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Abstract 
At present, 3D retrieval systems that are content-based become very popular. 
In these systems similar models from a database are retrieved in accordance 
with a form of a template model. In an early era text-based retrieval systems 
were designed. These systems assign keywords to each model and then they 
retrieve similar models by comparing a similarity of the keywords to a template. 
There are two problems in this approach. Keywords of each model have to be 
assigned manually and the second more difficult problem is that each person 
has a little different perception. Two people can assign two different sets of 
keywords to the same model. Content-based retrieval system is a solution of 
these problems. This report deals with problems, which are related to a design 
of a 3D content-based retrieval system, and with their solutions. 
The report consists of three main parts. The first part is interested in an issue of 
a feature extraction. An aim of the feature extraction is to describe a 3D model 
by a vector of real values characterizing a form of the model. This 
(multidimensional) vector may be an adequate representation of each model 
and therefore it can be used as an entry of a database system. The following 
two parts are dedicated to a design of that database system. The first part deals 
with types of queries, which the system may execute, and the second part deals 
with data structures and issues of multidimensional indexing and updating a 3D 
model database. 
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Abstract 
 

At present, 3D retrieval systems that are content-based become very popular. In these 

systems similar models from a database are retrieved in accordance with a form of a template 

model. In an early era text-based retrieval systems were designed. These systems assign 

keywords to each model and then they retrieve similar models by comparing a similarity of the 

keywords to a template. There are two problems in this approach. Keywords of each model have 

to be assigned manually and the second more difficult problem is that each person has a little 

different perception. Two people can assign two different sets of keywords to the same model. 

Content-based retrieval system is a solution of these problems. This report deals with problems, 

which are related to a design of a 3D content-based retrieval system, and with their solutions. 

The report consists of three main parts. The first part is interested in an issue of a 

feature extraction. An aim of the feature extraction is to describe a 3D model by a vector of real 

values characterizing a form of the model. This (multidimensional) vector may be an adequate 

representation of each model and therefore it can be used as an entry of a database system. The 

following two parts are dedicated to a design of that database system. The first part deals with 

types of queries, which the system may execute, and the second part deals with data structures 

and issues of multidimensional indexing and updating a 3D model database. 
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1. Introduction 

Everyday, giga-bytes of data are generated and they are sent into all over the world by 

the internet. It carries large collections of various types of information, which are organized in 

Database Management Systems (DBMS). That database system would allow efficient browsing, 

searching, retrieving and updating entries in the database. Therefore research centers started to 

be interested in this issue and projects called “retrieval system” became very popular. 

In early era of the research text-based retrieval systems were designed. It was a 

powerful tool in the organization of articles and some others text-based information. It was no 

problem to find texts according to a template of keywords in the database. Unfortunately, this 

retrieval system did not come in useful for visual-based information. In the late 1970’s the first 

text-based image retrieval system was designed. Each image was annotated by keywords and 

then the text-based DBMS could be used (e.g., see [42], [27], [50]). However, there are two 

disadvantages in this approach. The keywords of each image have to be assigned manually. If a 

collection of images in database would be very huge the time that a person has to spend by 

assigning keywords to each image is excessive.  The second, more difficult disadvantage is in 

subjectivity of human perception. If two people would independently try to describe the same 

picture with a rich content the resultant sets of keywords could be different. This fact has 

unpleasant influence on the whole DBMS. 

A solution of the mentioned disadvantages of the text-based image retrieval system is a 

content-base image retrieval system. In this system the keywords are substituted by own visual 

content, for which are used techniques as color histogram, segmentation of the image, texture 

pattern, edge detection, etc. The first systems were proposed for a collection of images in the 

early 1990’s. Nowadays many image retrieval systems exist as QBIC [37], PhotoBook [39], 

WebSeek [48] etc. and many issues connected to these systems have been dedicated (e.g., see 

[36], [54], [47]). 

Perhaps someone could say that we still concern with the image retrieval systems but 

according to our topic we may concern with 3D retrieval systems. It is true. However, many 

research studies have been written about the image retrieval systems and because both topics are 

very similar majority outcomes are transmittable for both systems. The 3D data started to use 
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later then the images in the computer graphics. Their popularity became large when various 

programs based on the 3D graphics were proposed such as CAD systems, cartography systems, 

computer vision and robotics systems etc. Nowadays, they are used in many branches of 

industry. Their everyday usage carries large 3D data collections, which are fecund in issues of 

the object recognition, classification and retrieval above all. These research areas in spite of 

differences of their practical usage are very closed one to another. This report is dedicated to 

problems related to 3D retrieval systems, but many parts are share in all mentioned issues. 

1.1. Design of a content-based Retrieval System 

The aim of all content-based retrieval systems is to minimize human indispensability 

during creating and updating the DBMS. The recognition and the classification of the objects in 

the database would only be based on the visual information. 

The architecture of those systems can be proposed in many variations. For all that, the 

basic structure is still very similar. An example of that architecture is shown in Figure 1.1.1. 

 

Figure 1.1.1: An architecture of the 3D content-based Retrieval System 

In the architecture there are two databases. The first one represents real 3D objects 

saved in the database and the second one represents the so called feature vector collection, 

which feature extraction process automatically generates. 

If the image and 3D content-based retrieval systems were compared, the feature 

extraction just would be the system block that would be the most different. The main job of the 

feature extraction is to describe the content of each entry in the first database by a vector of real 

values. Then these feature vectors are saved in the second database. Many content-based 

description techniques exist for image retrieval systems such as using the color histogram, the 
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texture patterns, shape representation, segmentation etc. and many comprehensive surveys was 

written about them (e.g., [42], [36], [54], [52]). Unfortunately, their asset in the feature 

extraction of 3D objects is minimal. For all that, several techniques were proposed and their 

detail descriptions are possible to find in a following part of this report. 

The next important part in the architecture is a retrieval machine. It consists of two 

blocks: a query interface and a query processing. The task of the query interface is only to 

transfer a request of a user into an input format for the query processing. After receipt of the 

required query in the query processing, the query is processed and from the database are 

selected the fitting entries. The detail survey of this area is described in another following part 

of the report. 

The multidimensional indexing is the last important part in the architecture. It serves as 

a bridge between the databases and the retrieval machine. The entries of the database (with the 

feature vectors) have to be organized in an efficient structure that ensures fast and infallible 

query processing. It is just the job of multidimensional indexing. The survey of the various 

structures is possible to find in the last part of this report. 
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2. Retrieval machine 

The purpose of the retrieval systems is to retrieve items of the database which are 

relevant to a piece of a query. The core of that whole system forms the query machine and this 

is just its main task. The entries are selected from the database according to a query that is 

defined by a user and they are returned as an answer on the required query. The query machine 

further can be divided into two independent parts: a query interface and a query processing 

(see Figure 1.1.1). 

2.1. Query interface 

The queries have to be set to the system by user friendly way. This is the task of the 

query interface. It converts user requirements to a format for query processing. The design of 

the query interface can differ a lot. In some cases only a set of parameters that are regulated 

manually can be ideal. On the other hand, a sketch or a pattern object can be ideal. It depends on 

the facts for which exact purposes the retrieval system should serve and which kind of users 

should handle it. 

2.2. Query processing 

The second most important part of the retrieval system (after the feature extraction) is 

the query processing. It has to process all the queries from query interface and to send resultant 

items from the database to the output as an answer on the queries. The types of the queries are 

various and it is dependent on the individual usage which the given system supports. An 

enumeration of the most common types with a short description is following (according to [25], 

[22],[10]): 
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• Exact Match Query (EMQ): Find all database objects that have exactly the same 

spatial extent as the spatial query object o. 

• Point Query (PQ): Find all database objects that overlap the query point p. 

• Window Query (WQ), Range Query: Find all database objects that have at least 

one common point with a d-dimensional query window w. 

• Intersection Query (IQ), Region Query, Overlap Query: Find all database 

objects that have at least one common point with a query object o. 

• Enclosure Query (EQ): Find all database objects that enclose a query object o. An 

object a is said to enclose object b if any point of a is a part of object b. 

• Containment Query (CQ): Find all database objects that are enclosed by a query 

object o. 

• Adjacency Query (AQ): Find all database objects that are adjacent to a query 

object o. Two objects are said to be adjacent if they have common boundaries, but 

the one does not enclose the other. 

• k-Nearest Neighbor Query (k-NNQ): Find k database objects that have a 

minimum distance from a query object o. Distance between spatial objects is usually 

defined as the distance between their closest points. 

• Within-distance Query (α-cut): Find all database objects that have the distance 

less then α from a query object o. Distance between spatial objects is usually 

defined as the distance between their closest points. 

• Spatial Join: Find all (a,b) database pairs that evaluate a spatial predicate θ to true 

where a database object is from the R database and b database object is from the S 

database. 

Evidently, this is not an exhaustive enumeration. Many other queries that could be rank 

into no mentioned group are possible to define. It only depends on the desiderative capabilities 

of the retrieval machine. Our goal is to design a content-based retrieval machine. Therefore the 

most important types of queries in this case are the Window query (WQ), the k-Nearest 

Neighbor Query (k-NNQ) and Within-distance Query (α-cut). 
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However, the capabilities and quality of the retrieval machine do not depend only on 

one property. The publication [10] contains a description of the other three properties that 

characterize the retrieval machine. They are following: 

• Exhaustiveness: If all the database items that satisfy the queries are retrieved the 

query processing is exhaustiveness. 

• Correctness: If all the returned items satisfy the queries the query processing is 

correctness. 

• Determinism: If the same results are returned for the same query every time the 

query processing is deterministic. 

Perhaps the definitions of the exhaustiveness and of the correctness seem similar but 

they have different meaning. If the query processing were not exhaustive, a database item that 

satisfies the query would not belong to the resultant set. If the query processing were not 

correct, a database item that does not satisfy the query would belong to the resultant set. 

It is obvious that design of the retrieval system satisfying all properties is not easy. For 

all that we will strive to design a content-based retrieval system that would fit all the mentioned 

properties. 

2.3. Similarity Measuring 

In the chapter about query processing a selection of the similar object is still mentioned, 

but the question how to measure a resemblance of objects or feature vectors is not answered. 

In general, the systems rely that the feature vectors can be represented as points in the 

n-dimensional space. At the worst the feature vectors are represented as n-dimensional objects 

and then it is better to replace them by some primitive objects such as n-dimensional rectangles 

or spheres which enclose the origin objects. Those primitive objects can be represented by a 

centroid (n-dimensional point) and some parameters and this representation is similar to the 

general cases. 

Let us assume that S is a set of all n-dimensional points (or objects). The resemblance of 

objects can be measured by the function d: S x S → R+ ∪ {0}. If the function satisfies following 

conditions for all x, y, z ∈ S then it is called metric function [51], [52]: 

(i.) identity: d(x,x) = 0, 
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(ii.) uniqueness: d(x,y) = 0 implies x = y, 

(iii.) positive: d(x,y) > 0, 

(iv.) triangle inequality: d(x,y) + d(x,z) ≥ d(y,z). 

Sometimes, instead of the last condition its alternative is taken: d(x,y) + d(y,z) ≥ d(x,z), 

but this alternative condition does not imply symmetry. If the symmetry metric function is 

required, the next condition has to be appended: d(x,y) = d(y,x). Note the symmetry implies 

from the first and the last condition in the origin conditions. 

Any distance functions do not satisfy all mentioned condition. For example a special 

case is a semi-metric function that does not satisfy (iv.) condition of the triangle inequality, or a 

pseudo-metric function that does not satisfy (iii.) condition of the positive. 

Often it is also desirable invariance of the distance function under a chosen group of 

transformations G. It can be defined by the following conditions: 

(v.) invariance: d(g(x),g(y)) = d(x,y) for all transformations g ∈ G. 

An extensive theory can be written about distance functions. However, this issue is not 

the main topic of this report. Therefore, only a short list of the most useful distance function is 

introduced here. The more information is possible to find for example in [51], [53], [52],[10]. 

2.3.1. Minkowsky Distance 

Perhaps it is the most popular distance measuring. For two points x, y ∈ R d, the general 

L p distance is defined as: 
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This general equation usually does not use in practice. Ordinarily, the parameter p is 

fixed on the following values: 

• Manhattan distance or city-block (p = 1): 
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• Euclidian distance (p = 2): 
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• Chebychev distance (p = ∞): 
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The difference among the individual types of the distance function is better shown in 

Figure 2.3.1 (taken from [10]). The unit spheres in the mentioned metric spaces are drawn there. 

 

Figure 2.3.1: The unit spheres under Manhattan (L1), Euclidean (L2), Minkowsky L4 and 

Chebychev (L∞) distance. 

2.3.2. Mahalanobis distance 

This distance is rather used for a classification (i.e., a class for a object is selected 

according to the closest distance of the object to the given class). At first, assume a simple case: 
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Let xi = {x1,i ,  x2,i, …, xN,i} be a collection of N examples of the feature i and 

xj = {x1,j ,  x2,j, …, xN,j} be a corresponding collection of N examples of the feature j (it means 

that xk,i and xk,j are two features of the same pattern).  

The features can be characterized by mean values (it is calculated as the average of 

representative values of the given class): 

 

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N
m

1
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1
, (2.3.5)

and terms ci,j of a so called covariance matrix C that measures a tendency to vary between two 

features (it is the average of the products of the deviations of representative values from their 

means): 
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where xk,i and xk,j are representative values of the feature i and j, respectively, and mi, mj are their 

mean values (see the equation (2.3.5)). The physical meaning of the covariance is illustrated in 

Figure 2.3.2, where the dependence between features xi and xj for different values of the 

covariance is shown.  

 

Figure 2.3.2: An illustration of the meaning of the covariance c between two features (si and 

sj are the standard deviations of the given features).  

The value si represents a so called standard deviation (it is a measure of the size of the cluster) 

that is defined as: 
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Suppose now that we have an n-dimensional feature vector x and a corresponding mean 

vector mX with covariance matrix CX of a class X. Then the Mahalanobis distance r of the vector 

x from the class X can be computed by the formula: 

 ( ) ( )XX
T

Xr mxCmx −−= −12 , (2.3.8)

where Cx
-1 denotes inverse matrix of the covariance matrix and the superscript T denotes vector 

transposing. 
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Finally, note this distance can solve problems caused by poorly scaled or highly 

correlated coefficients of a vector. 

 

Figure 2.3.3: An illustration of contours with the constant Euclidean distance and 

Mahalanobis distance (for a given covariance matrix).  

2.3.3. Hausdorff distance 

Sometimes, the number of points of set of points A and B is not correspondent. In this 

case the Housdorff distance is commonly used. It is defined as: 

 ),(maxmin),( baba dBAh BA ∈∈= , (2.3.9)

where max and min denotes maximum and minimum over all elements of the given set. The 

function d(a,b) is an underlying distance function (typically, it is Euclidean distance).  

In other words, the Hausdorff distance is defined as the lowest upper bound over all 

points in A to B, where distance between two points is measured by the d(a,b) function. 

Unfortunately, this distance has two uncomfortable properties. It is very sensitive to noise and it 

is not metric distance (the condition of the triangle inequality fails). More detail information is 

presented for example in [52], [53]. 

 

Figure 2.3.4: An simple example of the Hausdorff distance for A and B sets of points in E2 

(as the measuring function d(a,b) is used Euclidean distance ).  
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2.3.4. Bottleneck distance 

The disadvantage of Hausdorff distance is in mapping that is defined as an association 

of points from A to its nearest neighbor in B. It does not always have to be a one-to-one 

mapping. In the case where this correspondence is needed, i.e., where each point from A is just 

matched by only one point from B, there is better to use the Bottleneck distance. It is defined as 

[52], [53]: 

Let A and B be two point sets of size N and d(a,b) a distance between two points. The 

bottleneck distance is the minimum of the maximum distance d(a,f(a)) over all 

one-to-one mapping f  between A and B. 

2.3.5. Earth Movers Distance 

This next type of distance function is based on likening the distance measures to 

minimal amount of work needed to transform of earth or mass from one position to the other. 

For example, when we suppose two distribution and we would like to measure their distance by 

Earth Movers Distance (EMD), then one distribution can be seen as a mass of earth properly 

spread in space, the other as a collection of holes in that same space. The computation of the 

EMD is possible to see as a minimal distance that is needed to transport the earth into the holes 

(a quantity of the mass of the earth and the size of the hole is represented by weight values for 

the given distribution). Formally, the exact definition is following [23]: 

Let d(x,y) be a ground distance function and A = {a1, a2, …, am}, B = {b1, b2, …, bn} be 

two weighted point sets such that ai = {(xi, wi)}, i = 1, …, m and bj = {(yj, uj)}, j = 1, …, n, 

where xi, yj ∈ Rk with wi,uj ∈ R+∪ {0} being its corresponding weight. Let also W and U be the 

total weights of set A and B, respectively: 

 ∑
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Let us denote fij the elementary flow of the weight (of the earth) from xi to yj, over the 

elementary distance d(xi,yj), then a set of all feasible flows F̄   = [fij] is defined by the following 

constraints: 
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The Earth Movers Distance EMD(A,B) is defined as the minimum total cost over all  possible F̄ 

normalized by the weight of the lighter set: 
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Generally, that distance function does not obey the conditions of the positivity and the 

triangle inequality (see above) and it is very computationally expensive. For all that, some nice 

properties are satisfied when some additional conditions are held. The other detail information 

with some derived function, such as Proportional Transportation Distance, is possible to find 

for example in [23], [16], [51], [53], [52]. 
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3. Feature extraction 

As it was remark above, the feature extraction is the most important part of the retrieval 

system. This part of the report is dedicated to this issue and several methods that were proposed 

are described here.  

At first, something about the feature extraction from 3D objects would be known. The 

objects (or models1) can be described in several representations. Perhaps the most popular are 

polyhedral meshes or volumetric data that can be obtained from a scanner, or parametric or 

implicit equations that can be obtained from a mathematic or 3D model system. Note it is not a 

compete enumeration how objects can be described or defined. Other representations are for 

examples superquadrics or generalized cylinders (e.g., see [9]).  

Several possibilities of the description exist and that we will use it only depends on the 

way of obtaining data and our decision. Our choice also determines another parameters that can 

be obtained from the given description, such as normal, gradient, etc. These parameters just can 

be used in the feature extraction (perhaps the description by mathematical equations seems as 

the best solution in our case but it is not always possible).  The final feature vector and a method 

of the feature extraction would have the following properties or at least they would be optimized 

them as good as it is possible: 

• quick to compute 

• concise to store 

• easy to index 

• invariant under transforms (translation, rotation, scale) 

• insensitive to noise and small features 

• independent of 3D representation 
                                                      

1 The words the object and the models have the same sense here. Generally, it means 3D data 

describing the items in the database of the retrieval system.  
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• robust to arbitrary topological degeneracy 

• discriminating of shape similarities and differences 

Naturally, a method for feature extraction that would be ideal and that would 

completely describe the surface of a 3D object by a feature vector is impossible to find. For all 

that several methods exist that are based on different mathematical theories. Tangelder [51] 

divides them into the following classes: 

• Manufacturing features: Solid models which were made by a manufacturing 

process, can be described by features representing the process of the manufacture. 

More detail description of this approach is presented for example in [45], [11]. 

• 2D view based features: At present, the issue of image feature extraction is 

examined very well. This knowledge can be used in 3D case where similar objects 

can be searched according some 2D sketches. The 3D models are usually compared 

with the similarity of their 2D view. The description of that content-based method is 

possible to find e.g., [35], [14]. 

• Histogram based features: This kind of features is based on comparing histograms 

or distributions encoding properties of 3D models. The feature extraction can be 

based on many various properties, such as mapping the surface curvature to the unit 

sphere [46], using moment-based classifier [17], using reflective symmetry 

description [31], etc. The individual methods are described later. The similarity is 

usually evaluated by a metric that measures distances between distributions. 

• Topology based features: The features based on topological properties of 3D 

objects can be used in matching very well. This is proofed, e.g., in [24] where the 

method uses Reeb graph based on geodetic distances to encode the topology of 3D 

objects. 

• Volume based features: The volume information is the next property that can serve 

to description of 3D models. It is possible to find an example of a method in [38] 

where calculating a volumetric error is used for matching similarity. 

• Deformation based features: Some image retrieval systems use the measuring of a 

deformation of 2D shapes in which the amount of deformations to register the shape 

is measured, e.g., [2], [12]. Unfortunately, these methods are very difficult to apply 
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for 3D shape matching. For all that, it is good to know that these methods exist at 

least for 2D case.  

The following subsections are dedicated to descriptions of several methods. Some 

methods from the groups of histogram and topology based features mainly are described. 

Specially, the methods based on curvatures and Reeb graph are described in more detail. It is 

because I plan to use them in the proposition of my methods that would be based on their 

properties. The remainder methods are introduced here to obtain point of view how easily or 

difficulty a feature vector can be generated. 

3.1. Directional vectors2 

This method is proposed for models represented as triangle meshes. The own principle 

of the method is not difficult. At first, the vertices of the triangle mesh are transformed into the 

form guaranteeing scale, rotate and translate invariance. A modification of the Principal 

Component Analysis (shortly PCA, e.g., see [55], [51]) is employed to accomplish this aim. 

Although the PCA exactly does not guarantee the invariance, the resultant form is independent 

as much as possible. The model is transformed into the PCA coordinate system where the center 

of the mass (represented by mean vectors computed over all points of the mesh) is in the origin 

and eigenvectors of the covariance matrix are orthogonal and coincide with the vectors of the 

new coordinate system (see low). Now let us suppose that we have a set of k directional vectors 

{û1, û2, …, ûk}. Then distances from the origin to the surface of the mesh in accord with the 

individual directional vectors (in the PCA coordinate system) can be measured and these 

distance just form a feature description of the 3D model in this case. 

Assume that a 3D model is represented by a mesh including a set of N vertices V = {v1, 

v2, …, vN}, where vi ∈ R3 and is represented as a column vector. Let the mean vertex m be 

defined as: 

 ∑
=

=
N

k
kkw

N 1

0)0( 1 vm . (3.1.1)

It is the average over all vertices that are weighted by a weight wk associated to the given 

vertex vk. The weights of the vertices are computed by the formula: 

                                                      
2 Figures and equation in this chapter are taken from [55]. This retrieval system is possible to 

find on the web page: http://dbvis.fmi.uni-konstanz.de/research/projects/SimSearch3D/. 
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where S is the surface area of the mesh and Sk is the sum of surfaces of all triangles including 

the vertex vk. Note the sum of the weights of all points in the mesh is equal to N (i.e. the number 

of points).  

The modified principal component analysis (PCA) is based on the computation of eigenvalues 

and eigenvectors of the covariance matrix C that is defined by the formula: 

 ∑∑ =

−−=
N

k

T
kkk

k

w
w 1

)0()0()0()0()0( ))((1 mvmvC . (3.1.3)

After finding eigenvalues and eigenvectors a matrix A can be formed. The columns of the 

matrix are composed of the normalized eigenvectors that are sorted in the rowing order of the 

non-negative values on the diagonal of the matrix (this procedure guarantees the unique order of 

the found eigenvectors). Finally, the all vertices are transformed into a new so called PCA 

coordinate system by the help of the matrix A and the mean vector m, where the normalized 

eigenvectors form the coordinate system (see Figure 3.1.1, Figure 3.1.2). The formula for the 

transformation is following: 

 )( mvAv −= kk , Nk ,...,1= . (3.1.4)

That triangle mash in PCA coordinate system is invariant to translation and rotation (as much as 

possible). 

 

Figure 3.1.1: The Principal Component Analysis 

Now we can pass on a feature extraction. Assume that a set of k directional vectors 

{û1, û2, …, ûk} is defined. Then a feature vector can be represented as the distances (in PCA 

coordinate system) from the origin to the surface of the model in the direction of the given 

vectors (see Figure 3.1.2).  
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Figure 3.1.2: Extraction of Shape descriptors by a set of rays 

However, this feature vector is not invariant to scale, therefore a procedure that this 

invariance will be guarantee should be defined. In the cited report all the elements of the feature 

vector are simply divided by the value of the maximal element. That feature vector is finally 

invariant to scale, translation and rotation and can be used for a description of 3D models. 

3.2. Mean and Gaussian curvature 

A curve in the space can be described by several different ways. A unique description of 

the curve is by a curvature 1k and torsion 2k that allow to describe an arbitrary shape curve 

exhaustively except a position of the curve in the space).3 A similar description for a surface is 

formulated in this section. However, a theory about surfaces and their curvatures is very wide 

therefore only basic facts needed to define curvatures are shortly described here. A more detail 

theory is possible to find in a book dedicated to the differential geometry (e.g. [3], [7], [41]). 

Suppose that a formula describing a surface of the model is defined in a parametric 

form4: 

Definition 3.2.1: Let parameters u and v be defined in a region Ω ⊆ E2  (of the type A, see [41]). 

Then a surface can be described by the parametric formula: 

                                                      
3 A mathematical background of the computation of the curvature and the torsion is possible to 

find in a mathematical book dedicated to curves, Frenet formulas and a parametrization of the curve. 
4 Various definitions of the formula describing a surface exist. We only will think about 

parametrical definition. All definitions and theorems are cited from [3], [7], [41]. 
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 )),(),,(),,((),( vuzvuyvuxvu =r , Ω∈],[ vu , (3.2.1)

where all the following requirements are fulfilled: 

• The functions x, y, z are continual and have piecewise continuous derivatives of the 

first order in Ω. 

• The matrix: 
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is everywhere (with the exception at most a finite number of points) of rank h=2, i.e. 

at last one of its determinants of order two is non-vanishing. 

 

On that defined surface an arbitrary curve can be described. In the following text the 

parametric definition of a curve on the surface and definitions of fundamentals forms 

characterizing the curve on the surface are cited. 

Definition 3.2.2: The equations: 

 )(tuu = , )(tvv = , ω∈t  (3.2.3)

express parametrically a curve on a surface provided that the functions defined in an interval ω 

have the following properties: 

• The functions are continual and posses continuous first derivatives which do not 

vanish simultaneously. 

• All points lie for all t ∈ ω  in the domain Ω of the surface (see Definition 3.2.1). 

• The elements of the matrix M (defined in Definition 3.2.1) vanish simultaneously at 

a finite number of points at most. 

 

Definition 3.2.3: The square of the differential of the arc of a curve u = u(t), v = v(t) on a 

surface r = r(u,v) is given by formula: 

 IvGvuFuE ≡++= 222 d d d 2d ds . (3.2.4)

This quadratic differential form is called the first fundamental form of the surface, ds is called 

the element of the art and E, F, G are called the first fundamental coefficients. 
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(3.2.5)

 

Definition 3.2.4: Along a curve u = u(s), v = v(s) (s being the arc of the curve) on a surface 

r = r(u,v) the formula: 

 IIvNvuMuL ≡++=⋅− 22 d d d 2d dd nr , (3.2.6)

where 

 

uuL nr ⋅−= ,  

)(2 uvvuM nrnr ⋅+⋅−= ,  

uvN nr ⋅−= , 

(3.2.7)

is called the second fundamental form of the surface. Coefficients L, M, N are called the second 

fundamental coefficients (n is unit normal vector of the surface and nu, nv, ru, rv denote the 

partial derivatives ∂n/∂u, ∂n/∂v, ∂r/∂u, ∂r/∂v, respectively). 

 

Definition 3.2.5: a regular point of surface, in which is: 

 02 >− MLN , 02 =− MLN , 02 <− MLN , (3.2.8)

is called elliptic point, parabolic point or hyperbolic point of the surface, respectively 

(see Figure 3.2.1). 

 

Figure 3.2.1: Examples of elliptic, parabolic and hyperbolic points (taken from [41]). 
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Now, we can speak about a surface, a curve on the surface and fundamental forms 

characterizing the surface. From the coefficients of first or second fundamental forms some 

properties can be derived (note that the first and second fundamental forms define a shape of the 

surface exhaustively except of its position in the space).  

If a property is only given by first fundamental coefficients it is classified as a property 

describing a so called inner geometry of the surface. That property is constant when a surface is 

spread on another surface (e.g. when a tube surface is spread on a plane). Properties derived 

from second fundamental coefficients are classified as properties describing a so called outer 

geometry of the surface and the following text is dedicated them.  

The following theorems formulate equations calculating the radius of curvature of the 

curve on the surface and they just serve as a mathematical background for definition of principal 

radii of curvature and so called Dupin’s indicatrix. 

 

Theorem 3.2.1: All curves on a surface which pass through a regular point P of the surface and 

have the same osculating plane at P have also the same curvature at P. The radius of curvature 

of the curve of the section cut by a plane passing through a point P of the surface r(u,v) is : 

 ϑcos
d d d 2d 
d d d 2d 

22

22

vNvuMuL
vGvuFuEr

++
++

= ,( 0≠II ). (3.2.9)

where ϑ is the angle between the plane of section and the normal to the surface at P (see Figure 

3.2.2). 

 

Definition 3.2.6: A curve cut on a surface by a plane that contains a normal to the surface is 

called a curve of normal section and radius of curvature and curvature have prefix normal.  

    

Figure 3.2.2: An illustration of the Meusier theorem (right figure taken from [41]). 
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Theorem 3.2.2: (Meusnier’s Theorem). A curve of section passing through a regular point P on 

a surface, has at P a radius of curvature which is the orthogonal projection of the radius of 

curvature Rn of the curve of normal section (into the osculating line at P): 

 ϑcosnRr = . (3.2.10)

 

Remark the Meusnier’s theorem says if a regular point P on the surface and a tangent 

line υ in this point are given, then for all curves on the surface that have the tangent line υ in the 

point P the center of the radius of curvature lie on the circle with the radius Rn. The circles of 

curvature of all these curves lie on the sphere of radius Rn (see Figure 3.2.2). 

When we summarize previous theorems the normal curvature in a given direction at a 

point P of a surface r(u,v) can be computed by the equation: 

 22

22

d d d 2d 
d d d 2d 
vGvuFuE
vNvuMuL

Rn ++
++

=
ε

, 1±=ε . (3.2.11)

Note the sign of ε has a geometrical meaning as will be shown later. 

 

Definition 3.2.7: The curves of normal section of a surface for which the corresponding normal 

curvatures have extreme values are called the principal curves of normal section and their radii 

of curvature R1 and R2 the principal radii of curvature, at the point considered on the surface.  

 

Theorem 3.2.3: (Euler’s Theorem). The curvature 1/Rn of a curve of normal section at a regular 

point of a surface is given by the formula: 

 
2

2

1

2 sincos1
RRRn ε
δ

ε
δ
+= , 1±=ε , (3.2.12)

where δ is the angle between the plane of the curve of normal section and the plane of the first 

principal curve of normal section. 

 

An importance of the previous definitions and theorems is introduced in the following 

text. Suppose a tangent plane at a point P of a surface is known. On the tangent plane is defined 

the cartesian coordinate system such that x and y axis is in the tangent line of the first and 

second principal curve of normal section at P, respectively. If the point P is elliptic, hyperbolic 

or parabolic5, let us construct in the tangent plane at P, the ellipse, two hyperbolas or two 

parallel straight lines given by the equations: 

                                                      
5 In this case, we suppose that second principal curvature is equal to zero. 
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respectively as is shown in Figure 3.2.3. The length of the radius vector ρ of each point of the 

ellipse, hyperbolas or the straight lines is the square root of the radius of curvature of the curve 

of normal section whose plane passes through the radius vector ρ at the point P. The angle δ 

between ρ and the first principal direction is the same as in the equation (3.2.12). 

 

Definition 3.2.8: The ellipse, two hyperbolas or two parallel straight lines (3.2.13) in the 

tangent plane at a regular point of a surface is called the Dupin’s indicatrix. 

 

Figure 3.2.3: An illustration of the Dupin’s indicatrix (taken from [41]). 

The radii of the principal curvatures at a point on a surface are dominants elements in 

definitions of Gaussian and mean curvatures: 

 

Definition 3.2.9: (Gaussian curvature). The product of principal curvatures at a regular point P 

on the surface is called Gaussian curvature K.  

Note the Gaussian curvature can be expressed by the coefficients I. And II. fundamental form 

(see equation (3.2.5), (3.2.7)). 
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Definition 3.2.10: (mean curvature). The average of principal curvatures at a regular point P on 

the surface is called mean curvature H.  

Note the mean curvature also can be expressed by the coefficients I. And II. fundamental form 

(see equation (3.2.5), (3.2.7)). 
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In this moment, we can stop speaking about theory of differential geometry and we can 

look at their applications for the feature extraction. In several papers (eg. [6], [56], [40]) it is 

shown how to classify a shape of the surface in a given point P according to the values of 

Gaussian and mean curvatures as is shown in Table 3.2.1: 

 K < 0 K = 0 K > 0 

H < 0 saddle ridge ridge peak 

H = 0 minimal surface flat none 

H > 0 saddle valley valley pit 

Table 3.2.1: Interpretation of Gaussian and mean curvature on a surface (taken from [6]). 

 

Figure 3.2.4: An outline of the basic shapes of the surface classified by Gaussian curvature K 

and mean curvature H (taken from [3]). 
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or according to principal curvatures k1, k2 (corresponding to values 1/R1 and 1/R2, respectively) 

as is shown in Table 3.2.2. 

 k1 < 0 k1 = 0 k1 > 0 

k2 < 0 peak ridge saddle 

k2 = 0 ridge flat valley 

K2 > 0 saddle Valley pit 

Table 3.2.2: Interpretation of principal curvatures on a surface (taken from [6]). 

The shape of mentioned types of surfaces is possible to see in Figure 3.2.4. 

The curvatures (exactly it would be spoken about their estimations) can be computed 

many ways. Flynn and Jain [18] describe some existing methods of surface curvature estimation 

and they classify them into numeric and analytic categories. 

The numerical methods use collection of curvature estimation in some directions. Many 

methods exist. Calladine [8] estimates the Gaussian curvature in a point r by the formula: 
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rr

S
βκ = , (3.2.16)

where is β(r) an angular defect in the vertex that is defined as 2π  minus sum of interior angles 

of triangles meeting at the vertex r (see Figure 3.2.5) and S(r) is equal to 1/3 of the areas of the 

triangles meeting in the vertex.  

 

Figure 3.2.5: Illustration of spreading the triangles meeting in a vertex on a plane π due to 

computation of the angular defect β in the vertex. 

Hoffman and Jain [26] estimate the curvature in moving from point p to point q on the 

surface as: 

 ),(),( qp
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nn
qp sqp
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−
=κ , (3.2.17)
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where s(p,q) indicates whether the curvature is positive (convex) or negative (concave). The 

parameters np and nq denotes normals in the point p and q, respectively (a correlation of the 

direction of the normals classifies the curvature as positive or negative).  

The mentioned numerical methods show that a curvature of a surface can be computed 

numerically and, of course, many other numerical methods exist (see e.g. [49], [30]). 

Second approach of computation of curvatures is based on analytic methods. These 

methods usually estimate curvatures in a point on the surface based on so called Monge path 

that is defined as: 

 )),(,,(),( vufvuvu =x . (3.2.18)

The Gaussian curvature K and mean curvature H are expressed as: 
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Where the subscripts indicate partial differentiations: 
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Own function f(u,v) of Monge path  can be various. Usually, it depends on the other 

properties that are required from the function. Besl and Jain [4] use a set of discrete orthogonal 

polynomials to provide a quadratic surface fit. Flynn and Jain [18] use a bicubic polynomial or 

Boyer and Srikantiah [6] use biquadratic polynomial. Naturally, many another functions can be 

chosen. However, the Monge path serves here as a tool for an estimation of curvatures and 

because the formulas of curvatures need partial derivatives of second order, maximally 

quadratic function would be sufficient. Note that a coordinate system and values of parameters 

in polynomial are needed to determine for a calculation of the curvatures. Boyer and Srikantiah 

[6] use PCA (see chapter 3.1) to determine a coordinate system (eigenvectors are orthogonal, 

one from them has the same direction as normal vector and odd eigenvectors determine 

tangential plane in a point). The coefficients of polynomial (Monge path) can be computed for 

example by least squares (see e.g. [5], [41]). 

The main and Gaussian curvatures are used by many ways for the feature extraction of 

3D models. First of all, many approaches are based on classification of the surface according of 
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values of curvatures (see Figure 3.2.6) and then are determined some key points representing 

given regions.  

 

Figure 3.2.6: Examples of surface classification of 3D models based on values of mean and 

Gaussian curvatures (regions are highlighted by different colors, taken form [6]). 

3.3. A reflective symmetry descriptor6 

Kazhdam et al. [31], [32] presents a new method that can be used for matching or 

classification of objects. A reflective symmetry descriptor, which is introduced, is based on a 

measure of reflective symmetry for 3D voxel models. The method can also be used for a 

triangle mash or the other 3D model representation. However, first step has to be transformed 

into the voxel representation. The advantages of this method are following: 

• It is defined over a canonical 2D domain (the sphere) and thus it provides a common 

parameterization for arbitrary 3D models. 

• It characterizes the global shape of the object and it is insensitive to noise and the 

other small perturbation in a 3D model. 

• It provides distinguishing shape information for many objects 

The complete process of the calculation of the reflective symmetry descriptor is shown 

in Figure 3.3.1 in a simplified way. It is separated into several individual tasks that have the 

following function: 

(0) It converts the model from the origin representation onto 3D voxel representation 

characterizing the model. 

                                                      
6 Majority information, images and formulas in this section are taken from [31] , [32].  
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(1) For every plane passing through the center of mass w compute the reflective 

symmetry distance of the model with respect to the plane. 

(2) The distances are combined to obtain the reflective symmetry descriptor – it 

measures how similar it is to its reflection (see later). 

(3) Finally, the similarity between two reflective symmetry descriptors are computed (it 

is taken their L∞ distance) 

 

Figure 3.3.1: An outline of the computation reflective symmetry descriptor for a 3D model. 

The author uses the following mathematical theory for the definition of the reflective 

symmetry descriptor that is taken from [31] , [32]: 

 

Definition 3.3.1: The L2-distance of a function f to the nearest function g that is invariant with 

respect to the reflection γ is called the symmetry distance of the function. It can be formulated 

into the equation: 

 gffSD
g

−=
=g(g)|

min),(
γ

γ . (3.3.1)

 

Theorem 3.3.1: The space of functions is a inner product space and the functions invariant to 

the reflection γ define a vector subspace. It follows that the nearest invariant function g is 

precisely the projection of f onto the subspace of invariant functions. If we define πγ to be the 

projection onto the space of functions invariant under the action of γ and we define π1/γ to be the 

projection onto the orthogonal subspace then: 

 )()(),( /1 ffffSD γγ ππγ =−= . (3.3.2)

 

Shortly we can say that the symmetry distance of f with respect to reflection γ is the 

length of the projection of f onto a subspace of function indexed by γ. It was observed that 
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reflections are orthogonal transformations and therefore the theorem from representation theory 

[44] can be applied on the symmetry distance. 

 

Theorem 3.3.2: The projection of a vector onto the subspace invariant under the action of an 

orthogonal group is the average of the vector over the different elements in the group. 

 

Thus in the case of a function f and a reflection γ we get: 
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We can simply say that the symmetry distance is the L2 difference between the initial function 

and its reflection. 

After definition of the symmetry distance and the citation of its properties, the reflective 

symmetry descriptor can be defined. Since we are interested in 3D space we only can formulate 

the definition for this case: 

 

Definition 3.3.2: Given a 3D function, a 2D function on the space of planes though the origin 

(indexed by their unit normals), describing the proportion of f that is symmetric with respect to 

reflection about a given plane and the proportion of f that is anti-symmetric: 
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Where πs is the projection onto the space of functions invariant under reflection about the plane 

passing through the origin, perpendicular to s, and π1/s is the projection onto the orthogonal 

complement. 

 

Now we know the needed theory background for the computation of the reflective 

symmetry descriptor and so we can look at its practical usage for 3D models. Firstly we 

describe symmetry distance function for a simple example, exactly for a circle. 

Assume that function f(θ) on the circle and a reflection γα about the line through the 

origin with angle α is given. When the fact that this reflection maps a point with angle θ to the 

point with angle 2α -θ is used (see Figure 3.3.2) we can apply equation (3.3.3). Then the 

symmetry distance can be formulated as: 

 θθαθγ
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α dfffSD
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Note that the required time for the calculation symmetry distance can be accelerated if 

the equation (3.3.5) is adjusted in the following form: 
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The expression in square root consists of two terms. First term represents L2 norm and the 

second one represents a convolution term. This convolution term just can be computed by Fast 

Fourier Transform for all angles α in O(N log(N)) time complexity.  

 

Figure 3.3.2: Reflection about α maps a point with angle θ to the points with angle 2α - θ. 

That definition of the symmetry distance for the circle can be used for the calculation of 

the symmetry distance of an interior of a disk (by reason of simplicity the disk with unit radius 

will be thought in the following text). The interior of the disk can be represents as a collection 

of the circles with the radius from the range from 0 to the maximal radius of the disk (see Figure 

3.3.3). At first, the function f(x,y) have to be transformed into polar coordinates to get the 

collection of the function {ĝr}: 

 )sin,cos()( θθθ ⋅⋅= rrfgr
) , (3.3.7)

where r ∈ (0,1] and θ ∈ [0,2π). Then the final equation for the symmetry distance of the 

interior of the disk can be formulated as: 

 drrgSDfSD r∫ ⋅=
1

0

2  ),(),( αα γγ ) , (3.3.8)

where γα is the reflection about a given line through the origin with angle α. 

 

 

Figure 3.3.3: An illustration of the decomposition of an image into concentric circles. 

We can use an analogical procedure on the surface of a unit sphere. For the computation 

planes passing through origin and a North pole on the sphere are only used. The symmetry 

distance is computed by braking up to upper and lower hemisphere and by projecting them into 
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a disk (see Figure 3.3.5 where the process for the upper hemisphere is illustrated). For a 

parametrization of the sphere in terms of spherical coordinates: 

 )sinsin,cossin,(cos),( θφθφφθφ =Φ , (3.3.9)

where φ ∈ (0,π], θ ∈ (0,2π], we can write a formula for the function ĝu of the upper hemisphere 

(φ ∈ (0,π/2]) with the constant latitude: 

 φφθφθφθφ sin)),(()sin,cos(ˆ Φ= fgu . (3.3.10)

Note that the obtained disk has radius π/2, the factor of square root of sinφ /φ is necessary for 

integration bellow and analogically, the formula for the function ĝl of the lower hemisphere can 

be deduced. The final symmetry distance is calculated according to the formula: 

 ),(),(),( 22
ααα γγγ lu gSDgSDfSD )) += . (3.3.11)

Finally, the symmetry distance function on the surface of the sphere can be used to 

define the symmetry distance for functions on a voxel grid. The procedure of the deduction is 

very similar to previous. The function f is decomposed into a collection of function {ĝr}, where 

ĝr(v) = f(rv). The measure of symmetry of f with respect to a reflection γ is equal: 

 ∫ ⋅=
1

0

22 ),(),( drrgSDfSD r γγ α
) . (3.3.12)

 

Figure 3.3.4: The left image illustrates a decomposition of the sphere surface (only upper 

hemisphere) into disk representation. The right image illustrates that all planes through the 

origin and North pole vary over a great circle. 

This symmetry distance function can be used for a calculation of the reflective 

symmetry descriptor (see Figure 3.3.5) of 3D models described by voxel grid. It has nice 

properties, such as stability, scale invariance, etc. (see [32]) and therefore it is suitable for 

feature extraction. More detail information is possible to find in [31], [32]. 
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Figure 3.3.5: Examples of the visualization of the reflective symmetry descriptor for a car, a 

cube and a chair. 

3.4. A spherical harmonic descriptor7 

Another feature extraction similar to the reflection symmetry descriptor (RSD) is a so 

called spherical harmonic descriptor. Such as RSD it is defined on a voxel grid, however, 

another 3D model representation can also be used. They only have to be transformed into the 

voxel grid. This descriptor is a component of the search engine for 3D models that is described 

in [21]. Note the search engine in this report has the other components serving for retrieval of 

the models on 2D sketch or a text8. However, we are only interested in the feature extraction 

from 3D representation, so these components will be omitted. 

Shortly, this method can be described as a decomposition of a 3D model into a 

collection of functions defined on concentric spheres. The spherical harmonics are used to 

discard orientation information. The process of the calculation of the spherical harmonic 

descriptor is outlined in Figure 3.4.1. The individual phase (which are indexed in the figure 

from value 1 to 5) has following function: 

 

(1) The polygonal surface is resterized into a 2R x 2R x 2R voxel grid. If it is within one 

voxel width of a polygon surface the value of the voxel is assigned on the value 1, 

otherwise it is assigned on the value 0. The model is moved so that the center of 

                                                      
7 The images and equations in this section are taken from [21]. 
8 This retrieval system is executed on the web page: http://shape.cs.princeton.edu/search.html. 
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mass lies an the point (R, R, R) and one is scaled so that the average distance from 

the surface into center of mass is R/2. 

(2) The grid file is decomposed into spherical coordinates: 

 )sinsin,cos,cossin(),,( RrRrRrVoxelrf +++= φθθφθφθ , (3.4.1)

where r ∈ (0,R], θ ∈ (0,π], φ ∈ (0,2π]. It is obtained a collection of spherical 

function {f0, f1, …, fR} with: 

 ),,(),( φθφθ rff r = . (3.4.2)

(3) Using spherical harmonics, each function fr is expressed as a sum of its different 

frequencies: 

 ),(),( φθφθ ∑=
m

m
rr ff , (3.4.3)

where the function fr
m is the projection of the function fr onto m-th irreducible 

representation of the rotation group acting on the space of spherical functions (it is 

described lower in more detail): 
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(4) A rotation invariant signature for fr is defined as the collection of scalars 

{||fr
0||, ||fr

1||, …}. Note it was observed that the value ||fr
m|| does not change if the 

function fr is rotated. 

(5) The signatures over different radii are combined and by combining them the 

two-dimensional rotation invariant spherical harmonics descriptor for a 3D model is 

obtained. The indexes correspond to the length of the m-th frequency of the 

rasterisation of f to the sphere with radius r. 

 

The key role of the algorithm plays a third point in which spherical harmonic functions 

are computed. The spherical harmonics occur in a large variety of physical problems, e.g., in the 

quantic physics. It is a collection of functions of two coordinates φ, θ on the surface of the 

sphere. Mathematically, they are defined as (taken from [15]): 

 φθ
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φθ imm
llm eP

ml
mllY )(cos

)!(
)!(

4
12),( ⋅

+
−

⋅
+

= . (3.4.5)

and: 

 ),(*)1(),(, φθφθ lm
m

ml YY ⋅−=− . (3.4.6)

where –l ≤ m ≤ l. The function Pm
l denotes a so called Legendre polynomials and asterisk in the 

equation denotes complex conjugation. 
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The mathematic interpretation of these equations will not be explained here, but it is 

possible to find, e.g., in [15], [41], etc. Remark that the authors the voxel grid (that consists of 

64x64x64 voxels) decompose into 32 spherical functions by restricting the voxel grid to spheres 

with radii  1 through 32 (the point (2) in the procedure above). Then each of these functions is 

decomposed as a sum of its first 16 harmonics components in the point (3) of the procedure (it 

is analogous to a Fourier decomposition into different frequencies). 

 

Figure 3.4.1: Outlines of the computation of the spherical harmonic descriptor 

Finally, note that that described 3D model can be indexed without registration of 3D 

models in a canonical coordinate systems and so an influence of the orientation of the model in 

the space is minimized. 

3.5. Topology matching 

The topological and skeletal structures are features that could be suitable for description 

of the form of 3D models. Several studies have been proposed in which different ways of 

skeleton or topology description are used. However, no each data structure is suitable as a 

search key in the retrieval system. For example, the medial axis model is well-known skeletal 

structure (see, e.g., [29], [12]). Unfortunately, it is inapplicable for feature extraction because it 
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is sensitive to noise and small undulations on the surface of the 3D model. On the other hand, 

Hilaga etc. [24] proposed a method based on a so called Reeb graph that has nice properties 

from our point of view. It represents topological based features extraction very well. An 

appropriately definition of the Reeb graph guarantees the data structure that is invariant to 

translation and rotation, resistant against noise and certain deformations. The Reeb graph is 

shortly described9 in the following text. More detail information is possible to find in [24], [28].  

 

Definition 3.5.1: Let  µ : C → R be a continuous function defined on a object C. The Reeb 

graph is the quotient space of the graph of µ in C × R by the equivalent relation 

(X1,µ(X1))∼ (X2,µ(X2)), which holds if and only if µ(X1) = µ(X2) and X1, X2 are in the same 

connected component of µ-1(µ(X1)). 

 

Naturally, amount of the µ function can be used. Perhaps the most simplest and very 

often used function is a height function on a 2D manifold that is defined as: 

 zzyx →),,(: vµ , (3.5.1)

where v is a point on the manifold and x, y, z are its axis coordinates. An example of the Reeb 

graph with the height function is shown in Figure 3.5.1 (it is taken from [24]). 

 

Figure 3.5.1: Torus and its Reeb graph using a height function µ. 

On the left figure the range color represents change of the values of the height function from 

minimum (red color) to maximum (blue color) value and the black lines represent the contours 

which was used for generating Reeb graph. The resultant Reeb graph is on the right figure. 

It is evident that the height function is not suitable for feature extraction because it is 

not invariant to transformations. To obtain translate and rotate invariant function Hilaga defined 

the function µ at a point v on a surface S as: 
                                                      

9 The retrieval system based on the Reeb graph is possible to find on the web page 

http://3dsite.dhs.org/~dynamic. The description of the implementation of the system is presented in [28]. 
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 ∫ ∈=
S

dSg
p

pvv ),()(µ , (3.5.2)

where the function g(v,p) is geodetic distance between two points v and p on the surface S.  

Such defined function is not invariant for scaling yet. Therefore it is normalized 

according to the following equation: 
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It is normalization from the range <minp∈Sµ(p), maxp∈Sµ(p)> into the range <0,1>. Let 

us note that the denominator of the equation (3.5.3) is not typical for normalization. Correctly it 

should equal to the value range(S) = maxp∈Sµ(p) - minp∈Sµ(p). However, in the cases where the 

value range(S) is small (see the sphere and the cube in Figure 3.5.2) it would amplify errors. 

Therefore it is only employed maximal value of the function µ in the denominator. For all that 

the character of that function is efficient and invariant to the rotation, translation, scaling and 

also a small deformation of the object. Several examples of the distribution values of the 

function is shown in Figure 3.5.2. 

     

Figure 3.5.2: Examples of the distribution of the function µ that is defined as an integral of 

the geodetic distances (red and blue color represents min. and max. value respectively). 

The figure illustrates the quality of the selected function, however, the question 

similarity comparing models is still open. The methods of the similarity measuring described in 

the 2.3 section mostly rely on the distance measuring points in n-dimensional space but they do 

not allow to calculate with the topology or the skeleton of the objects. Therefore, Hilaga  uses 

special matching algorithms. The basic point of the algorithm is the construction of the 

multiresolutional Reeb graph. It is a set of the Reeb graphs for the same 3D model that are 

generated with smaller and smaller splitting of the space, such as shown in Figure 3.5.3 for 

height function. 
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Figure 3.5.3: Construction of a Multiresolutional Reeb graph. 

The own matching algorithm is based on coarse-to-fine strategy. The nodes of the Reeb 

graph with the lowest resolution are taken as a start point and by comparing individual nodes in 

the graphs are created pairs of the nodes which are compared in more detail (the Reeb graph 

with bigger resolution is used). Detailed description of the procedure is described in the 

mentioned paper. 
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4. Multidimensional indexing 

In practice, databases are very large. They can contain thousands and more objects. 

Naturally, growing number of the objects leads to longer time needed for searching in the 

database. Unfortunately, some standard indexing methods that accelerate searching in the 

database cannot be used because they are only proposed for one-dimensional case and the 

feature vector (in our case) generally represents an object in n-dimensional space. A solution is 

used a so called multidimensional access methods. At present, many methods exist. Detail 

description of methods would be very extensive10 therefore an overview and primary 

classification of the method are only mentioned here. 

4.1. Spatial and point access methods 

Geade [22], Seeger and Kriegel [34], [43] present a classification of multidimensional 

access methods which are divided into two fundamental groups: point access methods (PAMs) 

and spatial access methods (SAMs). PAM stores only multidimensional points and SAM can 

store objects that represent a shape, such as lines, polygons, etc. A difference between points of 

view of on the methods is presented in the next subsection. 

4.1.1. Point access methods 

Geade [22] looks at this kind of methods according to their implementation. He reports 

the following classification of them: 

                                                      
10 Detail description of individual methods that are mentioned in this section is presented in 

many publications. A survey of methods can be found e.g. in [22], [10], [25]. 
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• Hashing access methods: they use one-dimensional hashing technique to index 

multidimensional points. The main problem of the methods is to ensure proximity of 

close objects after a projection from multidimensional space. They use heuristic 

techniques and for example, grid file, EXCELL belong to this group. 

• Hierarchical access methods: they use hierarchical data structures to manage point 

data. Many methods belong to this group, such as quadtree, k-d-B Tree, etc. Note 

hybrid methods that are combination of both hierarchical and hashing techniques 

also exist (e.g. Buddy tree, BANG file) and they are classified as hierarchical. 

Seeger and Kriegel [43], [25] classify PAMs according to properties of regions of the 

multidimensional space in which points are mannaged. These properties are: 

• Intervals: the regions have shape of intervals (it means n-dimensional box) or some 

arbitrary polyhedron. 

• Complete: the regions cover compete space or only some part including of points. 

• Disjoint: the regions are pairwise disjoints or they may have muttual overlaps. 

Property 

intervals complete disjoint 
PAM 

X X X 

quadtree (Finkel and Bentley 1974, Samet 
1984), k-d-B tree (Robinson 1981), EXCELL 
(Tamminen 1982), interpolation hashing 
(Burkhard 1983), multidimensional extendible 
hashing (Otoo 1984), grid file (Nievergelt, 
Hinterberger and Sevcik 1984), balanced 
multidimensional two-level grid file (Hinrichs 
1985), interpolation-based grid file (Ouksel 
1985), extendible hash tree (Otoo 1986), 
MOLHPE (Kriegel and Seeger 1986), 
PLOP-hashing (Kriegel and Seeger 1988), 
quantile hashing (Kriegel and Seeger 1989), 
LSD-tree (Henrich, Six and Widmayer 1989) 

X X  twin grid file (Hutflesz, Six and Widmayer 
1988) 

X  X Multilevel grid file (Whang and Krishnamurthy 
1985), buddy tree (Seeger and Kriegel 1990) 

 X X 
BSP-tree (Fuchs, Kedem and Naylor 1980), 
BD-tree (Ohsawa and Sakauchi 1983), BANG 
file (Freeston 1987), hB-tree (Lomet 
andSalzberg 1989) 

Table 4.1.1: A classification of PAMs according Seeger and Kriegel (1990). 
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The table that authors published shows overview of methods that are classified 

according these properties. 

4.1.2. Spatial access methods 

As it was mentioned spatial access methods serve to manage objects with a spatial 

extension (e.g. line, polygons, polyhedrons, etc.) and they are often an extension of PAMs. 

Seeger and Kriegel [43], [25] classify these methods according to a technique (see below) for 

that is used for modification of PAMs (in 1988). Later on, Kriegel et al. (in 1991) added another 

factor for classification – base type (i.e., spatial data types that a method supports primarily). An 

overview of method that are classified according to the mentionad factors is shown in Table 

4.1.2 (taken from [22]). 

 

base type 
technique 

grid cell interval (box) sphere polyhedron

transforma- 
tion 

ZkdB+ tree 
(Orenstein 
1986), 
BANG file 
(Freeston 
1987), 
hB tree 
(Lomet and 
Salzberg 
1989) 

all PAMs except of the BANG 
file and the hB tree  

P tree 
(Jagadish 
1990) 

overlapping 
regions  

R tree (Guttman 1984), 
R* tree (Backmann et al. 
1990), skd tree (Ooi et al. 
1987), GBD tree (Ohsawa 
and Sakauchi 1990), 
Hilbert R-tree (Kamel and 
Faloutsos 1994), buddy tree 
with overlapping (Seeger 
1991) 

sphere tree 
(Oosterom 
1990) 

P tree 
(Schiwietz 
1993), 
KD2B tree 
(Oosterom 
1990) 

clipping  

EXCELL (Tamminen 1982), 
extended k-d tree 
(Matsuyana et al. 1984), 
R+ tree (Sellis et al. 1987), 
buddy tree with clipping 
(Seeger 1991) 

 
cell tree 
(Günther 
1988) 

multiple 
layers  

multi-layer grid file (Six and 
Widmayer 1988), R-file 
(Hutflesz at al. 1990) 

  

Table 4.1.2: A classification of SAMs according Kriegel et al. (1991). 



 Page: 42

In the table, four techniques that can be used to modify PAMs are mentioned. They 

have following meaning [22], [25]: 

• Transformation: geometric objects are mapped into points in a higher-dimensional 

space (e.g. a rectangle in E2 can be mapped as a point in E4) then the classical PAMs 

can be used. 

• Overlapping regions: it is based on decomposition of the space into a hierarchical 

structure. Usually, objects are stored in the leaves of the hierarchical structure and 

intermediate nodes serve to facilitate searching. 

• Clipping: it is use also hierarchical data structure as overlapping regions technique. 

However, it ensures by clipping that intermediate nodes are non-overlapping, i.e., if 

an object is clipped then its parts are stored in several nodes. 

• Multiple layers: it partitions the space into more independent parts that are referred 

as layers. The layers are managed in a hierarchical structure and each one may use a 

different algorithm to partition of the space. 

Detail description of the individual techniques is presented in Geade [22]. The basic 

principles of the methods (PAMs and SAMs) are also presented there and it can serve as a 

primary report for introduction into multidimensional indexing issue.  

4.2. Vector and metric space methods 

Castelli [10] presents another point of view on multidimensional access methods. He 

divides the methods on vector space methods and metric space methods where the criterion is 

approach of indexing. The following subsections describe both categories in more detail. 

4.2.1. Vector space methods 

The methods that index individual items of database are called vector space methods. 

They are further subdivided into four following categories (taken from [10]): 

• Non-hierarchical methods: two classes of the methods belong to this subcategory. 

The first class is based on mapping multidimensional space onto the real line be 
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means of a space-filling curve (e.g., Peano curve, z-order, Hilbert curve) and on 

indexing the mapped records by a one-dimensional indexing structure. The second 

class is based on partitioning the space into a predefined number of non-overlapping 

fixed-size regions (e.g., grid file). 

• Recursive partitioning methods: they recursively divide the space into smaller 

regions. The resultant hierarchical structure is usually represented as a tree (e.g., 

R tree, SS tree). 

• Projection-based methods: they are indexing structures that support approximate 

nearest-neighbor queries. They can be subdivided into two further classes where the 

first class supports fixed-radius queries, i.e., the queries that returns only results with 

distance smaller than the fixed radius from a query point (e.g., see [20]), and the 

second one supports (1+ε) queries, i.e., the queries that return results whose distance 

is guaranteed to be less than 1+ε times the distance of the exact result 

(e.g., see [33]). 

• Miscellaneous partitioning methods: These methods belong to vector space 

methods but they cannot be categorized into previous categories, such as CSVD 

method, Onion method, or Pyramid method (see [10]). 

Each subcategory of the vector space methods has some advantage and some 

disadvantage. Castelli [10] presents interesting table in which he compares suitability of the 

methods for retrieval systems according to two factors: type of the query and dimensionality of 

the feature vector (see Figure 4.2.1).  

 

Figure 4.2.1: An illustration of a usage of vector space methods in relation to dimensionality 

of the feature vector and the type of query (taken from [10]). 
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4.2.2. Metric space methods 

Matrix space methods are based on indexing the distances between database items. 

They ca be used e.g. where the selected metric is very computationally expensive or where the 

distances are provided with data set. Such as vector space method, they are subdivided into two 

basic categories (taken from [10]): 

• Methods indexing metric structure:  these methods are based on indexing metric 

structure of the space. Two main approaches exist. First approach uses so called  

Voronoi regions (each point of feature space can be associated with the closest 

database item, this collection of associations is called Voronoi region) and for 

example, cell methods, M tree,  or X tree belong to this group. The second one uses 

an ordering list. It is the list of all the pairwise distances between database items that 

is sorted in ascending order of distance. 

• Vantage-point methods: they use a tree structure for searching in the space where 

the tree is generated with the help a vantage points. Typical example of this group is 

e.g., vp tree. 

These types of methods also can be compared according to their suitability for retrieval 

systems, such as the vector space method. Figure 4.2.2 shows dependence of the methods on the 

type of queries and dimensionality of the feature vector. 

 

Figure 4.2.2: An illustration of a usage of metric space methods in relation to dimensionality 

of the feature vector and the type of query (taken from [10]). 
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5. Future work and our goals 

3D data feature extraction is introduced in third chapter. It was shown that it is not 

simple issue and it can be solved by different approaches. In the next period I will go more 

deeply in the field 3D data feature extraction method and I would like to develop a novel 

technique in which in which would be used my knowledge from computer graphics, 

mathematics and another fields with which I have met during my studies.  

My existing work up to the present has been pointed on generating triangulations by 

brutal force. Perhaps, it could seem a little bit different from this topic, however, my last report 

describes a method in which a technique comparing a similarity of subtrees in a generated tree 

are used (see [ii], [iii]). The given knowledge and experience with brutal force will be used in 

my future work as well. 

My main goal is to propose a method that would combine properties of methods based 

on a histogram and a topology features. More exactly, two methods based on curvatures and 

Reeb graphs (see chapters 3.2 and 3.5) that just represent both kinds of features are introduced 

in this report. I plan to use them as fundamental approaches for proposing a new method. In the 

first period, it will be supposed that 3D models are represented by triangular meshes without 

singularities. Of course, this condition restricts the use of the method only for a small typical 

collection of data. However, if the properties of our method are good then we will try to expand 

the methods for more general 3D data sets. It is expected that the final methods will be 

convenient for free-form data. 
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Appendix B – Stays and Lectures Abroad 
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February– May 1999 University of Ioannina, Greece. 

12.6.2002 – 23.6.2002 University of Limoges, France. 

 

 

Lectures: 

19.6.2002 Triangular Mesh Generation with Required Properties by

The Brute-force Approach, University of Limoges, France. 

 

Conferences: 

25.9.2002 – 29.9.2002 ICCVG 2002, Zakopane, Poland. 
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Appendix C – MPEG-7 Standard1 
 

The Moving Picture Coding Group (MPEG) is a working group of the Geneva-based 

ISO/IEC standard organization (International Standards Organization/International 

Electro-technical Committee). Its main goal is to develop international standards for 

compression, decompression, processing, and coded representation of moving pictures and 

audio.  

Nowadays five standards exist (and/or develop) and MPEG-7 standard just belongs to 

them. Formally, it is named Multimedia Content Description Iner-face. Note that it does not 

standardize the extraction of audiovisual descriptions and it does not specify any program that 

should be used. It only describes multimedia content so users can search, browse, and retrieve 

that content efficiency (see Figure C.1).  

Feature Search
Extraction Engine

MPEG-7
Description

standardization

 

Figure C.1: The Scope of MPEG-7 (taken from [60]). 

Main goal is to standardize [60], [61]: 

• A set of descriptors: A descriptor (D) is a representation of a feature that defines 

the syntax and semantics of the feature representation. 

• A set of description schemes: A description scheme (DS) specifies the structure 

and semantics of the relationships between its components, which may be both 

descriptors and description schemes. 

• The Description Definition Language (DDL): It is a language that specifies 

description schemes. MPEG-7 uses XML Schema Language for content description 

                                                      
1 Detail description of the MPEG-7 standard is possible to find on homepages: 

http://www.mpeg-industry.com, or http://mpeg.telecomitalialab.com/standards.htm. 



 Page: 53

(MPEG-7 DDL). Note the DDL requires some specific extensions to XML Schema 

Language to satisfy all the requirements of MPEG-7. 

• One or more way to encode descriptions:  A coded description is a description 

that’s been encoded to fulfill relevant requirements such as compression efficiency, 

error resilience, and random access. 

 

Figure C.2: The relationship among MPEG-7 main elements (taken from [60]). 

Currently, MPE G-7 concentrates on the specification of description tools (i.e., 

Descriptors and Description Schemes) together with the development of the MPEG-7 reference 

software that is known as XM (eXperimentation Model). Several working groups exist that are 

interested in different parts of the MPEG-7 standard. The MPEG-7 Visual group belongs to 

them. It develops description tools as Color, Texture, Shape, Motion, Localization, and Face 

recognition, where each category consists of next elementary descriptors. From this set of tools 

the Shape description tool is can be used for describing of 3D models, therefore, the next text is 

only dedicated to it.  

As it was mentioned before, the Shape description tool is proposed to the description of 

the shape of objects. It further consists of three shape descriptors: Contour Shape, Region 

Shape, and Shape 3D.  

The Contour Shape descriptor captures characteristic shape features of an object or 

region based on its contour. It uses so-called Curvature Scale-Space representation, which 

captures perceptually meaningful features of the shape. 
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The Region Shape descriptor can describe diverse shapes efficiently. It may consist of 

either a single region or a set of regions that also can describe an object with some holes. Some 

examples of those objects are illustrated in the Figure C.3. 

 

Figure C.3: Some examples of shapes (taken from [60]). 

The 3D Shape Descriptor considers that 3D objects are represented as polygonal 

meshes. Therefore, it provides an intrinsic shape description of 3D mesh models. It exploits 

some local attributes of the 3D surface. 



 Page: 55

Appendix D – Reeb graph 
 

Topological description of 3D models belongs to interesting problems of computer 

graphics. One of many solutions is to use so called Reeb graph that can represent the skeleton of 

3D models. However, some terms have to be introduced before describing the Reeb graph.  

In the 1930’s M. Morse proved so called Morse theory. Originally, Morse theory was 

applied on a class of mathematical objects called smooth manifolds (such as a plane, a circle, 

the surface of a sphere, etc.) and provides a tool for understanding the topology of objects with 

limited information. Briefly, this theory is defined in the following definition (taken from [57], 

[58], [64]). 

 

Definition D.1: Let f(x) be a real function defined on a manifold M and x a point of M. For any 

point x near a given point x0 the value of function f(x) with infinitely many derivatives at x0 can 

be expressed by the Taylor series: 
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Suppose x0 = 0 (i.e., it represents the origin), then the equation can be simplified: 
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If c0(0) = 0 and c1(0) is different from zero, then for x close to origin the equation (D.3) 

can be approximated as: 

 xcf ⋅≈ )()( 01 xx . (D.4)

That point is called regular point of f(x). 

If c0(0) = 0, c1(0) = 0, and c2(0) is different from zero, then for x close to origin the 

equation (D.3) can be approximated as: 

 2
02 )()( xcf ⋅≈ xx . (D.5)

That point is called non-degenerate critical point of f(x). 

If c0(0) = 0, c1(0) = 0, c2(0) = 0, and c3(0) is different from zero, then for x close to 

origin the equation (D.3) can be approximated as: 

 3
03 )()( xcf ⋅≈ xx . (D.6)

That point is called degenerate critical point of f(x). Note that degenerate or 

non-degenerate critical point is also called a singularity of the function f(x). 

 



 Page: 56

Definition D.2: (Morse function) Let f(x) be a real smooth function defined on a smooth 

manifold M. The function is called the Morse function iff all of its critical points are 

non-degenerate. A critical point is non-degenerate if the Hessian matrix2 H of f(x) is 

non-singular (i.e., det(H) ≠ 0) at that point. 

 

Theorem D.1: (Morse’s lemma) If x0 is a non-degenerate critical point of a function f on a 

manifold M, there is some open neighborhood of x0 in M and a set of local coordinates 

x0 = [x1, … xn]T such that, in these coordinates, the function has the form f(x) = f(x0) - (x1)2 - … -

-(xk)2 + (xk+1)2 + … + (xn)2 where k is called the index of x0  (the prove of this theorem can be 

found in [59]). 

 

Briefly, if f is a function of more than one variable its local geometry near a 

non-degenerate critical point looks like a saddle, since the graph of the function is a surface that 

may bend in different directions at a given point. Since the critical point is non-degenerate, this 

saddle must curve downward in k coordinate directions and upward in the remaining directions.  

Morse theory guarantees that a space topologically equivalent to the manifold can be 

constructed by attaching a finite number of primitive cells where each cell is associated to a 

type of critical point. However, these cells do not describe surface of 3D object completely. 

Reeb [62], [63] tries to expand the Morse theory and he proposed so called Reeb graph 

that codes information about the evaluation and the structure. This graph can be defined as 

follows (taken from [24], [57], [58]). 

 

Definition D.3: Let  µ : C → R be a continuous function defined on an object C. The Reeb 

graph is the quotient space of the graph of µ in C × R by the equivalent relation 

(X1,µ(X1)) ∼ (X2,µ(X2)), which holds if and only if µ(X1) = µ(X2) and X1, X2 are in the same 

connected component of µ-1(µ(X1)). 

 

Practical application of the Reeb graph for description of the topology of a 3D object is 

shown in the Figure D.1. The function µ represents the height h of the object, where the 

function has a minimal value at the bottom of the figure and a maximal value in the top of the 

figure (see the arrow in the figure). The critical points represent nodes in which the graph is 

bifurcated or connected. The structure of the branches can be obtained by calculation of the 

components (contours) between critical points such as shown in the figure.  

                                                      
2 The elements of Hessian matrix are second order partial derivatives f(x), i.e. hij = ∂2f(x) / ∂xi∂xj. 
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Figure D.1: An example of the Reeb graph (taken from [57]). 

Of course, the height function is not ideal for feature extraction because it has not any 

desired properties (e.g., invariance to transformation, etc.). It has been only taken for illustration 

of behavior of the Reeb graph. Generally, more complex functions are needed that satisfy all 

desired properties. A good example is the function based on calculation of geodetic distance that 

Hilaga [24] used in his work (see 3.5 section for more detail).  
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Appendix E – My future work 
 

The fifth section of the work is dedicated to short description of my future work. As it 

was mentioned there, our goal is to contribute to the development of a new method for feature 

extraction of 3D objects.  

Nowadays, many methods exist. However, an ideal method has not been developed yet. 

The existing methods try to describe 3D objects by a feature vector that would have ideal 

properties as invariance to transformations, accuracy of description, quick to compute, etc. (see 

the introduction of the third section of my work). The professor Thomas A. Funkhouser from 

the Princeton University belongs to the most respected expert working in this field. His group 

has developed several methods for feature extraction of 3D objects that are based on different 

mathematical background (the methods that are described in the 3.4 and 3.5 section belong to 

them). All methods represent the feature vector by a histogram of some measured values. 

Therefore, according to classification of the methods (see the introduction of the third section) 

they belong to the group of histogram based methods.  

An advantage of histogram based methods is that feature vectors can be quickly 

compared mutually. However, on the other hand, these methods cannot estimate local features 

of the surface of the 3D object. A solution of this drawback can be in use of mean and Gaussian 

curvatures for describing 3D objects. The values of curvatures can classify the local features of 

the surface and so they can describe the object in more detail (see the 3.2 section). Perhaps it 

can seem as an ideal method, however, it has also any disadvantages. One of them is higher 

sensitivity to noise. During scanning of a 3D object some error can occur and this inaccuracy 

exhibits in calculation of the curvatures. In this moment, a topological based methods offer as a 

solution. These methods describe the topological structure of 3D objects and selection of a 

suitable method from this group can lead to smaller sensitivity to noise. A good example of this 

method is the Reeb graph (or his modification) that can describe the skeleton of 3D objects (see 

3.3 section and appendix D). However, this approach has also some drawbacks such as time 

complexity of the methods and of the comparing similarity of the graphs, etc. 

When we sum previous paragraph each method has some advantages and 

disadvantages. Our goal is to propose a new method that would combine advantages of the 

object extraction computed by the curvatures and by a topological based method (as well Reeb 

graph, or possibly another representation). This method should be fast, invariant to 

transformations (such as rotation, translation, scale) and less sensitive to a noise. In the first 

step, it is supposed that objects are represented as triangular meshes without singularities (i.e., 

manifold objects). This condition is very restrictive to collections of 3D data that are accessible 

at present. However, if our method has good properties for this restricted group of objects we 
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could continue to expand the method for more general 3D data sets. It is expected that the final 

method will be convenient for free-form data, too. 

It can be seen that the design of the completed retrieval system is not easy and the 

problem of feature extraction is not the only problem that has to be solved. Practically, it means 

that a team of people that are interested in individual issues would be needed. Fortunately, 

another alternative exists. It is based on use of MPEG-7 standard (see appendix D). In the word, 

many research centers deal with individual problems (such as query processing, 

multidimensional indexing, etc.) and the MPEG-7 can serve as a bridge that standardizes 

interface among them. In this moment, the design of the retrieval system can be seen as a 

connection of those parts where one of them just can present our method. The MPEG-7 is the 

powerful tool and its employment offers the chance to propose a retrieval system in which we 

only could be interested in the issue of 3D object feature extraction. It is just our goal that we 

would like to reach. 
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