
University of West Bohemia in Pilsen

Department of Computer Science and Engineering

Univerzitni 8

30614 Pilsen

Czech Republic

Triangle Strips For Fast Rendering
The State Of The Art And Concept Of PhD. Thesis

Petr Vaněček

Technical Report No. DCSE/TR-2004-05

April, 2004

Distribution: public

Technical Report No. DCSE/TR-2004-05

The State Of The Art And Concept Of PhD. Thesis

April 2004

Triangle Strips For Fast Rendering

Petr Vaněček

Triangle surface models are nowadays most often types of geometric ob-

jects description in computer graphics. Therefore, the problem of fast

visualization of this type of data is often being solved. The speed of high

performance rendering engines is usually bounded by the rate at which tri-

angulated data is sent into the machine. One can reduce the time needed

to transmit the set of triangles by compressing the topological information

and decompressing at the rendering stage. As neighboring triangles share

an edge, it is possible to avoid sending the common vertices twice by special

order of triangles, called triangle strip.

This work presents an overview and a comparison of existing stripifica-

tion methods. It also introduces a new stripification algorithm for terrain

models based on Delaunay triangulation that can be modified to handle

LOD. Finally an outlook for the future work is sketched out.

This work was supported by by the Ministry of Education of The Czech

Republic - project MSM 235200005..

Copies of this report are available on

http://www.kiv.zcu.cz/publications/

or by surface mail on request sent to the following address:

University of West Bohemia in Pilsen

Department of Computer Science and Engineering

Univerzitni 8

30614 Pilsen

Czech Republic

Copyright c©2004 University of West Bohemia in Pilsen, Czech Republic

Acknowledgments

I would like to thank to Prof. V. Skala for providing good conditions under which this work

was born. My thanks also belong to Prof. J. Stewart for a big inspiration and for the source

code of the tunneling algorithm, to X. Xiang and Prof. J. S. B. Mitchell for providing the

source code of FTSG and to D. Kornmann for technical support for his program. I also

would like to express my thanks to Prof. B.Žalik for a week full of interesting discussions

and new ideas. Last but not least I would like to thank to my advisor Doc. I. Kolingerov́a

for her time, care and patience . . .

Contents

1 Introduction 6

2 Triangle Strips 7

3 Methods 8

3.1 Direct methods . 10

3.1.1 SGI method . 10

3.1.2 Fast And Simple Triangle Strip Generation – Weighted SGI . . . 11

3.1.3 Fast Mesh Rendering Through Efficient Triangle Strip Generation

– SStrip . 12

3.1.4 STRIPE . 14

3.2 Duality based methods . 16

3.2.1 Fast Triangle Strip Generator – FTSG16

3.2.2 Easy Triangle Strips For TIN . 18

3.2.3 Tunneling for Triangle Strips in Continuous Level-of-Detail Meshes 20

3.2.4 Triangle Strips Guided by Simplification Criterion 23

3.3 Miscellaneous Approaches .24

3.3.1 Hamiltonian Triangulation . 24

3.3.2 Hierarchical Generalized Triangle Strips 26

3.3.3 Skip Strip . 27

3.3.4 Transparent Vertex Caching . 29

3.4 Overall Comparison . 31

3.4.1 Vertices . 33

3.4.2 Strips . 34

3.4.3 Rendering Speed . 34

3.4.4 Execution Time . 35

3.4.5 Memory Usage . 35

3.4.6 Conclusion . 36

4 Delaunay Stripification 49

4.1 Delaunay Triangulation .49

4.2 Delaunay Stripification .50

4.3 Test and Results . 55

5 Ideas and Future Work 58

4

A Activities 65

B Models 66

C Output Examples 68

5

1 Introduction

Triangle surface models (often calledmeshes) are nowadays the most often types of geo-

metric objects description in computer graphics. These models are often used for various

kind of applications such as CAD/CAM, VR, medical data or computer games. Therefore,

the problem of fast visualization of this type of data is often being solved.

The performance of today’s rendering hardware is usually very high and the speed of

the rendering is bounded not only by the power of the GPU but also by the the rate at

which the triangulated data is sent into the GPU. To decreasethe amount of data, one can

use some techniques to prevent sending of unnecessary triangles (e.g., visibility culling)

or some kind of simplification of complex objects (e.g., (C)LOD). Still it is important

to reduce the time needed to transmit the set of triangles by compressing the topological

information and decompressing at the rendering stage. As neighboring triangles share

an edge, it is possible to avoid sending the common vertices twice by a special order of

triangles, called atriangle strip.

Evans et al., showed that covering the mesh by an optimal set of triangle strips is NP-

hard [15]. To compute a stripification in a polynomial time, it is necessary to use some

heuristic that finds some local optimum. As the number of triangles in meshes grows as

fast as the power of GPUs and the bus bandwidths, the stripification topic is still very

important and many algorithms on stripification exists.

In this work, an overview of existing methods is presented (Chapter 3). Basic principles

of these methods are described with a short conclusion for each method. For all available

methods for 3D meshes, I have made an overall comparison of stripification quality, in-

cluding the running time of the methods and the rendering speed. I have been in contact

with many other authors during writing this work (Stewart, Xiang, Mitchell, Kornmann,

Pedrini) and all of them appreciated such a complex comparison. On the basis of the com-

munication it seems that a cooperation with some of these authors can be established.

I will also introduce a new stripification method based on theDelaunay triangulation

that was first published on the SCCG’03 conference (Chapter 4). This method produces a

stripification of a low quality, but it can be adopted for a visualization of LOD of terrain

models.

Currently I am working on a new algorithm based on a duality approach. Some sketches

of the algorithm as well as some ideas of a future work are discussed in Chapter 5.

6

2 Triangle Strips

A sequential tristripis a sequence ofn + 2 vertices that representsn triangles: in Figure

2.1 (a) the sequence (1,2,3,4,5,6) corresponds to triangles∆123, ∆234, ∆345 and∆456.

Using the sequential tristrip, the transmit cost ofn triangles can be reduced by the factor

of three (from3 · n to n + 2 vertices).

Figure 2.1: An example of a sequential triangle strip (a), a generalized triangle strip (b)

and a triangle fan (c).

There also exist situations where the triangle adjacency does not allow a sequential

encoding. In Figure 2.1(b) the sequence (1,2,3,4,5,6) produces an invalid triangle∆456.

An extra vertex has to be added to change the sequence to (1,2,3,4,3,5,6). This operation

is called aswapand tristrips with swaps are calledgeneralized tristrips. Still, the transmit

cost is reduced more than twice (from3 · n to n + 2 + swaps vertices).

In some special cases it is also possible to use a special typeof generalized triangle strip

called atriangle fan. Thefan is defined by the central vertex and its neighboring vertices.

In Figure 2.1(c) the fan is defined by a sequence (3,1,2,4,5,6). As the length of the fan is

usually very low (the average number of neighboring vertices in a usual mesh is six), it is

not used very often in practice.

7

3 Methods

In this section, a possible classifications of stripification methods are presented. Also an

overview and some comparison of existing methods is done. This comparison is based on

the references or on my own measurements if the source code isavailable.

A variety of different approaches for creating triangle strips were made. As the search-

ing of optimal stripification is NP-hard problem [15], all those algorithms use some kind of

heuristic function. According to the type of the heuristic function, it is possible to classify

stripification methods into three groups (this classification is used within the scope of this

work).

• Direct methods use the information about the triangle mesh –number of neighbors,

topological information about a region, etc.

• Duality based methods convert the mesh into a dual-graph [9](i.e., a graph where

a node represents a face and neighboring faces are connectedwith an edge in the

graph). These methods often produce a stripification with better properties than the

straightforward methods

• Miscellaneous approaches are using some other techniques to produce the stripifica-

tion. Usually, these methods build a stripification from a more general type of input

data (e.g., creating a triangulation together with the stripification from a set of points)

Very often, the heuristic function only decides in which direction the strip should con-

tinue. For such a decision only some local criterion is sufficient. To obtain a better stripifi-

cation, some global heuristic is necessary.

• Local heuristics use some local criterion to decide whetherto connect a triangle to

a strip or not. This criterion often leads to a stripificationwith a high number of

triangle strips. Furthermore, such stripification often contains a huge number of

short strips.

• Global heuristics are searching for triangle strips by using a global criterion. Usually

it takes a longer time to produce triangle strips by such an algorithm, but in most

cases, these strips are better. Many global algorithms are based on the graph duality.

Furthermore, the term ’optimal stripification’ is not uniquely determined. One can

optimize the stripification algorithm to produce low numberof vertices needed for strips,

to decrease the amount of data sent through the bus to the rendering engine and speed

8

up the rendering. As the initialization of a new triangle strip costs some extra time, it is

also desirable to minimize the number of generated trianglestrips. It is not possible to

minimize both these parameters at once – decreasing the number of triangle strips often

leads to increasing the number of vertices (due to higher number of swaps, needed to

preserve the strip) and vice versa. Very often, the stripification algorithms contain more

heuristic functions for vertex or strip optimization.

• Strips minimizing algorithms minimize the number of triangle strips. As the initial-

ization phase of a triangle strip takes some additional time, minimizing the number

of strips speeds up the rendering.

• Vertices minimizing algorithms minimize the number of vertices (swaps). Reducing

the number of vertices leads to higher performances, because there is lower bus traffic

and less transformations and lighting operations1.

To be able to visualize huge data sets, clipping or decimation are often used. To be able

to clip invisible regions, it is necessary to optimize the stripification to create local strips

(i.e, strips that traverse cross the whole triangulation).While using some model decimation

– usually by edge collapsing – triangle strips could be broken. To avoid these breaks, a

stripification that preserves triangle strips has to be used. There is also a possibility to use

some local repairs during the simplification process.

• Stripification for static meshes does not care about the changes in topology. While

using some kind of simplification, the number of triangle strips increases, due to strip

breaks.

• Stripification for CLOD tries to construct triangle strips that are being preserved

during the simplification.

1Some high-end graphic systems has a one-bit flag for triangleswaps, thus there is no necessity to mini-

mize the number of swaps.

9

3.1 Direct methods

As mentioned above, the direct methods use directly the information from triangle or

polygonal mesh, to produce triangle strips. Nearly all methods use the criterion of number

of neighbors (local criterion) to decide whether to connecta triangle to a strip or not.

3.1.1 SGI method

Akeley et al. [2] have developed one of the first stripification algorithms, known asSGI

or tomeshthat converts a fully triangulated mesh into triangle strips. It is a simple greedy

algorithm which uses a local criterion.

This algorithm (Figure 3.1) tries to build triangle strips which do not divide the remain-

ing triangulation into too many small pieces. The strip is starting with the triangle with

the least number of neighbors. Then a greedy heuristic is used to add adjacent triangles

with the least number of neighbors to a strip. If more triangles with the same number of

neighbors exist, the algorithm looks one step ahead. If there is no neighboring triangle, a

new strip is created. The algorithm stops after all triangles were added to strips.

while there is any triangle in the mesh do

start a new strip

choose a triangle with the least number of neighbors

add the triangle to the current strip

remove the triangle from the mesh

update the number of neighbors

while there exists a neighbor do

choose a neighbor with the least number of neighbors

if there is an equality then

look one step ahead

add the triangle to the current strip

remove the triangle from the mesh

update the number of neighbors

end while

end while

Figure 3.1: Pseudo-code of the basicSGIalgorithm and an example of strip construction.

The time complexity of this algorithm isO(n+s.n), wheren is the number of triangles

ands is the number of triangle strips. To reduce the complexity toO(n), it is necessary to

use some additional data structures (a hash table, or a priority queue) to be able to find the

starting triangle quickly.

10

It is quite easy to change the heuristic function (i.e., the criterion which chooses the

next triangle), thus many modifications of this algorithm exist.

Although this algorithm is very simple, it produces quite a good stripification in a short

time. As this algorithm was designed for Iris-GL (which uses1-bit flag for the swap), it

does not care about swaps. It uses a local heuristic functionand that is why it produces a

big number of short strips.

3.1.2 Fast And Simple Triangle Strip Generation – Weighted SGI

The most important part of theSGI algorithm is the heuristic function, which chooses the

next triangle. Kornmann [24] implemented an algorithm thatcombines several weighted

heuristic functions to improve the quality of triangle strips.

The first heuristic function is based on theSGI criterion, i.e. it returns the number of

neighboring triangles (mesh connectivity). As mentioned before, such a heuristic creates

strips containing triangles with low number of neighbors. This avoids the emergence of

short strips later on. In Figure 3.2(a) the triangle on the right of the current triangle will be

added to the strip because it has no other neighboring triangle.

The second heuristic function uses the triangle vertices’ connectivity. It evaluates the

number of triangles connected to each vertex and it returns+1 for the highest connected

node and−1 for the other nodes. This heuristic preserves the highly connected nodes for

remaining triangles. In Figure 3.2(b) the triangle on the right of the current triangle will

be added to the strip because the corresponding vertex has lower connectivity.

The last heuristic function analysis locally whether the strip will need a swap to include

the next triangle. I returns+1 if a swap is needed and−1 if it is not needed. This heuristic

leads to straight triangle strips without swaps covered by aminimal number of vertices. In

Figure 3.2(c) the situation on the left side (no swap) will be preferred.

Combining all these functions, the weight for each neighboring triangle is calculated.

Then a triangle with the smallest weight is used in the strip.If there is a tie, the triangle is

chosen randomly. The strip ends either when there is no neighboring triangle, or when the

strip reaches a sufficient length.

With default settings (all heuristics on) the algorithm produces less strips than theSGI

algorithm, but these strips are covered by more vertices. This is quite surprising. As the

algorithm uses the vertices minimizing criterion, I expected that the number of vertices will

be lower thanSGI. Unfortunately, the source code of this algorithm is not available, thus I

was not able to go into more details. Furthermore, the algorithm uses a randomization and

each time it produces different results.

11

Figure 3.2: Three types of heuristic functions in Kornmann’s algorithm. A mesh connec-

tivity criterion (a), a vertex connectivity criterion (b) and vertices minimizing criterion (c).

(From [24])

The nice property of the algorithm is that all three functions can be combined to achieve

a better stripification for the given purpose. Regrettably, Iwas not able to make more

tests of this algorithm as the source code is probably lost. It can be used for static, fully

triangulated meshes only.

3.1.3 Fast Mesh Rendering Through Efficient Triangle Strip Generation – SStrip

Another algorithm based on theSGI was developed by da Silva [29]. This algorithm uses

a local strategy based on a simultaneous construction of strips. The algorithm maintainss

strips being built and at each step adds a triangle to one of the strips.

The algorithm choosess triangles as beginnings ofs strips, following the same cri-

terion asSGI method, i.e., the lowest number of neighbors. To avoid an immediate strip

concatenation, a new restriction is added – the beginning ofa new strip may not be adjacent

to the extremities of an existing strip.

The next triangle that will be added to a strip is chosen from all candidate triangles (i.e.,

all triangles neighboring to both extremities of all triangle strips) following this order:

1. If a neighboring triangle has degree 0, it is added immediately to avoid a singleton

strip.

2. If there is no neighbor with degree 0, the neighbor with degree 1 is chosen. In

case of a tie, a look-ahead test is performed as follows. If the adjacent triangle

has degree 1, it is inserted, otherwise, the triangle that does not produce a swap

(vertices minimizing heuristic) or the triangle with neighbor with lower degree (strips

minimizing heuristic) is chosen.

12

3. If all neighbors have degree 2, the chosen triangle is the one that does not produce a

swap.

In some cases the insertion of a triangle can cause that extremities of two strips become

adjacent and these two strips can be concatenated and a new strip has to be created. The

concatenation is performed according to the following rules:

• A triangleT1 of degree 0 is adjacent to two strip extremities – both stripsare con-

catenated (in Figure 3.3(a) the triangleT1 is adjacent to Strip 1 and Strip 2; these

strips are concatenated).

• A triangle T1 of degree 0 is adjacent to three strip extremities – a concatenation

that does not produce a swap is chosen (in Figure 3.3(b) Strip 1 and Strip 2 are

concatenated).

• A triangleT1 of degree 1 is adjacent to a strip and to a triangleT2 – if the triangle

T2 has a degree 1, it is connected toT1 to avoid a singleton strip, otherwise, the two

strips are concatenated (in Figure 3.3(c) both trianglesT1 andT2 are added to Strip

1).

Figure 3.3: Concatenation rules in da Silva’s algorithm: If atriangle of degree 0 is adjacent

to two strip extremities, the strips are concatenated (a), if it is adjacent to three strip extrem-

ities, the concatenation that does not produce a swap is chosen (b). If a triangle of degree 1

is adjacent to two strip extremities and to other triangle, the concatenation depends on the

degree of the neighboring triangle (c). (From [29])

A pseudo-code of da Silva’s algorithm and an example of simultaneous strip construc-

tion is presented in Figure 3.4.

This algorithm is designed for static, fully triangulated meshes. It produces a stripifi-

cation with lower number of strips and vertices than theSGImethod. This improvement is

partially caused by the multiple strip construction. According to the measurement, it seems

that optimal number of simultaneous constructed strips is 2or 4, but the differences are not

significant. The source code of this algorithm is available on the internet [28].

13

start s new strips

while there is any triangle in themesh do

while insert degree 0 candidate do

try concatenate strips

create new strips

end while

if insert degree 1 candidate then

try concatenate strips

create new strips

else insert degree 2 candidate then

try concatenate strips

create new strips

end if

end while

Figure 3.4: Pseudo-code of da Silva’s algorithm and an example of simultaneous construc-

tion of strips. (From [29])

3.1.4 STRIPE

To improve the quality of stripification, Evans, et al. [16] developed an algorithm that

uses a global analysis of the structure of a polygonal model.The algorithm is designed for

polygonal (i.e., not fully triangulated) meshes. In such a type of meshes, there are usually

many quadrilateral faces, often arranged in large connected regions. The global heuris-

tic attempts to find large rectangular regions consisting only of quadrilaterals – ”patches”

(see Figure 3.5). These patches are triangulated along eachrow or column and then stripi-

fied.

Figure 3.5: An example of a rectangular patch (a) and a typical polyhedral mesh with

patches (b). (From [16])

14

To compute the number of polygons in a patch, it is necessary to examine quadrilaterals

in both directions (east-west and north-south). It is also necessary to ensure that these

quadrilaterals are all adjacent. To avoid generating too many small patches, a minimal

patch cutoff size is predefined. This cutoff size defines the smallest patch that is generated.

To stripify the patches, two different approaches were implemented. The first approach

– row/column strips– partitions the patches into sequential strips along rows/columns de-

pending on the length of patch in the given direction. By generating one strip along each

row, the number of swaps is minimized. The second approach –full-patch strips– con-

verts each patch into one generalized strip, at a cost of 3 swaps per turn. Furthermore, each

strip is then extended from both extremes to neighboring quadrilaterals. Such an approach

minimizes the number of strips.

After the global heuristic, anSGI based algorithm is used to stripify the remaining

polygons. For the triangulation of polygons, three different approaches were suggested.

Thestatic triangulationtriangulates all faces in a preprocessing stage, using the alternate

left-right turns. Such a triangulation is more complex thanthe conventional fan triangu-

lation, but it produces triangles that can be stripified by a sequential strip. Thedynamic

whole-face triangulationtriangulates a face when a strip first enters it. Even better results

can be achieved by thedynamic partial-face triangulation. This approach allows to trian-

gulate only a part of the polygon that the strip is going through. The remaining part of the

polygon can be triangulated later on to allow to create a better triangle strip.

The algorithm is designed for static, not fully triangulated meshes with convex poly-

gons. For such meshes the algorithm produces very good triangle strips in nearly linear

time. According to authors’ tests [16], the best stripification is obtained by the global

row/column strips with a cutoff size of 5, using the dynamic whole-face triangulation.

For fully triangulated meshes it produces a higher number ofstrips but a bit lower

number of vertices than theSGI method. The time needed for stripification is higher than

the SGI method. The implementation can be downloaded for free [14] and it is used in

many other papers for comparison2.

2There were some bugs in the old implementation ofSTRIPE– it was not very stable and it was not able

to stripify large models. Many authors reported similar experience. These troubles were solved in the new

version. There are also some inconsistencies in howSTRIPEcount strip vertices, thus some results may

differ from other papers.

15

3.2 Duality based methods

The group of duality based methods uses the dual-graph of triangulation. Usually some

existing graph algorithm is applied to obtain a set of paths (paths are dual to strips) from

this graph.

3.2.1 Fast Triangle Strip Generator – FTSG

Xiang et al. [39] developed a stripification algorithm basedon a spanning tree algorithm

and a careful partitioning into a set of paths. The algorithmcan generate triangle strips from

a polygonal mesh, containing even non-convex polygons. Thealgorithm tries to minimize

the number of vertices, thus mainly sequential strips are used.

The algorithm can be divided into five basic steps that will beexplained in a more

detailed way (Figure 3.6).

1. Compute a triangulation of non triangle faces

2. Construct a spanning tree in the dual graph of

the triangulation

3. Partition the spanning tree into a set of paths

4. Decompose the paths into sequential strips or

fans

5. Concatenate short strips into longer strips, using

a set of postprocessing heuristics

Figure 3.6: FSTG algorithm steps and an example of a triangulation and its corresponding

dual graph. (From [39])

To make a fully triangulated model, a modification of a very robust algorithm (FIST

[19]) is integrated. This algorithm allows to triangulate both convex and non-convex poly-

gons in the mesh, even if the mesh is degenerated or corrupted. The modification ofFIST

used in the stripification outputs triangulation convex faces that are pure tri-strips. This part

of algorithm is done in the worst-caseO(n log n) time (for faces with holes). In practice,

it takes only a linear time, as most polygons in the real-world meshes tend to be triangles,

quadrilaterals, or low-cardinality polygons.

16

For the construction of a spanning tree, three different approaches were implemented.

The standard breadth-first search (BFS, Figure 3.7(a)), depth-first search (DFS, Figure

3.7 (b)) and a hybrid variant of search that does BFS, but returns to the highest not yet

fully explored node (Figure 3.7(c)). The goal of the Step 2 is to build a spanning tree that

has a small number of nodes of degree two, as such nodes lead toa high number of paths.

The BFS tends to generate nearly balanced binary trees, therefore the number of nodes of

degree two may be large. The hybrid search and DFS both tends to produce more nodes

of degree one and the number of generated paths is lower. According to the results, the

DFS produces the best spanning tree from all three approaches. While searching for the

spanning tree, the algorithm has to decide, which triangle to visit in the next step. As the

goal of the algorithm is to minimize the number of vertices, it chooses a triangle that does

not produce a swap.

Figure 3.7: Three approaches for the construction of spanning tree. Standard breadth-first

search BFS (a), depth-first search BFS (b) and a hybrid search (c). S is the root node of the

spanning. A dashed line represents returns in the graph search algorithm. (From [39])

For the partitioning of the spanning tree into a set of paths,a dynamic programming

optimization is used. For each node of the spanning tree an objective function being the

minimal number of sequential strips that can be derived fromthe subtree is defined. By

traversing the tree in a bottom-up fashion and storing the optimal decomposition at every

node, one can achieve the optimal decomposition. This computation can be done in linear

time, as there are only a constant number of cases per node andeach node is visited exactly

once.

To minimize the number of vertices, the authors prefer to usesequential strips only. In

this case, the decomposition step only converts the list of triangles into a list of vertices.

They have also implemented a decomposition using triangle fans (which, in practice, pro-

duces the worst results) and a combination of both sequential strips and fans. In the last

case, i.e., strips and fans, the fan starts only if the greedydecomposition encounters four

consecutive triangles that cannot be encoded with a sequential strip.

17

In the last step the strip concatenation is performed. For this concatenation the zero-

area triangles, i.e., swaps, have to be allowed. There existseveral typical configurations in

the stripification that can reduce the number of strips by oneat a cost of 0,1 or 2 vertices.

The concatenation algorithm is looking for such configuration and performs them. Such

an approach optimizes the stripification only locally for one pair of neighboring strips. As

the strip may have more candidates for the concatenation, the order of the concatenation

matters. The global optimization can be achieved by similarmulti-passes algorithm, but it

will increase the running time and memory usage.

The algorithm is designed for static not-fully triangulated meshes, but the triangulation

phase is done before the start of the stripification process itself. The number of vertices

produced by the stripification is about 10% lower than by theSGI method but it produces

significantly more strips thanSGI.

3.2.2 Easy Triangle Strips For TIN

Speckmann and Snoeyink [30] suggested an original approachof creating triangle strips

for triangulated irregular networks (TIN). They use the De Berg’s algorithm for traversing

a subdivision of a plane [6].

The idea of this algorithm is to define an order of triangles inthe triangulation. For each

triangle an adjacent predecessor is defined and a directed graph is formed. A stripification

can be easily obtained by the depth-first search traversal ofthis graph. As such an operation

is defined for the whole triangulation, no additional data for the stripification are needed.

The predecessor relation is defined as follows. First, an arbitrary (starting) triangle

and its inner reference pointp is chosen. Then, for each triangleT except for the starting

triangle the point ofT closest top under Euclidean distance is computed. If the closest

point is an inner point of an edgee of the triangleT , then the predecessor ofT is the other

triangleTp adjacent to the edgee (Figure 3.8(a)). Otherwise the closest point is one of

vertices ofT with the edgee just before ande′ just after (having the counterclockwise

orientation). If the edgee is exposed top (i.e., the directed line induced by~e hasp strictly

to the right) the triangleTp adjacent toe (Figure 3.8(b)), otherwise the triangleT ′

p
adjacent

to e′ is chosen as a predecessor ofT (Figure 3.8(c)).

The graph induced by such a criterion is connected and it is a spanning tree of the dual

graph of triangulation. This tree has two nice properties. First, the branches of the tree

tend to alternate the left and right turn – the stripificationgenerated from these branches is

more or less sequential. Second, the information about the spanning tree does not need to

be explicitly stored, as the predecessor relation can be computed in a constant time.

18

Figure 3.8: If the closest point to pointp is an inner point of the edgee of the triangleT ,

thenTp is the predecessor ofT (a). If the edgee is exposed top, thenTp is the predecessor

of T (b) elseT ′

p
is predecessor oft (c). (From [30])

The basic tristrip can be constructed directly from the spanning tree, following the tree

in depth-first manner and starting a new strip every time the sequence of left-right turns is

disturbed (Figure 3.9(a)). Sometimes, it is possible to connect a singleton strip to some

existing strip, even if they are not connected in the spanning tree, thus reduce the number

of singleton strips (Figure 3.9(a), dotted line). As the TIN algorithm does not store any

additional data, the insertion of an unconnected triangle is not done in linear time in the

number of triangles.

To decrease the number of triangle strips and vertices, it isalso possible to allow the

swaps. They can be allowed by a simple modification of the traversal algorithm and no

additional data are needed. This modification does not breakthe strip, but it continues

even if the sequence of left-right turns is disturbed. In Figure 3.9(b), dense dashed lines

shows parts of strips that do not full fill the alternating left-right sequences.

It is also possible to look for nodes where the tree is ”wide”,i.e., the node has both

children, the left child has its own left child and the right child has its own right child (to

prevent too many swaps). In such a situation, it is possible to join the two strips starting

at the ”wide” node, saving additional vertices. In Figure 3.9 (c), the root node is ”wide”,

thus the strip can be extended to both directions, without swaps. Still, no additional data

structures are needed.

The TIN algorithm is designed for static triangulated irregular networks. The main ad-

vantage of this algorithm is that it is quite fast and it does not require to store any additional

information. On the other side it produces more vertices andmuch more strips than theSGI

method.

As far as I know, the authors did not investigate the usage of this algorithm for flyovers

of some huge TINs (flight simulators, etc.). In my opinion it can be easily modified to

produce a dynamic stripification, by a simple change of the starting triangle.

19

Figure 3.9: The basic traversal strictly maintains the left-right turn sequences. Some sin-

gleton strips can be added to existing strips even if there are not connected in the spanning

tree (dotted line) (a). Relaxing the left-right turn criterion (allowing swaps – dense dashed

line), the number of strips can be lowered (b). The strips canbe extended in ”wide” nodes

(typically the root node) (c). (From [30])

3.2.3 Tunneling for Triangle Strips in Continuous Level-of-Detail Meshes

Stewart [32] has developed a global algorithm for fully triangulated static and continuous

level-of-detail meshes. The method is based on a graph operator called ”tunneling”.

In the dual graph of the stripified triangulation, there can be found two kinds of graph

edges (in Figure 3.10(a), the stripification containing three strips is shown).Strip edges

join nodes whose corresponding triangles are adjacent in the same strip. All other edges of

the dual graph arenonstrip edges. A tunnelin the dual graph is an alternating sequence of

strip and nonstrip edges that starts and ends with nonstrip edges and connects extremities

of two strips (Figure 3.10(b), the tunnel is shown in gray). By complementing the status

of each edge in the tunnel, i.e., changing the strip edges to nonstrip and vice versa, the

number of strips can be reduced by one (Figure 3.10(c)).

The algorithm starts by choosing some extreme node of a strip. By breadth-first search

the shortest tunnel in the graph is found and the status of theedges of this tunnel is changed.

The algorithm is repeated as long as a tunnel can be found and the number of strips reached

the local minimum. As the stripification problem is NP-hard,it is not easy to say whether

it also reached the global minimum. The number of the strips in the final stripification

depends on the order in which the nodes are processed.

20

Figure 3.10: A triangle mesh with three strips (a). The tunnel (gray) is an alternating

sequence of strip (solid) and nonstrip (dashed) edges (b). Complementing the status of

edges in the tunnel, the number of strips is reduced by one (c). (From [32])

There are two limitations for the breadth-first search to produce a valid tunnel. First,

the last edge of the tunnel cannot connect two nodes belonging to the same strip (Figure

3.11 (a)). Complementing the status of the edges in such a tunnel does not decrease the

number of strips and causes an infinite strip (Figure 3.11(b)).

Figure 3.11: The last edge of the tunnel cannot connect two nodes of the same strip (a). In

such a situation an infinite strip appears (b). (From [32])

Second, if a nonstrip edge in the tunnel connects two nodes ofthe same strip, the

direction toward the end of strip of the adjacent edges in thetunnel has to be opposite

(Figure 3.12(a)). Again, if the second condition is not fulfilled (Figure 3.12 (b)), the

number of strips is not reduced and an infinite strip appears (Figure 3.12(c)).

To be able to check these conditions, each node has to containan identifier of the parent

strip. When the strip is changed by the tunneling operator, all these identifiers have to be

updated, which requires a complete traversal of all affected strips (in the worst case). Such

an operation is quite time consuming.

21

Figure 3.12: If a nonstrip edge connects two strip edges of the same strip, the orientation

of those edges toward the end of strip has to be opposite (a). If this condition is not fulfilled

(b) an infinite loop appears (c). (From [32])

The tunneling algorithm can be used in several ways. For static meshes the algorithm

can simply start from the triangulation. Applying the tunneling algorithm repeatedly, the

stripification is obtained. As the tunneling is quite slow, it is also possible to use some

other algorithm to obtain an initial stripification and improve it by the tunneling.

The tunneling algorithm can be also used to repair the stripification in CLOD or view-

dependent progressive meshes during the simplification process. After an edge split or

vertex collapse, the tunneling operator is used, starting only from the triangles from the

neighborhood of the split or collapse. Such an approach is called a local repair. It is

also possible to maintain a list of all endpoints of the strips. With each collapse or split,

several triangles from the list are used as starting points for the tunneling. As the number

of the chosen starting points is small, the computational overload is negligible. Thisglobal

approach is much better than the local approach, as it maintains the stripification of nearly

a constant number of strips.

The tunneling algorithm can handle only fully triangulatedmeshes. It can be used

for both the static triangulation and for the CLOD representation. As far as I know, this

algorithm produces the stripification with the lowest number of strips. On the other side,

the number of vertices is much higher than the number of vertices produced by theSGI.

The main disadvantage of the algorithm when used for static meshes is the time complexity

that is substantially higher than theSGI (while theSGIstripification takes several seconds,

the tunneling takes several minutes). When using global repairs for the CLOD meshes, the

tunneling maintains a good stripification of about a constant number of strips.

22

3.2.4 Triangle Strips Guided by Simplification Criterion

Belmonte [5] designed an algorithm for stripification of triangle meshes that is guided by

a simplification criterion (a minimal quadratic error associated with the contraction of an

edge [17]). Triangle strips created with respect to this criterion are preserved as the model

is being simplified.

The algorithm uses the edge collapsing for simplification ofthe model. While collaps-

ing an edge, some error occurs. The calculation of the error is based on the sum of square

distances of vertices to an average plane. The algorithm calculates these errors and asso-

ciates them with corresponding edges. These errors also determine the weight of the edge

in the dual graph of the mesh.

Then an algorithm for searching for the maximum spanning tree is applied on the dual

graph. Triangle strips are created by simple traversing of this spanning tree. As the tree

does not contain the edges with a small error (i.e., edges that are going to be collapsed

earlier), the triangle strips are conserved during the simplification process. To preserve

the strips, it is necessary to construct strips that do not cross edges with low error. In

Figure 3.13(a), a full resolution triangulation and its stripification is shown. During the

simplification step, both strips are preserved (Figure 3.13(b)).

Figure 3.13: A triangulation and its stripification (a). In the case of a good stripification,

the strips are preserved during the simplification process (b). (From [5])

The algorithm is designed for progressive triangle meshes.The main goal of the algo-

rithm is to not split the strips during the simplification process. It produces a higher number

of strips and higher number of vertices thenSGImethod. On the other side, the number of

strips is preserved even if approximately 45% of the edges iscollapsed.

The idea of this algorithm could be extended to other dualitybased stripification meth-

ods to produce a stripification that is more or less preservedduring the simplification.

23

3.3 Miscellaneous Approaches

In this subsection methods which produce the stripificationfrom more general or more

specific type of data (i.e., point cloud, subdivision surfaces) or which somehow improve

the stripification will be introduced.

3.3.1 Hamiltonian Triangulation

Arkin et al. [3] introduced two methods that construct a triangulation of a point set that

can be covered with a single strip. The dual graph of this triangulation contains a path that

connects all nodes and visits each node exactly once (a Hamiltonian path), thus it is called

a Hamiltonian triangulation.

The first method is a simpleinsertionalgorithm which produces a triangulation with a

Hamiltonian cycle. It requires the points to be in general position (i.e., no three collinear).

The second method is more complex, but it does not have the general position limitations.

The insertionmethod starts with a convex hull of a set of pointsS and a pointv ∈
S that is interior toconv(S). By adding chords fromv to each vertex ofconv(S) an

initial triangulation that contains a Hamiltonian cycle iscreated (Figure 3.14(a)). Now all

remaining points ofS can be added to the triangulation in an arbitrary order. As nothree

nodes are collinear, an inserted point lies in the interior of some triangle of the current

triangulation. The corresponding triangle is split into three new triangles by adding edges

from the inserted point to the three vertices of the triangle. The existing triangle strip is not

destroyed by this operation, as the three new triangles can always be connected with respect

to the entering and exiting edge (Figure 3.14(b)). The example of the final triangulation is

shown on Figure 3.14(c).

Figure 3.14: The initial triangulation contains the convexhull and one inner point (a).

While inserting the remaining vertices, the strip can be preserved (b). The final triangula-

tion contains only one strip (c). (From [3])

24

The second method – anonion method– does not require the points to be in general

position. The algorithm computes the convex hull and the convex hull of the remaining

points (the points that do not participate in the first convexhull). Then the annulus region

bounded by those two convex hulls is triangulated (withO(n) complexity) and a strip

connecting all the triangles is created (Figure 3.15(a)). The algorithm continues following

the same scheme for all points from the set. The strips of eachannulus are then connected

into one triangle strip.

Figure 3.15: The annulus bounded by the first and the second convex hull is triangulated

and a strip connecting all triangles is created (a). Following the same construction scheme,

the whole triangulation can be created (b). (From [3])

Both these methods can be used only for a 2,5D set of points. Bothalgorithms have

O(n log n) complexity (as they computes the triangulation whose lowerbound complexity

is O(n log n)). The insertion method produces a large number of narrow triangles, thus

such a triangulation is not suitable for geometry computation. There are also some troubles

with rendering of such triangles. The onion method usually produces better triangulation

then the insertion method. Still, the triangles are not ideal for further computation.

It would be interesting to try to improve the quality of the triangulation by repairing

the ”bad” triangles (to check the quality of triangles, the Delaunay condition can be used).

This could be done by swapping the diagonal edge in a quadrilateral consisting of two

triangles. In some cases, this swap breaks the triangle strip. The reparation process can

stop if a concrete number of strips is achieved, or if the number of bad triangles is lower

than some required amount.

25

3.3.2 Hierarchical Generalized Triangle Strips

Velho et al. [36] introduced a refinement method for computing a triangle sequences of a

mesh. This method is applied to construct a triangulation and a single strip that covers a

parametric or implicit surface. Furthermore, a hierarchy of triangle strips defined at each

refinement level can be obtained.

As the todays graphics hardware usually works on triangles,triangle meshes are often

used to approximate smooth surfaces. To be able to render themesh in appropriate level

of detail the mesh refinement is used. Generally, refinement algorithms produce detailed

models from a coarse base-mesh by subdividing the original faces. The face is subdivided

according to a template, called asubdivision scheme.

This algorithm produces arefinable triangle sequence, i.e., a triangle sequence whose

order can be preserved when its element is subdivided. Such aproperty depends exclu-

sively on the subdivision scheme. The algorithm has two parts:

1. Initialization that creates the base-mesh and the corresponding initial triangle strip.

2. Refinementthat refine the base-mesh preserving the only triangle strip.

For the refinement it is possible to use both – the uniform or non-uniform subdivision

scheme. The uniform scheme recursively subdivides all triangles of a mesh, using the

same template, until a desired resolution is obtained. Usually the uniform scheme splits all

three edges at the edge midpoint and subdivide the triangle into four sub-triangles. There

exists two possible templates – isotropic that subdivide triangle into four identical triangles

(Figure 3.16(a)) and anisotropic (Figure 3.16(b)). It is obvious that only the use of an

anisotropic template produces the triangle sequence (Figure 3.16(c,d); the shown solution

is not the only possible, there exist more configurations in the anisotropic template).

Figure 3.16: Isotropic subdivision template (a). Anisotropic subdivision template (b). Tri-

angle sequences in anisotropic template (c,d). (From [36])

The non-uniform (adaptive) refinement schemes can subdivide only a part of the mesh.

They also split the triangle edges into two parts, but not allthree edges have to be sub-

26

divided, therefore at least three different templates mustexists. Figure 3.17 shows the

subdivision templates: (a) one edge split; (b) two edge split; and (c) three edge split (this

template is the same as in the uniform subdivision). For nearly all situations it is pos-

sible to find a corresponding triangle sequence that respects the entry and exit edge. In

the situation when a non-split exit edge is adjacent to an entry sub-edge, it is not possi-

ble to find the sequence, thus a new (so-called Steiner) points is inserted to the template

(Figure 3.17(d,e)).

Figure 3.17: For non-uniform subdivision, three templatessplitting one (a) two (b) and

three (c) edges exists. In two situations it is not possible to produce a triangle sequence,

thus the subdivision template has to be modified by insertinga Steiner points (d,e).

(From [36])

The algorithm produces a single triangle strip hierarchy for both uniform and adaptive

subdivision schemes. As it uses predefined templates, it is fast and can be used for real-time

visualization of progressive meshes, such as NURBS or subdivision surfaces. To manage

to get only one strip for the whole mesh, a huge number of swapsis necessary, thus the

number of vertices in the final stripification is high.

3.3.3 Skip Strip

An algorithm that efficiently maintains triangle strips during view-dependent simplification

was introduced by El-Sana [13]. It is based on hierarchical skip-list-like data structure [27]

and it is possible to use it in combination with any stripification algorithm.

To store the view-dependent hierarchy of the mesh, a structure called merge tree [37]

is used. The merge tree is constructed in a bottom-up fashionfrom a high-detail mesh to

a low-detail mesh by storing the edge collapsing operationsin a hierarchical structure. To

build a level of the tree, the maximal set of edge collapses inshortest-edge-first order and

with the constraint of no overlapping area is selected. The remaining vertices are promoted

to the next level of the tree. The no-overlapping criterion allows to display various details

depending upon view-dependent parameters such as light or polygon orientation. As this

tree does not change during visualization, it is generated in a preprocessing stage.

27

As the stripification process does not depend on the merge tree or on the skip list, any

stripification algorithm can be used. The stripification is created for the highest resolution

model only.

A skip strip is an array of skip strip nodes, where each node contains vertex informa-

tion (e.g., coordinates, color, etc.), a list of child pointers and a parent pointer. The skip

strip node is allocated for each merge tree node (i.e., for each vertex of the base-mesh).

The parent pointer and all child pointers are set to copy the merge tree hierarchy. In Fig-

ure 3.18(a), an example of a merge tree is shown. The levels of the tree corresponds to

the levels-of-detail of a model. In the figure, the most detailed model consists of four

vertices. When simplifying the model, the vertex 2 collapsesto the vertex 1 and the the

vertex 4 collapses to the vertex 3. The lowest LOD model is represented by a single vertex

(the vertex 1). In Figure 3.18(b) a corresponding skip list structure is presented.

Figure 3.18: An example of a merge tree (a) and its corresponding skip list struc-

ture (b). (From [13])

In Figure 3.19(a) a sample triangle mesh is shown. During the visualization some

edges may collapse (Figure 3.19(b)). The triangle strips can be preserved by replacing

the invalid vertices with valid vertices by looking into a skip strip structure. In the figure,

the original stripa is defined by a vertex sequence 7,6,4,5,3,2,1. As the vertex6 collapses

to vertex5 in the lower LOD, the strip is displayed as a sequence 7,5,4,5,3,2,1. One can

see that while replacing the invalid vertices a group of identical vertices may appear (see

the end of the stripb in the sample figure – the strip is displayed as a vertex sequence

1,10,3,9,4,7,7). To improve the stripification, the algorithm contains a simple triangle strip

scanner that detects and replaces these repeating sequences.

The algorithm does not produce a stripification, but it is designed to maintain the strip-

ification in CLOD meshes. As the skip strip structure is general, it can be used in combina-

tion with any stripification method. The speedup while usingthe skip-strip representation

is 30–95% in comparison to triangle representation. For higher simplification (i.e., more

decimated meshes), the speedup is lower since the fragmentation of the strip increases.

28

Figure 3.19: An original mesh covered by two strips (a), A decimated mesh (b) and cor-

responding merge tree and skip list (c). The dark area in the merge tree shows the active

LOD for the mesh. (From [13])

3.3.4 Transparent Vertex Caching

Deering [11] proposes the use of a vertex cache of more than two vertices to decrease the

amount of vertex transfer from CPU to graphics engine. The idea is to reuse those vertices

that are currently buffered in the vertex cache. One year later Bar-Yehuda [4] studied the

impact of the buffer size to rendering time (time/space trade off). He has shown that a

buffer of size13.35
√

n is sufficient to render any polygon mesh defined onn vertices in

the minimum timeO(n).

Hoppe [20] presented an algorithm that optimizes triangle strips for a system of a given

memory and transparently reduces the geometry bandwidth. Algorithm is based on a looka-

head simulation of the vertex-cache behavior.

The basic strategy of the algorithm is to incrementally growa triangle strip and to

decide at each step whether it is better to add the new triangle to the strip or to start a

new strip. To make this decision, a lookahead simulation of the vertex-cache behavior is

performed. At the beginning the algorithm marks all triangles of the mesh as unvisited.

As a starting triangle for a new strip, it chooses a triangle with the fewest neighbors. If

there is only one unvisited neighboring triangle, it is connected to the strip. If there are

two faces, the algorithm always continues the strip in a counter-clockwise direction, but

it pushes the other neighbor into a queue of possible locations for strip restarts. If there

are no unvisited neighboring triangle, the strip cannot continue and a new strip has to be

created. As a starting triangle a triangle from the queue is chosen. If there is no triangle

29

in the queue, the algorithm chooses a triangle whose vertices are already in the cache and

which has the fewest number of unvisited neighbors.

As the capacity of the vertex cache is limited, it can happen that the strip overflows it

and it will not be possible to re-use the cached vertices. Therefore, a lookahead simulation

of the vertex cache is performed, before adding a new face. The simulation performss

simulations of the strip-growing process for the nexts triangles. It computes the average

number of cache misses per visited triangle. If the lowest cost value corresponds tos = 0,

the strip is restarted, otherwise a new face is added.

The algorithm is designed to maximize the reuse of cached vertices. According to the

results, presented in the paper, the average cache miss per vertex rate is about 1.25 for a

vertex cache of size 16, whereas the absolute lower bound is 1.

30

3.4 Overall Comparison

In this section, an overall comparison of most of the mentioned methods is presented. All

experiments were performed on a PC INTEL Pentium 4, 2.8GHz, 2GB of RAM, ATI T32,

running on MS Windows XP. Naturally, times of I/O operationshave been excluded from

measurements if possible.

I have chosen a set of ten models that are often used in other publications and that are

available on the internet [31, 18, 8, 10]. Models are shown inAppendix B. All these models

are fully triangulated. The demi model consists of 37 disconnected components. The

dragon and the blade model contains some inconsistencies, thus the number of components

is higher.

model # vertices # triangles # components

1 cow 2905 5804 1

2 demi 9138 17506 37

3 bunny 35947 69451 1

4 dinosaur 56194 112384 1

5 balljoint 137062 274120 1

6 club 209779 419554 1

7 hand 327323 654666 1

8 dragon 437645 871414 151

9 happy 543652 1087716 1

10 blade 882954 1765388 295

Table 3.1: Set of testing models.

For the comparison, I have chosen the methods that are able tostripify the full 3D

meshes3. Table 3.2 presents the algorithm overview. The first and second column shows the

short name of the algorithm as it was presented in this work and the chapter with algorithm

description. As the programming language and the compiler can influence the speed of

the program, the third column (”Compiler”) shows the used compiler. A short name under

which will be the algorithm presented in tables is shown in the column ”Label”. For all

algorithms I have used the default parameters or parametersthat were recommended by the

author. The concrete parameter is mentioned in the column ”Parameters”. Very often, the

algorithm has implemented both the vertices minimizing function and the strips minimizing

function.
3I would like to thank to prof. Stewart for providing the source code of Tunneling, to X.Xiang and prof.

J.S.B. Mitchell for providing the source code of FTSG and to D.Kornmann for support for his program.

31

Algorithm Chapter Compiler Label Parameters Minimizing

SGI 3.1.1 Delphi 7 SGI -LNLN strips

SGI-LS -LS vertices

Weighted SGI 3.1.2 N/A WSGI keys 7,8,9 strips

SStrip 3.1.3 Cygwin, gcc SSTRIP -m 2 strips

SSTRIP-Q -m 2 -q vertices

STRIPE 3.1.4 Cygwin, gcc STRIPE-L -l strips

STRIPE-Q -q vertices

FTSG 3.2.1 Cygwin, gcc FTSG-SGI -dfs -concat -sgi strips

FTSG-ALT -dfs -concat -alt vertices

Tunneling 3.2.3 Cygwin, gcc TUNNEL strips

Table 3.2: Algorithms overview

• SGI(-LS): Although the originaltomesh.ccode is available on the internet [1], I was

not able to make it work due to lack of documentation. I have implemented and

tested several methods based on theSGI algorithm in [34]. I have used the standard

SGI method (SGI) and vertex minimizing heuristic (SGI-LS) for the tests.

• WSGI: There is only a binary version of the algorithm available onthe internet [23].

As the algorithm output depends on some randomized decisions, ten measurements

were taken and the average value is presented. All three heuristics were enabled for

the measurement. The program only visualizes the result butit does not export the

stripified mesh, thus I was not able to make some tests (FPS, memory, time).

• SSTRIP(-Q): The source code of the program is available on the internet [28] under

the GNU General Public License. The number of the simultaneous strips was set

to two. The measurement for both heuristic (strips minimizing, vertices minimizing

(-q)) was performed.

• STRIPE(-L/-Q): The source code of the program is freely available on the internet

[14] for non commercial use. The mesh is exported during the stripification process,

thus it is not possible to exclude the time of I/O operation. The tests are performed

with two heuristic functions: ”Look ahead one level in choosing the next polygon”

(-l) and ”Choose the polygon which does not produce a swap” (-q). The tests are

performed with STRIPE version 2, which is much faster.

• FTSG(-SGI/-ALT): The program is free for non-commercial purposes only and itcan

be obtained via e-mail [38]. The tests were performed with the depth-first search

32

heuristic (-dfs) and enabled concatenation of strips (-concat). The next triangle deci-

sion was based on theSGIcriterion (-sgi – strips minimizing) and on alternating the

left-right turns (-alt – vertices minimizing).

• TUNNEL: The program is not available on the internet, but it can be obtained via

e-mail. The tests were performed with the default settings.The memory usage and

computation time is very high!

3.4.1 Vertices

In the Table 3.3 (Figure 3.20(top)4), a comparison of number of vertices in strips is pre-

sented. The number of vertices determines the size of data needed for the model – i.e. the

amount of data sent to the rendering engine. The difference in the number of vertices does

not vary too much for different algorithms, because there are two theoretical boundaries.

The number of vertices could not be lower thannumber of triangles + 2 (for a sequen-

tial strip, covering the whole triangulation, which is quite impossible for a real-life model)

and it could not be higher than3 · number of triangles for a set of isolated triangles or

2 · number of triangles for a connected set of triangles. The Table 3.4 (Figure 3.20(bot-

tom)) shows a comparison of vertices per triangle, i.e., the ratio of number of vertices to

the number of triangles.

The vertices minimizing algorithms (STRIPE-Q, SSTRIP-QandFSTG-ALT) produces

nearly the same number of vertices. The average V/T for thesealgorithms is about 1.25.

The SGI-LS algorithm produces stripifications with the lowest number of vertices (1.23

V/T in average). As this algorithm strictly chooses the triangles which do not cause a

swap, the low V/T is compensate by a huge number of strips.

TheEVANS-Lalgorithm produces a stripification with an average V/T about 1.47. In

my opinion there is some bug in the code, as this algorithm produces a high number of

vertices and also a high number of strips (although it shouldminimize the number of strips).

It is quite interesting that nearly all algorithms (exceptTUNNELandSTRIPE-L) have

the same behavior. For the bunny model (which is topologically very simple), the average

V/T is very low, on the other side, the average V/T for the dragon and for the happy buddha

is more than 10% higher. Similar behavior is also noticeablein the average length of strips

(3.21(bottom)).

4The left graph shows the dependency on number of triangles. As the stripification process does not

depend only on the number of triangles but also on the topology of the model, the right graph shows the

dependency on concrete model.

33

3.4.2 Strips

Number of strips produced by tested algorithms are presented in the Table 3.5 (3.21(top)).

The number of strips as well as the number of vertices is crucial for the rendering speed.

As starting a new strip takes some extra time, a huge number oftriangle strips slows down

the rendering. On the other side, minimization of the numberof strips often leads to higher

number of vertices (swaps). For better comparison, the average length of triangle strips is

presented in the Table 3.6 (3.21(bottom)).

TheTUNNELing algorithm produces more than three times lower number oftriangle

strips than all other algorithms. On the other side, to obtain such a long triangle strips, it is

necessary to use swaps (thus increase the number of vertices).

The differences in the number of strips are very high. TheSGI-LSalgorithm produces

stripification with more than 20 times higher number of strips than theTUNNELing.

3.4.3 Rendering Speed

As the triangle strips are mainly used to speed up the visualization, I have also tested the

rendering speed of models stripified by different techniques (Table 3.7, Figure 3.22(top)).

To maximally use the graphics hardware, the OpenGL vertex buffer objects are used [26].

Note that the rendering speed depends on the GPU architecture and can vary for other

graphics cards.

According to the tests, the speed of rendering depends on thenumber of vertices (as

these vertices has to be transmitted) and on the number of strips (as the creation of a new

strips cost some additional time). For this reason, the fastest rendering is neither achieved

by theTUNNELing algorithm (that produces the lowest number of strips) nor by the SGI-

LS (that produces the lowest number of vertices). The best rendering performance was

achieved with models produced bySTRIPE-QandFSTG-SGI. The differences in FPS are

less than 20% in the worst case but less than 10% in average.

In Figure 3.22(bottom) a rendering time of a single frame is shown. The rendering

speed more or less linearly depends on the number of verticesof the model. Unfortunately,

it is not possible to find out the dependency of the rendering speed on the number of vertices

in strip – Figure 3.23(top,left); or on the number of strips – Figure 3.23(top,right) (both

figures shows the rendering speed for three models stripifiedby all possible methods).

As theWSGIprogram does not produce any output file, it was not possible to measure

the rendering speed.

34

3.4.4 Execution Time

The time of stripification process is actually not very crucial, as the stripification is usually

used in a preprocessing stage. The execution time presentedin Table 3.8 (Figure 3.24) does

not include the I/O operation (except theSTRIPEalgorithm, as the output operation runs

during the stripification process).

All algorithms exceptSTRIPEand TUNNEL produce the stripification in about the

same time.STRIPEis slower as the saving process is included in the measurement. As

TUNNELing searches for a tunnel with a breadth first search method from each strip end-

point, the complexity of the algorithm is higher thanO(n) and the execution time is not

comparable to other algorithms.

The SGI-LS algorithm is the fastest one, as it uses a very simple criterion and it does

not make the lookahead search.

The execution time ofSSTRIPalgorithms is not published for all models, as the algo-

rithm did not worked well on the Windows platform5. Although theWSGIprogram shows

the time needed for stripification, it is not included in the table, as it does not show the time

for temporary structures such as adjacency tables, etc.

3.4.5 Memory Usage

As different algorithms use different data structures, theamount of allocated memory can

differ (Table 3.9, Figure 3.23(bottom)). To measure the memory usage, a program that

scans the running processes (using win32 API CreateToolhelp32Snapshot function) and

stores the memory usage peak for a process is used. As the scanning is not continuous,

some inaccuracy may appear.

The TUNNELing is the most memory consuming stripification program of the tested

programs. This is not very surprising as the algorithm needsa special data structure to

maintain the information about the tunnels. The memory usage of STRIPEis also very

high, but I do not know the reason. As far as I know, it does not need any special structures

(it works on the same principle as the SGI algorithm) furthermore, the strips are being

saved during the stripification process.

As theWSGIprogram provides also the visualization of the model (thus it needs some

additional memory), I did not include the memory usage.

5For high resolution models, the program crashed

35

3.4.6 Conclusion

According to all these tests, the algorithm presented by Xiang et al. (FTSG-SGI), provides

a stripification that is most suitable for the rendering. Furthermore, this algorithm is very

fast and it does not need too much memory. Following the rendering speed criterion the

STRIPE-Qalgorithm produces a stripification of the same quality.

Although SSTRIP-Qand SGI-LS(vertex minimizing heuristic) produces the lowest

number of vertices, the rendering speed is lower. Optimizing only the number of strips

(TUNNELing) leads to lower rendering speed, too.

36

model SGI SGI-LS WSGI SSTRIP SSTRIP-Q STRIPE-L STRIPE-Q FSTG-SGI FSTG-ALT TUNNEL

cow 7618 7087 7681 7585 7079 8568 7190 7400 7186 8295

demi 23441 21838 23457 22802 21861 25443 21939 22631 22169 24255

bunny 86982 81730 87034 85909 81890 101806 82760 85362 82213 98503

dinosaur 148437 138857 149516 147477 139984 164430 141267 144788 140152 159361

balljoint 358070 337585 360172 355481 340518 400951 343022 345862 339738 385909

club 532253 505036 536496 527017 507086 613411 511751 521652 508143 580683

hand 875690 812042 884921 866341 817614 965939 825434 855683 824224 938693

dragon 1237019 1129993 1251062 1217292 1141854 1289540 1153301 1195550 1156027 1260651

happy 1545562 1409575 1563465 1519534 1424174 1609065 1438639 1492285 1442542 1574172

blade 2293726 2134682 2313250 2265291 2142271 2609281 2159526 2248981 2166404 2542184

Table 3.3: Number of vertices in strips.

37

model SGI SGI-LS WSGI SSTRIP SSTRIP-Q STRIPE-L STRIPE-Q FSTG-SGI FSTG-ALT TUNNEL

cow 1.31 1.22 1.32 1.31 1.22 1.48 1.24 1.27 1.24 1.43

demi 1.34 1.25 1.34 1.30 1.25 1.45 1.25 1.29 1.27 1.39

bunny 1.25 1.18 1.25 1.24 1.18 1.47 1.19 1.23 1.18 1.42

dinosaur 1.32 1.24 1.33 1.31 1.25 1.46 1.26 1.29 1.25 1.42

balljoint 1.31 1.23 1.31 1.30 1.24 1.46 1.25 1.26 1.24 1.41

club 1.27 1.20 1.28 1.26 1.21 1.46 1.22 1.24 1.21 1.38

hand 1.34 1.24 1.35 1.32 1.25 1.48 1.26 1.31 1.26 1.43

dragon 1.42 1.30 1.44 1.40 1.31 1.48 1.32 1.37 1.33 1.45

happy 1.42 1.30 1.44 1.40 1.31 1.48 1.32 1.37 1.33 1.45

blade 1.30 1.21 1.31 1.28 1.21 1.48 1.22 1.27 1.23 1.44

Table 3.4: Number of vertices per triangle (V/T).

38

model SGI SGI-LS WSGI SSTRIP SSTRIP-Q STRIPE-L STRIPE-Q FSTG-SGI FSTG-ALT TUNNEL

cow 98 352 87 78 127 141 136 105 312 19

demi 335 1183 315 293 419 456 418 286 1020 139

bunny 648 3560 622 575 1174 1531 1229 618 3238 166

dinosaur 1177 7276 1355 1271 2422 2470 2498 1346 6411 260

balljoint 2279 17454 2910 2519 5746 6145 5820 2446 15371 536

club 2658 23966 3875 3111 7782 9210 8184 3054 21148 750

hand 8997 44710 9279 8318 14674 15309 15422 10394 38779 1590

dragon 17399 71182 17112 16402 23564 22928 25356 20571 58377 3331

happy 21578 88143 21250 20119 29150 28563 31550 25576 72271 3710

blade 23125 115568 23468 21829 35101 41128 35952 26779 99890 4606

Table 3.5: Number of strips in a model.

39

model SGI SGI-LS WSGI SSTRIP SSTRIP-Q STRIPE-L STRIPE-Q FSTG-SGI FSTG-ALT TUNNEL

cow 29.64 8.25 33.58 37.24 22.87 20.60 21.36 27.67 9.31 152.89

demi 27.28 7.72 29.02 31.19 21.81 20.04 21.86 31.95 8.96 65.74

bunny 55.47 10.10 57.84 62.52 30.62 23.48 29.25 58.17 11.10 216.55

dinosaur 47.74 7.72 41.46 44.21 23.20 22.75 22.50 41.75 8.77 216.13

balljoint 60.14 7.85 47.10 54.41 23.85 22.30 23.55 56.04 8.92 255.71

club 78.92 8.75 54.14 67.43 26.96 22.78 25.63 68.69 9.92 279.71

hand 36.38 7.32 35.28 39.35 22.31 21.38 21.22 31.49 8.44 205.86

dragon 25.15 6.15 25.58 26.68 18.57 19.09 17.26 21.27 7.50 131.39

happy 25.19 6.17 25.58 27.02 18.65 19.03 17.23 21.26 7.52 146.54

blade 38.18 7.64 37.62 40.45 25.15 21.47 24.56 32.97 8.84 191.70

Table 3.6: Average length of strips.

40

model SGI SGI-LS WSGI SSTRIP SSTRIP-Q STRIPE-L STRIPE-Q FSTG-SGI FSTG-ALT TUNNEL

cow 421.24 411.98 414.77 416.08 416.15 420.17 417.23 407.27 419.88

demi 334.02 332.50 336.53 335.28 322.88 337.27 338.99 327.86 329.57

bunny 137.76 136.43 135.96 133.78 125.40 138.06 136.38 133.50 130.23

dinosaur 107.51 106.71 106.47 108.27 97.87 109.05 108.37 105.25 101.52

balljoint 49.08 48.94 49.55 49.88 44.45 50.58 50.74 49.04 46.34

club 34.38 34.08 34.43 34.51 29.84 34.89 34.74 33.78 31.88

hand 21.86 22.14 22.18 22.23 19.70 22.79 22.25 21.95 20.59

dragon 15.43 16.38 16.09 16.13 14.72 16.26 15.86 16.09 15.28

happy 13.07 12.89 13.58 13.72 12.84 13.51 14.28 13.27 13.78

blade 8.89 8.74 9.05 9.07 8.70 9.09 9.35 8.97 8.39

Table 3.7: The average FPS.

41

model SGI SGI-LS WSGI SSTRIP SSTRIP-Q STRIPE-L STRIPE-Q FSTG-SGI FSTG-ALT TUNNEL

cow 0.028 0.016 0.012 0.013 0.258 0.268 0.015 0.016 0.515

demi 0.088 0.031 0.042 0.042 0.849 0.829 0.047 0.062 0.703

bunny 0.387 0.125 0.218 0.217 3.150 3.195 0.250 0.250 101.375

dinosaur 0.645 0.235 0.386 0.389 4.847 4.888 0.422 0.437 44.719

balljoint 1.669 0.672 1.128 1.145 12.055 12.087 1.125 1.109 107.500

club 2.545 0.953 1.710 1.725 18.651 18.695 1.688 1.687 366.076

hand 3.509 1.235 34.340 34.195 2.031 2.578 338.359

dragon 3.863 1.938 37.426 37.342 3.016 3.204 662.406

happy 6.260 2.609 46.359 45.992 3.797 4.063 889.938

blade 9.684 4.125 112.472 112.375 5.735 5.984 3488.190

Table 3.8: The computation time in seconds.

42

model SGI SGI-LS WSGI SSTRIP SSTRIP-Q STRIPE-L STRIPE-Q FSTG-SGI FSTG-ALT TUNNEL

cow 1.7 1.6 4.7 4.7 4.2 4.2 2.7 2.3 5.1

demi 2.6 2.4 6.1 6.1 8.4 8.4 4.9 4.9 11.2

bunny 6.4 6.0 12.5 12.5 27.2 27.2 13.6 13.6 37.2

dinosaur 10.4 9.8 17.7 17.7 42.5 42.6 17.5 17.5 57.8

balljoint 23.3 22.2 37.5 37.5 100.7 100.7 38.8 38.8 137.6

club 35.0 33.3 55.3 55.3 152.9 153.0 58.0 58.0 209.3

hand 54.0 51.3 237.4 237.4 118.2 118.2 325.0

dragon 71.6 68.0 315.3 315.4 122.1 122.1 435.1

happy 89.0 84.6 393.0 393.0 190.2 190.2 540.8

blade 143.5 136.3 636.5 636.7 298.8 298.8 873.7

Table 3.9: The amount of allocated memory in MB.

43

Figure 3.20: Graphs: Number of vertices in strips (top). Number of vertices per triangle (bottom).

44

Figure 3.21: Graphs: Number of strips (top). Average lengthof strips (bottom).

45

Figure 3.22: Graphs: Average FPS (top). Rendering time for a single frame (bottom).

46

Figure 3.23: Graphs: Rendering time for a single frame (top).Memory usage (bottom).

47

Figure 3.24: Graphs: Execution time.

48

4 Delaunay Stripification

In this section I will concentrate on 2D and 2.5D triangulations, which are often used for

terrain modeling. The terrain models are often given as a point set and it is necessary to

make a triangulation of this point set first. One of the most common triangulations is the

Delaunay triangulation. This triangulation is very popular especially because of two facts:

(1) it produces the most equiangular triangles of all possible methods (it maximizes the

minimum angles); (2) it can be computed inO(n log n) time in the worst case and inO(n)

time in the expected case. It is also possible to create several levels of detail while using

an incremental insertion algorithm for the Delaunay triangulation.

4.1 Delaunay Triangulation

In this section I will describe the Delaunay triangulation and structures that I use. More

details about the Delaunay triangulation are e.g. in [12].

Definition 1 A triangulationT (P) of a set of pointsP in the Euclidean plane is a set of

edgesE such that

1. no two edges inE intersect at a point not inP ,

2. the edges inE divide the convex hull ofP into triangles.

Definition 2 The triangulationDT (P) of a set of pointsP in the Euclidean plane is a

Delaunay triangulation ofP if and only if the circumcircle of any triangle ofDT (P) does

not contain any other point ofP in its interior.

There exist several approaches of constructing a Delaunay triangulation, e.g.:

• divide & conquer [12],

• incremental insertion [25, 22],

• high-dimensional embedding [7].

Although the fastest method is divide & conquer [12] (according to [33]), I decided to

use the incremental insertion for several reasons: divide &conquer methods are often too

sensitive to numerical inaccuracy, another reason is that the insertion method allows us to

insert points in a specific order (e.g., according to the importance of the point) to obtain

different levels of details. Also the implementation of incremental insertion is easier than

49

the divide and conquer. While using randomized incremental insertion, the algorithm is

insensitive to input data configurations. Last but not least– the incremental insertion has

been already implemented in our computer graphics group [22].

The incremental insertion algorithm is described in Figure4.1.

Input: the set of pointsP in E2

Output:DT(P)

1. Create a temporary triangle, such that all points ofP are

enclosed in it;

2. For eachp from P do

(a) Find the trianglet or edgee that contains the point

p;

(b) If the p point lies on an edgee, find the triangles

sharing this edge and subdivide them into four new

triangles

else subdivide the trianglet into three new triangles;

(c) If new triangles do not fulfill the Delaunay condi-

tion, flip the edges (thus create new triangles) and

repeat this step.

Figure 4.1: Algorithm steps for the incremental insertion of DT and an example of the

triangulation construction.

The most time consuming part of the algorithm is step 2a – a quick location of the

triangle containing the inserted point. In our approach, triangles are kept in a directed

acyclic graph (DAG) – a graph where the history of insertion and flipping is stored.

An example of vertex insertion and edge flipping is shown in Figure 4.2. In the first

step, a new vertex is inserted. Then the corresponding triangle is divided into three new

triangles (4,5,6). Because the new triangles do not fulfill the Delaunay condition, edge flips

are performed in steps three and four.

4.2 Delaunay Stripification

To speed up the visualization of different levels of detail of the triangulation, it is possible to

use triangle strips. In Figure 4.2(d), one can see that it is possible to obtain a stripification

50

(

((

(

Figure 4.2: Example of DAG. A new point is inserted into a triangulation (a). The corre-

sponding triangle is subdivided into three new triangles (b). The triangles checked for the

Delaunay condition (c) and (d).

for each step of the triangulation process by traversing theleaves of the DAG structure very

quickly. This algorithm was published in [35].

To improve the quality of stripification, it is necessary to modify the existing algorithm

[22] to avoid breaking strips. There are two steps in the algorithm where the strip could

be broken: (a) insertion of a new vertex, and (b) flipping edges to fulfill the Delaunay

condition.

While inserting a new vertex two situations can appear. If theinserted vertex lies inside

a triangle, three new triangles are created. To preserve thestrip, we need only to keep the

right order of sons in the DAG (see Figure 4.3).

If we don’t care about the Delaunay condition (do not performflips), we obtain a

Hamiltonian triangulation (as described in [3] – we get one strip for the whole triangu-

lation, penalized by worse quality of triangles).

In Figure 4.3 (left) an old triangulation with a strip is shown. In the middle, there is a

new triangulation and a new triangle strip after a vertex insertion. On the right side, there

is the corresponding DAG.

In the other situation the inserted vertex lies on an edge. Insuch a situation several

cases may appear. In the first case, the incoming edge (i.e., the edge on which the strip

enters the triangle) of the first triangle and the outgoing edge (i.e., the edge on which the

strip leaves the triangle) of the second triangle have a common vertex. It is possible to

connect all four new triangles into one strip and continue (see Figure 4.4).

The second case, where the incoming edge of the first triangledo not share any vertex

51

1

3

2 4

1

2 3 4

Figure 4.3: Insertion of a vertex into a triangle

3 4 5 6

21

1 2

3 6

54

Figure 4.4: Insertion of a vertex on an edge (case 1)

with the outgoing edge of the second triangle, is the most problematic. In this case it is not

possible to insert all four new triangles into a strip and a new strip has to be created.

There are two possibilities: (1) Insert three new trianglesto the existing strip and create

one new single-triangle strip (in Figure 4.5 triangle 4); or(2) to avoid the single-triangle

strip it is possible to divide the strip and insert triangles3 and 4 to the first strip and triangles

5 and 6 to the second strip.

3

4

5 6

21

1 2

3 5

64

Figure 4.5: Insertion of a vertex on an edge (case 2)

In the last case, the first triangle lies in another strip thanthe second one. The new

triangles are simply inserted into the existing strips (seeFigure 4.6).

To make the Delaunay triangulation, each new triangle has tobe checked and if it does

52

3 4 5 6

21

1 2

3 6

54

Figure 4.6: Insertion of a vertex on an edge (case 3)

not fulfill the condition, it is necessary to flip the edge. Again, several cases may appear.

When the incoming edge of the first triangle does not share a vertex with the outgoing edge

of the second triangle, it is possible to connect both new triangles into a strip (Figure 4.7).

1

2

3 4

3 4

21

Figure 4.7: Edge flipping (case 1)

If the incoming and outgoing edges share a vertex, a new single-triangle strip has to be

created (Figure 4.8).

1

2

3 4

3 4

21

Figure 4.8: Edge flipping (case 2)

If the two flipped triangles lie in the same strip but do not share a common edge in the

strip, the existing strip is divided into two strips (Figure4.9).

In the last case the two triangles do not belong to the same strip. After the edge is

53

1

2

3 4

3 4

21

Figure 4.9: Edge flipping (case 3)

flipped, the beginning of the first strip is connected to the end of the second strip and vice

versa (Figure 4.10).

1

2

3 4

3 4

21

Figure 4.10: Edge flipping (case 4)

When the insertion and flipping step is finished, it is possibleto extract the stripification.

It can be performed in three steps:

• In the first step, the algorithm is traversing the leaves of the DAG (triangles of the

final triangulation). If it is possible, it connects the triangle to an existing strip, if

not, a new strip containing this triangle is created.

• In the second step the algorithm goes through the list of strips and tries to concatenate

strips into longer ones. To detect whether two strips could be connected or not, each

strip has a pointer to its terminal triangles and each terminal triangle points to the

corresponding strip.

• To speed up the visualization, we can use the OpenGL vertex arrays or vertex buffers.

To be able to use this extension, the algorithm has to extractvertices of each strip

into a continuous block of memory in the last step.

54

4.3 Test and Results

This algorithm was implemented in Borland Delphi 6.0. It has been tested on a set of

16 randomly generated and 8 real terrains. Experiments havebeen performed on a PC

AMD Duron 850MHz with 256MB of RAM, running on MS Windows 2000 system. The

implementation was compared toSTRIPE 1.0[14] with default settings (compiled with

gcc, I/O operations excluded from time measurement) and to my own implementation of

SGIalgorithm [34]. This comparison is not completely fair, because unlike this algorithm,

bothSTRIPEandSGIalgorithms are more general and work also for fully 3D models. But

as far as I know, there are no public free methods for our classof models. Naturally, times

of I/O operations have been excluded from measurements.

In Table 4.1 the name and description of all methods is printed. These names are used

in the following tables. In Table 4.2 the number of trianglesand vertices in models is

shown.

DT Delaunay triangulation only

DTS Delaunay stripification

DTS(O) DTS time minus DT time

(only the time of stripification)

SGI Our implementation of SGI method

STRIPE STRIPE (default settings)

Table 4.1: Methods

model # of vertices # of triangles

1 4,897 9,774

2 13,829 27,642

3 15,820 31,617

4 20,014 40,016

5 41,853 83,678

6 60,244 120,465

7 70,433 140,841

8 100,000 199,114

Table 4.2: Models

Next tables show comparison of theDTS to STRIPEand toSGI. Table 4.3 shows the

time needed for stripification. The time for the Delaunay stripification is only 2–5% higher

than the Delaunay triangulation without stripification (except of the model 1, which is too

55

small to give reliable results). In comparison toSTRIPE, the DTS is about 8–15 times

faster. It is also more than five times faster than theSGIalgorithm. This speedup is caused

by several things. Nearly all temporary structures are accesible directly inDTSwhile in

other algorithms we need to create them. The order of insertion of triangles into strips is

done simply by traversing the DAG leaves. The concatenationof triangle strips is done via

a greedy algorithm which is very fast.

model DT DTS DTS(O) STRIPE SGI

1 190 210 20 128 70

2 701 721 20 356 201

3 832 851 19 402 230

4 1072 1132 60 514 290

5 2634 2714 80 1163 591

6 4086 4197 111 1690 872

7 4917 5108 191 1941 1091

8 6349 6599 250 2432 1261

Table 4.3: Runtime in milliseconds

Table 4.4 shows the number of strips needed for a model. We cansee that bothSGI

andSTRIPEcreates approximately three times less triangle strips than DTS. This is quite

surprising because I have expected an algorithm that creates a low number of strips. This

problem is caused by a big amount of flips during the triangulation process (6 flips per

vertex on average).

model DTS STRIPE SGI

1 638 252 242

2 1785 697 672

3 2030 795 769

4 2625 946 929

5 5457 2052 1895

6 7753 2759 2627

7 9074 3288 3144

8 12048 3445 3363

Table 4.4: Number of strips in a model

56

Table 4.5 lists the number of vertices in strips for all algorithms. TheDTSalgorithm

produces 5–6% more vertices than theSTRIPEand 8–11% more vertices than theSGI.

model DTS STRIPE SGI

1 15,390 14,589 14,175

2 43,651 41,489 40,243

3 49,874 47,429 45,936

4 63,012 59,805 57,707

5 131,921 125,090 120,887

6 189,790 179,222 172,991

7 222,116 209,703 202,607

8 261,001 294,706 280,387

Table 4.5: Number of vertices in strips

There could be two reasons why is my algorithm worse thanSGI or STRIPE. First,

the number of strips is higher. Second, in the stripificationthere exists a lot of fan-like

strips caused by the flips (see Figure 4.11). Therefore a combination of triangle strips and

triangle fans could bring some additional reduction.

In Figure 4.11 (left) a new vertex is inserted into a triangulation. After the insertion,

flips are performed and the order of triangles in the strip is changed. The color intensity

marks out the order of triangles.

Figure 4.11: Insertion of a vertex changes the order of triangles (the color intensity marks

out the order of triangles).

Although my algorithm produces higher number of strips, thespeedup is sufficient for

the previews. There is probably still a place for reducing the number of strips by some

improvements in the insertion and flipping stage.

57

5 Ideas and Future Work

In this section, my current and future work is presented. There are also several ideas that

may or may not be realized in the future.

Several last months I have been working on a new stripification algorithm that uses the

duality approach. This algorithm is inspired by the algorithm for searching the Hamiltonian

circle designed by Christophides [9] and improved by Kocay [21]. Their algorithm is based

on an exhaustive search of paths in a graph. The algorithm starts with an arbitrary node

and any incident edge. While recursively extending the path,edges that are incident to the

node, which is in the middle of the path, are removed, becausethere is no possibility to

use them (Hamiltonian path visits each node only once). In some cases, this edge removal

leads to starting of a new path. The algorithm stops in the case that a Hamiltonian path

was found. The algorithm works well for Hamiltonian graphs (i.e., graphs that contain a

Hamiltonian path).

From that algorithm, I have taken the basic idea – to make a path containing a node of

degree of two and one of its adjacent nodes (such nodes has to be inside a strip, otherwise

the strip is broken here). As it is not necessary to produce a single strip, but a small group

of strips, the exhaustive search part can be eliminated and the complexity of the algorithm

can be reduced toO(n).

My new algorithm does not build one strip at a time, but it creates a strip for each

suitable group of triangles and concatenates these strips if possible. Such an approach

produces triangle strips of about the same length and it avoids short or singleton strips (i.e.,

strips containing one triangle only).

According to the first tests, the algorithm is able to producea stripification with very

low number of triangle strips (comparable totunneling[32], which produces the lowest

number of strips from all algorithms – as far as I know). On theother side, it seems to

produce a huge number of vertices.

For the future, there are several challenges related to thisalgorithm:

• One of the most import task for the future is to find a way how to reduce the number

of swaps (number of vertices) in triangle strips produced bythis algorithm and create

even better stripification. This improvement should increase the rendering speed.

• There is probably still a place to create even less triangle strips by using the loops,

which occasionally appear in the stripification. In the presented algorithm, the edges

that could lead to such a loop are removed to speed up the algorithm. On the other

58

side, such loops could be very useful, because they can be disconnected on any seg-

ment and concatenated with some other strip, which is starting/ending in the neigh-

borhood of this loop.

• Because the algorithm is based on the dual graph, it is also possible to make a mod-

ification which uses a weighted graph. Changing the weights ofedges could help to

control better the stripification process. It could be used to avoid swaps, make more

local strips (i.e., strips that are located on a small area and could be removed by some

clipping algorithm), etc.

• It could be also possible to combine this new algorithm with Belmonte’s algorithm

[5] and produce triangle strips, which are preserved duringthe simplification process.

If the stripification will be constructed from a weighted graph, this can be easily

archived.

At present, I am also cooperating with Radek Sviták on a FRV̌S/G1 on the data re-

construction from orthogonal slices. Our goal is to use as much information as possible

from the reconstruction process for the stripification. We hope that such an approach will

increase the quality of the stripification.

As the stripification problem is NP and there is no exact criterion for the ”optimal

stripification”, I would like to perform a set of tests to get some better definition of this

problem. According to the tests presented in Section 3.4, one can see that the optimum

stripification is neither the one with the lowest number of strips nor the one with lowest

number of vertices. As the speed of visualization of triangle strips is hardware dependent

there is probably no exact answer. On the other side, I hope itis possible to get at least

some guidelines.

I was quite disappointed by the results of Delaunay stripification. Still, I am convinced

that there exists a better way how to produce a good stripification for 2D data. I think that

one possible way is to make a combination of Delaunay and Hamiltonian triangulation to

obtain a good triangulation with a low number of strips. The main idea is to create the

Hamiltonian triangulation – using the onion method. This triangulation can be improved

by repairing ”bad” triangles. The repairing process can stop after the triangulation achieved

some requested quality or the number of strips reaches some predefined maximum. The

main problem of this idea is that the quality of the triangulation decreases very rapidly with

each triangle that does not fulfill the Delaunay condition.

The algorithm described in [30] or some modification of this algorithm could be prob-

ably used to generate a dynamic stripification for flyovers ofsome huge terrain data by

59

moving the reference point to the viewers position. Such an approach can be used to gen-

erate a stripification of some limited part of the triangulation. The restripification process

should be started e.g. after a new block of data is loaded intothe memory.

I would like to establish a cooperation with Sebastian Krivograd on compression of tri-

angular meshes. During the decompression phase of the algorithm presented in [40], there

is a possibility to construct the stripification directly, without decompressing the triangle

mesh first and stripifying it afterward. This could significantly speedup the preprocessing

stage of rendering.

60

References

[1] K. Akeley, P. Haeberli, and D. Burns. tomesh.c. http:// research.microsoft.com/

∼hollasch/ cgindex/ geometry/ tomesh.c.

[2] K. Akeley, P. Haeberli, and D. Burns. tomesh.c. C Program on SGI Develope’s

Toolbox CD, 1990.

[3] E.M. Arkin, M. Held, J.S.B. Mitchell, and S.S. Skiena. Hamiltonian Triangulations

for Fast Rendering.Visual Computer, vol. 12, no. 9, pp. 429–444, 1996.

[4] R. Bar-Yehuda and C. Gotsman. Time/Space Tradeoffs for Polygon Mesh Rendering.

ACM Transactions on Graphics, vol. 15, no. 2, pp. 141–152, 1996.

[5] O. Belmonte, J. Ribelles, I. Remolar, and M. Chover. Searching Triangle Strips

Guided by Simplification Criterion. In V. Skala, editor,WSCG 2001 Conference

Proceedings, 2001.

[6] M.de Berg. Simple Traversal of a Subdivision without Extra Storage.International

Journal of GIS, 1997.

[7] K.Q. Brown. Voronoi Diagrams from Convex Hulls. InInformation Processing Let-

ters, pp. 223–228, 1979.

[8] CCGDV, University of West Bohemia. Data archive. http:// herakles.zcu.cz/ re-

search/mve/ download.php.

[9] N. Christophides.Graph Theory, an Algorithmic Approach. Academic Press, New

York, 1975.

[10] CYBERWARE. Sample models. http:// www. cyberware. com/ samples/.

[11] M. Deering. Geometry compression. InProceedings of the 22nd Annual Conference

on Computer Graphics and Interactive Techniques, pp. 13–20. ACM Press, 1995.

[12] R.A. Dwyer. A Simple Divide-and-Conquer Algorithm for Computing Delaunay

Triangulations in O(n log log n) Expected Time. InProceedings of the Second Annual

Symposium on Computational Geometry, pp. 276–284. ACM Press, 1986.

[13] J. El-Sana, E. Azanli, and A. Varshney. Skip Strips: Maintaining Triangle Strips for

View-Dependent Rendering. InProceedings of the Conference on Visualization ’99,

pp. 131–138. IEEE Computer Society Press, 1999.

61

[14] F. Evans. STRIPE, 1998. http://www.cs.sunysb.edu/ ˜stripe/.

[15] F. Evans, S. Skiena, and A. Varshney. Completing Sequential Triangulations is Hard.

Technical report, Department of Computer Science, State University of New York at

Stony Brook, 1996.

[16] F. Evans, S. Skiena, and A. Varshney. Optimizing Triangle Strips for Fast Rendering.

In Roni Yagel and Gregory M. Nielson, editors,IEEE Visualization ’96, pp. 319–326,

1996.

[17] M. Garland and P.S. Heckbert. Surface Simplification Using Quadric Error Metrics.

Computer Graphics, vol. 31, pp. 209–216, 1997.

[18] Georgia Institute of Technology. Large Geometric Models Archive. http://

www.cc.gatech.edu/ projects/ largemodels/.

[19] M. Held. Efficient And Reliable Triangulation Of Polygons. InProceedings of Com-

puter Graphics International, pp. 633–643, 1998.

[20] H. Hoppe. Optimization of Mesh Locality for Transparent Vertex Caching. In Alyn

Rockwood, editor,Siggraph 1999, Computer Graphics Proceedings, pp. 269–276,

Los Angeles, 1999. Addison Wesley Longman.

[21] W. Kocay. An Extension of the Multi-Path Algorithm for Finding Hamilton cycles.

Discrete Mathematics 101, pp. 171–188, 1992.

[22] I. Kolingerov́a and B.Žalik. Improvements to Randomized Incremental Delaunay

Insertion.Computers & Graphics, vol. 26, pp. 477–490, 2002.

[23] D. Kornmann. Fast and Simple Triangle Strip Generation. http:// www.dlc.fi/ dkpa/

strip/ strip.html.

[24] D. Kornmann. Fast and Simple Triangle Strip Generation. Technical report, VMS

Finland, Espoo, Finland, 1999.

[25] D.E. Knuth L.J. Guibas and M. Sharir. Randomized Incremental Construction of

Delaunay and Voronoi Diagrams. In M. S. Paterson, editor,Automata, Languages and

Programming: Proc. of the 17th International Colloquium, pp. 414–431. Springer,

New York, 1990.

62

[26] NVIDIA Corporation. Using Vertex Buffer Objects. White Paper: http:// devel-

oper.nvidia.com/ object/ usingVBOs.html, 2003.

[27] W. Pugh. Skip Lists: A Probabilistic Alternative to Balanced Trees. InWorkshop on

Algorithms and Data Structures, pp. 437–449, 1989.

[28] M.V.G.da Silva, O.M.van Kaick, and H. Pedrini. Fast Mesh Rendering through Effi-

cient Triangle Strip Generation. http:// pet.inf.ufpr.br/ ∼om/ software.php.

[29] M.V.G.da Silva, O.M.van Kaick, and H. Pedrini. Fast Mesh Rendering through Effi-

cient Triangle Strip Generation. InWSCG’2002, pp. 127–134, 2002.

[30] B. Speckmann and J. Snoeyink. Easy Triangle Strips for TIN Terrain Models. In

Canadian Conference on Computational Geometry, pp. 239–244, 1997.

[31] Stanford Computer Graphics Laboratory. The Stanford 3DScanning Repository.

http:// graphics.stanford.edu/ data/ 3Dscanrep/.

[32] J. Stewart. Tunneling for Triangle Strips in ContinuousLevel-of-Detail Meshes. In

Graphics Interface, pp. 91–100, 2001.

[33] P. Su and R.L.(Scot) Drysdale. A Comparison of SequentialDelaunay Triangulation

Algorithms. InSymposium on Computational Geometry, pp. 61–70, 1995.

[34] P. Vaňeček. Comparison of Stripification Techniques. In6-th Central European

Seminar on Computer Graphics CESCG’02, pp. 65–74, 2002.

[35] P. Vaňeček and I. Kolingerov́a. Fast Delaunay Stripification. InProceedings of the

19th Spring Conference on Computer graphics, 2003.

[36] L. Velho, L.H.de Figueiredo, and J. Gomes. Hierarchical Generalized Triangle Strips.

The Visual Computer, vol. 15, no. 1, pp. 21–35, 1999.

[37] J.C. Xia, J. El-Sana, and A. Varshney. Adaptive Real-TimeLevel-of-Detail-Based

Rendering for Polygonal Models.IEEE Transactions on Visualization and Computer

Graphics, vol. 3, no. 2, pp. 171–183, 1997.

[38] X. Xiang. Fast Triangle Strip Generator. http:// www.ams.sunysb.edu/∼xxiang/

strip.html.

63

[39] X. Xiang, M. Held, and P. Mitchell. Fast and Effective Stripification of Polygonal

Surface Models (short). InSODA: ACM-SIAM Symposium on Discrete Algorithms

(A Conference on Theoretical and Experimental Analysis of Discrete Algorithms),

1999.

[40] B. Žalik and S. Krivograd. Compression of Triangular Meshes Processing Two Tri-

angles at the Same Time.Contributions to Geometric Modelling and Multimedia,

vol. 2, no. 8, pp. 1–23, 2002.

64

A Activities

Publications

• Vaněček P. and Kolingerov́a I. Weighted Multi-Path Algorithm for Triangle Strips,

Electronic Computers and Informatics 2004, Herlany, Slovakia, 2004 (waiting for

review).

• Vaněček P. and Kolingerov́a I. Multi-Path Algorithm for Triangle Strips, InComputer

Graphics International (CGI) 2004, Crete, Greece, 2004 (accepted as full paper).

• Vaněček P. and Kolingerov́a I. Fast Delaunay Stripification, InSpring Conference

on Computer Graphics (SCCG) 2003, Budmerice, Slovakia, 2003 (also published in

ACM ISBN 1-58113-861-X).

• Vaněček P. Comparison of Stripification Techniques. In6-th Central European Sem-

inar on Computer Graphics (CESCG) 2002, pages 65–74, Budmerice, Slovakia,

2002.

Related Talks

• Vaněček P. Teorie graf̊u a jej́ı aplikace v pǒćıtačové grafice, Center of Computer

Graphics and Data Visualization, University of West Bohemia, Pilsen, Czech Re-

public, April 2004.

• Vaněček P. Troj́uhelńıkové stripy, Center of Computer Graphics and Data Visualiza-

tion, University of West Bohemia, Pilsen, Czech Republic, November 2003.

• Vaněček P. Triangle Strips For Fast Rendering, Technical University of Graz, Aus-

tria, October 2003.

• Vaněček P. Triangle Strips For Fast Rendering, University of Maribor, Slovenia,

September 2003.

Stays Abroad

• Technical University of Graz, Austria, October 2003.

• University of Maribor, Slovenia, September 2003.

• University of Ioannina, Greece, February – August 2001.

65

B Models

Figure B.1: Cow. 2905 vertices,

5804 triangles.

Figure B.2: Demi. 9138 vertices,

17506 triangles.

Figure B.3: Bunny. 35947 vertices,

69451 triangles.

Figure B.4: Dinosaur. 56194 ver-

tices, 112384 triangles.

66

Figure B.5: Balljoint. 137062 ver-

tices, 274120 triangles.

Figure B.6: Club. 209779 vertices,

419554 triangles.

Figure B.7: Hand. 327323 vertices,

654666 triangles.

Figure B.8: Dragon. 437645 ver-

tices, 871414 triangles.

Figure B.9: Happy. 543652 ver-

tices, 1087716 triangles.

Figure B.10: Blade. 882954 ver-

tices, 1765388 triangles.

67

C Output Examples

The bunny model consists of 35947 vertices and 69451 triangles. TheSGI method (LS

heuristic) produces the highest number of triangle strips (Figure C.1). As these strips do not

contain a high number of swaps, they are narrow straight. On the other side,TUNNELing

produces more than 20 times lower number of triangle strips,but the number of vertices

(i.e., swaps) is more than 20% higher (Figure C.4). These strips cover huge regions.

Figure C.1: SGI-LS. 3560 strips,

81730 strip vertices.

Figure C.2: STRIPE-Q. 1229 strips,

82760 strip vertices.

Figure C.3: FTSG-SGI. 618 strips,

85362 strip vertices.

Figure C.4: TUNNEL. 166 strips,

98503 strip vertices.

68

