jumps back when that nonterminal has been
parsed.

The figure 3.12 shows parsing of the nonterminal A in the network S.
During transition from state S to state S1 the current state (S) is placed
onto a stack, the network A is activated and traversed from A to A3. Then
the state S is taken from the stack and transition from S to S1 is completed.
Of course, traversing from A to A3 involves jumping to network B and since
network B contains self reference it can invoke itself repeatedly.

Probabilistic RTN (PRTN) adds a probability p to each transition from
state Sa to state Sb.

P (Sb|Sa) = p, 0 ≤ p ≤ 1 (3.28)∑
Si

P (Si|Sa) = 1 (3.29)

19The α function stands for the so called outside probability. It is defined similarly to
the β function (see [MS01] – 11.3.2).

20Finite State Automaton, for definition see [All95] – section 3.5

32

Figure 3.12. Recursive transition network model and its relation to a context-free grammar.

If we want to strengthen the predictive power of PRTN we can extend
the context. For example we can take two preceding states into account.
Then the probability of a transition is computed by formula P (Sc|Sa, Sb). In
fig. 3.12 the arc from B to B1 has probability P (B1|B,A1) or P (B1|B,S2)
depending on the network that invoked B. Using this extension of PRTN,
the algorithms for training and decoding have to be significantly modified.

As long as the subroutine invocation stack is unlimited the PRTNs have
the same descriptive power as the PCFGs. Every PCFG can also be easily
converted to a PRTN and vice versa. The conversion process gets slightly
complicated when a kind of PRTN minimization is involved. The figure 3.12
shows a grammar and corresponding minimized PRTN. The minimization
here consists in sharing states A1 – A3 by rules 2 and 3.

3.3.4 Vector-state Markov Model

The key feature of the 1st order Markov model (introduced in section 3.3.1) is
that the current state at time t holds all of the information needed to account
for the observation at time t and the transition to a new state at time t + 1.
It is this property which gives the model its mathematical simplicity. The
Vector-state Markov Model [You02b] improves the basic model by extension
of the state space to record broader context. Every Markov state is extended
to contain a vector of semantic concepts. The vector of concepts is utilized
to capture the hierarchic structure of an utterance.

The information in a parse tree relating to any single word can be stored
as a vector of node names starting from the preterminal and ending in the
root node. For instance the state associated with the word “tram” (in fig.

33

Is there any tram going to around 11 pmKošutka

Type District

Vehicle

Travel

Hour

TimeDestin

Travel
Vehicle

Travel
Destin

Travel
Vehicle
Type

Travel Travel Travel
Destin
District

Travel
Time
Hour

Travel
Time

Travel
Time

Figure 3.13. Example of a right branching tree and corresponding vector state sequence.

3.13) contains a semantic vector [Type,Vehicle,Travel]. Complete parse tree
can be represented by a sequence of semantic vectors (see fig. 3.13). If the
nodes in a parse tree are all distinct from each other, there is a one-to-one
mapping between semantic vector sequences and a parse tree. The semantic
vector has indeed the structure of a stack because new nodes are put at the
end of the vector and the last nodes are taken first from the vector while
parsing a sentence.

The parsing of a sentence (see fig. 3.13) works within Vector-state Markov
model in the following way: the parser goes left to right, each time a word is
processed, a transition based on current state is triggered. Every transition is
constrained to take the form of stack shift (a number of nodes are removed)
followed by a push of one or more nodes. Please note, when the transition
has exactly the form of removing one node followed by pushing of one node,
we get an ordinary 1st order Markov model.

Given an unlimited stack, any PCFG formalism (see sec. 3.3.2) can be
converted into a Vector-state Markov Model. The problem, however, is that
in doing so the state space rapidly becomes huge. Thus, the form of transi-
tions can be limited to alleviate the model complexity. The [You02b] proposes
following transition limitation: a stack shift followed by pushing at most one
node. The effect of this on parse tree of semantic concepts is to make it right
branching. The example in fig. 3.13 was made in this manner.

The generative process (eq. 3.30) associated with this model consists of
three steps for each word position t: (a) choose a value nt which represents
a number of removed nodes; (b) select a preterminal node cwt for word wt;
(c) select a word wt. As with the PCFG model, the probability distribution
P (W,C, N) can be decomposed either top-down or bottom-up. The top-down

34

decomposition is presented in 3.30:

P (W,C, N) =
T∏

t=1

(a)︷ ︸︸ ︷
P (nt|W t−1

1 , Ct−1
1)

(b)︷ ︸︸ ︷
P (ct[dt]|W t−1

1 , Ct−1
1 , nt) (3.30)

P (wt|W t−1
1 , Ct

1)︸ ︷︷ ︸
(c)

where C is matrix whose columns are vector stacks ~c; dt denotes the length
of the stack ~ct (dt = |~ct−1| − nt + 1); ct[dt] is a new preterminal symbol on
the top of the stack ~ct.

In the version of the Vector-state Markov model discussed in [You02b],
the components of eq. 3.30 are approximated by:

P (nt|W t−1
1 , Ct−1

1) ≈ P (nt|~ct−1) (3.31)

P (ct[dt]|W t−1
1 , Ct−1

1 , nt) ≈ P (ct[dt]|ct[1..dt − 1]) (3.32)

P (wt|W t−1
1 , Ct

1) ≈ P (wt|~ct) (3.33)

where ct[1..dt − 1] denotes stack elements 1,2,..,dt − 1.
Then, by substitution 3.31 – 3.33 in 3.30 we get the 3.34. This formula

is being used in practical applications.

P (W,C, N) ≈
T∏

t=1

P (nt|~ct−1)P (ct[dt]|ct[1..dt − 1])P (wt|~ct) (3.34)

The training of Vector-state Markov model is analogous to the training
of the HMM or the PCFG. The supervised training consists in events count-
ing, normalization and smoothing. The fully unsupervised training is again
impossible and partially unsupervised training has to be used. An excel-
lent example of partially unsupervised training was proposed and tested in
[HY05] and is discussed in section 3.3.7.

Unlike the PCFG model, this probabilistic model is well-suited to left-
right decoding. Since each partial path covering word sequence W t

1 contains
exactly the same number of probabilities, paths can be compared directly
without normalization.

The Vector-state Markov model extends the flat-concept HMM model
by expanding each state to encode the stack of a push-down automaton.
This allows the model to encode hierarchical context. This model stands
in between the HMM and PCFG model. With the limited stack it covers
regular languages only. However, by extending the capacity of the stack it
approaches the context-free languages. This model was proposed to be simple

35

and thus reliable and to cover natural language at the same time. The for-
merly described transition limitation covers right-branching languages only.
The [HY05] claims that majority of English sentences is right-branching.
Still, it is question whether Czech utterances are also mainly right branch-
ing.

3.3.5 Model training

We have two basic options for stochastic model training. It is

• supervised

• unsupervised

training. It is clear from previous sections that fully unsupervised training
is impossible for a nontrivial domain. Although the supervised training is
simple and makes the model to be robustly trained, it is too costly for a direct
usage. It seems to be wise to use the golden mean. That means that instead of
fully unsupervised training partially unsupervised training is used. The cost
of supervised training can be alleviated by a technique called bootstrapping.

The unsupervised training is usually solved by a variant of EM algorithm.
The particular algorithm is called Baum-Welch or Forward-Backward21 al-
gorithm for the HMM model training and Inside-Outside algorithm for a
PCFG model. There are two key moments in a partially unsupervised train-
ing. Firstly, the model should be initially trained on a small amount of
manually annotated data. Secondly, a minimal annotation has to be still
present during the unsupervised training process. Such a model is then ca-
pable of producing the same form of minimal annotation that it was trained
from. We can not expect full parse tree to be produced.

A major problem with supervised approaches is the need for a large anno-
tated training set. The bootstrapping approach decreases the effort needed
for annotation by an incremental building of a training set. It starts with an
initial small training set created by an annotator from scratch. The initial
training set is then used to train an initial parser using any of the supervised
learning methods mentioned in the previous sections. This initial parser is
then used to extract a larger training set from a part of the remaining unan-
notated training set. The extracted training set needs to be corrected by
hand. The new larger training set is then used to train a better parser and
so on. This process continues until the desired amount of data is annotated.
It is supposed that the human effort needed for correction is lower than the

21Baum-Welch and Forward-Backward are synonyms for the same algorithm

36

effort needed for building a training set from scratch. This becomes true
while the training set is growing larger and the parser is improving. There
is a few alternatives that reduce the human effort. A human annotator need
not always correct the automatic parses. He or she may for instance decide
whether the parse is correct or not and only correct parses proceed to next
training iteration. Or, the parser itself can select which parse it has the
biggest confidence in. Again, only these parses proceed to next iteration.
Then the training is fully automatic.

Manual ann.

Hand correction

Full annotation

EM estimatesSupervised training

Manual ann. Hand correction

Minimal annotation

Hand correction Hand correction H.C.

2. it.

1. it.

3. it.

5. it.

4. it.

Remaining data

Automatic ann.

Automatic ann.

Remaining data

Annotated data

Automatic ann.

R.D.

A.A.

Hand correction

Hand correction

H.C.

projection

(b)

(a)

All

Annotated data

Annotated data

Annotated data

Figure 3.14. Comparison of (a) the bootstrapping aided supervised training and (b) partially
unsupervised training. The gray intensity shows the annotator effort needed.

The partially unsupervised training estimates parameters of a model with
the lowest possible human effort cost. The bootstrapping technique signif-
icantly lowers the costs of the supervised training. But, the costs of the
supervised training with the bootstrapping are higher than the costs of the
partially unsupervised training (see the projection in fig. 3.14). However, the
model trained with the supervised training produces full parse trees. There-
fore, if the parse tree is not needed, unsupervised training should be preferred
and vice versa.

3.3.6 Evaluation

An appropriate evaluation metric is crucial for every parsing model because
it measures the effect of an alternation in a parser. A right evaluation metric
can help us to accept useful alternations and to deny ineffective ones.

37

We are not interested in semantic analysis for its own sake. Thus, in prin-
ciple the best way to evaluate semantic parsers is to embed them in a com-
plete system and to investigate the differences that the various parsers make
in a task-based evaluation. However, a desire for simplicity and modulariza-
tion often means that it would be better to have metrics on which a parser
can by easily evaluated without the necessity of evaluation of a complete
system. So we try to create a parser evaluation which would hopefully reflect
the performance of the complete system. The evaluation is mostly based on
the comparison between the result of our system and the result of the hand
annotation, which we regard as a gold standard.

One of the simplest metrics is the exact match criterion. The exact match
criterion is a binary function

δ(At = Ht) =

{
1 if At is exactly equal to Ht

0 otherwise
(3.35)

that awards the parser 1 point iff the parser output At is exactly equal the
hand annotation Ht for the t-th testing utterance.

The exact math criterion is, however, sometimes too strict and we need
a more fine-grained criterion. Such a criterion should award the parser a num-
ber in the 〈0, 1〉 interval according to how the computer results match the
human results.

We use the error rate and accuracy metric if we compare single events
(e.g. semantic labels in a Flat concept parsing technique) and the parser
produces only one answer. The recall and precision metric can be used
whenever the parser produces more answers (or no answer) for a word in an
utterance. And the PARSEVAL metric is used for comparing parse trees.

For the error rate - accuracy and the recall - precision metrics we define
following functions:

• Out(wt) - set of output answers for the word wt

• True(wt) - single correct answer

• Errors(S) =
∑T

t=1 δ(Out(wt) 6= True(wt)) - number of mistakes made
by a single-output parser on the test set S

• Correct(S) =
∑T

t=1 δ(True(wt) ∈ Out(wt)) - number of events, where
the multiple-output parser produced at least one correct answer

• Generated(S) =
∑T

t=1 |Out(wt)| - number of generated answers

38

where S is the test set and T = |S| is the length of the test set.
The error rate (Err) expresses the percentage of wrong answers per word

and the accuracy (Acc) the percentage of correct answers for a single output
parser. The measures are formally defined in 3.36 and 3.37:

Err(S) =
Errors(S)

|S| (3.36)

Acc(S) =
|S| − Errors(S)

|S| = 1− Err(S) (3.37)

The recall (equation 3.38) shows how many correct answers the multiple-
output system was able to reveal per word. It is easy to develop a system
having the precision of one. Such a system can easily assign all possible labels
or tags to each word. But, such a system would have very low precision
(equation 3.39) measure. Because, the precision measures how many of the
answers that the system returned is actually correct (a lot of incorrect answers
means a low precision). It means that recall and precision are opposing to
one another since a system that tries to maximize precision will lower its
recall score and vice versa. A proper parser should balance both recall and
precision. For a direct system comparison, the precision and recall can be
merged into one value called the F-measure (eq. 3.40). The F-measure is
different to the mean in terms of disqualifying extreme systems (system with
very high precision and very low recall and vice versa). Therefore, it also
expresses the system ability to balance both recall and precision.

R(S) =
Correct(S)

|S| (3.38)

P (S) =
Correct(S)

Generated(S)
(3.39)

F (S) =

(
α

P (S)
+

1− α

R(S)

)−1

(3.40)

where the parameter α ∈< 0, 1 > is used to distribute the preference between
the recall and the precision. When α is greater than 0.5 the precision is
favored, when α is less than 0.5 the recall is favored and when α = 0.5 the
precision and recall are given equal weight.

The PARSEVAL evaluation (described in [MS01]) is used for comparing
parse trees with a hand-made gold standard annotation. Every tree can be
represented in a bracketing notation where the brackets denote the span of
a subtree. For example, the bracketing notation of the tree in the figure

39

3.13 is: TRAVEL-(Is there VEHICLE-(any TYPE-(tram)) going DESTIN-
(to DISTRICT-(Košutka)) TIME-(around HOUR-(11) pm)).

Then in PARSEVAL evaluation, three basic measures are proposed: pre-
cision is the number of brackets in the parse tree matching those in the
correct tree, recall measures the number of the brackets in the correct tree
that are in the parse tree, and crossing brackets gives the average number of
constituents in the tree that cross over constituent boundaries in the other
tree.

The following example (3.15) helps to understand the PARSEVAL metric.
Let 3.15-a be the gold standard parse tree and the 3.15-b be the candidate
parse produced by a parser in the bracketing notation. Then we start by
extracting the ranges which are spanned by subtrees. The ranges for gold
standard and candidate parse tree are represented by GS (3.15-c) and CP
(3.15-d), respectively. The ranges are compared and the resulting intersection
of sets GS and CP is shown in INT1 (3.15-e) and in INT2 (3.15-f). The
intersection INT1 ignores the node labels. The intersection INT2 to the
contrary considers the node labels. The PARSEVAL measure computation
is finally shown in 3.15-g. The NC denotes the set of normalized constituents
(the PARSEVAL measure performs various ad hoc tree normalization, e.g.
ignoring unary branching nodes, etc).

The PARSEVAL measure is widely used, however, it suffers from many
problems: it is not very discriminative (especially for flat trees), it treats the
same parser mistake differently in different conditions, etc. The more com-
prehensive discussion about PARSEVAL problems is presented in [MS01].
The parser evaluation problematic is discussed on a specialized workshop22

hosted by LREC23 conference. Although a number of evaluation metrics for
parsers was proposed, no improved evaluation metric is yet taken as a new
standard.

3.3.7 Existing Systems

A variety of semantic analysis systems based on stochastic approach was
proposed and created during last two decades. Most of them use one of
the theoretical approaches presented in sections 3.3.1 – 3.3.4. The following
sections introduce some of the stochastic-based systems which illustrate the
theoretical models in practise.

22The last one was called Beyond PARSEVAL – Towards Improved Evaluation Measures
for Parsing Systems.

23International Conference on Language Resources and Evaluation.

40

(a) Gold standard tree in the bracketing notation:
TRAVEL-(Is there VEHICLE-(any TYPE-(tram)) going DESTIN-(to
DISTRICT-(Košutka)) TIME-(around HOUR-(11) pm))

(b) Candidate parse tree in the bracketing notation:
TRAVEL-(Is there VEHICLE-(any TYPE-(tram)) going DESTIN-(to
DISTRICT-(Košutka)) TIME-(around MINUTE-(11))) -(pm)

(c) The span ranges for gold standard tree:
GS = {TRAVEL-(1:11), VEHICLE-(3:5), TYPE-(4:5), DESTIN-(6:8),
DISTRICT-(7:8), TIME-(8:11), HOUR-(9:10) }

(d) The span ranges for candidate parse tree:
CP = {TRAVEL-(1:10), VEHICLE-(3:5), TYPE-(4:5), DESTIN-(6:8),
DISTRICT-(7:8), TIME-(8:10), MINUTE-(9:10), -(10:11) }

(e) The intersection without regard to node labels:
INT1= { VEHICLE-(3:5), TYPE-(4:5), DESTIN-(6:8), DISTRICT-
(7:8), HOUR-(9:10) }

(f) The intersection with respect to node labels:
INT2 = {VEHICLE-(3:5), TYPE-(4:5), DESTIN-(6:8), DISTRICT-
(7:8) }

(g) PARSEVAL measure computation:

Precision: P = |INT1|
|GS| = 5

7

.
= 71.4%

Recall: R = |INT1|
|CP | = 5

8
= 62.5%

Labeled Precision: LP = |INT2|
|GS| = 4

7

.
= 57.1%

Labeled Recall: LR = |INT2|
|CP | = 4

8
= 50.0%

Crossing brackets: CB = 1
Crossing accuracy: CA = 1− CB

|NC| = 3
4

= 75.0%

Figure 3.15. The PARSEVAL metric example

Chronus

An early statistical approach to semantic tagging is used in the CHRONUS24

system [Pie92]. In the CHRONUS knowledge representation, each unit of
meaning consists of a pair mj = (cj, vj), where cj is a conceptual relation
(e.g. origin, destination, meal in the ATIS [Pri90] flight domain), and vj is

24Conceptual Hidden Representation Of Natural Unconstrained Speech

41

the value with which cj is instantiated in the actual sentence (e.g. Boston,
San Francisco, breakfast).

The semantic processing in the CHRONUS system is composed of follow-
ing main components:

• Lexical parser

• Conceptual decoder

• Template generator

The lexical parser generates a lattice with all possible interpretations of
a string (e.g. the substring “b seven four seven” could be interpreted as “B
747” or “B7 47” or “B74 7”, etc). The preprocessing is task dependent and
reduces the model size.

The conceptual decoder provides a conceptual segmentation given the
lattice generated by the lexical parser. This conceptual segmentation maps
a sequence of words (wIj

, ..., wIj+Nj
) from the input utterance into a concept

cj:

S : (wIj
, ..., wIj+Nj

) → cj,∀j (3.41)

The conceptual decoder is modeled by a Markov process. The Viterbi
based decoder is generalized to work on a word lattice. The concept condi-
tional model is smoothed via back-off smoothing. The conceptual decoder
is similar to the parser described in the section 3.3.1 – HMM Flat Concept
Parsing. It is capable of being robustly trained, but it is not capable of
capturing hierarchical structures.

The template generator consists of a simple pattern matching procedure
that, given the conceptual segmentation, produces for each concept relation
cj the corresponding concept value vj.

The training of this model is supervised. The training is improved by a
process similar to bootstrapping (see sec. 3.3.5). The training starts with
a hand-made initial training set. A basic system is trained from the initial
training set. The basic system is a complete system that is able to generate
answers to questions. The remaining unannotated corpus is then processed
with the basic system and for every question an answer is generated. The
training corpus is annotated with right answers and the system can compare
its output with the correct answers. Only the utterances, which the system
answered correctly, are added to the training set with their automatic anno-
tation. Then, a new model is trained on the new larger training set. This
process is iterated until no new utterance can be added to the training set.

42

The semi-automatic training process is finished by hand-labeling of remain-
ing utterances (which the system was not able to annotate automatically).

Although the CHRONUS system is old, it is an elegant system that uses
several practical points: a preprocessing to reduce model size, the variant of
the bootstrapping training to reduce annotation costs and a simple model
(HMM) for robust training.

Hidden Understanding Model

The [Mil94] introduces the Hidden Understanding Model (HUM). The word
“hidden” refers to the fact that only words can be observed. The internal
states of the model are hidden and have to be derived from a word sequence.

In the HUM, the utterance is modeled by two statistical models:

• Semantic language model

• Lexical realization model

The semantic language model chooses the meaning to be expressed, ef-
fectively deciding “what to say”.

The lexical realization model generates words sequences once a meaning
is given, effectively deciding “how to say it”.

Both these models are treated as a PRTN (see 3.3.3). The problem of
understanding is then to find the highest probability path among all possible
paths in a PRTN:

P (Ĉ) = arg max
C

T∏
t=1

{
P (staten|staten−1, Hn) for the semantic lang. model

P (wordn|staten−1, Hn) for the lexical realiz. model

(3.42)

where Hn is the context (History) of a staten or a wordn. The context can
be for example staten−2, etc.

Effective search among all possible paths is performed by a modification
of Viterbi algorithm [Mil94]. Since the underlying model is a recursive tran-
sition network, the states for Viterbi search must be allocated dynamically
as the search proceeds. In addition, it is necessary to prune low probability
paths in order to keep the algorithm computationally feasible.

Both semantic and lexical model are trained in supervised manner. Tran-
sitions within the PRTN representing the data (the [Mil94] shows how to
transform data to a PRTN) are counted and normalized. Robustness of the
statistical model is improved through back-off smoothing and lexical classes

43

definition (see following section Hidden Vector State Model for the explana-
tion of lexical classes). A bootstrapping learning method is introduced in
[Sch96] to lower the expenses of training.

The Hidden Understanding Model is further improved in [Mil96] and in
[Sch96] through incorporating the syntactic information within the model.
Other models besides the semantic parsing model are defined in [Mil96] and
[Sch96] to make the whole utterance processing statistical. The utterance
is then processed in sequence by the semantic parsing model, the semantic
interpretation model and the discourse processing model.

Hidden Vector State Model

The Hidden Vector-state Markov (HVS) model is described in [You02b] and
in [HY05]. The performance of the model is tested with ATIS [Pri90] cor-
pus and with DARPA Communication Task (in [HY05]). The HVS model
is in fact the Vector-state Markov model (see section 3.3.4) that is trained
by a partially unsupervised learning method. The authors claim that the
provision of fully annotated data is not realistic in practice. Training from
partially annotated corpora is therefore crucial for practical applications.
Partially unsupervised training requires some priory knowledge about a do-
main.

The priori knowledge consists of the two following parts:

• A set of domain specific lexical classes.

• Abstract semantic annotation for each utterance.

Lexical classes typically group proper names into hypernym25 class. E.g.,
in a flight information system, typical classes might be CITY = {Boston,
Denver, New York, ...}, AIRPORTS = {Dulles, ...}, etc. These domain
specific classes can be usually extracted from the domain database schema.
The generic classes (covering times, dates, etc.) may be also included among
domain specific classes. Given these classes, all words in the training set are
replaced with corresponding lexical class when possible. This reduces the
size of the model.

The abstract semantic annotation lists a set of applicable semantic con-
cepts with the dominance relationship between them for each training utter-
ance. However, it does not take any account of word order or attempt to
annotate every part of the utterance. Every particular utterance that has the

25hypernym relates more general term with a lexeme, e.g. vehicle is hypernym of car,
for more detail see [JM00] – chapter 16

44

same database SQL query should have the same abstract semantic annota-
tion (for example, see figure 3.16). This is one of the requirements presented
in the section 3.1 which is called Canonical Form.

1. I want to go Chicago to arrive around 11am.
2. I need arrive about noon in New York.
3. I have to be in Boston at 10am.
4. Find flights arriving in Dallas mid-morning.

}
TRAVELREQ(

TOPLACE(
CITY,
TIMESPEC(TIME)

))

Figure 3.16. An abstract annotation of utterances carrying the same meaning.

The training of this model is defined in [HY05] and involves preprocessing,
parameter initialization and parameter re-estimation.

The preprocessing prepares the data for training. The [HY05] uses so-
called flat-start whereby all model parameters are initially made identical.

The parameter re-estimation is defined in [HY05] as follows: Let the
complete set of model parameters be denoted by λ, EM-based parameter
estimation aims to maximize the expectation of L(λ) = log P (N,C,W |λ)
given the observed data and current estimates. To do this, the 3.43 expression
has to be maximized with respect to λ̂:

∑
N,C

P (N,C|W,λ) log P (N,C,W |λ̂) (3.43)

Substituting eq. 3.34 into eq. 3.43 and differentiation lead to the following
re-estimation formulae:

P (nt|~c) =

∑
t P (nt = n,~ct−1 = ~c|W,λ)∑

t P (~ct−1 = ~c|W,λ)
(3.44)

P (ct[dt]|ct[1..dt − 1]) =

∑
t P (~ct = ~c|W,λ)∑

t P (ct[1..dt − 1] = c[1..dt − 1]|W,λ)
(3.45)

P (wt|~ct) =

∑
t P (~ct = ~c|W,λ)δ(wt = w)∑

t P (~ct = ~c|W,λ)
(3.46)

where δ(wt = w) is one iff the word at time t is w, otherwise it is zero.
The key components of the above re-estimation formulae are the like-

lihoods P (nt = n,~ct−1 = ~c|W,λ), P (~ct = ~c|W,λ) and P (ct[1..dt − 1] =
c[1..dt − 1]|W,λ). These likelihoods can be efficiently calculated using the
forward-backward algorithm. The formulae for the forward and backward
probabilities (α, β) are defined in [You02b] in detail.

The [You02b] also defines the formulae for model adaptation. Regardless
of how much training data is available, a semantic decoder will perform

45

Task ATIS DARPA
Recall 89.82% 87.31%
Precision 88.75% 88.84%
F-measure 89.28% 88.07%

Table 3.3. The performance of HVS model on ATIS and DARPA data

badly if the training data does not well-represent the test data. The model
adaptation can be used to increase the performance of semantic decoder.

The experiments conducted on ATIS corpus and DARPA Communicator
Travel Data in [HY05] are presented in table 3.3. The direct comparison of
the Flat Concept HMM model and the HVS model is furthermore contained
in [HY05]. The results show HVS model perform significantly better then
a HMM model in this area.

The HVS model solves the problem of the need to collect large quantity
of fully annotated tree-bank data. It proves that the Vector-state Markov
model is constrained enough to be trained by partially unsupervised training
whilst at the same time it is able to capture hierarchical dependencies.

On the other hand, the unsupervised training prohibits the model to
produce a full parse tree which could be a problem if we need the parse tree
for contextual interpretation.

Other systems

The above mentioned systems do not represent all significant stochastic sys-
tems recently created. They were chosen to demonstrate described models
in practise. There are other parsing systems that include for example the
system described in [Min99] which uses Hidden Markov models with struc-
tured semantic tags to perform semantic analysis. The [Pra04] uses support
vector machines, a powerful classifier, to perform shallow semantic analysis.

The authors of [CJ00] try to solve the problem of long dependencies by
introducing a new type of language model capable of capturing hierarchical
structures in binary branching trees. This model is then used in [CM01] to
create an information extraction system. The structured language model is
in [CM01] extended to include both syntactic and semantic information in
non-terminal nodes.

The Prague Dependency Treebank 2.0 (PDT 2.0) [Haj04], which is being
developed by the Institute of Formal and Applied Linguistics at the Charles
University would deserve its own chapter. But the extent of this work is
limited and the semantic within the PDT 2.0 is not fully developed yet.
Moreover the PDT 2.0 deals mainly with written language. Therefore, this

46

approach is described only shortly in this thesis. The language in PDT 2.0
is described by three main layers: Morphological, Analytical (syntax) and
Tectogrammatical (syntax–semantic). Morphological layer describes mor-
phology of words by structured tags that have 15 positions (every position
relates to a morphological category). The syntax description within this
approach covers a variety of syntactic phenomena (coordination, subcatego-
rization, gaps and so on). The tectogramatic layer stands in between the
syntactic and semantic description of a sentence. It describes semantic roles
of constituents together with the syntactic roles. A semantic layer will de-
scribe the semantic roles only but this layer has not been developed yet. The
research into this approach is targeted at inflectional languages, mainly at
Czech language. This approach has the ambition to cover the general lan-
guage. But the broad coverage is the main advantage and drawback of this
approach at the same time. The development is very slow and many theo-
retical problems have not been solved yet. Anyway, the research in this field
yields many important pieces of knowledge in the natural language process-
ing.

Since the semantic analysis is an important part of every NLU system,
there is a plentiful amount of other semantic analysis systems that were not
discussed in this thesis. The authors of [MW99] give a comprehensive list of
semantic analysis projects and various natural language corpora.

47

Chapter 4

Conclusions and Future Work

Stochastic systems have several advantages when compared to systems based
on expert knowledge. For example, in a system based on expert knowledge,
human must provide the sematic system with the exact instructions for ut-
terance parsing. Whereas, in the stochastic approach, human gives the com-
puter just the examples of the parsing for training utterances. Stochastic
systems infer parsing instructions by their own algorithms. The provision of
examples is much simpler and therefore less expensive than the provision of
exact parsing instructions. A less expensive development is one of the key
advantages of stochastic systems.

Significant portion of [MW99] deals with the portability of semantic anal-
ysis system. It arises from the experiments conducted in [MW99] that port-
ing1 a stochastic system is easier than porting a rule based system. The
portability is another key advantage of stochastic systems.

This thesis is a theoretical preparation for the development of semantic
analysis system that will serve in the project of City Information Dialogue
(CID) system [Mou04]. The analysis of a domain and the definition of con-
cept hierarchy have been done in [Mou04].

However, the main task is not to develop a dedicated parsing system for
CID domain. The primary goal of the future work is to develop a semantic
analysis system that will be capable of analyzing any domain. The process
of porting the system should consist merely in the provision of other training
data. Of course, a little tuning (preprocessing alternation, training constants
tuning) is inevitable during the process of porting.

Such systems currently exist (see section 3.3.7). The contribution of this
work should be to develop a system capable of working with a language that

1The term porting stands for the process of adapting a system to different domain than
it was originally developed for.

48

is inflectionally rich and has a relatively free word order (e.g. Czech language
and other languages from the Slavic language family).

The ultimate solution of the semantic analysis problem is to develop a uni-
versal system that would not be restricted to a domain. Such a system would
be able to analyze any utterance. There are, however, two principal prob-
lems of such a system: representation and ambiguity. There is currently no
domain independent and universal semantic representation formalism. More-
over, ambiguity in the unrestricted domain would be unmanageable.

4.1 Aims of Doctoral Thesis

1. Continue with the work in [Mou04] and develop a suitable formalism
for the CID domain description.

2. Assemble a team of annotators and lead them during annotation of
CID domain utterances. Perform various statistical measures on the
annotated corpus.

3. Choose a suitable algorithm for stochastic semantic parsing and pro-
pose alternations that enable the algorithm to work with language that
is inflectionally rich and has a relatively free word order (e.g. Czech
language and other Slavic languages).

4. Evaluate the performance of all the alternatives proposed and imple-
mented during the development of the semantic parsing system.

49

Appendix A

Definitions of Formal Models

This chapter gives the formal definition of all the models used in this thesis.
Besides the model definition, the sections refer to the solution of three basic
questions. The questions are:

1. Given the sequence of generated symbols Y = (y1, ..., yT) and a model1

λ, how do we efficiently compute P (Y |λ), the probability of the se-
quence Y , given the model?

2. Given the generated symbols Y , and the model λ, how do we find the
sequence of states from which Y is most likely generated?

3. How do we adjust the model parameters λ to maximize the probability
of training data?

A.1 Hidden Markov Models

A Markov model is a probabilistic system that can be described at any time
as being in one of a set of N distinct states, s0, s2, ..., sN . Every discrete
time instance, the current state emits one output symbol from the output
alphabet. A Hidden Markov Model (HMM) is a Markov Model, where the
sequence of states that the model passes through can not be directly observed
and is hidden.

Markov models have two properties. Suppose X = (X1, ...XT) is a se-
quence of random variables taking values in some finite set S = {s1, ...sN}
(the state space). Then, the Markov properties are:

1The model consists of model parameters.

50

• Limited horizon

P (Xt = st|Xt−1 = st−1,..., X1 = s1) =

P (Xt = st|Xt−1 = st−1) (A.1)

• Time invariant (stationary)

P (Xt = sk|Xt−1 = sr) = P (Xu = sk|Xu−1 = sr) (A.2)

The limited horizon property means that the probability distribution of
being in state sk depends only on limited history. In our case the probability
distribution depends only on one previous state. The model is then called 1st

order Markov model. When the model depends on k previous states (A.3)
the model is called kth order Markov model.

P (Xj = st|Xj−1 = st−1,..., X1 = s1) =

P (Xj = st|Xj−1 = st−1, ..., Xt−k = sn−k) (A.3)

The time invariant property says that the distribution of transitions be-
tween states does not change over time.

HMM is formally a five-tuple (S, s0, Y, PS, PY), where

• S = {s0, s1, ..., sN} is the set of states,

• s0 is the initial state,

• Y = {y1, y2, ..., yM} is the output alphabet,

• PS is the set of probability distributions of transitions from a state to
a state,

• PY is the set of output (emission) probability distributions.

The solution to the basic questions (see the introduction of this chapter)
is explained e.g. in [Rab89]. Question 1 is solved by the forward or backward
procedure. The algorithm that solves question 2 is usually called Viterbi. The
algorithm that solves question 3 is called Baum-Welch or Forward-Backward
reestimation algorithm.

51

A.2 Context Free Grammar

Context Free Grammar (CFG) is a 4-tuple G = (N, Σ, R, S), where

• N is a set of non-terminal symbols (or ”variables”). The non-terminals
are denoted by uppercase letters,

• Σ is a set of terminal symbols (disjoint from N). The terminals are
denoted by lowercase letters,

• R is a set of rules, each of the from A → α, where A ∈ N is a non-
terminal and α is a string of symbols from the infinite set of strings
(Σ ∪N)∗,

• S is the start symbol.

A string, denoted by a small Greek letter, is a sequence of terminals and
non-terminals (Σ∪N)∗. One string derives another one if it can be rewritten
as the second one via some series of rules application. More formally, if A → β
is a rule and α and γ are any strings, then we say that αAγ directly derives

αβγ, or αAγ ⇒ αβγ. Derivation α1
∗⇒ αm then consists of a sequence of

direct derivations α1 ⇒ α2, α2 ⇒ α3, ..., αm−1 ⇒ αm. A formal language LG

generated by a grammar G is a set of strings W composed of terminals which
can be derived from the start symbol S:

LG = {W : wi ∈ Σ∗ and S
∗⇒ wi} (A.4)

Parsing of a string ω ∈ Σ∗ is a process whereby an algorithm tries to
find the sequence of rules that are needed to derive string ω from the start
symbol S. A parse tree is a tree that shows the rules application hierarchy.

A.3 Probabilistic Context Free Grammar

Probabilistic Context Free Grammar (PCFG) is a 5-tuple G = (N, Σ, R, S, D),
where

• N is a set of non-terminal symbols (or ”variables”),

• Σ is a set of terminal symbols (disjoint from N),

• R is a set of rules, each of the from A → α, where A ∈ N is a non-
terminal and α is a string of symbols from the infinite set of strings
(Σ ∪N)∗,

52

• S is the start symbol,

• D is a function assigning probabilities to each rule in R.

To define the probability, several independence assumptions are made.
The assumptions are illustrated by examples that use the figure A.1. Exam-
ples contained in explanations examine the independency of the probability

P (A → α) of the rule A → α where α
∗⇒ wa...wb. The independence as-

sumptions are:

• Place invariance: The probability of a subtree does not depend on
where in the string the words it dominates are (this is like time in-
variance in HMMs). In figure A.1 the probability P (A → α) does not
depend on the positions a, b in the string.

• Independence of context : The probability of a subtree does not depend
on neighboring sub-trees. Thus, P (A → α|C, D) = P (A → α).

• Independence of ancestors : The probability of a subtree does not de-
pend on the parent (upper) node. Thus, P (A → α|B) = P (A → α).

w ...
1

w ... w ... w
a b T

A D

B

C

Figure A.1. Illustration of independence assumtion.

The probability that a given non-terminal A is expanded to the string α
depends only on the non-terminal A:

P (A → α|A) (A.5)

The probability is defined in such a way that the equation A.6 holds true
for all non-terminals.∑

i

P (A → αi|A) = 1 and 0 ≤ P (A → αi|A) ≤ 1 : ∀A ∈ N (A.6)

where αi are all the right hand sides of the rule with the left hand side A.
The solution to the basic questions (see the introduction of this chapter)

is explained e.g. in [MS01] – chapter 11. Question 1 is solved by the definition
of inside (so called β function) and outside probability (so called α function).
The algorithm that solves question 2 is a probabilistic parser (see sec. 3.3.2).
The algorithm that solves question 3 is called Inside-Outside algorithm.

53

A.4 Recursive Transition Networks

A Probabilistic Recursive Transition Network (PRTN) is a 4-tuple (A,B, Γ, Ξ),
where

• A is a transition matrix containing transition probabilities,

• B is an output matrix containing probability distribution of the output
symbols at each terminal transition. In the matrix, row and column
correspond to terminal transitions and list of words, respectively;

• Γ specifies types of transitions (see further),

• Ξ denotes an invocation stack.

According to the stack operation, transitions are classified into three
types:

1. Push – current state is pushed onto the stack Ξ.

2. Pop – the top most state is taken from the stack.

3. Transition not committed to a stack operation.

The reference to the solution of three basic questions follows. The ques-
tion 1 is solved by the definition of inside and outside probability, similarly to
the PCFG approach [HC94]. The question 2 can be solved by a generalized
Viterbi algorithm [Mil94]. The algorithm that solves question 3 uses inside
and outside probabilities [HC94].

54

Bibliography

[All95] Allen, J.: Natural Language Understanding. Benjamin/Cummings
Publ. Comp. Inc., Redwood City, California, 1995.

[Ben03] Beneš, V.: Sémantická analýza doménově roztř́ıděných dialog̊u (in
Czech), Thesis, Plzeň, Czech Republic, 2003.

[Bri95] Brill, E.: Transformation-Based Error-Driven Learning and Natural
Language Processing: A Case Study in Part-of-Speech Tagging, Com-
putational Linguistic, Volume 21(4), 1995, 543-565.

[CJ00] Chelba, C., Jelinek, F.: Structured Language Modeling, Computer
Speech and Language, Volume 14 (4), 2000, 283-332.

[CM01] Chelba, C., Mahajan, M.: Information Extraction Using the Struc-
tured Language Model, In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, 2001.

[Col03] Collins, M.: Head-Driven Statistical Models for Natural Language
Parsing, Computational Linguistics, Volume 29, Part 4, 2003, 589-638.

[Dem77] Dempster, A. P., Laird, N. M., Rubin, D. B. : Maximum Likeli-
hood from imcomplete data via the EM algorithm, Journal of the Royal
Statistical Society 39 (1), 1997, 1-38.

[Ear70] Earley, J.: An efficient context-free parsing algorithm. Communica-
tions of the ACM. Volume 13, Issue 2 1970, 94-102.

[Fel98] Fellbaum, C.: WordNet, an electronic lexical database. MIT Press,
Cambridge, 1998.

[Fin98] Fine, S., Singer, Y., Tishby, N.: The Hierarchical Hidden Markov
Model: Analysis and Applications, Machine Learning, Volume 32, Issue
1, 1998, 41-62.

55

[Haj04] Hajič, J.: Complex Corpus Annotation: The Prague Dependency
Treebank. Jazykovedný ústav Ľ. Štúra, SAV, Bratislava, Slovakia, 2004.

[HC94] Han, Y. S., Choi, K-S.: A Reestimation Algorithm for Probabilis-
tic Recursire Transition Network. In Proc. of the 15th conference on
Computational linguistics, Volume 2, 1994, 859 - 864.

[HH98] Hajič, J., Hladká, B.: Tagging Inflective Languages: Prediction of
Morphological Categories for a Rich, Structured Tagset, In Proc. of the
17th international conference on Computational linguistics, 1998.

[HY05] He, Y., Young, S.: Semantic processing using the Hidden Vector
State model. Computer Speech and Language, Volume 19, Issue 1, 2005,
85-106.

[JM00] Jurafsky, D., Martin, J.: Speech and Language Processing. Prentice
Hall, 2000.

[Mar93] Marcus, M. P., Santorini, B., Marcinkiewicz, M. A.: Building a
Large Annotated Corpus of English: The Penn Treebank, Computa-
tional Linguistics, Volume 19 (2), 1993, 313-330.

[Mil94] Miller, S., Schwartz, R., Bobrow, R., Ingria, R.: Statistical Language
Processing Using Hidden Understanding Models. Proc. ARPA Speech
and Natural Language Workshop, 1994, 278–282.

[Mil96] Miller, S., Stallard, D., Bobrow, R., Schwartz., R.: A Fully Statistical
Approach To Natural Language Interfaces. In Proc. of the 34th Annual
Meeting of the Association for Computational Linguistics, 1996.

[MW99] Minker, W., Waibel, A., Mariani, J.: Stochastically-based Semantic
analysis. Kluwer Academic Publishers, 1999.

[Min99] Minker, W., Gavalda, M., Waibel, A.: Hidden Understanding Mod-
els for Machine Translation. In Proc. ECSA, 1999.

[Mon74] Montague, R.: Formal Philosophy, Yale U.P., New Haven, 1974

[Mou04] Mouček, R.: Semantics in Dialogue Systems, Doctoral Thesis,
Pilsen, 2004.

[MS01] Manning, Ch.D., Schütze, H.: Foundations of statistical natural lan-
guage processing, The MIT Press, 2001.

56

[NJ98] Nancy, I., Jean, V.: Word sense disambiguation: The state of the
art, Computational Linguistics, Volume 24(1), 1998, 1-40.

[Pie92] Pieraccini, R., Tzoukermann, E., Gorelov, Z., Levin, E., Lee, C-H.,
Gauvain, J-L.: Progress Report on the Chronus System: ATIS Bench-
mark Results. In Proc. of the workshop on Speech and Natural Language,
1992.

[Pra04] Pradhan, S., Ward, W., Hacioglu, K., Martin, J., Jurafsky, D.: Shal-
low Semantic Parsing using Support Vector Machines. In Proc. of the
HLT/NAACL, 2004.

[Pri90] Price, P.: Evaluation of Spoken Language Systems: the ATIS Do-
main. In Proceedings of the third DARPA Speech and Natural Language
Workshop, 1990.

[PS04] Pala, K., Smrž, P.: Building Czech Wordnet, Romanian Journal of
Information Science and Technology 2004(7), 2004, 79-88.

[Rab89] Rabiner, L.R.: A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition, Proceedings of the IEEE vol. 77,
no. 2, 1989

[Rtn99] Ratnaparkhi, A.: A Maximum Entropy Model for Part-of-Speech
Tagging, In Proc. the Conference on Empirical Methods in Natural Lan-
guage Processing, 1999

[Sch96] Schwartz, R., Miller, S., Stallard, D., Makhoul, J.: Language Under-
standing Using Hidden Understanding Models. In. Proc. ICSLP, 1996.

[Tho00] Brants, T.: TnT – A Statistical Part-of-Speech Tagger, In Pro-
ceedings of the Sixth Applied Natural Language Processing, Seattle, Ca,
2000.

[You02a] Young, S.: Talking To Machines (Statistically Speaking). In Pro-
ceedings of the International Conference on Spoken Language Processing,
2002.

[You02b] Young, S.: The Statistical Approach to the Design of Spoken
Dialogue Systems. Tech. rep. CUED/F-INFENG/TR.433, Cambridge,
2002.

57

