University of West Bohemia in Pilsen

Department of Computer Science and Engineering
Univerzitni 8

30614 Pilsen

Czech Republic

C-Sim version 5.1

Roman Jokl, Stanislav Racek

Technical Report No. DCSE/TR-2003-17
May, 2003

Distribution: public

Technical Report No. DCSE/TR-2003-17
May 2003

C-Sim version 5.1

Roman Jokl, Stanislav Racek

Abstract

C-Sim is a programming tool for simulation of discrete processes using a method of pseudo—
parallel processes. It is an extension of ANSI C language obtained by including a library
of SIMULA-like types and functions packed within several program modules. The typical
application area of C-Sim is functional validation of distributed, parallel and fault-tolerant
systems and programs. C-Sim version 5.1 offers two possibilities how to implement pseudo-
parallel processes. The first one is based on setjump()/lomgjump() functions utilizations, the
second one uses POSIX threads as an implementation basis of pseudo-parallel activities.

This work was supported by the Ministry of Education of the Czech Republic, project no.
MSM-235200005 - Information systems and Technologies..

Copies of this report are available on
http://www.kiv.zcu.cz/publications/

University of West Bohemia in Pilsen

Department of Computer Science and Engineering
Univerzitni 8

30614 Pilsen

Czech Republic

Copyright (©2003 University of West Bohemia in Pilsen, Czech Republic

Contents

1 Introduction 4

2 Principles Used 7
2.1 Internal Structure of the Library

2.2 Supported Object Types and User Types Derivation 9

2.3 Implementation of Dynamic Memory Management 11

2.4 Implementation of Pseudo-parallel Processes 14

2.4.1 Implementation Based on Long Jumps 16

2.4.2 Implementation Based on POSIX Threads 17

2.5 Comparison of both implementations 19

2.6 Time Representation e 19

2.7 Run-time Errors Checking o 0o 20

3 Data Types in C-Sim Library 22

3.1 Simple data types 22

3.2 Object Type CSIMDYN.MEM 23

3.2.1 Object Structure 23

3.2.2 Object Construction and Destruction 24

3.3 Object Type CSIM_LINK i 24

3.3.1 Object Structure 24

3.3.2 Object Construction and Destruction 25

3.4 Object Type CSIM.HEAD 25

3.4.1 Object Structure 25

3.4.2 Object Construction and Destruction 27

3.5 Object Type CSIM_PROCESS 27

3.5.1 Process Program 28

3.5.2 Process States

3.5.3 Process Data Record — type CSIM_PROCESS.
3.5.4 Object Construction and Destruction
3.6 Initialization of Attributes Values
3.7 Error enumeration types L. L e

4 Library Functions Reference

4.1 Memory Management Functions
4.2 Operations with two—way circular lists
4.3 Operations with Processes
4.4 Functions for the Control of Simulation Run.
4.5 Statistical Functions oL o o
4.6 Control and Run-Time Error Handling Functions

5 Optional Modules Description

5.1 Error Messages Module o Lo
5.2 Random Number Generator Module
5.2.1 Datatypes e
5.2.2 Functions L
5.3 Semaphore Module
5.3.1 Data Types e
5.3.2 Functions
5.4 Message Passing Module,
5.4.1 Data Types« . e
5.4.2 Functions L e
5.5 Console Debug Module o

6 Basic Rules How to Use the C-Sim Library

6.1 Structure of Simulation Program
6.2 Process’s Operations Usage
6.3 Long-Jumps Based Implementation Restrictions.
6.4 Backward compatibility oo o
6.5 CH+ compatibility o

7 Demonstration examples

35
35
36
38
39
40
42

43
43
43
44
44
46
46
47
47
49
49
50

52
52
53
o4
o4
55

56

7.1 Model of a Queuing Network
7.1.1 Object types« e e
7.1.2 Global dataitems
7.1.3 Model initialization
7.1.4 Main program Lo e e e e e e e e

7.2 M/M/1 queuing system

7.3 Model of Shared Resource Utilization.

7.4 Distributed election algorithm o L.

7.5 Open queuing network parallelized using PVM tool

C-Sim Library Interface

Error Messages Module Interface

Random Number Generator Module Interface
Semaphores Module Interface

Message Passing Module Interface

Console Debug Module Interface

68

84

85

87

89

93

Chapter 1

Introduction

C-Sim is a program enhancement of the C language used for creating discrete simulation
models based on the method of pseudo-parallel processes. It has the form of a library of basic
object types and operations on them, which allows to enhance the standard object types with
new attributes and methods to fulfill the needs of a concrete model.

The idea of C-Sim was taken from the programming language SIMULA and the library
provides SIMULA-like resources from the system classes SIMSET and SIMULATION. The C lan-
guage was chosen for its portability among different systems.!

This document is reference manual of C-Stm version 5.1.

Improvements that were made compared with the previous version 4.1:

e better readability and safety of source code,

e an additional implementation of POSIX threads based mechanism of pseudo—parallel
processes and modification of the C-Sim kernel in order to allow the use of both mech-
anisms of simulation processes implementation,

e better modular structuring of C-Sim kernel,

e addition of new features like semaphore module, message passing module, etc.

Here we need to explain the terminology we will use in this document. All definitions will be
as simple and intuitive as possible.

Real object defines a particular part of the real world, a part that is more or less constrained.
A real object has real properties which are also called attributes. The remaining part
of the real world is called the neighborhood.

Model is a purposefully constructed image of a real object. In the process of construction we
usually apply: simplification — we consider only the properties which are significant for
the model construction. generalization — we do not describe one particular real object,
instead we describe a class of real objects with common attributes.

1C-Sim is implemented using the ANSI C specification.

System as we understand the term, is a purposefully defined set of items with certain rela-
tions. i.e. S = (P, R), where P is a set of items and R is a set of relations between the
items, representing the mutual functional relations between the items and the neigh-
borhood of the system.

Simulation is a research method which replaces the investigated system with a simulation
model upon which we perform further experiments to obtain information about the
originally investigated system.

System can be divided by various aspects:

e Dynamic versus Static — whether some properties of the items have the character of
memory or not. All memory-character properties describe the state of the system.

e Continuous versus Discrete — whether the time-dependent properties do change in con-
tinuous or discrete set of points on the time axis.

e Closed versus Open — whether we consider the interaction with neighborhood or not.

e Stochastic versus Deterministic — whether some properties of the items do have the
character of random numbers or not.

C-Sim is designed for simulation of dynamic discrete systems (both open and closed). It is
often used in simulations of stochastic systems, but may be used as well in simulations of
deterministic systems.

The most common methods of real discrete system model decomposition, divided by the
controlling algorithm of simulation computation, are called

e Method of event interpretation — all event that should occur in the future model evo-
lution are stored in a list called event calendar. The list is sorted in ascending order by
the value of event realization model time. The controlling algorithm of the simulation
computation interprets the events in the calendar sequentially. If an event is the cause
for another event creation, the scheduling of the new event into the calendar is part of
the first event interpretation. An interpreted event is removed from the calendar.

e Method of pseudo—parallel processes — single computation parts are encapsulated in
selected object types, which gain therefore an own program and the character of stand-
alone computation processes. The activity of a process is divided into a sequence of
activity phases, that are executed each at a single point in model time. To control the
pseudo—parallel computation of all processes in the model again requires the existence
of a calendar-like data structure. The calendar contains processes sorted in ascending
order by model time — their record includes a reference into the program. The control
loop of the computation executes the processes sequentially, in the order given by the
calendar.

C-Sim is based on method of pseudo—parallel processes.

Every simulation uses its own time, so called simulation time. The changes in simulation
model of a system take place at discrete points in simulation time. A discrete simulation

is divided into simulation steps, in every step a part of the program assigned to the first
process in the calendar is executed. The value of simulation time remains constant during a
step and may change jump-like between steps. The values of simulation time must form a
non-descending sequence.

After the process executes the part of its program which corresponds to the currently sched-
uled event, it is removed from the calendar. The scheduling of a new event may be a part of
the process activity, i.e. it is possible to re-insert the process into the calendar. The processes’
active phases are interleaved, with any number of simulation steps between two parts of the
same process. The principle of processes interleaving is depicted in figure 1.1.

Processl Simulation time
main() Process2
| |
| |
| | 0
step() : :
| |
|] |
| | |
| | | |
| |
M- | | i
| |
| |
| |
| |
— o
| ! |
| : |
I I
a— X X)
| |
| |
| |
| |
— | |
| I |
| | | |
L I 3
I_l | |
| |
1 1

Figure 1.1: Process interleaving in the method of pseudo—parallel processes

Chapter 2

Principles Used

Like SIMULA, the C-Sim needs the description of behavior of the simulated system in the
form of processes. To model objects of the real world with program objects in the process form
is straightforward and natural. The C language, unlike SIMULA, has no tools for object-
oriented programming but some of the basic principles can be implemented using predefined
macro commands. This concerns above all the possibility of inheritance from offered basic
object types. To avoid confusion of terms, inheritance will be in connection with the C-Sim
library replaced by the term derivation.

Another argument for choosing the C language is the expected non-traditional application of
discrete-time modeling (e.g. verification of properties of parallel programs, communication
protocols, fault-tolerant systems and algorithms, real-time applications, etc.). Mapping of
dynamic components (threads, processes) of the modeled program to the processes of the
simulation program and corresponding simple translation of verified program parts from the
model to the target implementation code is assumed.

2.1 Internal Structure of the Library

The C-Sim library is divided to three layers as seen on the picture 2.1.

The lowest layer is defined by files csim_kr.h, csim_dt.h and csim_tm.h. The files csim_dt.h and
csim_tm.h contain the definitions of data types (e.g. CSIM_BOOLEAN, CSIM BYTE, ...) described
in detail in section 3.1 and type CSIM_TIME described in section 2.6. These data types are
used globally by the whole C-Sim library and thus their definitions are included in the file
csim.h.

Furthermore this layer also implements pseudo-parallel processes (file csim_kr.h). The file
csim_kr.h was created in two versions. The directory kr_jmp contains version based on long
jumps, the directory kr_thr contains version based on POSIX threads. Library user may
choose desired implementation at compile time by defining the macro KR_PATH on the com-
piler command line. Possible values are kr_thr/csim kr.h and kr_jmp/csim kr.h, being
kr_jmp/csim kr.h as the default. File csim_kr.h is included into csim.h in the following way:

#ifndef KR_PATH

#define KR_PATH "kr_jmp/csim_kr.h"
#endif

#include KR_PATH

The second layer is defined by files csim.c and csim.h, which contain definitions of data types,
macros and functions that enable to create a simulation model and to control the simulation
flow. The defined types are described in section 3, macros and functions in chapter 4.

csim_kr.h csim_tm.h csim_dt.h

csim_err.h csim_rng.h | csim_sem.h | csim_msg.h | csim_dbg.h

csim_err.c csim_rng.c csim_sem.c csim_msg.c csim_dbg.c

Figure 2.1: C-Sim layers
Third layer contains optional modules:

e random number generator — files csim_rng.c and csim_rng.h

e error code to error message conversion — files csim_err.c and csim_err.h
e console debug tools — files csim_dbg.c and csim_dbg.h

e message passing — files csim_msg.c and csim_msg.h

e semaphore — files csim_sem.c and csim_sem.h
These modules are described in section 5.

In the archive with the file Makefile is also provided as an example how to compile the library
and to build applications.

2.2 Supported Object Types and User Types Derivation

As it was mentioned before, the pattern for the library was the SIMULA language. Basic
supported types, that this library provides, are taken from the original object classes in
SIMULA. These are the types CSIM_LINK, CSIM_HEAD and CSIM_PROCESS. The objects of
this type are in C-Sim created in a dynamically allocated memory of the simulation program
(heap), thus the CSIM_DYN_MEM object type was created as an ancestor from which the above
mentioned types are derived. In contrast to SIMULA, the type CSIM_HEAD is in C-Sim
derived from CSIM_LINK, in addition to type CSIM_PROCESS. Hence it is possible to create list
of list heads (i.e. list of lists). The user may thus obtain a tool for creating complicated
structures of objects. The hierarchy of C-Sim supported object types is depicted on figure
2.2.

CSIM_DYN_MEM

CSIM_LINK

CSIM_HEAD CSIM_PROCESS

Figure 2.2: Object types hierarchy in C-Sim

The C-Sim library provides a possibility to extend the standard object types by own data
items (in the object—oriented programming the attributes). A derivation fro the supported
basic types is implemented with the aid of macros. Two groups of macros for deriving new
object types were introduced in the C-Sim library.

The first group is preserved from the previous version of the library (i.e. C-Sim 3.0) and
includes these macros: csim d_dyn mem, csim d link, csim d _head and csim_d_process. The
use of these macros is simple and straightforward, as it can be seen from the following example.

typedef struct my_dyn_mem {
csim_d_dyn_mem;

// user defined attributes
struct my_dyn_mem *p_myself;

} MY_DYN_MEM;

We derived a new type from the type CSIM_DYN_MEM by inserting the csim_d_dyn_mem macro
into the MY _DYN_MEM type declaration. Macro csim_d_dyn_mem is derived in such a way, that it
inserts into the definition of the derived type the attributes, which need to be inherited from
the parent type. The macro is defined as follows:

#define csim_d_dyn_mem

char *name ;
char type;
char *check;

struct csim_dyn_mem *p_head_mem;
struct csim_dyn_mem *p_suc_mem;
struct csim_dyn_mem *p_pred_mem;
CSIM_DESTRUCTOR destructor;
CSIM_VIEW view

P

After the processing by C-language preprocessor the type MY_DYN_MEM definition! has the
following form:

typedef struct my_dyn_mem {

char *name ;
char type;
char *check;

struct csim_dyn_mem *p_head_mem;
struct csim_dyn_mem *p_suc_mem;
struct csim_dyn_mem *p_pred_mem;
CSIM_DESTRUCTOR destructor;
CSIM_VIEW view

// user defined attributes
struct my_dyn_mem *p_myself;

} MY_DYN_MEM;

The type MY DYN_MEM now contains the same attributes as CSIM_DYN MEM, and in addition
some user defined attributes. For this type it is possible to use the same operations as defined
for CSIM_DYN_MEM type. The example shows a type declaration with two names (my_dyn_mem,
MY DYN_MEM), which allows the structure declaration, whose individual attribute has the same
type as the structure itself.

The second group of macros has the same purpose as the first one, but it uses another syntactic
form. We will again show an illustrative example.

csim_derived_link(my_link)

// user-defined attributes, e.g.
struct my_link *p_myself;

Tt is a user-defined data type in C language. With this type are logically (i.e. not with an encapsulation
construction) connected operations, which are executable on it and implemented as “normal” C functions.
Therefore we will use the concept object type for better understandability, even if it does not fulfill some
characteristics, that are required in the object-oriented paradigm (ezplicit encapsulation, method polymorphism,
etc.).

10

csim_end_derived (MY_LINK) ;

This example is expanded with C preprocessor to the same code as the previous example.
From this it follows, that the parameters of the opening and closing program bracket of type
declaration are the first and the second name of the declared structure. Therefore according
to the C-convention we introduce for both identifiers the same names differentiated only
with case of letters. If we want to use a pointer of the same type as the structure itself,
it is again necessary to use the first name with the keyword struct. The identifiers of all
macros in this group are csim_derived_dyn mem, csim derived_link, csim derived_head,
csim_derived_process and the closing bracket is csim_end _derived. Parameter is always
the name of the new type. For the opening bracket it is the first name (lower case), the closing
bracket use the second name, that is then used in variable definition of the introduced type.
Detailed definitions of the individual macros are present in the header file csim.h.

2.3 Implementation of Dynamic Memory Management

The simulation tasks have specific requirements on the method of dynamic memory allocation.
Interactively controlled simulation run can be any time interrupted for repeated run and then
started again after the change of its parameters. The memory allocated during the first
simulation run must be released properly. If the library user was given the possibility of an
uncontrolled manipulation with the dynamic memory, a simple repetition of the simulation
run would not be possible. Therefore we will further mention and explain the accepted rules
for the use of the dynamic memory in C-Sim programs.

e There was introduced the CSIM_DYN_MEM type, from which all basic types are derived.
This type contains the items, which make it possible to insert the objects of this type
and of the derived types into the bidirectionally chained list.

e At the moment of interrupt of the simulation run, the list allows to deallocate all objects
it holds. From this there follows the restriction that forbids the user to directly allocate
the dynamic memory,?.

e If the user insists on the dynamic memory allocation during the simulation run, he
must include the necessary data as items of the new type, which is derived from the
type CSIM_DYN_MEM.

e New object can be created using the csimnew_dynmem() function, which inserts the
object into the list of dynamically generated objects.

As this restriction would force the user to create always a new type, e.g. for dynamic arrays of
different lengths, the C-Sim library introduces the possibility of defining an object destructor.
The object destructor is called always when the object derived from the type CSIM_DYN_MEM is
deallocated from the memory. It also allows to define in the structure of a supported type the

2For example, by the use of the function malloc ()

11

pointers to dynamically generated items, which are not derived from the CSIM_DYN_MEM type
and hence they are not inserted into the list of dynamic memory blocks. The type declaration
for dynamic arrays of different lengths would then be derived from the type CSIM DYN MEM,
but it would not contain as an item the array of concrete length, but only the pointer to a
dynamic array of any length. This array is then allocated by the user himself using e.g. the
malloc() function, but he is obliged to define for such an object the method of destructor,
which guarantees releasing the user-allocated memory after the destruction of the object.

Further we will present the definitions of macros for creation of new object types derived from
the basic types provided by the C-Sim library and the definition of object destructor.

The macros for creating new dynamic objects:

#define csim_new_dyn_mem(TYPE_NAME) \
(TYPE_NAME *) csim_init_dyn_mem((CSIM_DYN_MEM *) malloc(sizeof (TYPE_NAME)))

#define csim_new_link (TYPE_NAME) \
(TYPE_NAME *) csim_init_link((CSIM_LINK *) malloc(sizeof (TYPE_NAME)))

#define csim_new_head (TYPE_NAME) \
(TYPE_NAME *) csim_init_head((CSIM_HEAD *) malloc(sizeof (TYPE_NAME)))

#define csim_new_process(TYPE_NAME, PROC_PROG) \

(TYPE_NAME *) csim_init_process(\
(CSIM_PROCESS *) malloc(sizeof (TYPE_NAME)), (PROC_PROG))

These macros allow to create new objects both of the basic types and of derived types. The
attributes of the basic types are immediately initialized, and if the object is of the derived
type, only the attributes derived from the basic types are initialized.? The csim_init_. .. ()
functions can be used separately as well.

Functions for deallocation of the objects dynamic memory of basic and derived types:
CSIM_RESULT csim_dispose_dyn_mem(CSIM_DYN_MEM *p_dyn_mem) ;

CSIM_RESULT csim_dispose_link(CSIM_LINK *p_link);

CSIM_RESULT csim_dispose_head (CSIM_HEAD *p_head) ;

CSIM_RESULT csim_dispose_process(CSIM_PROCESS *p_process);

For every object type supported by C-Sim a destructor function can be created, which is
called when destructing the object. Any explicit call of a destructor within a simulation
program is not allowed.

3The initialization of the remaining attributes must be done by the user himself. For this purpose, he can
naturally use his own initialization function (replacing the constructor) of the corresponding type.

12

The following macros in the form of program brackets are introduced for the definition of
destructor function.

#define csim_begin_destructor (TYPE_NAME, DESTR_NAME) \

void DESTR_NAME(void *p_void) \

{ \
TYPE_NAME *p_my = (TYPE_NAME *) p_void;

#define csim_end_destructor \

}

Attributes of an object are accessible inside the destructor through the my.attribute con-
struction. The identifier my is defined as a macro and uses the destructor’s parameter p_void.
It allows to have in the destructor body a straightforward and intuitive access to the attributes
of the object, for which the destructor is defined. Destructor is attached to the object by the
macro set_destructor().

#define csim_set_destructor (P_DYN_MEM, DESTRUCTOR) \
(P_DYN_MEM) ->destructor = (DESTRUCTOR)

The type for object destructor is introduced in the following way.

typedef void ((*CSIM_DESTRUCTOR) (void *p_void));

A survey of dynamic memory management

e All objects of basic types and types which are derived from them must be created
dynamically using the predefined macros. All memory allocated by the user must be
a part of types derived from the basic type CSIM_DYN_MEM. Systematic use of this type
allows to maintain the list of all objects and to cancel them in case of repeated simulation
run.

e If the user intends to use his own dynamic variables, he can define them as pointer—typed
attributes of a new type derived from CSIM_DYN_MEM. If an object type contains pointers
to dynamic objects derived from CSIM_DYN_MEM the user must not create a destructor
for them.

e The second possibility is to use pointer-typed attributes representing dynamically cre-
ated arrays (e.g. allocated by the function malloc()). In this case the user must create
for such object type a destructor function that will release the memory, to which the
attributes refer.

e Explicit destruction of the process record of an active process is not allowed. All objects
derived from CSIM_DYN_MEM can be disposed simultaneously (typically at the end of every
experiment) by calling the csim_clear mem() function.

13

2.4 Implementation of Pseudo-parallel Processes

The used method of discrete simulation is based on the use of pseudo-parallel processes.
The process programs are also called cooperating routines, shortly coroutines. Coroutines
are functions, which do transfer control between themselves, but do not explicitly state any
superiority of the caller over the called one. The called coroutine continues its execution from
the point where it ended the last time it transferred control to another coroutine.

The execution of a program, that comprises two coroutines, goes as follows:

1. the first coroutine starts,

2. the first coroutine does part of the computation and then transfers control to the second
coroutine,

3. the second coroutine does part of the computation and then transfers control back to
the first coroutine,

4. the first coroutine continues with the computation from the point where it previously
ended, then again transfers control to the second coroutine,

5. the computation finishes once one of the coroutines ends.

The point of program, where a coroutine transfers control to another one and where it con-
tinues once it retains the control is called reactivation point.

A simulation based on parallel processes method is built up of simulation steps. In each step a
part of the computation is executed exactly between two reactivation points of one coroutine.
A simulation program thus contains a main loop, in which the function csim_step() that
processes one simulation step is repeatedly called. The main loop itself is a coroutine and
this coroutine creates and destroys all the other coroutines as needed by the library function
calls.

One simulation step runs the following algorithm:

1. Main loop executes a process that is placed at the first place in the calendar and stops
itself. In case the process has been already executed before, main loop transfers control
to it using the macro csim_switch_to_process(), otherwise it creates and executes new
process using the macro csim create_process().

2. Once the process reaches a reactivation point, it transfers control back to main loop
using the macro csim_switch_to_step() and stops itself.

3. If the process reaches its end defined by the macro bracket csim_end _program, it trans-
fers control to main loop using the macro csim return to_step() and stops itself.

The processes are running in so-called model time, which in contrast to the real time, can be
arbitrarily slowed down or accelerated.

14

The “life” of processes in model time has a discrete character—active phases of the process
are performed in a discrete value of the model time (i.e. they have a zero duration in model
time, execution of one active phase of one process is realized in one simulation step) and
between these phases there are phases of inactivity with non-zero duration in model time.

Basic distinguished states of the processes are:

Passive — the process is not planned (the process has no record in the calendar).

Planned - the time of the next activation is determined (the process has a record in the
calendar).

Active - the process is within some phase of activity (record of the process is the first one
in the calendar).

Terminated — program of the process has ended (and cannot be run again), data of the
process is still accessible.

The transition from one state to another occurs after one of the following operations has been
performed in active process (these are the operations provided for by the C-Sim library):

passivate() — active process changes its state into passive (it is removed from the calendar
and the next process form the top of calendar is activated).

hold() — active process changes to state planned and the next process from the calendar is
activated. The length of the next inactivity phase is a parameter of this operation.

activate() — active process x changes the state of other process y from state passive to
planned. The active process z continues its activity as active. The parameters of this
operation are the reference to y and the time of activation.

cancel() — active process z changes the state of another process y from state planned
to passive. The active process z remains active. Parameter of this operation is the
reference to y.

When implementing pseudo-parallel processes in C-Sim, which behave according to the above
description, next steps must be performed:

e A type CSIM_PROCESS for objects with their own “life” needs to be created.
e A possibility to create user-derived type should be given (see above).

e A possibility to define a program (i.e., description of a “life”) of an instance of
CSIM_PROCESS type should be offered to the user.

e A possibility to interleave the “life” of all active objects (always with continuation from
the point of last termination of the run — reactivation point) needs to be implemented.

15

The first point is fulfilled by defining the type CSIM_PROCESS that describes process data
record.

The third point was solved using the macros csim program, csim end program and
csim_end _process defined in the file csim.h. Different implementation methods require some-
what different fields in the CSIM_PROCESS structure. These “dependent” fields are added also
in a way of derivation using the macro csim_process_kr (the second point).*

The fourth point is fulfilled by defining macros csim create_process() and
csim_cancel process() for process creation and destruction; csim_switch_to_process,
csim_switch_to_step() and csim return_to_step() for process control switching. These
macros are used to implement functions passivate, ..., etc., so the library user needn’t to
use them directly.

2.4.1 Implementation Based on Long Jumps

One method of implementation is based on the functions setjmp() and longjmp(), which
are a part of the standard C-language libraries on different computers and operating systems.
These functions allow storing the process context (contents of processor’s registers) into the
predefined structure and later return to the stored process status. They also provide for
switching the process context without using the nonstandard operations, what improves the
portability, security and readability of the library code.

The function setjmp() stores the current context into the structure of the type jmp_buf.
Function longjmp () then uses this structure as a parameter and restores the contents of the
registers to the initial values. This will return the program run back to reactivation point.

e At the first call of setjmp() function the structure containing the current context is
set.

e When the longjmp() function is then called, the program returns control back to the
reactivation point, which was the first parameter, and function setjmp() returns the
value used as the second parameter of the longjmp() function. By this value it is then
decided, whether this is a return or a new run, which must set new reactivation point.

e The setjmp() function has thus one parameter, which is a structure of the jmp_buf
type, where the context information is stored. It also returns the value of the int type,
which is 0, if the call sets the context, or the value of the second parameter of the
longjmp () function, which made the return possible.

e Function longjmp() has two parameters. The first one is the jmp_buf structure and
the second one is of the int type and determines the return value of setjmp() function
when the return is performed.

A macro that implements a reactivation point is defined as follows:

4The process of derivation is described in detail in section 2.2

16

#define csim_switch_to_process(process) \
if (setjmp(csim_sqs_point()->rollback) == 0) {
longjmp(process->rollback, 1); \

}

-

However, a function (i.e. program of the process) that uses the functions setjmp() and
longjmp (), cannot ensure that the values of it’s parameters, local (automatic) variables and
return address are unchanged.

All these values are stored on a stack and the jump to another part of the program code can
overwrite them. This has several important consequences. The function calling setjmp()
and longjmp () functions does not have the storing of its parameters guaranteed, and should
not therefore require any parameter. If it is needed, the function should process them before
calling any of the critical functions (i.e. setjmp() and longjmp()). The same situation is
with the local variables of the function.’

The last problem is the corruption of the return address. Hence it is necessary to make sure,
that the function using the setting or return to reactivation point, cannot end with the return
statement. Otherwise there might occur a jump to a non-existing address and collapse of the
whole program.

It means that operations that change the state of running process by calling setjmp()
and longjmp() (e.g. passivate()) had to be written as macros. Moreover it is not pos-
sible to call a state-changing operation like passive() inside a blocking function (like e.g.
receive message()).

2.4.2 Implementation Based on POSIX Threads

The second method of implementation of the coroutines is based on the use of threads.
A thread is a semi-process, that has its own stack, and executes a given piece of code. Unlike
a computational process, the thread normally shares its memory with other threads. All
threads are executed in parallel (e.g. using time slices).

To retain maximum portability of the code, POSIX threads were chosen as an interface to
threads (IEEE standard 1003.1).

The pthreads library introduces three basic types of objects:

e threads
e synchronization objects (mutexes)

e condition variables, used for passive waiting of threads until specific conditions are met
New data types introduced by the pthreads library are:

e pthread_t for threads

%in the program class auto

17

e pthread mutex_t for mutexes

e pthread_cond_t for condition variables

Moreover for each of the presented three basic data types an associated data type also exists
within so-called attribute object that contains adjustable properties.

Every thread executes its own function with predefined prototype:
void* prog_name (void* arg);

The same thread function may be executed by several threads simultaneously. Local variables
defined in the function are thread local variables and they are unique for each thread. Threads
are created in the ready state.

A thread is created for each process of the pseudo—parallel processes method. For the imple-
mentation it is however necessary to assure that only one thread is being executed at a time.
In the process record the following fields are present to accomplish this:

e thread_id — thread identifier
e mutex — mutex to assure exclusive access to the fields in process record
e cond_var — to assure mechanism of condition variable

e thread run — condition variable the thread waits for when another thread is being
executed

The currently running process has the thread run field in its process record set to TRUE, all
other threads have it set to FALSE and wait for the value to change.

Switching the processes is done as follows:

1. Currently running thread grabs the mutex for its process record and sets the field
thread_run to FALSE.

2. Then it also grabs the mutex for process record of the planed process (or step func-
tion), sets its thread run to TRUE, sends a signal for conditional variable and releases
the mutex of the planed process. At this moment, both threads are being executed
simultaneously.

3. The former thread now starts to wait for the condition thread_run == TRUE.

4. The newly executed thread releases its mutex (while it waits for the condition variable,
its associated mutex is locked) and continues with process program execution.

A macro that contains a reactivation point is now defined as follows:

18

#define csim_switch_processes(from, to)
do {
CSIM_PROCESS *_p_from, *_p_to;
_p_from = (CSIM_PROCESS #*) from;
_p_to = (CSIM_PROCESS *) to;

pthread_mutex_lock(&(_p_from->mutex)) ;
_p_from->thread_run = FALSE;
pthread_mutex_lock(&(_p_to->mutex));
_p_to->thread_run = TRUE;
pthread_mutex_unlock(&(_p_to->mutex));
pthread_cond_signal (&(_p_to->cond_var)) ;

while (_p_from->thread_run != TRUE)
pthread_cond_wait (&(_p_from->cond_var), &(_p_from->mutex));
pthread_mutex_unlock (& (_p_from->mutex)) ;
} while (0)

PP A L g A O A

2.5 Comparison of both implementations

As described above, the use of setjmp() and longjmp() functions causes an invalidation of
the stack, what in turn leads to invalidation of automatic local variables, parameters and
return address in process’s function. Therefore the long-jump based implementation sets
some restricting rules for a potential library user, when creating programs of process—like
objects. On the other side long-jump based implementation is effective enough, it means that
big number of processes can be created and the computation runs much more rapidly. The
rules for use long-jump based implementation are described in section 6.3.

In contrast the POSIX threads based implementation, due to the fact that each thread has
its own stack, allows an unrestricted use of automatic variables and nested function calls.
It enables to create a construction like receive message() as function (using internally
csim passivate()) that when called from a process’s program it causes context switching.

By following the long-jump implementation rules for writing programs, we get a program that
will work correctly with both available implementations.

The long jumps functions are a part of the standard C language library what ensures better
portability of the long-jump based implementation than the POSIX threads one.

2.6 Time Representation

The processes in the calendar are placed in ascending order by the planed time of their
activity. To represent time a new data type CSIM_TIME is introduced in C-Sim. By default
the type CSIM_TIME is defined in the file csim_tm.h as follows:

typedef double CSIM_TIME;

19

The double type is a 64-bit floating—point number, where one bit represents sign, 11 bits
represent exponent and the rest 52 bits is the mantis, which in turn allows to represent
floating-point numbers in the range +1.8 x 103%% = 2.2 x 10739 with the accuracy of around
15 decimal digits. This may seem enough but in case of a very long simulation (speaking of
model time, not real time) the rounding may cause problems associated with inaccurate time.

The value of model (simulation) time is increased every step by its length, which is typically
a random variable with a given mean value E and variance o?. After n steps (where n is
reasonably large) the value of simulation time is equal to nE. For n ~ 10'5 the mean length
of a step F is approximately equal to the the accuracy limit of the floating—point number
representation. This may cause problems with insertion of processes to the calendar. The
problem will occur sooner for higher vales of o2.

This is the main reason why the CSIM_TIME type definition is separated to the file csim_tm.h.
Such approach makes it possible to replace the double type with any other desired type
assuming that the following operations are implemented as well:

e csim_time_add — addition

e csim_time_sub — subtraction

e csim_time_mul — multiplication

e csim_time_div — division

e csim time_cmp — comparison

e csim_time_to_dbl — conversion to double

e dbl_to_csim_time — conversion from double

e CSIM_ZERO_TIME — static initialization to zero value

e csim zero_time — expression with the value of zero
For the basic double type the operations are defined as follows:

#define csim_time_add(opl, op2) ((opl) + (op2))

#define csim_time_sub(opl, op2) ((opl) (op2))

#define csim_time_mul (opl, op2) ((opl) * (op2))

#define csim_time_div(opl, op2) ((opl) / (op2))

#define csim_time_cmp(opl, op2) ((opl) > (op2) ? 1 : (opl) < (op2) ? -1 : 0)
#define csim_time_to_dbl(time) ((double) time)

#define dbl_to_csim_time(time) ((CSIM_TIME) time)

2.7 Run-time Errors Checking

Because the run of the simulation program is dynamically partitioned into simultaneously
running processes®, the run-time error can manifest itself after a great amount of model time

5Which often use the random number generator for planning their activity phases.

20

and can be then hard to detect. That is the reason why the C-Sim library stresses the error
handling and preventive checks. Every parameter of the C-Sim library functions is checked
inside the function. The checking verifies whether the value is within the allowable bounds.
In case of pointers to objects also the internal integrity is verified (i.e., whether the pointer
really points to a valid object of the respective type).

For each of basic object types from the C-Sim library there is defined an enumeration
type, which defines all possible states of the object or the pointer to the object during the
check—further referred to as check states. For checking the pointers to objects the functions
csim_check_...() and csim_..._state() are available. The functions forming the first group
deliver the information, whether the object is or is not correct. The functions forming the
second group returns then the value of enumeration type, which determines the check states
of the object.

If a discrepancy is discovered during the check of parameters, the function calls the error
operation csim_exception() with error code as its parameter. This operation sets the error
flag and, if possible, jumps back to the csim step() function to end the simulation step. The
csim_step() function indicates, that an error occurred, by returning the FAILURE value.”
In this case it is possible to terminate the main loop of simulation and call csim_error ()
to detect the reason. By calling the csim_error_status() function we can test anytime,
whether or not an error occurred and then the csim_error () function can return a detailed
information about the error. Moreover it is possible to call the function csim debug() in
order to analyze the state of data structures preserved at the time when the error occurred.

For debugging the simulation program we can use also the conventional debugging tools and
methods. The basic possibility is to perform the listing of selected data after each simulation
step. Better debugging tools (step mode, breakpoints, listing the values of selected variables)
are usually provided by the C language development environment. However, it must be kept
in mind, that the usability of these tools is strongly limited by the fact, that the run-time
error may occur after a long run time.

More details about the check states of the objects and error handling will be found in the
paragraph 3.7.

"Return value is of type CSIM_RESULT described in section 3.1

21

Chapter 3

Data Types in C-Sim Library

3.1 Simple data types

The C-Sim library provides several integer data types. For these data types their width is
assured on 16-bit and 32-bit platforms. The definition relies on the value of the constant
UINT_MAX. Detailed description of the data types is in table 3.1.

Type | Sign & Width | 16-bit platform | 32-bit platform
CSIMBYTE | 8-bit signed signed char signed char
CSIM_UBYTE | 8-bit unsigned | unsigned char unsigned char
CSIM_WORD | 16-bit signed signed int signed short int
CSIM_UWORD | 16-bit unsigned | unsigned int unsigned short int
CSIM_LONG | 32-bit signed signed long int signed int
CSIM_ULONG | 32-bit unsigned | unsigned long int | unsigned int

Table 3.1: C-Sim integer types

Furthermore the following two useful types are also defined for logical values:

typedef enum {
SUCCESS,
FAILURE

} CSIM_RESULT;

typedef enum {
FALSE,
TRUE

} CSIM_BOOLEAN;

The last simple type is CSIM_TIME, which is described in detail in the section 2.6.

22

3.2 Object Type CSIM_DYN_MEM

3.2.1 Object Structure

This type enables dynamic object creation allocated in the memory area called heap. All other
basic object types are derived from this type to allow C-Sim to create objects dynamically.!
Functions working with the type CSIM_DYN MEM are described in section 4.1. Enumeration
type for possible check states of the object or pointers to an object of the type CSIM_DYN_MEM
is described in section 3.7.

Type CSIM_DYN_MEM contains the necessary links needed for maintaining the list of all dy-
namically generated objects and basic attributes (i.e. data items) common to all data types.
Declaration of the CSIM_DYN_MEM type:

#define csim_d_dyn_mem \
char *name ; \
char type; \
char *xcheck; \
struct csim_dyn_mem *p_head_mem; \
struct csim_dyn_mem *p_suc_mem; \
struct csim_dyn_mem *p_pred_mem; \
CSIM_DESTRUCTOR destructor; \
CSIM_VIEW view

typedef struct csim_dyn_mem {
csim_d_dyn_mem;
} CSIM_DYN_MEM;

Attributes of the objects of this type have the following meaning:

name — the user has the possibility to name individual objects; this name can be used in the
function csim view_dyn mem() or otherwise in the visualization layer of the application,
it can be set by the function csim_set_name (), which allocates necessary memory and
copies the name to it, upon release of the object or by another call to csim_set_name ()
this memory is automatically released as well,

type — determines the object type,

e M ...CSIMDYN_MEM and derived types
e LL...CSIM_LINK and derived types
e H ...CSIM_HEAD and derived types
e P ... CSIM_PROCESS and derived types

check — pointer used for verification of all pointers to this object,

'Reasons, advantages and disadvantages of this restriction are described in section 2.3.

23

p-head mem — pointer to the list of all dynamically generated objects,
p-suc_mem — pointer to the successor in the list,
p-pred_mem — pointer to the predecessor in the list of all objects,

destructor — pointer to the destructor function, that allows to deallocate the memory dy-
namically allocated to new (added) attributes,

view — function that displays an object. It can be used for debugging purposes. In the
Console debug module there are the standard functions csim view_... (). To set the
pointer to the view function it is necessary to use the following macro:

#define csim_set_view(P_DYN_MEM, VIEW) (P_DYN_MEM)->view = (VIEW)

3.2.2 Object Construction and Destruction

To generate a new object CSIM_DYN_MEM or a derived type it is necessary to use the predefined
macro csim new_dyn mem(). For example:

p_dyn_mem = csim_new_dyn_mem(MY_DYN_MEM) ;

p-dyn_mem is a pointer to the newly generated object (if its value is NULL, there isn’t enough
memory),

MY _DYN_MEM is the type of the generated object.

Function csim_dispose_dyn_mem() serves for releasing the memory and cancellation of an
object.

3.3 Object Type CSIM_LINK

3.3.1 Object Structure

This type allows to create the objects that may be inserted into the two-way circular lists.
It contains the pointers needed for maintaining the list and a pointer to the so-called [ist
head. Furthermore it contains the item enter_time, which is used for generating statistics of
the behavior of the objects of the type CSIM_HEAD. Objects of this type can be created only
dynamically, and they are thus derived from the type CSIM_DYN_MEM. In addition to creation
and cancellation, another possible operations with the objects of the type CSIM_LINK include
verification of the pointer and inner integrity of the object, object displaying, insertion to the
end of a list, deleting from a list, insertion before and after another object in a list. Functions
are described in section 4.2. The enumeration type for possible check states of an object or
pointer to an object type CSIM_LINK is described in section 3.7.

For the introduction of derived types the following macros are used: csim_d_link or brackets
csim derived link and csim end derived (see section 2.2). They guarantee the inheritance

24

of the supported type items into the derived type. It is thus possible to derive a proper
type with concrete added data items from a general element type in a list. Declaration and
explanation of the meaning of individual items of the type CSIM_LINK follow:

#define csim_d_link \
csim_d_dyn_mem; \
struct csim_link *xSUuc; \
struct csim_link *pred; \
struct csim_head xhead; \
CSIM_TIME enter_time

typedef struct csim_link {
csim_d_link;
} CSIM_LINK;

suc — pointer to the successor in the list,
pred — pointer to the predecessor in the list,
head — pointer to the list head,

enter_time — time of insertion of an element into the list; it is used for processing the
statistics of object type CSIM_HEAD behavior.

3.3.2 Object Construction and Destruction

For the generation of a new object of the type CSIM_LINK or derived types, a predefined macro
csimmnew_1ink () must be used. This inserts the new object into the list of dynamic memory
blocks and initializes basic items of the type CSIM_LINK. For example:

p_link = csim_new_link(MY_LINK);

p_link is a pointer to the newly generated object (if its value is NULL, there isn’t enough
memory),

MY_LINK is the type of the generated object.

Function csim_dispose_link() serves for releasing the memory and cancellation of an object.

3.4 Object Type CSIM HEAD

3.4.1 Object Structure

Objects of the type CSIM_HEAD represent a list of objects with the type CSIM_LINK (or a type
derived from CSIM_LINK). They are kind of a representation of the list and maintain basic

25

information about it. Their data items are the pointers to the first an the last element of the
list, actual list length and actual statistic data. The basic operations delivered over the type
CSIM_HEAD are in addition to creating and cancellation of an object also finding the first and
the last element in the list, test for emptiness of the list and replenishing the list. Functions
are described in section 4.2.

The type CSIM_HEAD is derived from CSIM_LINK, that is derived from CSIM_DYN_MEM. From
the fact, that CSIM_HEAD is derived from CSIM_LINK,? there follows the possibility to insert a
CSIM HEAD-typed object into (other) lists of the same or derived type, and hence the possibility
to create more complicated list structures (e.g. trees). From the fact, that the type CSIM_HEAD
is (indirectly) derived from CSIM_DYN_MEM there follows the possibility (and at the same time
necessity) to create the objects of this type dynamically. Declaration of the type CSIM_HEAD
follows:

#define csim_d_head \
csim_d_link; \
CSIM_LINK *xp_first; \
CSIM_LINK *p_last; \
CSIM_UWORD 1q; \
CSIM_ULONG arrival_cnt; \
CSIM_TIME last_time; \
CSIM_TIME sum_tw; \
CSIM_TIME sum_1lw; \
CSIM_TIME sum_time; \

CSIM_BOOLEAN statistics

typedef struct csim_head {
csim_d_head;
} CSIM_HEAD;

The attributes used in the declaration have the following meaning:

p-first — pointer to the first item in the list,

p-last — pointer to the last item in the list,

1g — current length of the list,

arrival_cnt — count of items inserted into the list when statistics is enabled,
last_time — time of a last modification of the list length,

sum_tw — sum of all item waiting times within the list,

sum_lw — list’s history, i.e. sum of current list lengths weighted by their duration,

sum_time — sum of times, when statistics was enabled,

In contrast to SIMULA /Simset, where CSIM_LINK and CSIM_HEAD have a common ancestor LINKAGE.

26

statistics — enables/disables the statistics,

e when the global variable statistics is set to TRUE, list statistics is calculated,

e when the global variable statistics is set to FALSE, list statistics is calculated
when this attribute is set to TRUE (i.e., only for the selected lists).

To explain the meaning of the items added for monitoring of the statistics, it is necessary to
add, that the C-Sim library provides the computation of some statistical values for objects of
the type CSIM_HEAD (and derived types as well), namely mean list length — L,, and mean time
spent by an element in the list — T,,. It is possible to compute the statistics for all objects,
or to switch it on/off selectively only for some of them. The list of functions controlling the
collection of the data and statistics processing can be found in 4.5.

3.4.2 Object Construction and Destruction

To generate a new object of the type CSIM_HEAD (or a derived type) we must use a predefined
macro csim new head(). For releasing the memory and canceling the object we can use the
csim dispose_head() function. Usage of these functions is the same as for an object of the
type CSIM_LINK. Also the information about the possible check states of the object or pointer
to the object can be found in section 3.7.

3.5 Object Type CSIM_PROCESS

Process is a computational activity, running in pseudo—parallel mode with other processes.
Every process is a pair:

e program,

e process data record.

Several processes may share an identical program code (which must thus be designed as
reentrant). On the other hand, a data item belongs exclusively to a single process. The type
CSIM_PROCESS declares structure of process data record (or precisely its standard part). It
is derived from the type CSIM_LINK, which allows simply to create process lists within the
simulation model. The user may in a simple way, described in section 2.2, create his own
process types.

To the operations connected with the type CSIM_PROCESS belong (in addition to creating and
cancellation of an object) namely operations for changing the state of the running process or
for changing the state of another process from the running process (the states are described in
3.5.2). The functions implementing the operations are described in section 4.3. The enumer-
ation type for possible check states of the object or pointer to the object type CSIM_PROCESS
is described in section 3.7.

27

3.5.1 Process Program

Process program is a function in C language, having one parameter and returning no result.
The parameter is a pointer to data record of the process, but for the library user this pa-
rameter is transparent (i.e. it is used internally). The user defines the program using the
pair of program brackets introduced as two macros. The opening bracket has the syntax
csim program(TYPE NAME, PROG.NAME) and its definition is as follows:

#define csim_program(TYPE_NAME, PROG_NAME) \
void *PROG_NAME(void *p_void) \
{ \

TYPE_NAME *p_my = (TYPE_NAME *) p_void;

Immediately following the opening bracket of the program we may define other internal data
of the process.> They are typically used for “auxiliary” variables that don’t preserve a value
to the next reactivation of the process. The rules for their use depend on the memory class,
in which these variables are defined. Memory for automatic variable is allocated in a stack,
memory for static variable is firmly allocated in data segment of the simulation program
during all its run. The rules for stack—allocated data depends on the chosen case of pseudo-
parallel processes implementation (see 2.4).

Variable p.my defined in macro c¢sim program contains in any given moment the pointer to
the presently active process (i.e. to its data structure) which runs according to the defined
program. The simulation algorithm automatically switches p_my to the active process. Vari-
able p_my does not need to preserve its value between the activity phases, because after every
context switching it is initialized by the pointer value to the presently active process. It is
thus defined in memory class auto. Using the library macro

#define my (*p_my)

a reference may be done in the program process to the data record by the construction
my .attribute, similarly as to the structure items. The identifier my thus refers to data
structure of the process.

C-Sim enables two ways of ending a process program depending on whether or not the data
record is destroyed immediately after the program end. If the data is to be destroyed, the
macro csim_end_process will be used, otherwise csim_end _program. In the second case the
process state is set to CSIM_TERMINATED and cannot be activated any more. Process data
record is accessible until it is destroyed by calling csim_dispose_process().*

3.5.2 Process States

The process during its “life” may stay in different states. The process state can be determined
using function csim state (), which returns the value of enumerated type (i.e. process state),
defined in the following way:

®I.e., data, whose name is usable only in the program.
4In SIMULA the objects are released only when they aren’t referenced any more.

28

typedef enum {
CSIM_NEW_PASSIVE, CSIM_NEW_PLANNED, CSIM_PLANNED, CSIM_ACTIVE,
CSIM_PASSIVE, CSIM_TERMINATED, CSIM_ZOMBIE

} CSIM_PROC_STATE;

CSIM_NEW_PASSIVE — new passive process, which has not yet been active, and therefore will
be executed from the program beginning,

CSIM_NEW_PLANNED — new planned process, which has not yet been active, therefore it will be
executed from the program beginning,

CSIM_PLANNED — planned process, which will run from a reactivation point,
CSIM_ACTIVE — process, whose program is active and running,

CSIM PASSIVE — process, which is waiting for planning its further activity (from another
process),

CSIM_TERMINATED — process, which terminated execution of its program using
csim_end_program.

CSIM_ZOMBIE — process, which terminated execution of its program using csim_end_process
and its process record will be destroyed immediately after the return to csim_step().

CSIM_ACTIVE

hold()

Figure 3.1: Process state transition diagram

3.5.3 Process Data Record — type CSIM_PROCESS
For the data record of a process the basic type CSIM_PROCESS is introduced in C-Sim. Its items

contain the information needed for management of pseudo-parallel computing and recording
statistic characteristics of process behavior. Declaration of the type CSIM_PROCESS follows:

29

#define csim_d_process
csim_d_link;
csim_process_kr;
CSIM_PROC_PROGRAM program;
struct csim_process *suc_in_sqgs;
struct csim_process *pred_in_sqgs;

P P L e

CSIM_PROC_STATE state;

CSIM_TIME evtime;

CSIM_TIME last_time;
CSIM_TIME non_passive_time;
CSIM_TIME passive_time;
CSIM_BOOLEAN statistics

typedef struct csim_process {
csim_d_process;
} CSIM_PROCESS;

The items in the type declaration have the following meaning:

program — pointer to the process program, which is started together with the first start of
a process (i.e., if the process state is CSIM NEW_. . .), otherwise process continues from
reactivation point,

suc_in_sqs — pointer to the successor in scheduling calendar,’
pred_in_sqs — pointer to the predecessor in calendar,

state — process state,

evtime — reactivation time, that determines process order in calendar,
last_time — time of last insertion into the calendar,
non_passive_time — sum of times, when the process was planned,
passive_time — sum of times, when process was passive,

statistics — determines, whether the statistics will be performed (for explanation, see the
description of equally named attribute of the type CSIM_HEAD).

Macro csim_process_Kkr inserts implementation dependent part of the process record.

3.5.4 Object Construction and Destruction

A new object of the type CSIM_PROCESS (and of derived types as well) must be generated with
a predefined macro csim new_process(). For example:

Ssgs is from SIMULA'’s sequencing set.

30

p_process = csim_new_process(MY_PROCESS, my_program) ;

p_process — is pointer to the generated object (if its value is NULL, there isn’t enough mem-
ory),

MY_PROCESS — is type of generated object,

my_program — is pointer to the program, according to which the process will run; this pointer
is typed as CSIM_PROC_PROGRAM.®

Parameters of the macro are the type name, which must be either CSIM_PROCESS or derived
type, and program name, i.e., name used somewhere in the corresponding program “opening
bracket” csim_program .

The created process is passive, i.e., the data exists, but the program has not been started
yet. Its activation must be made from main program or from another process by means of
any activation function (see 4.3).

If a process program is terminated with the “bracket” csim_end process, the object (i.e.
data) of the process is released immediately after the process termination. If, on the contrary,
the process program is terminated with the macro csim_end_program, the process data record
isn’t automatically released and in case of necessity can be destroyed by calling function
csim dispose_process().

3.6 Initialization of Attributes Values

Primary initialization of the data items taken over from the basic types is done automatically
when generating an object using a proper macro csimmnew_... (). Explicit initialization
is possible with functions csim init_...() (see section 4.1). Initialization of user-defined
attributes (i.e. attributes added when declaring the derived types) must be done by the
C-Sim user either by direct access to the items through the pointer representing the object
or (better) by means of an user—defined initialization function.

Direct access to the basic data types attributes unfortunately cannot be prevented.” However,
the C-Sim users should be warned, that although the access to the attributes “inherited” from
the basic types is possible, it can in no case be recommended. Great hazard of possible object
data inconsistency and occurrence of hard-to-debug errors arise. This is one of the reasons,
why in the C-Sim library the inner integrity check is used despite of its time consumption.

5The name PROGNAME defined by means of csim_program(TYPE_NAME, PROG_NAME) has the type
CSIM_PROC_PROGRAM automatically.
"C language, in contrast to e.g. C++, has no tool for this.

31

3.7 Error enumeration types

Each parameter of C-Sim library functions is checked before use.® When the parameters are
of pointer type, the validity of the pointer and the internal integrity of the referenced object
is checked.

For each basic type of object, an enumeration type is defined, specifying the possible states
of an object, or a pointer to an object during the check. To check the pointers to objects the
csim_check_...() and csim_..._state() functions are defined. The functions from the first
group inform whether or not the object is correct. Functions from the second group return
a value of enumeration type, which determines, in which of the check states is the object.

Enumeration type used to describe states of the CSIM_DYN_MEM object during the check:

typedef enum {
CSIM_D_DEFECTIVE, CSIM_D_ILLEGAL, CSIM_D_IS_NULL,
CSIM_D_IS_RANK, CSIM_D_NOT_RANK

} CSIM_DYN_MEM_CHECK;

Explanation of individual values:

CSIM_D_DEFECTIVE — object is corrupted for unknown reason,

CSIMD_ILLEGAL — pointer to the object does not correspond to its check value char *check
set by object’s generation,

CSIM_D_IS_NULL — pointer to checked object is NULL,
CSIMD_IS_RANK — object is in the list of dynamic blocks,?

CSIM_D_NOT_RANK — object is not in the list of dynamic memory blocks.

Enumeration type used to describe states of the CSIM_LINK object during the check:

typedef enum {
CSIM_L_DEFECTIVE, CSIM_L_ILLEGAL, CSIM_L_IS_NULL,
CSIM_L_IS_RANK, CSIM_L_NOT_RANK

} CSIM_LINK_CHECK;

Values CSIM_L DEFECTIVE, CSIM L _ILLEGAL and CSIM_L_IS NULL have the similar meaning as
for the type CSIM_DYN_MEM_CHECK. Explanation of other values:

CSIM L_IS RANK — object is inserted into some list (this means suc, pred and head are not
NULL),

8Checked are especially parameters of “public” library functions. The private library functions have limited
checks, so they should not be used directly in the simulation programs.
9Probably. We can only be sure that pointers p_suc_mem, p_pred_mem and p_head_mem are not NULL.

32

CSIM_L_NOT RANK — object is not inserted in any of the lists (suc, pred and head are NULL).

Enumeration type used to describe states of the CSIM_HEAD object during the check:

typedef enum {
CSIM_H_DEFECTIVE, CSIM_H_ILLEGAL, CSIM_H_IS_NULL,
CSIM_H_EMPTY, CSIM_H_NOT_EMPTY

} CSIM_HEAD_CHECK;

Explanation of individual values:

CSIM H EMPTY — list is empty (p_first and p_last are NULL),

CSIM H NOT_EMPTY — list is not empty (pointers p_first and p_last are not NULL).

Enumeration type used to describe states of the CSIM_PROCESS object during the check:

typedef enum {
CSIM_P_DEFECTIVE, CSIM_P_ILLEGAL, CSIM_P_IS_NULL, CSIM_P_IS_TERMINATED,
CSIM_P_IS_RANK, CSIM_P_NOT_RANK

} CSIM_PROC_CHECK;

Explanation of individual values:

CSIM P_IS RANK — process is in the calendar (probably). We can only be sure that suc_in_sqs
and pred_in_sqgs are not NULL. Process state may be CSIM_NEW_PLANNED, CSIM_PLANNED
or CSIM_ACTIVE,

CSIM_P_NOT RANK — object is not in the calendar (suc_in_sqs and pred_in_sqs are NULL),
Process state may be CSIM_NEW_PASSIVE or CSIM PASSIVE,

CSIM P_IS_TERMINATED — process has ended. Process state may be CSIM_TERMINATED or
CSIM_ZOMBIE.

Described checking mechanism can detect most wrong manipulations with objects during
the simulation run. The check function will then call the error operation csim_exception()
with an error code. The csim exception() function will set the error flag and then returns
to csim_step() function if possible. By this the current simulation step is ended. The
csim_step() function indicates error in the terminated simulation step by its return value
(set to FAILURE).

By calling the function csim error_status() we can further determine, whether an error

occurred during the simulation step and the csim_error() function will return detailed in-
formation about this error. Error information has the following structure:

33

typedef struct {

CSIM_UWORD error_code;
CSIM_PROCESS *p_proc_error;
void *p_void;

} CSIM_ERROR;
where the single items are:

error_code — integer value that describes the error,
p-proc_error — pointer to a process, during whose execution the error occurred,

p-void — pointer to an object that caused the error (it can be used for a user-written object
visualization and check).

Value of error_code is generated by the following macro:
#define CSIM_ERR_CODE(func, err) (CSIM_UWORD) ((err << 8) | func)

Error code comprises two parts. Within the lower eight bits there is a code, which determines
the function where the error was detected or optionally also which parameter caused it. In the
higher bits there is the current state of the object — result of the csim_. .. _state() function.
Therefore it is important that the symbolic constants CSIM_? DEFECTIVE, CSIM_?_ILLEGAL
and CSIM_?_NULL retain the same numeric value for all named types CSIM_..._CHECK. These
higher bits of error code are equal to 0O for all errors that were not caused by the pointer to
the object.

To ease the translation of the error code to a more friendly text message (usable as error
message displayed on the console), the function csim error msg() is defined as a part of
Error Messages module 5.1.

User can call csim exception() function in the process program for user-detected er-
rors and/or nonstandard model behavior, error code should then be in the interval
<CSIM_USER_ERROR_CODE, 255>.

34

Chapter 4

Library Functions Reference

This chapter describes all functions that are supported by C-Sim library. Every function
has a built-in check of input parameters, and/or further checks of suitability of context of its
use. All objects have an internal check attribute check that is set in the initialization section
and authenticates referencing pointer validity and internal integrity of the pointed object and
nonzero value of the input pointer.

Most of library functions return value of CSIM_RESULT type by which is possible to recognize
an error state. For detailed information on the mechanism of the run-time checks see section
3.7. List of exceptions (or more accurately symbolic integer values of error codes), that can
occur during the call of individual functions, is a part of csim.h file.

If an object is in the parameter list, the corresponding formal parameter must be typed as a
pointer to a corresponding basic type. A function can be naturally called also over an object
of any derived type, however it is necessary to explicitly cast the inserted pointer.! Example:

MY_HEAD *p_queue; MY_LINK *p_elem;

csim_into((CSIM_LINK *) p_elem, (CSIM_HEAD *) p_queue);

4.1 Memory Management Functions
CSIM_RESULT csim_init_mem(void);

Initialization of dynamic memory and C-Sim global variables. Return FAILURE in case of
insufficient memory.

void csim_clear_mem(void);

Cancels the list of dynamic memory blocks and releases the dynamically allocated memory.

'Unlike C, object-oriented programming languages, that support the method polymorphism, perform this
pointer conversion automatically.

35

CSIM_DYN_MEM #*csim_init_dyn_mem(CSIM_DYN_MEM *p_dyn_mem) ;
Initialization of the object p_dyn_mem.

CSIM_LINK *csim_init_link (CSIM_LINK *p_link);

Initialization of the object p_link.

CSIM_HEAD *csim_init_head(CSIM_HEAD *p_head);

Initialization of the object p_head.

CSIM_PROCESS *csim_init_process(CSIM_PROCESS *p_process,
CSIM_PROC_PROGRAM proc_prog) ;

Initialization of the object p_process.

CSIM_RESULT csim_dispose_dyn_mem(CSIM_DYN_MEM *p_dyn_mem) ;
Releases the memory used by the object p_-dyn_mem.

CSIM_RESULT csim_dispose_link(CSIM_LINK *p_link) ;

Releases the memory used by the object p_link.

CSIM_RESULT csim_dispose_head(CSIM_HEAD *p_head);

Releases the memory used by the object p_head.

CSIM_RESULT csim_dispose_process(CSIM_PROCESS *p_process);

Releases the memory used by the object p_process.

4.2 Operations with two—way circular lists

The library provides similar functions as the SIMULA language. Operations are defined
as functions and macros in C language, and in contrast to the functions—methods of object
type, they have a pointer to the actual object in the parameter list.

CSIM_RESULT csim_into(CSIM_LINK *p_link,
CSIM_HEAD #p_head);

36

Inserts element p_link at the end of the list p_head.

CSIM_RESULT csim_out (CSIM_LINK #p_link);

Removes element from the list.

CSIM_LINK *csim_first (CSIM_HEAD *p_head);

Returns pointer to the first element in the list. If an error occurs or the list is empty, the
function returns NULL.

CSIM_LINK *csim_last(CSIM_HEAD *p_head);

Returns pointer to the last element in the list. If an error occurs or the list is empty, the
function returns NULL.

CSIM_BOOLEAN csim_empty(CSIM_HEAD #*p_head);

Checks whether the list is empty. Returns FALSE if it isn’t empty and TRUE if it is empty or
an error occurred.

CSIM_WORD csim_cardinal (CSIM_HEAD *p_head);

Returns actual list length or —1 if an error occurs.

CSIM_RESULT csim_clear (CSIM_HEAD #*p_head);

Clears the list. Since the integrity of user data may be corrupted, items forming the list aren’t
destroyed. Hence this responsibility remains with the programmer, only the programmer may
decide, how to correctly cancel individual items.

CSIM_RESULT csim_follow(CSIM_LINK *p_link_what,
CSIM_LINK *p_link_where);

Inserts element p_link what after another element p_1ink where.

CSIM_RESULT csim_precede(CSIM_LINK *p_link_what,
CSIM_LINK *p_link_where) ;

Inserts element p_link what before another element p_link_where.

37

4.3 Operations with Processes

These operations serve for scheduling processes and provide access to the basic information
about individual processes. Most of them cannot be applied on currently active process.

CSIM_RESULT csim_activate_at (CSIM_PROCESS *p_process,
CSIM_TIME t);

Schedules process to the time t. In order to use this function, the process must not be
scheduled so far. To reschedule an already scheduled process use the csim_reactivate()
function.

CSIM_RESULT csim_activate_delay(CSIM_PROCESS *p_process,
CSIM_TIME del_t);

Schedules process to the time (csim time() + del_t). In order to use this function, the
process must not be scheduled so far. To reschedule an already scheduled process use the
csim_reactivate_delay() function.

CSIM_RESULT csim_reactivate_at (CSIM_PROCESS *p_process,
CSIM_TIME t);

Re-schedules an already scheduled process to new time t.

CSIM_RESULT csim_reactivate_delay(CSIM_PROCESS #*p_process,
CSIM_TIME del_t);

Re-schedules an already scheduled process to new time csim time() + del_t.
CSIM_RESULT csim_cancel (CSIM_PROCESS *p_process);

Removes process from calendar. The argument p_process must not point to the current
active process, otherwise an error occurs.

CSIM_PROC_STATE csim_state (CSIM_PROCESS *p_process);
Returns process current state.
CSIM_BOOLEAN csim_idle (CSIM_PROCESS *p_process);

Test of the process state. Returns TRUE if the process is passive, and FALSE for all other states
including errors.

38

CSIM_TIME csim_evtime (CSIM_PROCESS *p_process);
Returns time, at which the process is scheduled.
CSIM_PROCESS *csim_next_proc(void);

Returns pointer to the second process in scheduler. If there is no such process in calendar, it
returns NULL.

CSIM_TIME csim_time(void);
Returns actual value of model time.
CSIM_PROCESS *csim_current(void) ;

Returns pointer to the first record in calendar. Inside csim_step() it is the running process,
otherwise it is the last running process).

CSIM_PROCESS *csim_sqgs_point(void);
Returns pointer to the C-Sim calendar.
CSIM_DYN_MEM *csim_mem_point(void);

Returns pointer to the C-Sim heap.

4.4 Functions for the Control of Simulation Run

These operations serve for activity transfer among individual processes. Operations
csim hold(), csim_passivate() and csim_wait () are defined as macros as it was explained
in the section 2.4.

CSIM_RESULT csim_step(void);

Realizes one simulation step. Transfers control to the first process in calendar. In the long-
jump implementation must be called always at the same level of stack.

csim_hold(CSIM_TIME del_t)

Defined as macro. Plans current process to start after del_t time interval and transfers
control back to the csim_step() function. Must be called directly in the process’s prime
function.

39

csim_passivate()

As csim_hold (), but passivates current process.

csim_wait (CSIM_HEAD *p_head)

As csim_passivate(), moreover inserts current process into p_head.

Note: The csim _step() function must be used only within the main() program function - it
typically serves to implement the main loop of simulation. Other process-switching functions
given here have to be used in a program of simulation process.

4.5 Statistical Functions

This group of functions controls computation of statistical values characterizing the behavior
of individual objects. Statistical parameters are monitored for objects of the type CSIM_HEAD
and CSIM_PROCESS. Statistics may be controlled globally for all objects or locally for individual
objects. Statistics in the library C-Sim includes for the computation of average length of
individual lists and mean time, which an element spends within the list (object of the type
CSIM_HEAD). For objects of the type CSIM_PROCESS the mean time of staying in the state
CSIM PLANNED and mean time of staying in the state CSIM_PASSIVE are computed.

C-Sim embedded statistics processing properties are aimed mainly for purposes of a quick
experimentation without great requirements as for precision of results. Overflowing of used
data values is not handled and/or reported. To obtain serious statistics values, the user should
implement his/her own statistics processing.

void csim_stat_on(void);

Enables global statistics. It is performed on all objects, which have given this possibility.
void csim_stat_off(void);

Disables global statistics. Only objects with enabled local statistics will then be monitored.
CSIM_BOOLEAN csim_stat_status(void);

Returns state of global statistics flag; TRUE/FALSE — enabled/disabled.

CSIM_RESULT csim_h_stat_on(CSIM_HEAD #*p_head);

Enables local statistics for a list of the type CSIM_HEAD.

CSIM_RESULT csim_h_stat_off (CSIM_HEAD *p_head);

40

Disables local statistics for a list of the type CSIM_HEAD.
CSIM_RESULT csim_init_h_stat(CSIM_HEAD *p_head);

Initializes variables serving for the list statistic.

CSIM_BOOLEAN csim_h_stat_status(CSIM_HEAD *p_head);
Returns state of local statistics flag; TRUE/FALSE — enabled/disabled.

CSIM_RESULT csim_h_stat (CSIM_HEAD *p_head,
double *p_Lw,
double *p_Tw);

Returns results of the statistics of the object p_head. Argument p_Lw is the average length of
the list and argument p_Tw is the mean time that an element waits within the list.

CSIM_RESULT csim_p_stat_on(CSIM_PROCESS *p_process);
Enables local statistics for the object p_process.

CSIM_RESULT csim_p_stat_off (CSIM_PROCESS *p_process);
Disables local statistics for the object p_process.

CSIM_RESULT csim_init_p_stat(CSIM_PROCESS *p_process);
Initializes variables serving for the process statistic.

CSIM_BOOLEAN csim_p_stat_status(CSIM_PROCESS #*p_process);
Returns state of local statistics flag; TRUE/FALSE — enabled/disabled.

CSIM_RESULT csim_p_stat (CSIM_PROCESS *p_process,
double *p_Ts,
double *p_Tr);

Returns results of statistics of the object CSIM_PROCESS. Argument p_Ts is the mean time
spent in planned state and argument p_Tr is the mean time spent in passive state.

41

4.6 Control and Run—Time Error Handling Functions
void csim_error(CSIM_ERROR *p_error);

Fills the structure p_error with the current error that interrupted the simulation.
CSIM_BOOLEAN csim_error_status(void);

Checks if an error occurred, in this case returns TRUE, otherwise FALSE.
CSIM_DYN_MEM_CHECK csim_dyn_mem_state (CSIM_DYN_MEM *p_dyn_mem) ;
Returns check result of the object p_dyn_mem.

CSIM_LINK_CHECK csim_link_state(CSIM_LINK *p_link);

Returns check result of the object p_link.

CSIM_HEAD_CHECK csim_head_state(CSIM_HEAD *p_head);

Returns check result of the object p_head.

CSIM_PROC_CHECK csim_process_state(CSIM_PROCESS *p_process);

Returns check result of the object p_process.

CSIM_BOOLEAN csim_check_dyn_mem(CSIM_DYN_MEM *p_dyn_mem) ;

Returns result of a check of the object p_dyn_mem.

CSIM_BOOLEAN csim_check_1ink(CSIM_LINK *p_link) ;

Returns result of a check of the object p_link.

CSIM_BOOLEAN csim_check_head (CSIM_HEAD *p_head);

Returns result of a check of the object p_head.

CSIM_BOOLEAN csim_check_process(CSIM_PROCESS #*p_process);

Returns result of a check of the object p_process.

42

Chapter 5

Optional Modules Description

This chapter describes the optional modules of the C-Sim library. These modules are not
mandatory to a functional simulation but often are very useful. The user can use a chosen
module simply by adding the module header file using the #include directive.

5.1 Error Messages Module

This module provides the function csim error msg() that translates the given numerical
error code into a human readable text. The returned value is pointer to a statically allocated
string. Function prototype:

char *csim_error_msg(CSIM_UWORD code) ;

The message comprises two parts, just like the error code, both parts are stored within
statically initialized arrays of strings, the corresponding parts of the error code are used as
indexes into these arrays. Every execution of this function copies the error message selected
by the argument code into a static buffer. The function csim error msg() then returns
pointer to this buffer.

5.2 Random Number Generator Module

Because C-Sim and other similar tools are often used in stochastic processes based simula-
tions, a random number generator is necessarily an important part of such tools. The most
common method of random number generation is so called congruent method, which is based
upon formulae of this type

m
y; = Co + Z iji—j mod M
Jj=1

where the mod operator delivers the remainder after an integer division and Cy...C), are
constant generator parameters. Thus the generated item 1; depends on the m preceding items.

43

It follows that the maximum generated number is M — 1 and the generated random number
sequence is periodical and reproducible. The periodicity and reproducibility are the reasons
why this method is called pseudo-random number generation. To be able to reproduce the
sequence of generated numbers it is an important feature in the process of debugging.

Programs may use the standard library function rand() for the purpose of random number
generation. The new module offers, in addition to the functionality provided by the standard
function, to create multiple instances of a generator, i.e. it is possible to use any number
of independent sequences of random numbers. This feature can be utilized when separating
the simulated system into several encapsulated parts. Only one sequence of random numbers
is created in every part and the parts may be then debugged separately. Because of the
reproducibility, all parts will behave exactly the same way in every simulation run. It is
possible to add or remove any part of the system without influencing the generated random
numbers in the other parts.

5.2.1 Data types

The generator is fully specified by

e generator state,

e congruent function.

The generator state comprises an array of twenty five 32-bit unsigned integers. Due to the
dynamic memory management a new object, CSIM_RNG_STATE, was defined.

csim_derived_dyn_mem(csim_rng_state)
CSIM_ULONG rng_array[CSIM_RNG_NJ;
int index;

csim_end_derived (CSIM_RNG_STATE) ;

It is necessary to use the macro csim new_rng() for memory allocation. The only argument
this macro takes is the initialization value. The resources allocated by a generator are released
by the macro csim_dispose_rng().

#define csim_new_rng(seed) \
(CSIM_RNG_STATE *) csim_init_rng(\
(CSIM_RNG_STATE *) malloc(sizeof (CSIM_RNG_STATE)), seed);

#define csim_dispose_rng(rng) \
csim_dispose_dyn_mem((CSIM_DYN_MEM *) rng);

5.2.2 Functions

The congruent function csim rand() returns 32-bit unsigned integers uniformly distributed
in the < 0,CSIM_RAND_MAX > interval. The argument to this function is pointer to

44

a CSIM_RNG_STATE instance. It is possible to retrieve a floating point number in the range
< 0,1 > by dividing the returned value with the symbolic constant CSIM_RAND MAX. For
example:

double r_value;
CSIM_RNG_STATE *rng;

rng = csim_new_rng(1);

r_value = (double) csim_rand(rng) / (double) CSIM_RAND_MAX;

Moreover the module provides functions for the generation of random numbers with other
than uniform distribution. These function are based upon the method of uniform-to-other

distribution transformation, i.e. all use the function csim_rand() internally. The necessary
argument to these functions is again the pointer to an instance of CSIM_RNG_STATE.

Function Prototypes:

CSIM_RNG_STATE #csim_init_rng(CSIM_RNG_STATE *p_rng,
CSIM_ULONG seed);

Initializes the specified RNG structure. Initial value seed must be nonzero.
CSIM_ULONG csim_rand (CSIM_RNG_STATE *p_rng);
Generates a single random number in the range < 0,CSIM _RAND MAX >

double csim_negexp(CSIM_RNG_STATE *p_rng,
double lambda) ;

Generator of exponential distribution.

double csim_uniform(CSIM_RNG_STATE *p_rng,
double a,
double b);

Generator of the uniform distribution on the interval < a,b >.

CSIM_BOOLEAN csim_draw(CSIM_RNG_STATE *p_rng,
double p);

Returns TRUE with probability p (FALSE with probability 1 — p).
double csim_gauss(CSIM_RNG_STATE #p_rng,
double sigma,

double center);

Generator of the normal (Gaussian) distribution.

45

5.3 Semaphore Module

One assumed kind of C-Sim application is a verification of parallel programs that use a
kind of multithreading (i.e. shared memory interaction technique). Such programs require
synchronization objects that are typically used in order to construct critical sections. This
module provides a basic synchronization object — an integer semaphore.

The semaphore requires the following structures to operate properly:

e counter of available semaphore locks; a zero value signifies a locked semaphore

e queue of processes waiting for the release of a lock by an active process
The following operations upon a semaphore are supported:

e lock — if the value of counter is greater than zero, the counter is decremented by one
and the process continues its execution. Otherwise the process is added to the end of

the queue of waiting processes and its state is changed to passivel.

e unlock — if the queue of waiting processes is not empty, the first process in the queue? is

scheduled to current simulation time and removed from the queue. Otherwise the value
of counter is incremented by one.

All operations upon a real semaphore must be atomic. Due to the pseudo—parallel execution
of processes in C-Sim, the atomicity of operations is of no importance here.

5.3.1 Data Types

The data structure of an integer semaphore is derived from the CSIM_HEAD type.

typedef struct csim_semaphore {
csim_d_head;
CSIM_UWORD count;

} CSIM_SEMAPHORE;

The macro csim new_semaphore() may be used to create an integer semaphore. The argu-
ment to this macro specifies the initial value of the semaphore counter (typically 1). The macro
csim_dispose_semaphore () may be used to free all resources allocated by the semaphore.

#define csim_new_semaphore(cnt) \
csim_init_semaphore ((CSIM_SEMAPHORE *) malloc(sizeof (CSIM_SEMAPHORE)), cnt);

#define csim_dispose_semaphore (sem) \
csim_dispose_head ((CSIM_HEAD *) sem);

Yock is a blocking operation
Zblocked by the lock operation

46

5.3.2 Functions
csim_lock_sem(p_sem) ;

Defined as a preprocessor macro.? Locks the given semaphore for the current process. If no
lock is available, the process sleeps till it may continue.

void csim_unlock_sem(CSIM_SEMAPHORE *p_sem) ;

Unlocks the given semaphore. Any locked semaphore must be released after the protected
resource is no longer needed to avoid a deadlock.

CSIM_SEMAPHORE *csim_init_semaphore (CSIM_SEMAPHORE #*p_sem,
CSIM_UWORD cnt);

Initializes the given semaphore.

5.4 Message Passing Module

This module implements the inter—process communication using the method of message pass-
ing. Communication can be classified into several groups:

e synchronous — the first participant to the communication waits until the second par-
ticipant /process is ready to communicate, then, after the message transmission takes
place, the processes continue independently.

e asynchronous — the sending process stores its message in a message queue and continues
execution. The receiving process reads the message from this queue or waits for the
message in the case where no message is ready.

The communication can be also divided by the type of addressing;:

e symmetric — the information about the sender as well as the receiver is a part of the
message.

e asymmetric — the message contains only information that identifies one of the commu-
nicating processes (typically the receiver).

e indirect — the message does not contain any address information. Both sender and
receiver work anonymously with a message queue.

This module implements asynchronous communication with any type of addressing. The user
may choose the appropriate addressing type by the means of an argument passed to the send
and receive functions. Both the receiver and the sender may be uniquely specified by the
pointer to their process record.

A message construction requires the following information to be specified:

3Uses internally the passivate operation. For details see paragraph 2.4.

47

e sender — this field is automatically set when sending the message. The re-

ceiver may explicitly define one particular sender? or use the symbolic constant
CSIM_ANY_MSG_SENDER® to receive from any process.

receiver — the sender may specify a single particular receiver for the message or use the
symbolic constant CSIM_ANY_MSG_RECEIVER instead.

type — is a 32-bit unsigned integer. The message will be delivered only if a bitwise AND
operation upon sender and receiver type values gives a nonzero result. It follows that
the type cannot be set to zero. The symbolic constant CSIM_ANY MSG_TYPE may be used
to receive messages of any type.

In this implementation the delivery of a message is defined as “passing of a pointer to an
instance of CSIM MESSAGE (or a derived type) from one process to another.” The sending
process has to create a dynamic instance of the message, initialize the contents and send
the message. The receiving process receives and reads the message and then disposes the
allocated dynamic memory.

To perform the message passing mechanism two queues are required: a message queue and
a queue of waiting processes. The message queue contains messages with a well defined
structure that is described later. The queue of processes contains records with the following
information:

sender — pointer to the process record of requested sender,

receiver — pointer to the process record of receiver; this field may eventually serve to
schedule a receiver process waiting for a message,

type — requested message type

pointer to a space reserved for the pointer to the message®

The items “sender”, “receiver” and “type” have been already described above and they serve
to specify all required information for the chosen type of addressing.

The following functions are provided for message passing:

1.

send — searches the queue of waiting processes for the specified receiver. If a receiver
is found, pointer to the message is written to the reserved space and the receiver is
scheduled to current simulation time’. Otherwise the message is stored in the message
queue.

. receive — searches the queue of messages for a message matching the specified criteria.

If a message is found, its pointer is written to the reserved space. Otherwise the process

is added to the queue of waiting processes and its state is changed to passive®.

4using a pointer to its process record

5in this implementation the value of NULL
Spointer to pointer to CSIM_MESSAGE

“the receiver was blocked by a call to receive
8receive is blocking operation

48

The message queue and waiting processes queue have to be created and initialized before
the first utilization of message passing. After message passing it is no longer needed and
the allocated resources must be disposed. These services are provided by the functions
csim_init msg() and csim clear msg().

The initialization of this module must be postponed until the initialization of dynamic memory
in C-Sim, i.e. after the function csim_init_mem() is called.

5.4.1 Data Types

The type CSIM_MESSAGE is derived from the type CSIM_LINK and thus allows to create a queue
of messages easily. The type contains information for all possible kinds of addressing described
above. Its definition is

#define csim_d_message \
csim_d_link; \
CSIM_ULONG msg_type; \
CSIM_PROCESS *xsender; \
CSIM_PROCESS *receiver

typedef struct csim_message {
csim_d_message;
} CSIM_MESSAGE;

The defined object CSIM_MESSAGE does not contain the transmitted data in any form, i.e. it
is an “empty” message. New user-defined message types may be derived using the macro
csim d message. It is also possible to use the macro

#define csim_derived_message(TYPE_NAME) typedef struct TYPE_NAME { \
csim_d_message;

The principle behind these macros is described in section 2.2. For generating objects of
type CSIM_MESSAGE (or derived types) the macro csim new message is defined. To dispose a

created object a similar macro csim_dispose message may be used:

#define csim_new_message (TYPE_NAME) \
(TYPE_NAME *) csim_init_message ((CSIM_MESSAGE *) malloc(sizeof (TYPE_NAME)));

#define csim_dispose_message (msg) \
csim_dispose_link ((CSIM_LINK *) msg);

5.4.2 Functions
CSIM_RESULT csim_init_msg();
Initialization of the Message Passing module.

49

void csim_clear_msg();
Frees all resources allocated by this module.
csim_receive_msg(r_msg, r_msg_type, r_sender);

Defined as macro.? Starts the receiving of a message. The message is written into the r_msg
argument, which is pointer to a message. In the long-jump implementation of C-Sim the
actual argument cannot be a local (automatic) variable as the pointer would be destroyed.

void csim_send_msg(CSIM_MESSAGE *msg,
CSIM_ULONG msg_type,
CSIM_PROCESS *receiver);

Sends the specified message to the receiver process.
extern CSIM_MESSAGE *csim_init_message (CSIM_MESSAGE *msg) ;

Initializes any user-derived message with the default starting values.

5.5 Console Debug Module

This module provides multiple functions labeled csim view_. .. () which are used to display
the current state of an object on the standard output device.!® The user has to write the
address of the appropriate function into the field view of every object, best immediately after
the creation of the object, e.g.:

MY_CSIM_LINK *link;

link = csim_new_1link(MY_CSIM_LINK) ;
link->view = csim_view_link;

The function csim debug() allows the user to interactively browse the list of allocated dy-
namic memory and to display the state of every object using its view function. The argument
p-dyn passed to the function is pointer to the first displayed object. If this argument is equal
to NULL, the first object in the dynamic memory list to be displayed.

void csim_view_dyn_mem(void *p_void);

Shows the CSIM_DYN_MEM object.

9Receiving can block process. More details can be found in section 2.4
0using the standard printf () function

50

void csim_view_link(void *p_void);
Shows the CSIM_LINK object.

void csim_view_head(void *p_void);
Shows the CSIM_HEAD object.

void csim_view_process(void *p_void);
Shows the CSIM_PROCESS object.

void csim_debug(CSIM_DYN_MEM *p_dyn) ;

Interactive function for viewing the whole list of dynamically created objects at the time point
of its call.

51

Chapter 6

Basic Rules How to Use the C-Sim
Library

6.1 Structure of Simulation Program

A simulation program has the structure like any other program written in C language. Be-
cause the usage of the C-Sim library macros somewhat changes the source code, it is recom-
mended, at least for the initial experiments, to use the following structure of the program.

1. At the beginning of the source code the compiler directive is to be placed:
#include "csim.h"

Inside the csim.h file may be further #include directives, through which other needed
header files! are included. Header files of all optional C-Sim modules that the program
uses need to be included.

2. Definitions of the used data types follow. They are mostly derived from basic C-Sim
object types supported by the library (see 2.2). It is naturally possible to use also other
user—defined types.

3. The definition of global data of the simulation model. These are the variables accessible
from all processes of the model. They are mostly parameters and pointers to stable
objects of the model.

4. Operations upon the introduced object types. Because there are no resources for assign-
ing these operations to the given object types (e.g. with an encapsulation construction),
it is recommended to mark them at least with a comment. Those operations have the
form of C language functions of any type, but one parameter should be a pointer to
the object type that the operation belongs to.

5. Definitions of programs of individual processes of the simulation model. Pro-
grams of the processes are constructed via the csim program, csim end process and

!The header files of the standard C language libraries and necessary C-Sim headers.

52

csim_end_program macros, for details see section 3.5. Internally, those programs have
the form of C language functions. A program which can be used by several processes
must be constructed as reentrant.

It means that all the data items belonging exclusively to a process (i.e. its local data)
should be defined as the items of the process data type. Within the program (C language
function) connected with this type the local data items must be accessed only by means
of operators my or p_my, e.g. my.item or p_my->item 2,

6. Definition of arbitrary functions that can be used for result printing, initialization and
so on. It is adequate to define a function for model initialization. The initialization
function should contain the necessary initial setting of all global data, creation and
initialization of stable objects® and at least one statement, which will activate at least
one of the created processes.

It is recommended to check results of C-Stm functions calls within the program ini-
tialization part (see examples in chapter 7), because the C-Sim’s standard exception
mechanism (i.e. return from csim_step()) doesn’t work here.

7. Finally we introduce the definition of the main() function, which controls the simulation
run. This function contains the basic simulation loop that triggers the scheduled pro-
cesses using the csim_step() function from C-Sim library. End of this loop needs to be
user-constructed (e.g. after reaching a chosen value of model time) is equivalent to the
end of one simulation experiment.

8. In the simulation program several simulation experiments can be performed, accord-
ing to an arbitrary decision procedure. Every experiment should be started with
csim_init_mem() function call to initialize the dynamic memory of the application and
finished with the sim_clear_mem() function call to release the dynamic memory. After
memory initialization the model initialization function should be called (with parame-
ters changed for a new experiment run).

6.2 Process’s Operations Usage

There are some rules for using operations described in sections 4.3 and 4.4.

e The csim_step() function may be called only outside processes’ programs, it is called
typically in the basic loop within the main() function (see examples in 7).

e csim hold, csim passivate and csim_wait macros may be called only in some process’s
program.

e Functions for activation of processes may be called both inside and outside process’s
program. Inside the process’s program their call doesn’t influence the state of the
currently active process.

2When we are using thread-based implementation of pseudo-parallel processes it suffices to define local data
items as automatic variables within the program function. But in order to preserve the program portability
between C-Sim implementation versions it is better to keep the above stated convention.

3A stable object is here an object with “life length” equal to the duration of the simulation experiment.

53

e Other functions may be used without limitations.

6.3 Long-Jumps Based Implementation Restrictions

The long-jump implementation of pseudo-parallel processes causes corruption of stack during
each context switch. This means that the following entities are invalidated in a function
representing process’s program:

e local variables of C class auto
e parameters

e return address
Solutions to these problems are:

e Local variables should be used only temporarily for computation between context
switches. Other data should be located in the process’s record which is located on the
heap — in the process’s program they can be accessed through p_my->data or my.data.

e Parameters should be accessed only before the first context switch.

e Macros for the process context switching should be called only at the level of function
representing process’s program.

e The csim_step() function should be called within the main program function all the
time at the same level of nesting.

6.4 Backward compatibility

The changes to C-Sim were applied with regard to best possible backwards compatibility
with the previous library version. Occasional incompatibilities are caused by the separating
of optional modules and by adding of several new properties. Namely:

e An object does not have a view function attached by default. The csim_view_...()
and csim_debug() functions were moved into the Console Debug module. The reason
is that simulation programs often use a visualization layer and standard console input
and output is not available.

e Due to the addition of the random number generator, the prototypes of functions for
generating numbers of various distributions had to be changed. Compared to the
previous version, these functions take as argument an additional pointer to object
CSIM_RNG_STATE. The benefit of this solution is the possibility to create an arbitrary
number of independent random number sequences.

e Due to the separation into multiple modules, the user has to include the appropriate
header files using the #include preprocessor directive.

54

e The method of generating an error code has been redesigned. The numerical values of
error code as well as the symbolic error names do not match with the previous version.
The conversion of an error code to an error description is handled by the function
csim error msg() from Error Messages module.

Moreover, all exported identifiers were renamed by adding the prefix csim_. ... For an easy
translation of existing programs, which use C-Sim version 4.1 or older, it is possible to:

e use the supplied text-filter on the original source codes, translating them? with good
probability into sources compatible with C-Sim version 5.1, or

e include a header file for backward compatibility. This header file defines the old identi-
fiers as macros which use the new identifiers instead.

6.5 C+H+ compatibility

Generally it is possible to use the C-Sim library within any ANSI C++4 computational
environment, the only limitation is that programs of processes must be C++ independent
functions (i.e. they can’t be member functions of classes) so it is not possible to construct
process-like classes (like e.g. threads in Java). C++ utilization is useful especially when we
need to construct a GUI for a simulation model (e.g. in order to visualize an experiment run).

“replacing the strings in source codes can cause “side effects”

55

Chapter 7

Demonstration examples

7.1 Model of a Queuing Network

This example demonstrates C-Sim library utilization in the traditional area of discrete-time
simulation. The modeled open queuing network is composed of two servers with FIFO queues
of transactions waiting for service. There are two sources of new transactions and two input
points for them. There are also two output points — see figure 7.1.

@ sourcel departure source2 departure

|

serverl 1-pl2 server2 1—p21

]
- 1 -
} @ pl2 (>

p21

Figure 7.1: Queuing network

Interarrival time in input streams of transactions and service time of servers are exponentially
distributed. Thus the corresponding parameters of the simulation model are as follows:

A1 — mean frequency of the first input stream (and the parameter of the exponential distri-
bution of interarrival time),
Ao — mean frequency of the second input stream,

w1 — parameter of the exponential distribution of the first server service time (or the mean
conditional frequency of services),

1o — parameter of the exponential distribution of the second server service time.

56

Additional parameters are branching probabilities which describe passing of transactions
through the network:

p12 — probability of transactions passing from node 1 to node 2 after being served in the node
1 (and with complementary value 1 — po transactions depart the network),

po1 — probability of transactions passing from node 2 to node 1 after being served in the node
2 (and with complementary value 1 — po; transactions depart the network),

The output information of the model should be the response time T, i.e., the mean time
which a transaction spends inside the network.

7.1.1 Object types

Transaction

There are two possible ways of transaction modeling. The “active” principle means to take
the transaction as a process-like object. In the “passive” principle (used in this example)
a transaction is handled as an object without its own “activity” and is created, destroyed
and inserted into queues by other processes. That is why the type TRANSACTION is derived
from the standard CSIM_LINK type. An additional attribute of TRANSACTION is the time of
the transaction generation.

typedef struct {

csim_d_link;

double t_input; /* "birth" time of transaction */
} TRANSACTION;

Queue

The queue can be derived from the supported CSIM_HEAD type which implements a two-way
circular list. The one additional attribute of QUEUE type is the binding (i.e. a pointer) to the
object—server which is taking transactions out of the queue:

typedef struct {

csim_d_head;

CSIM_PROCESS #*server; /* pointer to server */
} QUEUE;

Source

The source of transactions is evidently an “active” object, which generates a Poisson stream
of transactions. It means that the type SOURCE must be derived from the supported type
CSIM_PROCESS. Added attributes are A—parameter of the Poisson stream and binding to the
queue where generated transactions are stored:

57

typedef struct {
csim_d_process;
float lambda; /* parameter of the pdf of interarrival time */
QUEUE *queue; /* pointer to output queue */

} SOURCE;

The type SOURCE describes the local data record of an instance of the process. Furthermore
it is necessary to define a program of process’ “life”. Due to the fact that the program should
be the same for all instances of source-like objects, it has to be constructed with the property
of reentrancy.

csim_program(SOURCE, SOURCE_PROG)
TRANSACTION *p_poin;
/* temporary pointer to a generated transaction */

for (5;) {

p_poin = csim_new_link (TRANSACTION);

p_poin->t_input = csim_time();

csim_into ((CSIM_LINK *) p_poin, (CSIM_HEAD *) my.queue);

if (csim_idle (my.queue->server)) {

csim_activate_at (my.queue->server, csim_time());

}

csim_hold(csim_negexp(rng, my.lambda)); /* interarrival time */
}

csim_end_program

Server

The last (and the most complex) required type is SERVER. This type describes the data of
a server—like object. Server introduces evidently an “activity”, so we derived its data type
from the CSIM_PROCESS. The meaning of several added attributes is explained in comments.

typedef struct {
csim_d_process;

float mi; /* rate of service, exponential pdf */

float p; /* prob. of departure after the service */

QUEUE *in_queue; /* pointer to an input queue */

QUEUE *out_queue; /* pointer to an output queue */

CSIM_UWORD cnt; /* counter of serviced transactions */

double stq; /* sum of responses of finished transactions */
} SERVER;

7.1.2 Global data items

The model parameters and pointers to stable objects are declared as global data:

58

QUEUE *queuel,*queue?2; /*
SERVER *serverl,*server2; /x*
SOURCE *sourcel,*source2; /*

float mil = 1.0;
float mi2 =1.0;
float lambdal = 0.4;
float lambda2 = 0.4;

float pl2 = 0.
float p21 = 0.
CSIM_RNG_STATE *rng;

5;
5;

/*
/*
/*
/*

pointers to queue 1 and 2 */
pointers to server processes 1 and 2 */
pointers to source processes 1 and 2 */

service
service
arrival
arrival

rate
rate
rate
rate

of server 1 x/
of server 2 x/
from source 1 */
from source 2 */

/* prob. of trns. passing from 1 to 2 */
/* prob. of trns. passing from 2 to 1 */
/* pointer to an object of random numbers generator */

7.1.3 Model initialization

In the initialization function of the model, stable objects are constructed and source processes

are planned.

/* Function for the model initialization */
CSIM_BOOLEAN init (void) {
/* csim’s data initialization */
if (csim_init_mem()) return TRUE;

/* TRUE means a run-time error within the C-Sim function */
/* stable objects creating and initializing */
rng = csim_new_rng (INIT_SEED);
if (rng == NULL) return TRUE;
queuel = csim_new_head (QUEUE);
if (queuel == NULL) return TRUE;

serverl = csim_new_process(SERVER, SERVER_PROG) ;
if (serverl == NULL) return TRUE;
ini_server (serverl, mil, pl2, queuel, queue2);

/* initial activation of processes */
if (csim_activate_at ((CSIM_PROCESS *) sourcel, 0.0))

return TRUE;

return FALSE;

7.1.4 Main program

First, in the main program the initialization of dynamic memory and of the model is per-
formed. Then the main simulation loop is executed using csim_step () function that executes
one activity of the first process in the calendar. The final condition of the loop execution is
derived from a number of passed transactions.

59

int main(void)
{
CSIM_ERROR er;
long int trns_cnt = 0;

if (init()) {
csim_error (&er) ;
printf("Init: %s\n", csim_error_msg(er.error_code));
(void) getchar();
csim_clear_mem() ;
return (0);

printf ("0QN - open queuing network model \n");
printf ("Number of passing transactions (100 000 should pass): \n");
while(trns_cnt < 100000) {
if (csim_step() == FAILURE) {
csim_error(&er) ;
printf ("Loop: %s\n", csim_error_msg(er.error_code));
(void) getchar();
csim_clear_mem() ;
return (0);
}
trns_cnt = serverl->cnt + server2->cnt;
printf ("%li\r", trns_cnt);
}

Note: You can try to modify the example - at first to use more nodes of the SERVER type
connected within a network (here you should carefully estimate model parameters to get
stationary behavior of the model). The second recommended modification is to use more
complicated type of server - e.g. with its output branching to several other nodes.

7.2 M/M/1 queuing system

Within the previous example (queuing network, two nodes), all the objects (including pro-
cesses) that is the model composed from, are stable. It means that their lifetime is the same
as the lifetime of the simulation program.

This demonstration example shows a model of M/M/1 queuing system. Passing transactions
are treated as dynamically created (and detached) processes. Parameters of the queuing
system model are as follows:

e lambda: rate of arrivals (i.e. the parameter of exponential pdf of interarrival time, set
value 1.0),

e mi: rate of service (i.e. the parameter of exponential pdf of service time, set value 0.8),

60

® one server,

o FIFO queue, unlimited length.

The aim of the model construction is to estimate the mean response time (i.e. the mean time
of the transactions passing through the queuing system). It is possible to change the number
of passing transactions and to follow a precision of the experimental result by comparison
with its theoretical value (T, = 5.0 for the chosen values of parameters).

The data record of the process that models a transaction passing through the system is as
follows:

typedef struct {
csim_d_process; /* derived from CSIM_PROCESS x*/
double t_input; /* transaction’s "birth time" */
} TRANSACTION;

The model contains one process that generates transactions (stable object, name source) and
one list (type CSIM_HEAD, name queue) that contains all the processes of the TRANSACTION
type (including the served one). Common program for these processes:

csim_program(TRANSACTION, TRNS_PROG)
my.t_input = csim_time();
if (csim_empty(queue)) /* test of queue */
csim_into ((CSIM_LINK*)csim_current(), queue);
/* process inserts itself into the queue, nonblocking call */
else
csim_wait (queue) ; /* blocking call - like passivate() */
csim_hold(csim_negexp(rng, mi)); /* models the service */
csim_out ((CSIM_LINK#) csim_current());/* process departs the queue */
if (!csim_empty(queue)) /* awakes next proces in queue - if any */
csim_activate_at ((CSIM_PROCESS*) csim_first(queue), csim_time());
... /*x statistics */
csim_end_process /* deletes the process data record */

Clearly, this kind of the model organization (i.e. transactions treated as processes) can be
less effective due to the overhead with dynamically created and detached processes. Moreover
to debug a model with dynamic processes is much worse than in a case where processes are
stable.

7.3 Model of Shared Resource Utilization

This example presents a model of a simple parallel algorithm executed at a shared—memory
multiprocessor. Several processes (with the same program) periodically utilize a block of
shared data. They use a semaphore with conventional lock and unlock operations to syn-
chronize access to the data. The synchronized part of the program executed with all the
processes is being denoted as critical section.

61

In this example we demonstrate the use of the Semaphore module and furthermore the creation
of two mutually independent sequences of pseudo-random numbers, the first sequence for the
modeled parallel algorithm itself, the second for modeling the duration of computations.

The type (named WORKER) of processes working with the critical section has to be derived
from the supported type CSIM_PROCESS:

typedef struct {
csim_d_process;

float mi; /* 1/mi is the mean time spent inside crit. sec. x/

float lambda; /* 1/lambda is the mean time spent out of crit. sec. */

CSIM_SEMAPHORE *p_sem; /* pointer to synchronizing semaphore x/

double rslt; /* local result of one iteration of computation x/
} WORKER;

The local computation part of worker’s program generates a local result (emulated with a
generated random number) and the critical section computes the contribution of the local
result to the global one. The program code follows:

csim_program(WORKER, WORKER_PROG)
for (;;) { /* infinite loop */
/* local part of iteration */
/* a computation - here a random number generation */
my.rslt = csim_negexp (comp_rng, 0.1);
/* simulation of a time of local computation */
csim_hold (csim_negexp(time_rng, my.lambda));

/* critical section */

csim_lock_sem(my.p_sem); /* locking the section */
/* computation of global "sliding" average using local result */
rslt = 0.95*%rslt + 0.05*my.rslt;
cs_count ++; /* increment of glob. count of iterations */
/* csim_hold() emulates time spent inside crit. section */
csim_hold (csim_negexp(time_rng, my.mi));

csim_unlock_sem(my.p_sem) ;

}

csim_end_program

The initialization of the model is executed in the main() function in this way:

p_sem = csim_new_semaphore(l); /* 1 means "open" */
time_rng = csim_new_rng(INIT_SEED) ;
comp_rng = csim_new_rng(INIT_SEED+1);

for (i=0; i<N; i++) {

p_workers[i] = csim_new_process (WORKER, WORKER_PROG);
ini_worker (p_workers[i], mi, lambda, p_sem);

62

csim_activate_at ((CSIM_PROCESS *)p_workersl[i],
csim_negexp(time_rng, lambda));

This example demonstrates that with a single C-Sim based model it is possible:

e to validate a deadlock-free control flow of model-implemented parallel algorithm (with a
good reliability that depends on a length of testing - here on the number of algorithm’s
modeled cycles),

e to validate the time-independence of the result (i.e. deterministic behavior of the im-
plemented program),

e to validate the logical correctness of results (here the computed mean value of generated
random numbers should not oscillate too much),

e to determine the chosen performance parameters of the algorithm (for a chosen model
of its dynamic behavior and optionally for a dynamic model of its operational environ-
ment).

Note 1: The used modeling methodology replaces parallel computation of several threads
with serialized (interleaved) pseudo-parallel computation of several discrete-time simulation
processes. Using this example it is possible to validate that the replacement works well. We
can compare the measured (i.e. obtained from simulation model) frequency of periodical
computation with the theoretical value obtained from mathematical model (stochastic Petri
net, Markov model) that assumes real concurrency - see the results printed as the program
output.

Note 1: Experimentally validated programs of processes can be separated from the simulation
program and in a straightforward way adapted for a real computational environment (with
semaphore operations in its interface, e.g. POSIX threads). It has apparently no great
sense for this simple case, but we can start the experimentation with more sophisticated
synchronization schemes what requires more semaphore instances and a danger of deadlock
is more significant.

7.4 Distributed election algorithm

This example shows a model that serves as an experimental validation of t-resilient asyn-
chronous distributed election with fault injection before the voting. Asynchronous means,
that there is no upper limit for a message delivery and/or processing time.

There is n processes, t of them can be out-of-function (but the others don’t know who isn’t
alive). The processes try to elect one leader (king) among them. Processes use asynchronous
message-passing kind of interaction, i.e. the send() operation is nonblocking in the contra-
diction to the receive() operation. The election is started by a group of & processes from
n (k > t), i.e. k processes send a message "to start the election”, but not necessarily at the
same time.

63

More detailed description of the used algorithm is contained in the file kings.ps within
the C-Sim 5.1 standard release. Every process acts as a state machine, every incoming
(processed) message can be a cause for a state-space transition. The (common) program for
all processes that take part in the election (denoted as ”fighting kings”) is relatively simple:

csim_program(P_DATA,P_PROG)
/* initialization of local data */

my.state_p = slave; /* state */

my.master = 0; /* master’s id - when "defeated" */
my.waiting = 0; /* id to wait a response from */

my .next = my.id; /* next id to send message */

/* infinite loop - election can be repeated */
while (TRUE) {
/* process waits for a message */
csim_receive_msg(my.msg, CSIM_ANY_MSG_TYPE, NULL);
/* hold() simulates the random time of a message processing
(and the message delivery as well) */
csim_hold (csim_negexp(rng, lambda));
/* state-space transition function is called according to
the message type and the actual state of the process */
(* switch_table [my.msg->m_type] [my.state_p]l) ((P_DATA*)csim_current());
}

csim_end_program
Table that contains pointers of functions that perform the state-space transitions is as follows:

/* state transition table */
void (* switch_table[7][7])(P_DATA *) = {
/* search battle defeated relay waiting leader slavex/

/*join_1x/ { al, ail, ail, a4, sus, del, del },
/*join_2x/ { a2, a2, a3, a3, a3, del, del 7},
/*accept*/ { acc, a6, del, del, a8, del, del },
/*reject*/ { ab, a7, del, del, a9, del, del 7},
/*leader*/ { 1ldr, 1ldr, 1ldr, 1ldr, 1ldr, del, del },
/*wakeup*/ { wak, del, del, del, del, del, del 7},
/*reset */ { res, res, res, res, res, res, res }};

Rows of the table correspond to the type of message and columns of the table means possible
states of a process during the election. Within the table there are names of functions that
perform a transition. All these functions are of the same type - they have one parameter that
points to the data record of a process which is the function operating with.

The main program enables to choose how many election trials should be done. Every trial
runs with different initial setting of random numbers generator (i.e. the setting that was the
previous trial finished with), so the time sequences of messages processing within a trial are
generally different and the algorithm is tested properly (a deadlock condition is tested at the

64

end of every trial). But the program still behaves deterministically (at the beginning of the
first trial the random number generator is initialized the same way), what means that we are
able to repeat the computation and analyze a trouble that occurs - say in the election trial
number 327.

To demonstrate the possibilities of the deterministically serialized parallel computation, the
main program enables to step its main loop manually (Enter key). One step means one process
single activity (performed at single point of the model-time). Moreover all the messages are
displayed together with the state of process that makes their processing.

Note 1: Instead of the demonstrated simple console-aimed user interface of the simulation
program it is possible to construct arbitrarily complex graphical user interface (including a
kind of the model activity visualization). For this purpose it is possible to utilize any ANSI
C++ graphic library.

Note 2: Here we didn’t use a precise model of the communication system. A delay of a
message delivery is (logically) composed with a delay of the message processing using one ex-
ponentially distributed random number (see hold () pseudo-statement in the program above).
It is possible to construct more precise object-oriented model of communication (possibly in-
cluding active objects, i.e. processes), to distinguish various reasons for delays (i.e. to use
more hold() statements), to use other random numbers distributions, etc. Then some chosen
performance parameters of the algorithm (including a system that the algorithm is executed
on) can be investigated as well.

Note 3: Here we used C-Sim’s module that implements asynchronous message passing op-
erations. When the semantics of interaction operations doesn’t fit the case to be investigated,
it is possible to construct a module that exports another set of operations (possibly including
their internal delay) according to the patterns given in the Semaphore or Message passing
modules.

7.5 Open queuing network parallelized using PVM tool

This is a version of the standard example (see file ogn.c) that is adapted to run under PVM
using so called farmer-workers model.

Queuing network consists of two serving nodes (FIFO queue and one-channel server with
exponential pdf of service time) and from two transaction sources with exponential pdf of
interarrival time. The aim of model construction is to estimate the mean response time 7
(i.e. the mean time that transactions need to pass through the network).

The file ogqn_farmer.c contains the executable program of farmer-type process (here the
word process is used in the sense of running program, i.e. not a discrete-time executed
pseudo-parallel simulation process). Only one process should run this program and no C-Sim
utilities are used here. The farmer-type program at first reads (from keyboard) the number
of transactions to be passed through the modeled network. Then it creates worker processes
and repeatedly (message CMD_CONTINUE) sends a number of transactions that a worker should
pass through its instance of the modeled system. It registers an overall number of processed
transactions and when the requested number was reached, it computes an overall statistics,

65

prints the results and releases workers.

The second file ogn_worker.c contains the program of worker-type process. An arbitrary
number of workers can run this program at the same time. The worker-type program repeat-
edly receives a number of transactions that should pass through the modeled system. At first
it runs from the model time value csim_time=0.0 and the modeled queuing network is empty.
At the second, etc., it runs from the previously reached values of model time and network’s
state. It returns (message CMD_DATA) partial result - how many transactions it processed
together (i.e. from the beginning of computation) and the value of Tq that it reached.

Random number generators of worker processes are set differently at the beginning (using
PVM’s task ID), so every worker yields statistically independent results that can be com-
posed (in the farmer process) to get the final statistics. The shadow side of this method
is nondeterministic computation of the simulation model due to the fact, that tasks ID are
different for different runs of computation. So at first we should debug the simulation model
properly using its nonparallelized version (here ogn.c).

When a worker suffers a csim run-time error, it returns error code instead of partial result.
Farmer deletes the failed worker from the stuff and continues its work. At least one worker
should stay alive to complete all the computation.

Structure of used messages is described in the file ogn_pvm.h together with symbolic constants
used as parameters of the model computation.

Note: This example mainly demonstrates the possibility to use both the (C-language aimed)
C-Sim and PVM interfaces together within one application. Moreover it shows a way how to
seedup the computation of a category of simulation applications using standard parallelization
model (i.e. farmer-workers) and a standard tool for parallel computation (here PVM, but
e.g. MPI can be used similarly).

66

Bibliography

[1] J. Hlavicka, S. Racek, P. Herout (1999): C-Sim v.4.1, Research Report CD-99-09,
http://www.c-sim.zcu.cz

[2] J. Kacer (2001): J-Sim, Java Based Tool for Discrete Simulations,
Diploma thesis

[3] WWW: DECthreads Interface Documentation, http://www.tru64unix.compaq.com
[4] WWW: Simula Language, http://www.simula.com
[5] WWW: PVM http://www.csm.ornl.gov/pvin/

67

Appendix A

C-Sim Library Interface

/3 3k sk ok ok sk ke ok sk ok ok ok K ok ok K ok ok sk Kk ok sk K ok ok 3k K o ok sk K ok ok kK o ok sk K 3 ok sk sk o ok ok K ok ok ok sk ok ok kK o ok ok 3k ok ok k ok ok 3k ok
University of West Bohemia, DCS, Pilsen, Czech Republic
(c) copyright
03.04.2003

C-Sim version 5.1
file csim.h

header file of C-Sim library
(all exported functions and global variables)

ke sk ke ok ok K ok ok e ok ke ok ok K e ok 6 o sk ok sk e ok 3k ok ok e ok k ok ok sk e ok ke ok e ok 3k ok o sk ok sk e ok 3k ok ok ok 3k e ok ok sk ok k e ok ok k ok sk /

#ifndef CSIM_H
#define CSIM_H 1

#ifndef KR_PATH
#define KR_PATH "kr_jmp/csim_kr.h"
#endif

#include <stdlib.h>
#include "csim_dt.h"

#include KR_PATH
#include "csim_tm.h"

/K% ok sk ok sk ok ok s ok sk ok sk ok ok ok sk ok ok sk ok ok sk ok sk ok ok s ok sk sk ok sk ok ok s ok sk sk ok ok K ok sk ok ok sk ok ok s ok sk ok ok 3 ok ok s ok sk ok ok ok k 3 ok ok ok ok s ok
used macros
sk sk ok 3 oK ok K ok 3 oK ok 3 ok 3 oK ok K ok 3 ok 3 ok 3 ok 3k ok 3k K ok ok sk ok s ok sk ok sk oK ok K ok ok 3 ok s ok 3 ok sk ok ok K ok s ok sk ok 3 ok sk ok ok k ok sk ok ok 3 ok s ok sk ok ok /

/*

* Use following macros like this:
*

* typedef struct my_link {

* csim_d_link;

68

} MY_LINK;

*/
/*

*

* name -
%

* type -
*

*

*

%

* check -
* p_head_mem -
* p_suc_mem -
* p_pred_mem -
* destructor -
* view -
*/

/%

user attributes;

Class for block of dynamic memory

used by the debug function - user can use this to identify
object
object type

P ... process

L ... csim_1link

H ... csim_head

M ... dynamic memory block

pointer used for checks

pointer to head of list of dynamically created objects
pointer to successor in the list

pointer to predecessor in the list

pointer to object’s destructor

function for viewing object’s data

* Macro for derivation from the CSIM_DYN_MEM type
* class of dynamically generated objects which are
* inserted into one list

*/

#define csim_d_dyn_mem \
char *name; \
char type; \
char *check; \
struct csim_dyn_mem *p_head_mem; \
struct csim_dyn_mem *p_suc_mem; \
struct csim_dyn_mem *p_pred_mem; \
CSIM_DESTRUCTOR destructor; \
CSIM_VIEW view

/*

* Class for objects insertable into list

* suc - successor in the list

* pred - predecessor in the list

* head - head of the list

* enter_time - time of the first insertion to the queue

*/

/%

* Macro for derivation from the CSIM_LINK type objects insertable
* into the CSIM_HEAD list

*/
#define csim_d_link \
csim_d_dyn_mem; \

69

struct csim_link *suc; \
struct csim_link *pred; \
struct csim_head *head; \
CSIM_TIME enter_time
/%
* Class for list head objects, also insertable into list
* p_first - pointer to the first item in the list
* p_last - pointer to the last item in the list
* 1q - actual list length
* arrival_cnt - number of items inserted into the list during the time
* statistics was turned on
* last_time - time of the last change of list length
* sum_tw - sum of the item’s waiting times
* sum_lw - sum of the actual list lengths weight by the time their last
* sum_time - total time the statistics was on (used to count Lw)
* statistics - enables/disables the statistics
* - if the global variable statistics is TRUE, the statistics
* are evaluated always
* - if the global variable statistics is FALSE, the statistics
* are only evaluated when this attribute is TRUE
*/
/*

* Macro for derivation from the CSIM_HEAD type the head of the list
*/

#define csim_d_head \
csim_d_link; \
CSIM_LINK *p_first; \
CSIM_LINK *p_last; \
CSIM_UWORD 1q; \
CSIM_ULONG arrival_cnt; \
CSIM_TIME last_time; \
CSIM_TIME sum_tw; \
CSIM_TIME sum_lw; \
CSIM_TIME sum_time; \
CSIM_BOOLEAN statistics
/*
* Class for process objects
* program - pointer to program of the process. It is run after the
* process was started (e.g. is in state NEW_...)
* suc_in_sqs - pointer to the next process in scheduler
* pred_in_sqgs - pointer to previous process in scheduler
* state - state of the process
* evtime - time of the process’s activation. It determines position
* of the process in scheduler
* last_time - the time when the process was last inserted into
* scheduler
* non_passive_time - sum of time intervals when the process was scheduled
* passive_time - sum of time intervals when the process was passive
* statistics - enables/disables the statistics
* - if the global variable statistics is TRUE, the statistics

70

are evaluated always
- if the global variable statistics is FALSE, the statistics
are only evaluated when this attribute is TRUE
*/

/%
* Macro for derivation from the CSIM_PROCESS type object of one process
*/

#define csim_d_process \
csim_d_link; \
csim_process_Kr; \
CSIM_PROC_PROGRAM program; \
struct csim_process *suc_in_sgs; \
struct csim_process *pred_in_sqgs; \
CSIM_PROC_STATE state; \
CSIM_TIME evtime; \
CSIM_TIME last_time; \
CSIM_TIME non_passive_time; \
CSIM_TIME passive_time; \
CSIM_BOOLEAN statistics
/%
* The macros with the same function as above, but with better readability
*
* Use like this:
* csim_derived_link(my_link)
* user attributes;
* e
* csim_end_derived(MY_LINK);
*/
/*
 rrrrrrrrrrrrrrrrrrrrrrry WARNING trerrrrrrrrrrrrrrrnnd
*
* The parameter TYPE_NAME (macros derived_xyz(TYPE_NAME)
* and csim_end_derived(TYPE_NAME)) are the names of one and
* the same structure. Please use
*
* lower case (like type_name) when using macro derived_xyz
¥ it is used by the structure for selfreferencing
* upper case (like TYPE_NAME) when using macro csim_end_derived
* it is used as structure’s name
*
* Example: Expands to:
* csim_derived_link(my_link) typedef struct my_link {
* . csim_d_link;
* my_attributes; my_attributes;
* struct my_link *p_my_link; struct my_link *p_my_link;
* e e
* csim_end_derived (MY_LINK) } MY_LINK;

*
~

71

#define csim_derived_dyn_mem(TYPE_NAME) typedef struct TYPE_NAME { \
csim_d_dyn_mem;

#define csim_derived_link(TYPE_NAME) typedef struct TYPE_NAME { \
csim_d_1link;

#define csim_derived_head (TYPE_NAME) typedef struct TYPE_NAME { \
csim_d_head;

#define csim_derived_process(TYPE_NAME) typedef struct TYPE_NAME { \
csim_d_process;

#define csim_end_derived(TYPE_NAME) } TYPE_NAME

/%

* Macros for dynamic generation of new objects
*

* TYPE_NAME - name of the type - CSIM_LINK, MY_LINK, CSIM_HEAD, MY_HEAD ...
* PROC_PROG - pointer to program of the process
*

* Usage:

* csim_derived_process(my_process)

* S

* csim_end_derived(MY_PROCESS) ;

*

* void prog_of_process(void) {

*

* }

*

* void main(void) {

* MY_PROCESS *p_proc;

*

* p_proc = new_process(MY_PROCESS, prog_of_process);
%

* }

*/

/* Generates new object derived from CSIM_DYN_MEM x/
#define csim_new_dyn_mem(TYPE_NAME) \
(TYPE_NAME *) csim_init_dyn_mem((CSIM_DYN_MEM *) malloc(sizeof (TYPE_NAME)))

/* Generates new object derived from CSIM_LINK x*/
#define csim_new_1link (TYPE_NAME) \
(TYPE_NAME *) csim_init_link((CSIM_LINK *) malloc(sizeof (TYPE_NAME)))

/* Generates new object derived from CSIM_HEAD x/
#define csim_new_head (TYPE_NAME) \
(TYPE_NAME *) csim_init_head ((CSIM_HEAD *) malloc(sizeof (TYPE_NAME)))

/* Generates new object derived from CSIM_PROCESS */
#define csim_new_process(TYPE_NAME, PROC_PROG) \

72

(TYPE_NAME *) csim_init_process(\

(CSIM_PROCESS *) malloc(sizeof (TYPE_NAME)), (PROC_PROG))

/*
* Macros that initialize the attributes of CSIM_DYN_MEM type
*
* CSIM_DYN_MEM *P_DYN_MEM - pointer to object
* char *NAME - object’s name (identification string)
* CSIM_DESTRUCTOR DESTRUCTOR - pointer to object’s destructor
* CSIM_VIEW VIEW - pointer to function used to view the object
* (is of type CSIM_VIEW)
*/
#define csim_set_destructor (P_DYN_MEM, DESTRUCTOR) \

(P_DYN_MEM)->destructor = (DESTRUCTOR)

#define csim_set_view(P_DYN_MEM, VIEW) (P_DYN_MEM)->view = (VIEW)

/%

Macro used to access object’s attributes */

#define my (*p_my)

/* Macro used to generate error code */
#define CSIM_ERR_CODE(func, err) (CSIM_UWORD) ((err << 8) | func)
/*
* Next four macros are working with active process and are changing it’s state:
* - csim_hold(del_t) : changes the state of process to CSIM_PLANNED
* and schedules it to current time plus del_t
* - csim_passivate() : changes the process to state PASSIVE
* - csim_wait(p_head) : changes the process to state PASSIVE and inserts it
* into list p_head
* - csim_end_program : ends program code
*/
#define csim_hold(del_t)
do {

CSIM_PROCESS *_p_process;
CSIM_TIME _csim_dt;
_p_process = csim_current();

csim_sqs_out (_p_process);
if (csim_time_cmp(_csim_dt, csim_zero_time()) >= 0)
else

csim_rank (_p_process);
_p_process->state = CSIM_PLANNED;

csim_compute_deactivate_ps(_p_process);
_p_process->last_time = csim_time();

csim_switch_processes(_p_process, csim_sqs_point());

csim_dt = (del_t);

_p_process->evtime = csim_time_add(_p_process->evtime, _csim_dt);

csim_exception(CSIM_E_HOLD_DEL_T, _p_process, NULL);

P A A g A G A A A

73

csim_restore_process;
} while (0)

#define csim_passivate()

do {
CSIM_PROCESS *_p_process;
_p_process = csim_current();

csim_sqs_out (_p_process);
_p_process->state = CSIM_PASSIVE;

csim_compute_deactivate_ps(_p_process);
_p_process->last_time = csim_time();

csim_switch_processes(_p_process, csim_sqs_point());
csim_restore_process;
} while (0)

#define csim_wait(p_head)

do {
CSIM_PROCESS *_p_process;
CSIM_HEAD *_csim_p_head;
_p_process = csim_current();
_csim_p_head = (p_head);

if (csim_check_head(_csim_p_head) == TRUE) {
csim_into(((CSIM_LINK #*) _p_process), p_head);

csim_sqs_out (_p_process);
_p_process->state = CSIM_PASSIVE;

csim_compute_deactivate_ps(_p_process);
_p_process->last_time = csim_time();

}

else {
csim_exception(CSIM_ERR_CODE(CSIM_E_WAIT_HEAD,
csim_head_state(_csim_p_head)), _p_process, _csim_p_head);

}

csim_switch_processes(_p_process, csim_sqgs_point());
csim_restore_process;
} while (0)

#define csim_end_program

{
CSIM_PROCESS *_p_process;
_p_process = csim_current();

csim_sqs_out (_p_process);
_p_process—>state = CSIM_TERMINATED;

csim_compute_deactivate_ps(_p_process);
_p_process->last_time = csim_time();

74

P AP i g A O P A L A T A L L ad P P A L g A G

P A

csim_return_to_step();
}
}

/* Macros-brackets creating a special kind of functions */
#define csim_program(TYPE_NAME, PROG_NAME)
void *PROG_NAME(void *p_void)
{
TYPE_NAME *p_my = (TYPE_NAME *) p_void;

#define csim_end_process

{
CSIM_PROCESS *_p_process;
_p_process = csim_current();

csim_sqs_out (_p_process);
_p_process->state = CSIM_ZOMBIE;

csim_return_to_step();

#define csim_begin_destructor (TYPE_NAME, DESTR_NAME)
void DESTR_NAME(void *p_void)
{

TYPE_NAME *p_my = (TYPE_NAME *) p_void;

#define csim_end_destructor

}

#define csim_begin_view(TYPE_NAME, VIEW_NAME)
void VIEW_NAME(void *p_void)
{

TYPE_NAME *p_my = (TYPE_NAME %) p_void;

#define csim_end_view

}

/] 3Kk sk sk sk sk ok sk e ok sk ok ok ke ok o sk ok sk e ok 3k ok ok ok K e ok ok sk e ok ke ok ok sk ok ok ok ok ok e ok 3k ok ok k e ok ok sk ok k e ok ok ok ok ok

classes of basic objects
K 3K 3k ok o o o K K 3k 3k ok o o o K sk ok ok o 3k sk ok o K sk ok o o K 3k ok ok o K K ok ok o K ok ok o o K ok ok o o K sk ok o o o K sk ok ok o K sk ok ok o K sk ok ok o ok ok ok /

* enumeration type - the states of process

* CSIM_NEW_PASSIVE - new passive process

* needed to recognize if we will run program
* of process from the beginning or from

* the reactivation point

* CSIM_NEW_PLANNED - new scheduled process

* needed to recognize if we will run program
* of process from the beginning or from

75

~ -

~ - P i ~ -

~

* X X X X ¥ ¥ *x

*

~

CSIM_PLANNED

CSIM_ACTIVE
CSIM_PASSIVE
CSIM_TERMINATED
CSIM_ZOMBIE

typedef enum {
CSIM_NEW_PASSIVE, CSIM_NEW_PLANNED, CSIM_PLANNED, CSIM_ACTIVE,
CSIM_PASSIVE, CSIM_TERMINATED, CSIM_ZOMBIE

3

~
*

* X X X X X* ¥ *

*

CSIM_PROC_STATE;

the reactivation point

scheduled process run from

the reactivation point

currently active process

process is waiting to be scheduled

program of process has ended

program of process has ended and process is disposed
after return to step

enumeration type for states of CSIM_DYN_MEM type - used for internal checks

CSIM_D_IS_RANK

CSIM_D_NOT_RANK
CSIM_D_DEFECTIVE
CSIM_D_ILLEGAL

CSIM_D_IS_NULL
/

typedef enum {
CSIM_D_DEFECTIVE, CSIM_D_ILLEGAL, CSIM_D_IS_NULL,
CSIM_D_IS_RANK, CSIM_D_NOT_RANK

} CSIM_DYN_MEM_CHECK;

/%

*
*
*
*
*
*
*
*

*

object is probably inserted into the list of dynamic
blocs. We can only be sure that p_suc_mem, p_pred_mem
and p_head_mem are not NULL.

object is not inserted into the list of dynamic blocs
object is not in any of the previous states

pointer to object does not correspond to control pointer
char *check set by object’s generation

pointer to checked object is NULL

enumeration type for states of CSIM_LINK object - used for internal checks

CSIM_L_IS_RANK

CSIM_L_NOT_RANK
CSIM_L_DEFECTIVE
CSIM_L_ILLEGAL

CSIM_L_IS_NULL
/

typedef enum {
CSIM_L_DEFECTIVE, CSIM_L_ILLEGAL, CSIM_L_IS_NULL,
CSIM_L_IS_RANK, CSIM_L_NOT_RANK

3

/%

* X X ¥ *

CSIM_LINK_CHECK;

object is probably inserted into the list of dynamic
blocs. We can only be sure that suc, pred and head

are not NULL.

object is not inserted into any list

object in not in some of previous states

pointer to object does not correspond to control pointer
char *check set by object’s generation

pointer to checked object is NULL

enumeration type for states of CSIM_HEAD object - used for internal checks

CSIM_H_EMPTY
CSIM_H_NOT_EMPTY

CSIM_H_DEFECTIVE

- the list is empty - p_first and p_last are NULL
- the list is probably not empty. We can only be sure
that p_first and p_last are not NULL.
- object is not in any of the previous states

76

* CSIM_H_ILLEGAL - pointer to object does not correspond to control pointer

* char *check set by object’s generation
* CSIM_H_IS_NULL - pointer to checked object is NULL
*/

typedef enum {
CSIM_H_DEFECTIVE, CSIM_H_ILLEGAL, CSIM_H_IS_NULL,
CSIM_H_EMPTY, CSIM_H_NOT_EMPTY

} CSIM_HEAD_CHECK;

/%

* enumeration type for states of CSIM_LINK object - used for internal checks
* CSIM_P_IS_RANK - process is in the scheduler. Sure is only that

* suc_in_sqgs and pred_in_sqgs are not NULL

* CSIM_P_NOT_RANK - object is not in the scheduler - suc_in_sqs and

* pred_in_sqgs are NULL

* CSIM_P_DEFECTIVE - object is not in any of the previous states

* CSIM_P_ILLEGAL - pointer to object does not correspond to control pointer
* char *check set by object’s generation

* CSIM_P_IS_NULL - pointer to checked object is NULL

*/

typedef enum {
CSIM_P_DEFECTIVE, CSIM_P_ILLEGAL, CSIM_P_IS_NULL, CSIM_P_IS_TERMINATED,
CSIM_P_IS_RANK, CSIM_P_NOT_RANK

} CSIM_PROC_CHECK;

typedef void *((*CSIM_PROC_PROGRAM) (void #*p_void)); /* program of process x/

typedef void ((*CSIM_DESTRUCTOR) (void *p_void)); /* destructor */
typedef void ((*CSIM_VIEW) (void *p_void)); /* function used to view */
/%

* Types of basic objects

*/

typedef struct csim_dyn_mem {
csim_d_dyn_mem;
} CSIM_DYN_MEM;

typedef struct csim_link {
csim_d_link;
} CSIM_LINK;

typedef struct csim_head {
csim_d_head;

} CSIM_HEAD;

typedef struct csim_process {
csim_d_process;

} CSIM_PROCESS;

/%

7

* Enumeration type for error code generation

*/

typedef enum {
CSIM_E_SET_NAME_DYN_MEM = 1,

CSIM_E_FIRST_HEAD, /* csim_first() */
CSIM_E_LAST_HEAD, /* csim_last() x/
CSIM_E_EMPTY_HEAD, /* csim_empty () x/
CSIM_E_CARD_HEAD, /* csim_cardinal() */
CSIM_E_CLEAR_HEAD, /* csim_clear () */
CSIM_E_OUT_LINK, /* csim_out () */
CSIM_E_INTO_LINK, /* csim_into() x/
CSIM_E_INTO_HEAD,

CSIM_E_FOLL_WHAT, /* csim_follow() x/
CSIM_E_FOLL_WHERE,

CSIM_E_PREC_WHAT, /* csim_precede() */
CSIM_E_PREC_WHERE,

CSIM_E_WAIT_HEAD, /* csim_wait () x/
CSIM_E_DISP_DYN_MEM, /* csim_dispose_dyn_mem() */
CSIM_E_DISP_LINK, /* csim_dispose_link() x/
CSIM_E_DISP_HEAD, /* csim_dispose_head() x/
CSIM_E_DISP_PROC, /* csim_dispose_process() x/
CSIM_E_STATE_PROC, /* csim_state() */
CSIM_E_IDLE_PROC, /* csim_idle() */
CSIM_E_EVTIME_PROC, /* csim_evtime() */
CSIM_E_CANCEL_PROC, /* csim_cancel() */
CSIM_E_ACT_AT_PROC, /* csim_activate_at() */
CSIM_E_ACT_DEL_PROC, /* csim_activate_delay() */
CSIM_E_REACT_AT_PROC, /* csim_reactivate_at() */
CSIM_E_REACT_DEL_PROC, /* csim_reactivate_delay() */
CSIM_E_HSTAT_ON_HEAD, /* csim_h_stat_on() */
CSIM_E_HSTAT_OFF_HEAD, /* csim_h_stat_off() */
CSIM_E_HSTAT_INIT_HEAD, /* csim_init_h_stat() */
CSIM_E_HSTAT_ST_HEAD, /* csim_h_stat_status() */
CSIM_E_HSTAT_HEAD, /* csim_h_stat () */
CSIM_E_PSTAT_ON_PROC, /* csim_p_stat_on() x/
CSIM_E_PSTAT_OFF_PROC, /* csim_h_stat_off() */
CSIM_E_PSTAT_INIT_PROC, /* csim_init_h_stat() */
CSIM_E_PSTAT_ST_PROC, /* csim_h_stat_status() */
CSIM_E_PSTAT_PROC, /* csim_h_stat () x/

CSIM_E_ERROR_CODE_SEPARATOR,

CSIM_E_INTO_LINK_IS_IN,

CSIM_E_FOLL_WHAT_IS_IN, CSIM_E_FOLL_WHERE_NOT_IN,
CSIM_E_PREC_WHAT_IS_IN, CSIM_E_PREC_WHERE_NOT_IN,
CSIM_E_HOLD_DEL_T,

CSIM_E_INIT_PROC_PROG_NULL,

CSIM_E_DISP_PROC_ACTIVE,

CSIM_E_STEP_EMPTY,

CSIM_E_CANCEL_NOT_RANK, CSIM_E_CANCEL_IS_ACTIVE,

CSIM_E_ACT_AT_T, CSIM_E_ACT_AT_IS_RANK, CSIM_E_ACT_AT_IS_ACTIVE,
CSIM_E_ACT_DEL_T, CSIM_E_ACT_DEL_IS_RANK, CSIM_E_ACT_DEL_IS_ACTIVE,

78

CSIM_E_REACT_AT_T, CSIM_E_REACT_AT_IS_ACTIVE,
CSIM_E_REACT_DEL_T, CSIM_E_REACT_DEL_IS_ACTIVE,
CSIM_E_CREATE_PROCESS,

CSIM_USER_ERROR_CODE
} CSIM_ERROR_CODE;

/*
* Structure describing the error - filled by function error(...)
*
* error_code - code of the error
* p_proc_error - pointer to process that was active when
* the error occured
* p_void - pointer to object that caused the error
* (the debug function can be used to view the object)
* user can define his own errors - in that case there
* can be pointer to user-defined structure
*/
typedef struct {
CSIM_UWORD error_code;
CSIM_PROCESS *p_proc_error;
void *p_void;

} CSIM_ERROR;

/%
¥ Initialization functions and functions for dynamic allocation

*/

/* Memory initialization */
extern CSIM_RESULT csim_init_mem(void);

/* Clears the list of dynamic blocks */
extern void csim_clear_mem(void);

/* Initializes the CSIM_DYN_MEM object */
extern CSIM_DYN_MEM *csim_init_dyn_mem(CSIM_DYN_MEM *p_dyn_mem) ;

/* Initializes the CSIM_LINK object */
extern CSIM_LINK *csim_init_link (CSIM_LINK *p_link);

/* Initializes the CSIM_HEAD object */
extern CSIM_HEAD *csim_init_head (CSIM_HEAD *p_head);

/* Initializes the CSIM_PROCESS object */
extern CSIM_PROCESS *csim_init_process(CSIM_PROCESS *p_process,
CSIM_PROC_PROGRAM proc_prog);

/* Releases the CSIM_DYN_MEM object’s memory */
extern CSIM_RESULT csim_dispose_dyn_mem(CSIM_DYN_MEM *p_dyn_mem) ;

/* Releases the CSIM_LINK object’s memory */

79

extern CSIM_RESULT csim_dispose_link(CSIM_LINK *p_link);

/* Releases the CSIM_HEAD object’s memory */
extern CSIM_RESULT csim_dispose_head(CSIM_HEAD *p_head);

/* Releases the CSIM_PROCESS object’s memory */
extern CSIM_RESULT csim_dispose_process(CSIM_PROCESS *p_process);

extern CSIM_RESULT csim_set_name(CSIM_DYN_MEM *p_dyn_mem, char *name) ;

/%
* Functions that support the CSIM_LINK object
*/

/* Removes the item prom the list */
extern CSIM_RESULT csim_out (CSIM_LINK *p_link);

/* Inserts the item into the list on the last place */
extern CSIM_RESULT csim_into(CSIM_LINK *p_link,
CSIM_HEAD *p_head);

/* Inserts the item into the list as successor of another item */
extern CSIM_RESULT csim_follow(CSIM_LINK *p_link_what,
CSIM_LINK *p_link_where);

/* Inserts the item into the list as predecessor of another item */
extern CSIM_RESULT csim_precede(CSIM_LINK #*p_link_what,
CSIM_LINK *p_link_where);

/*
* Functions that support the CSIM_HEAD object
*/

/* Returns the first item in the list */
extern CSIM_LINK *csim_first(CSIM_HEAD *p_head);

/* Returns the last item in the list */
extern CSIM_LINK *csim_last(CSIM_HEAD *p_head);

/* Returns TRUE if the list is empty */
extern CSIM_BOOLEAN csim_empty(CSIM_HEAD *p_head);

/* Returns actual list length */
extern CSIM_WORD csim_cardinal (CSIM_HEAD *p_head);

/* Empties the list */
extern CSIM_RESULT csim_clear (CSIM_HEAD *p_head);

/%
* Functions that support process and simulation control

*/

/* Schedules process on time t */

80

extern CSIM_RESULT csim_activate_at(CSIM_PROCESS *p_process,
CSIM_TIME t);

/* Scheduler process on current time plus del_t */
extern CSIM_RESULT csim_activate_delay(CSIM_PROCESS *p_process,
CSIM_TIME del_t);

/* Rechedules process on time t */
extern CSIM_RESULT csim_reactivate_at (CSIM_PROCESS *p_process,
CSIM_TIME t);

/* Reschedules process on current time plus del_t */
extern CSIM_RESULT csim_reactivate_delay(CSIM_PROCESS *p_process,
CSIM_TIME del_t);

/* Removes process from scheduler */
extern CSIM_RESULT csim_cancel (CSIM_PROCESS *p_process);

/* Returns the state of process */
extern CSIM_PROC_STATE csim_state(CSIM_PROCESS *p_process);

/* Tests the process state - returns TRUE if the process is passive */
extern CSIM_BOOLEAN csim_idle(CSIM_PROCESS *p_process);

/* Returns the process scheduled time */
extern CSIM_TIME csim_evtime (CSIM_PROCESS *p_process);

/* Returns pointer to the second process in scheduler */
extern CSIM_PROCESS *csim_next_proc(void);

/* Realizes one step of simulation alghoritm */
extern CSIM_RESULT csim_step(void);

/* Returns actual model time */
extern CSIM_TIME csim_time(void);

/* Returns pointer to currently active */
extern CSIM_PROCESS *csim_current(void);

/* Returns pointer to the head of the scheduler’s list */
extern CSIM_PROCESS *csim_sqgs_point(void);

/* Returns pointer to the head of the heap */
extern CSIM_DYN_MEM *csim_mem_point(void);

/%
* Check functions

*/

/* Returns control state of the CSIM_DYN_MEM object */
extern CSIM_DYN_MEM_CHECK csim_dyn_mem_state(CSIM_DYN_MEM *p_dyn_mem) ;

/* Returns control state of the CSIM_LINK object */

81

extern CSIM_LINK_CHECK csim_link_state(CSIM_LINK *p_link);

/* Returns control state of the CSIM_HEAD object */
extern CSIM_HEAD_CHECK csim_head_state(CSIM_HEAD *p_head);

/* Returns control state of the CSIM_PROCESS object */
extern CSIM_PROC_CHECK csim_process_state(CSIM_PROCESS *p_process);

/* Checks the CSIM_DYN_MEM object */
extern CSIM_BOOLEAN csim_check_dyn_mem(CSIM_DYN_MEM *p_dyn_mem) ;

/* Checks the CSIM_PROCESS object */
extern CSIM_BOOLEAN csim_check_process(CSIM_PROCESS *p_process);

/* Checks the CSIM_HEAD object */
extern CSIM_BOOLEAN csim_check_head (CSIM_HEAD *p_head);

/* Checks the CSIM_LINK object */
extern CSIM_BOOLEAN csim_check_link (CSIM_LINK *p_link);

/%
* Statistics functions

*/

/* Turns the global statistics on */
extern void csim_stat_on(void);

/* Turns the global statistics off */
extern void csim_stat_off(void);

/* Returns the state of global statistics - TRUE if on */
extern CSIM_BOOLEAN csim_stat_status(void);

/* Turns the local statistics of the object CSIM_HEAD on */
extern CSIM_RESULT csim_h_stat_on(CSIM_HEAD *p_head);

/* Turns the local statistics of the object CSIM_HEAD off */
extern CSIM_RESULT csim_h_stat_off (CSIM_HEAD *p_head) ;

/* Initiates the statistics variables */
extern CSIM_RESULT csim_init_h_stat (CSIM_HEAD *p_head);

/* Returns state of the local statistics - TRUE if on */
extern CSIM_BOOLEAN csim_h_stat_status(CSIM_HEAD *p_head);

/* Returns statistics results */

extern CSIM_RESULT csim_h_stat(CSIM_HEAD *p_head,
double *p_Lw,
double *p_Tw);

/* Turns the local statistics of the CSIM_PROCESS object on */
extern CSIM_RESULT csim_p_stat_on(CSIM_PROCESS *p_process);

82

/* Turns the local statistics of the CSIM_PROCESS object off */
extern CSIM_RESULT csim_p_stat_off (CSIM_PROCESS *p_process);

/* Initiates the statistics variables */
extern CSIM_RESULT csim_init_p_stat(CSIM_PROCESS *p_process);

/* Returns state of the local statistics - TRUE if on */
extern CSIM_BOOLEAN csim_p_stat_status(CSIM_PROCESS *p_process);

/* Returns statistics results */

extern CSIM_RESULT csim_p_stat(CSIM_PROCESS *p_process,
double *p_Ts,
double *p_Tr);

/%
* Error functions

*/

/* error indication */
extern CSIM_BOOLEAN csim_error_status(void);

/* sets the error structure with actual error and returns it */
extern void csim_error (CSIM_ERROR *p_error);

/%
* Functions used in macros, DO NOT USE DIRECTLY!
*/

/* Inserts process into scheduler on place determined by the value of evtime */
extern void csim_rank (CSIM_PROCESS *p_process);

/* Removes process from calendar */
extern void csim_sqs_out (CSIM_PROCESS *p_process);

/* compute process statistics */
extern void csim_compute_deactivate_ps(CSIM_PROCESS *p_process);

/* sets the error and ends the simulation step */

extern void csim_exception(CSIM_UWORD error_code,
CSIM_PROCESS *p_proc,
void *p_void);

/%
* Global variables

*/

/* counter of simulation steps */
extern unsigned long csim_step_number;

#endif

83

Appendix B

Error Messages Module Interface

/] 3Kk sk sk sk sk ok sk e ok sk ok ok ke ok o sk ok sk e ok 3k ok ok ok K e ok ok sk e ok ke ok ok sk ok ok ok ok sk e ok 3k ok ok k e ok ok sk 3 ok k e ok ok ok ok ok
University of West Bohemia, DCS, Pilsen, Czech Republic
(c) copyright
27.03.2002
C-Sim version 5.1
file csim_err.h

header file of C-Sim error messages

ke sk ke ok ok K ok ok e ok ke ok ok K e ok 6 o sk ok sk e ok 3k ok ok e ok k ok ok sk e ok ke ok e ok 3k ok o sk ok sk e ok 3k ok ok ok 3k e ok ok sk ok k e ok ok k ok sk /

#ifndef CSIM_ERR_H
#define CSIM_ERR_H 1

#include "csim.h"

/*

* Translates the given numerical error code into a human readable text.
* The function returns pointer to a staticaly allocated string.

*/

extern char *csim_error_msg(CSIM_UWORD code) ;

#tendif

84

Appendix C

Random Number Generator
Module Interface

/3 ok ok sk sk ok ok ok ok ok sk sk ok ok ok o ok ok ok sk ok sk sk sk ok ko o ok ok ok ok ok sk sk sk ok ok ok ko ok ok ok ok sk sk sk ok ok ok o ok ok ok ok ok sk sk sk ok ok ok o ok ok ok ok ok sk ok sk ok ok ok
University of West Bohemia, DCS, Pilsen, Czech Republic
(c) copyright
27.03.2002

C-Sim version 5.1
file csim_rng.c
header file of random number generator
Random number generator TT800
by M. Matsumoto, email: matumoto@math.keio.ac.jp
1996 Version

ke sk ke ok ok K ok ok e ok ke ok ok K e ok 6 o sk ok sk e ok 3k ok ok e ok k ok ok sk e ok ke ok e ok 3k ok o sk ok sk e ok 3k ok ok ok 3k e ok ok sk ok k e ok ok k ok sk /

#ifndef CSIM_RNG_H
#define CSIM_RNG_H 1

#include "csim.h"
#define CSIM_RAND_MAX OxFFFFFFFFL /* maximum value returned by rng */

#define CSIM_RNG_N 25

The random generator state is stored within the following structure.
Usage example:

*

*

* {

* RNG_STATE *rng;

* double x;

*

* rng = s_new_rng(INIT_SEED);
*

*

x = (double) csim_rand(rng) / (double) CSIM_RAND_MAX;

85

* .

* dispose_rng(rng);
*x }

*/

/* Holds the current state of a random number generator (RNG). */
csim_derived_dyn_mem(csim_rng_state)

CSIM_ULONG rng_array[CSIM_RNG_N];

int index;
csim_end_derived (CSIM_RNG_STATE) ;

/*
* Allocates dynamic memory for a new RNG and initializes the structure.
* Returns pointer to the new dynamic memory.
*/
#define csim_new_rng(seed)
(CSIM_RNG_STATE *) csim_init_rng(
(CSIM_RNG_STATE *) malloc(sizeof (CSIM_RNG_STATE)), seed);

/* Frees all resources asociated with specified RNG. */
#define csim_dispose_rng(rng)
csim_dispose_dyn_mem((CSIM_DYN_MEM *) rng);

/*
* Initializes the specified RNG structure. Must be called explicitly if
* staticaly allocated RNG is used.
*/
CSIM_RNG_STATE *csim_init_rng(CSIM_RNG_STATE *p_rng,
CSIM_ULONG seed);

/* Generates a single random number in the range <0,CSIM_RAND_MAX> */
CSIM_ULONG csim_rand (CSIM_RNG_STATE *p_rng);

/* Generator of exponential distribution */
double csim_negexp(CSIM_RNG_STATE *p_rng,
double lambda);

/* Generator of the regular distribution on the interval <a,b> */
double csim_uniform(CSIM_RNG_STATE *p_rng,

double a,

double b);

/* Returns TRUE with probability p (FALSE with probability 1-p) */
CSIM_BOOLEAN csim_draw(CSIM_RNG_STATE *p_rng,
double p);

/* Generator of the normal (Gaussian) distribution */
double csim_gauss(CSIM_RNG_STATE *p_rng,
double sigma,

double center);

#tendif

86

~ -~

Appendix D

Semaphores Module Interface

/3 3k sk ok ok sk ke ok sk ok ok ok K ok ok K ok ok sk Kk ok sk K ok ok 3k K o ok sk K ok ok kK o ok sk K 3 ok sk sk o ok ok K ok ok ok sk ok ok kK o ok ok 3k ok ok k ok ok 3k ok
University of West Bohemia, DCS, Pilsen, Czech Republic
(c) copyright
27.03.2002

C-Sim version 5.1
file csim_sem.h

header file of C-Sim semaphores

ke sk ke ok ok K ok ok e ok ke ok ok K e ok 6 o sk ok sk e ok 3k ok ok e ok k ok ok sk e ok ke ok e ok 3k ok o sk ok sk e ok 3k ok ok ok 3k e ok ok sk ok k e ok ok k ok sk /

#ifndef CSIM_SEM_H
#define CSIM_SEM_H 1

#include "csim.h"

* Structure that contains the state of a semaphore is defined bellow.
* Usage example:

* {

* CSIM_SEMAPHORE *sem;

* sem = s_new_semaphore(1);

* lock_sem(sem);
%
*
*
*

unlock_sem(sem) ;
dispose_semaphore(sem) ;

/* Structure that contains the complete state of a semaphore. */
typedef struct csim_semaphore {

csim_d_head;

CSIM_UWORD count;
} CSIM_SEMAPHORE;

87

/*

* Dynamicaly creates (allocates memory) and initializes a semaphore.

* The cnt argument is the maximum number of simultanous locks on the

* semaphore (typicaly 1).

*/

#define csim_new_semaphore(cnt) \
csim_init_semaphore ((CSIM_SEMAPHORE *) malloc(sizeof (CSIM_SEMAPHORE)), cnt);

/* Frees all resources asociated with the semaphore. */
#define csim_dispose_semaphore (sem) \
csim_dispose_head ((CSIM_HEAD *) sem);

/%
* Initializes the given semaphore. This function must be used explicitly
* if staticaly allocated semaphore is used.
*/
CSIM_SEMAPHORE *csim_init_semaphore (CSIM_SEMAPHORE *p_sem,
CSIM_UWORD cnt);

/*
* Locks the given semaphore for the current process. If no lock is available,
* the process sleeps til it may continue.

*/
#define csim_lock_sem(p_sem) \
do { \
CSIM_SEMAPHORE *_p_sem; \
\
_p_sem = (p_sem); \
if (_p_sem->count > 0) \
(_p_sem—->count)-—; \
else { \
csim_wait ((CSIM_HEAD *) _p_sem); \
} \

} while (0)
/*

* Unlocks the given semaphore. Any locked semaphore must be freed after the
* protected resource is no longer needed.
*/

void csim_unlock_sem(CSIM_SEMAPHORE *p_sem);

#tendif

88

Appendix E

Message Passing Module Interface

/st sttt otk ok ok ok ok ok ok ok sk ok ok sk sk sk sk sk sk sk s s s o s ok ok ok ok sk sk sk sk sk sk sk s sk s s s ke ke ok sk ok ok sk sk sk sk sk sk sk sk s s o s e ok ke ok ok ok ok sk sk sk sk ok
University of West Bohemia, DCS, Pilsen, Czech Republic
(c) copyright
27.03.2002
C-Sim version 5.1
file csim_msg.h
header file of C-Sim message passing system

ke sk ke ok ok K ok ok e ok ke ok ok K e ok 6 o sk ok sk e ok 3k ok ok e ok k ok ok sk e ok ke ok e ok 3k ok o sk ok sk e ok 3k ok ok ok 3k e ok ok sk ok k e ok ok k ok sk /

#ifndef CSIM_MSG_H
#define CSIM_MSG_H 1

#include "csim.h"

/* Constants used in message transmissison */
#define CSIM_ANY_MSG_RECEIVER NULL

/* The message can be received by any csim_process */
#define CSIM_ANY_MSG_SENDER NULL

/* The receiver accepts messages from any server */
#define CSIM_ANY_MSG_TYPE OxFFFFFFFFL

/* This mask ensures the reception of any message type and vice versa */

/* Macro for derivation of user defined message type */

#define csim_d_message \
csim_d_link; \
CSIM_ULONG msg_type; \
CSIM_PROCESS *sender; \
CSIM_PROCESS *receiver
#define csim_derived_message(TYPE_NAME) typedef struct TYPE_NAME { \
csim_d_message;
/*

89

Standard message type
Use like this:

csim_program(CSIM_PROCESS, sender_program)

{
CSIM_MESSAGE *msg;

*
*
*
*
*
*
*
* msg = csim_new_message(CSIM_MESSAGE) ;

* csim_send_msg(msg, 1, CSIM_ANY_MSG_RECEIVER);
* }

*

*

*

*

*

*

*

csim_program(CSIM_PROCESS, receiver_program)
{

csim_receive_msg(my.msg, 1, CSIM_ANY_MSG_SENDER);
csim_dispose_message (msg) ;
}
*/
typedef struct csim_message {
csim_d_message;
} CSIM_MESSAGE;

/* For internal use only - DO NOT USE */
typedef struct csim_waiting_process {
csim_d_link;
CSIM_ULONG msg_type;
CSIM_PROCESS *sender;
CSIM_PROCESS *receiver;
CSIM_MESSAGE **p_msg;
} CSIM_WAITING_PROCESS;

/%

*

Initialization of the Message-passing module. This function should be
* called exactly once - before other function.
* Before exiting the function "csim_clear_msg()" should be called.
*/

extern CSIM_RESULT csim_init_msg();

/* Frees all alocated resources by this module. */
extern void csim_clear_msg();

/%
* Dynamicaly creates (allocates memory) and initializes a new message.
* The TYPE_NAME argument can be instance of any structure derived using
* the "csim_d_message'" macro.
*/
#define csim_new_message (TYPE_NAME) \
(TYPE_NAME *) csim_init_message((CSIM_MESSAGE *) malloc(sizeof (TYPE_NAME)));

/*
* Frees the resources allocated to the specified message. The message must
* have been allocated dynamicaly using the csim_new_message macro.

*/

90

#define csim_dispose_message(msg) \
csim_dispose_link((CSIM_LINK *) msg);

/%

* Initializes any user-derived message with the default starting values.
* Must be called before any use of the message.

*/

extern CSIM_MESSAGE *csim_init_message(CSIM_MESSAGE *msg) ;

/%
* Sends the specified message "msg" to the '"receiver" process. The message
* will be received only if the bitwise AND of sender and receiver "msg_type"
* gives a nonzero result. If the "receiver" argument is CSIM_ANY_MSG_RECEIVER
* the message is received by the first available process
* (with appropiate message type).
*/
extern void csim_send_msg(CSIM_MESSAGE *msg,
CSIM_ULONG msg_type,
CSIM_PROCESS *receiver);

~
*

Starts the receiving of a message. The call to this macro blocks the process
until a message is received. The message is written into the '"r_msg"
argument, which is pointer to a message. In the long_jump implementation of
C-Sim the actual argument cannot be a local variable as the pointer would be
destroyed. The "r_sender" parameter specifies the process from which message
may be received. If "r_sender" is CSIM_ANY_MSG_SENDER, the message may be
received from any process. The "r_msg_type'" argument specifies which types
of message can be received and is explained in the previous function.

¥ X X X X X X X

*/
#define csim_receive_msg(r_msg, r_msg_type, r_sender)
do {

CSIM_ULONG _r_msg_type;

CSIM_PROCESS *_r_sender;

CSIM_BOOLEAN _in_msg_queue = FALSE;

CSIM_MESSAGE *_p_m;

_r_msg_type = (r_msg_type);
_r_sender (r_sender) ;

if ((_p_m = (CSIM_MESSAGE *) csim_first(csim_msg_queue_point())) != NULL) {
do {
if (csim_test_msg(_p_m, _r_msg_type, _r_sender, csim_current())) {
csim_out ((CSIM_LINK *) _p_m);
(CSIM_MESSAGE *) (r_msg) = _p_m;
_in_msg_queue = TRUE;
}
else
_p_m = (CSIM_MESSAGE *) _p_m->suc;
} while ((_in_msg_queue == FALSE)
&& (_p_m !'= (CSIM_MESSAGE *) csim_first(csim_msg_queue_point())));
}
if (_in_msg_queue == FALSE) {

P A A A L L A A T A L A e

91

CSIM_WAITING_PROCESS *_p_wp;

_p_wp = (CSIM_WAITING_PROCESS *) csim_new_link(CSIM_WAITING_PROCESS);
_p_wp->msg_type = _r_msg_type;

_p_wp—>sender = _r_sender;
_p_wp->receiver = csim_current();
_p_wp->p_msg = (CSIM_MESSAGE *x) &(r_msg);

csim_into((CSIM_LINK *) _p_wp, csim_wp_queue_point());
csim_passivate();
}
} while(0)

/* For internal use only - DO NOT USE */

CSIM_BOOLEAN csim_test_msg(CSIM_MESSAGE *msg,
CSIM_ULONG msg_type,
CSIM_PROCESS *sender,
CSIM_PROCESS *receiver);

/* For internal use only - DO NOT USE */
extern CSIM_HEAD *csim_msg_queue_point();
extern CSIM_HEAD *csim_wp_queue_point();

#endif

92

P

Appendix F

Console Debug Module Interface

/3 3k sk ok ok sk ke ok sk ok ok ok K ok ok K ok ok sk Kk ok sk K ok ok 3k K o ok sk K ok ok kK o ok sk K 3 ok sk sk o ok ok K ok ok ok sk ok ok kK o ok ok 3k ok ok k ok ok 3k ok
University of West Bohemia, DCS, Pilsen, Czech Republic
(c) copyright
27.03.2002

C-Sim version 5.1
file csim_dgb.h
header file of C-Sim console debug rutines

ke sk ke ok ok K ok ok e ok ke ok ok K e ok 6 o sk ok sk e ok 3k ok ok e ok k ok ok sk e ok ke ok e ok 3k ok o sk ok sk e ok 3k ok ok ok 3k e ok ok sk ok k e ok ok k ok sk /

#ifndef CSIM_DBG_H
#define CSIM_DBG_H 1

#include "csim.h"

/*
* Basic C-Sim object VIEW functions for console oriented output. Every
* object uses different function - specified in the ’view’ attribute.

*/

/* Shows the CSIM_DYN_MEM object */
void csim_view_dyn_mem(void *p_void);

/* Shows the CSIM_LINK object */
void csim_view_link(void *p_void);

/* Shows the CSIM_HEAD object */
void csim_view_head(void *p_void);

/* Shows the CSIM_PROCESS object */
void csim_view_process(void *p_void);

/* Function for viewing the list of dynamically generated objects */
void csim_debug(CSIM_DYN_MEM *p_dyn);

93

#endif

94

