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Abstract 
A new trend in the usage of functional modeling in computer science has been 
formed during several last years. One of the basic fields developing in a lot of 
departments is modeling with the implicitly defined objects. The implicit 
definition (in contrast to the parametric definition of the object) is the most 
compact description of the model, which exactly defines the object surface 
(volumetric data). One of the basic modeling methods is modeling with the 
Boolean operations. The Boolean operations allow creating the CSG tree 
structure from the implicitly defined objects. CSG tree can be further used in the 
visualization methods. Visualization of an implicitly defined object is possible by 
using several methods. One group of these methods represents direct methods 
like ray tracing or ray casting, in the second group belong surface 
approximation methods with triangle mesh like Marching cubes or Marching 
tetrahedra. Since, this kind of description has many benefits, there is 
a tendency to represent the objects described by triangle mesh with implicit 
equation. Area of the implicit modeling is very large. 

This offered work contains an overview of methods used for implicitization of 
objects defined by the polygonal mesh or point-cloud data. The mathematical 
methods for implicitization are briefly introduced, too. The main goal of the 
research is oriented to the Radial Basis Function method. Basic aspects, 
possible solutions, advantages and disadvantages of presented algorithms are 
discussed. The outlook of our previous work and future work is presented.  
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Implicit surface 
 

1 Introduction 
 
Implicit surfaces are used in computer graphics science for very long time. The first 
complex shapes that were created using implicit functions appeared nearly 20 years ago. 
The meaning of implicit surfaces has significantly increased in recent years. The implicit 
surfaces can be used for object description in space of any dimension. In this paper we will 
operate only in 2 and 3 dimensional space. All objects can be defined by particular 
mathematical form. Implicit surfaces are becoming more and more popular in computer 
graphics and object or models expressed by the implicit equation are good opponents to 
objects defined by parametric equations. 
 

1.2 Object description 
A surface O of an object can be represented implicitly by a set of points, which satisfy 
 
 ( ){ }cpfpO =ℜ∈= :3  (1)

 

The roots of the equation 0)( =−cpf  determine a set of points and represent the surface of 
the implicit object. It means that implicit surface is the set of the solutions of an equation 

0)( =pf . The function given a point p , returns scalar value c  that specifies whether the 
point is inside, on boundary, or outside the shape that is being described. We will use 
positive function values, 0)( >pf , to mean that the point p  is inside a shape, and 

0)( <pf  will mean that the point is outside. Note that there is used notation 
),,( zyxp = for points 3ℜ∈p . 

An implicit volume is the set of the solutions of an inequality of the form 0)( ≥pf  and 
the ambient space in the form 0)( ≤pf . It is possible to introduce an inverse definition of 
implicit volume and the ambient space, which is sometimes used in other literature. The 
inverse definition just changes the signs in the implicit equation defining object O. 

We can take the sphere object as an example of the object definition. The sphere may 
be described in both parametric and implicit form. The parametric form is  
 
 ( ) ( ) [ ] [ ]πβπαβααβαβα 2,0,,0,sincos,sin,coscos, ∈∈=f   (2) 

 
and the implicit form is  
 
 ( ) 1,, 222 −++= zyxzyxf  (3)

 

It is obvious, that the implicit representation of sphere is more compact, than equal 
parametric form. It can be seen from equation (3), that there are positive values outside 
object and negative values inside the unit sphere. There is used inverse definition of 
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implicit surface in the following text, therefore we are going to introduce the inverse 
definition to equation (3). 
 
 ( ) 1,, 222 +−−= zyxzyxf . (4)

 
Both parametric and implicit surfaces may represent complex objects. For implicit 
surfaces, complexity can be specified by an arbitrarily complex black box function or by 
an algebraic function with an arbitrary number of terms. Because implicit surfaces 
conveniently define volume, they are used frequently in CSG-based solid modelers. 
 

1.3 Modeling 
 

1.3.1 CSG 
Constructive solid geometry represents an important class of implicit models. CSG 
modeling is a hierarchical modeling where all objects are defined in terms of other objects. 
CSG objects are built from point sets that are defined by primitive functions (primitives) 
and combined by Boolean operators. The primitives can be polygons, simple geometric 
objects, such as the sphere or more complicated elements, such as parametric patches or 
blended objects. Operators and the primitives make the hierarchical structure called CSG 
tree. 

  
Figure  1: CSG primitives. 

 
The basic primitives are nodes in a CSG tree. The primitive in a node can be simple 
geometric object, such as sphere, torus, cone [Figure  1] or very complex object but finally 
a CSG tree is a single implicit model [Figure  2]. 
 

 
Figure  2: Complex model and its CSG tree. 
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More complicated parts of a CSG tree are operations which provide connection of all 
nodes (primitives) and representation of their modifications. The basic operations are 
Boolean operations as union, intersection, subtraction or negation. The definitions of those 
operations can differ and depend on the desired degree of continuity. The simplest forms of 
Boolean operations are 
 
Union ),max( 2121 ffff =∪ , (5)

Intersection ),min( 2121 ffff =∩ , (6)

Subtraction ),min( 2121 ffff −=− . (7)

 

Equations (5)(6) and (7) are very convenient for calculations but are not C1 continuous for 
f1 = f2 [Pasko95]. Figure  3 shows an example of the union, intersection and subtraction 
operator applied to two spheres [Dekkers97]. 
 

 
Figure  3: Set operations. [Dekkers97] 

 
We have to use the the following definition of Boolean operations, if Cm continuity must 
be achieved [Pasko95]: 
 

Union 22
2

2
1

2
2

2
12121 ))((

m

ffffffff ++++=∪ , (8)

Intersection 22
2

2
1

2
2

2
12121 ))((

m

ffffffff ++−+=∪ . (9)

 
The basic Boolean operations can be extended to the definition mentioned above (Eq. 
(5),(6),(7) or (8),(9)) can be added transition function (10)[Pasko95]. The transition 
function is called the Blending function [Figure  4]. The Blending function definition can 
use the analogy of spatial temperature distribution: if one moves away from a heat source, 
the temperature drops [Wyvill86]. Different definition of the Blending function can be 
found in [Pasko95] or [Dekkers97]. 
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Figure  4: Blending function at the two spheres. [Dekkers97] 

 
A transformation can be used like an operation in CSG tree, too. Position, form and 
parameters of the primitive can be modified with rotation, scaling, shifting, twisting etc.  

The CSG tree is a structure useful in a lot of modelers and CAD systems. This structure 
gives us information about hierarchy of a model and can be used in visualization methods, 
skeleton (convolution) modeling or any manipulation with surface (collision detection). 
More information about some modelers can be found in [Adzhiev99], [Adzhiev00], 
[HyperFun99], [Pasko93], [Uhlir03], [Uhlir02] or [Uhlir01]. 
 

1.3.2 Skeleton 
Skeleton, a standard CAD representation, has become a popular construct for implicit 
design. A typical skeleton is hierarchical. Each skeletal element, or limb, may support one 
or more descendent limbs. The limb not descendent from any other is the root of the 
skeleton. The connection point between limbs is a joint. A skeleton is often represented as 
a direct, acyclic graph. A skeleton may be constructed interactively or digitized from 
a physical object. It may be manipulated by changing joint transformation.  

The primitive is defined as those points that are at a particular distance from the 
skeletal element (for example, the skeleton of a sphere is its center). Finally there exist two 
ways to define an implicit surface from a skeleton.  

First is a distance surface [Bloomenthal97]. A distance surface is a surface that is 
defined by distance to some set of base surfaces (or skeletal elements) such as points, line 
segments, polygons, or any curve, surface or volume. Its means that the field value at 
a given point P is calculated from the distance between P and the closest point on the 
skeleton.  For a curve is a distance a generalized cylinder in three-space. Blending 
the contributions of several skeleton elements is then usually performed by summing their 
field contributions.  

Second way is a convolution surface. In this representation, the field value at a point 
P is calculated by integrating all the contributions from the different points on the skeleton. 
Smooth complex surface can be created by summing the integrals if individual field 
contributions of relatively simple skeletal elements [Bloomenthal91], [Shersyuk99]. 

More information about skeletal modeling in a field of implicit surfaces can be found 
in [Angelidis02], [Bloomenthal97], [Bloomenthal91] or [Rigaudiere99]. 
 
 

Blending Union 

),(),max( 212121 ffdffff +=∪  

2

2

2

2

1

1

0
21

1

),(









+








+

=

a
f

a
f

affd  (10)
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1.4 Visualization 
Visualizing implicit surfaces typically consists of finding the zero-set of f, which may be 
performed either by polygonizing the surface or by direct ray tracing. A lot of techniques 
exist for the visualization and the rendering of the implicitly defined surfaces. These 
techniques can be divided into two categories: direct, indirect. 
 

1.4.1 Direct 
These methods make the direct visualization of implicitly defined object. Rendering 
directly from the implicit model reduce the volume data, and it is possible to zoom in on 
fine detail in a model without losing quality. If we are talking about direct method we 
assume ray tracing. Although slower, ray tracing provides a direct, accurate, and elegant 
method for investigating a much larger variety of implicit surfaces. In ray tracing 
processing must be find the intersection even if the original model is not defined implicitly. 
If we start with an implicit model, we already have this equation in principle. Implicit 
model can be CSG tree too. CSG tree is a single implicit model and, as such, it can be ray 
traced directly. In principle, we must find the intersection of ray with every primitive in the 
CSG model. For making pictures, we need only the first intersection with the CSG tree. 
The complete classification of the CSG tree is not needed. The ray tracing method 
optimized to find the first valid intersection quickly could be found in [Wyvill87]. Another  
ray tracing method can be the sphere tracing method [Hart96]. This technique for rendering 
implicit surface uses geometric distance and the function must be continuous and 
Lipschitz. Scan-line rendering technique [Hubb98] works with Lipschitz condition, too. 
This technique is also viable for fast prototyping of implicit surface. 
 

 
 

Figure  5: An example of modeling with convolution surfaces. The left image is a skeleton and the right 
image is a ray-traced convolution surface [Shersyuk99] 

1.4.2 Indirect 
Indirect methods polygonize the implicit surface to a given tolerance, allowing the use of 
existing polygon-rendering techniques and hardware for interactive inspection. 
Polygonization of an iso surface of a function of three variables (or implicit surface) 
includes sampling the function at the selected points, estimating the position of the mesh 
vertices, and connecting them to the polygons. Although polygonization transforms 
implicit surfaces into a representation easily rendered and incorporated into graphics 
systems, polygonizations are typically not guaranteed and may not accurately detect 
disconnected or detailed sections of the implicit surface. Production-rendering systems 
tend to polygonize surfaces, resulting in large time and memory overheads to represent 
accurately an otherwise simple implicit model. For many implicitly defined surfaces, 
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polygonization followed by polygon rendering is more efficient than direct rendering 
methods. 

Jules Bloomenthal [Bloomenthal97] introduced the basic method for the surface 
polygonization. His method is “walking” on the implicit surface and evaluating the implicit 
function in node of the regular grid which divides space of evaluation. The visualization 
can be made with e.g. marching cubes or marching tetrahedra together with OpenGL. 
Interesting method for creating set of triangles from isosurface is marching triangles 
[Hartmann98, Cermak02a, Cermak02b], too. Some of these methods are used without any 
modification. It means improvements in accurate polygonization of implicit surface with 
sharp features [Ohtake01], adaptive sampling [Velho96] where highly curved parts are 
detected and then these cells are subdivided [Bloomenthal88] or optimization of the 
methods in the performance and the storage [Wyvill86]. 

Some of the visualization methods are based on application of a deformation on the 
basic surface (sphere etc.) to transform it into the required surface [Overveld93]. 
 

 
 
 

Figure  6: Genus polygonized by the marching triangles method (left) and marching cubes method 
(right). (Marching triangles [Hartmann98], Marching cubes [Bloomenthal97]) [Cermak02a]
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Implicitization  
There will be discussed methods for creating implicit representation of arbitrary objects in 
this chapter. There exist two ways for a creation of implicit representation of object.  

First way uses parametric expression of a primitive or a patch on the beginning as an 
input. The implicit representation of the object is generated by using symbolic operations 
for the parametric expression of object. The group of these methods is called Variables 
elimination methods.  

The second way starts with polygonal mesh or point-cloud data. Iso-value, which 
provides information about particular point position, can be calculated from this 
representation directly. Then iso-value means, whether the point is inside, outside or on the 
surface. Below are analyzed basic properties of symbolic methods and will be elaborated 
method for generating implicit representation from polygonal mesh or point-cloud data. 
 

2.1 Variables elimination methods 
Elimination is a mathematical discipline for removing variables from system of equations. 
The results of these work has become very popular in the last 15 years. In [Hoffmann93] is 
made classification of the resultant method, the Gröbner basis method, and the Wu-Ritt 
method at the most well-know and major competing approach. 
 

2.1.1 Gröbner basis method 
This method is based on finding a Gröbner basis for an ideal I. The ideal I is an ordered set 
of polynomials (polynomial ideal), which meets a requirement of existence a Gröbner 
basis. Seeking reduced Gröbner basis bear on seeking exact solution of polynomial 
equations system. If polynomial equations system has a solution then the variables of 
system are eliminated and the original set of equations is transformed. The transformed set 
of equations can be easily solved. Seeking of the Gröbner basis for ideal I can be done with 
Buchberger’s algorithm. This algorithm has a lot of modifications, because searching of 
the Gröbner basis is very computational expensive. 

The transformation of the parametric expression of affine variety to the implicit can be 
successfully solved by using the Gröbner basis of an ideal. There exist two ways for 
solving transformation. These ways are based on a form of the variety entry. The variety 
can be entering either polynomial parameterization or rational parameterization.   
 

Ideal 
Set [ ]nxxkI ,,1 K⊂  is called an ideal in [ ]nxxk ,,1 K  if the following two conditions are 
true: 
 

1. for all polynomials Igf ∈, , it is necessary that Igf ∈+ and 
2. for all polynomials If ∈ , it is necessary that Ifg ∈  for any [ ]nxxkg ,,1 K∈ . 

 
Let [ ]ns xxkff ,,,, 11 KK ∈ . Consider an ideal I that contains all of sff ,,1 K . The set 

[ ]{ }ni
s
i iii xxkgfgI ,,|1 K∈∑= =  is an ideal in [ ]ni xxk ,,K  and it is the smallest ideal in 

[ ]ni xxk ,,K  containing the set { }sff ,,1 K  . This set is called a generating set or a basis for 
the ideal I. 
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Ordering of the polynomials 
For the computation of the Gröbner basis the ordering of the terms in a polynomial is 
essential. Of interest is a total ordering on terms which is denoted by p  and which has 
following properties: 
 

1. The ordering is compatible with a multiplication. For example, given tree terms 
1, tt and 2t , if 21 tt p  then 21 tttt p . 

2. For finite polynomials there can be no strictly decreasing infinite sequence of 
terms such as Kff 21 tt . 

 
The following two ordering schemas are the most common ones. 
 

Lexicographic ordering 
It is ordering of the terms in a dictionary; its symbol is lp . For example, given two terms t1 
and t2 which are made up with two variables x1 and x2 where 21 xx lp  the following 
lexicographical ordering results: 
 
 KppppKppppKpppp llllllllllll xxxxxxxxxxxxx 2

2
2
1

2
21

2
22

2
1212

3
1

2
111  (11)

 
Sometimes a reverse lexicographical ordering is used, too. 
 

Degree ordering 
This method first order the terms by their degrees and equal degree terms are then ordered 
lexicographically. If the same example like in case of lexicographical ordering is used, 
then ordering result is: 
 
 Kppppppppppp ddddddddddd xxxxxxxxxxxxx 3

2
2
212

2
1

3
12

2
221

2
1211  (12)

 

Reduction of the polynomials 
For the calculation of the Gröbner basis it is important to perform a polynomial reduction. 
Before the polynomial reduction can be performed, an ordering p  of the terms has to be 
chosen. With the ordering p  the following components of a polynomial are defined: 
 

Leading monomial of a polynomial 
For every polynomial ( )nxxxf ,,, 21 K  the leading monomial is given by the largest term in 
f under p  which has non-zero coefficients. This monomial is denoted by LM(f). 
 

Leading coefficient of a polynomial 
The coefficient of the leading monomial 1is then the leading coefficient which is denoted 
by LC(f). 
 
                                                 
1 Often this term is called the head term of the polynomial. 
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Leading term of a polynomial 
The leading term of a polynomial is given by the multiplication of leading monomial and 
leading coefficient and is denoted by LT(f). 
 
 )()()( fLMfLCfLT =  (13)

 

Tail of a polynomial  
The tail term of a polynomial ( )nxxxf ,,, 21 K  which is denoted by TT(f) is given by 
splitting the leading term from the polynomial f. 
 
With the definitions above a polynomial ( )nxxxf ,,, 21 K  can be rewritten in the following 
manner: 
 
 )()()()()( fTTfLMfLCfTTfLTf +=+=  (14)

 
 

Polynomial reduction 
Given two polynomials ( )nxxxf ,,, 21 K  and ( )mxxxg ,,, 21 K , g reduces to another 
polynomial h with respect to f, if and only if the LT(g) can be deleted by a subtraction of an 
appropriate multiple of the polynomial f. This reduction is denoted by hg f→ . 
 
Therefore, the reduction hg f→  is possible if and only if there exists a scalar b and 
a monomial u such that h = g – buf where b = LC(g)/LC(f) and u = LM(g)/LM(f). 
 

A polynomial g reduces with respect to a set (or basis) of polynomials 
{ }sfffF ,,, 21 K=  if g is reducible with respect to one or more polynomials in F. In this 

case the reduction of one polynomial can lead to a whole sequence of reductions, which 
has to end after a finite number of reductions. It also can be shown that the subtraction of 
each polynomial ig  in the sequence of reduction and the polynomial g itself is an element 
of the ideal ( )sfff ,,, 21 K . 
 
The polynomial ig , which is obtained after applying an i-times reduction to the 
polynomial g, is called the normal form respect to a set of polynomials F. 
 

S-polynomials 
This leads to another type of polynomial. These are called the S-polynomial. For two 
polynomials f and g the S-polynomial is defined: 
 

 g
gLT

xf
fLT

xgfS ⋅−⋅=
)()(

),(
γγ

 (15)
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Where γx  denotes the largest common monomial of the leading monomial of the two 
polynomials f and g ( ))(),(( gLMfLMLMCx =γ ) 
 

Gröbner basis  
A Gröbner basis of a set of polynomial is a special basis of their ideal which has the 
property that: 
 

1. every polynomial in the ideal reduces to 0 with respect to the basis, 
2. every polynomial has a unique normal form with respect to the basis. 

 
If is defined a monomial ordering. Final set { }tggG ,,1 K=  of ideal I is a Gröbner basis  
(or standard basis), if  
 
 )()(,),( 1 ILTgLTgLT t =K . (16)

 
We can say that the set { } Igg t ⊂,,1 K  is the Gröbner basis of I if and only if the leading 
term of arbitrary element from I is divisible LT(gi) for any i. 
 
In the first case, where parameterization entering like polynomials can be polynomial 
representation expressed in a form 
 

 
),,,(

),,,(

1

111

mnn

m

ttfx

ttfx

K

M

K

=

=
 (17)

 
where nff ,,1 K are polynomials from ],,[ 1 mttk K  (where k is an arbitrary field). System 
(Eq. (17)) is projection nm kkF →:  defined by  
 
 ))),,((,),,,((),,( 1111 mnmm ttfttfttF KKKK = . (18)

 

Then nm kkF ⊂)( is a subset nk parameterized by Eq. (17). Since )( mkF don’t must be 
affine variety. Solution of the conversion problem from parametric description to implicit 
description is to find minimal variety, which contains )( mkF . So implicitization is 
elimination of parameters from parametric description (Eq. (17)). Final equation contains 
only variables nxx ,,1 K . Variables elimination can be done by a calculation of reduced 
Gröbner basis for an ideal nn fxfxI −−= ,,11 K . For this cope only competent selection 
of ordering variables.   
 
The second way is a rational implicitization. The rational implicitization can be generally 
expressed in a form 
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,
),,(
),,(

,
),,(
),,(

1

1

11

11
1

mn

mn
n

m

m

ttg
ttfx

ttg
ttfx

K

K

M

K

K

=

=

 (19)

 

where nn gfgf ,,,, 11 K are polynomials from ],,[ 1 mttk K . Projection nm kkF →:  can not 
be defined at full mk , because it is necessary to exclude from mk points ),,( 1 mtt K for 
which 0),,( 1 =mi ttg K  for any i. If we denote m

n kggVW ⊂= ),,( 1 K , then  
 

 







=

),,(
),,(,,

),,(
),,(),,(

1

1

11

11
1

mn

mn

m

m
m ttg

ttf
ttg
ttfttF

K

K
K

K

K
K  (20)

 

defines projection nm kWkF →−: . The goal is to find the minimal variety in nk  
including )( WkF m − . In the defined parameterization must be eliminated fractions by 
multiply ith equation by the function ig . Then the equation 01 1 =− ygg nK for nonzero 

ngg ,,1 K on the defined variety is added and the reduced Gröbner base evaluated. 
Elements of the Gröbner basis which does not contain variables ity, , define the implicit 
representation of the given affine variety.   

Gröbner basis was the part of complex mathematical expression and it is used for 
the transformation of a parametric description of an affine variety to the implicit 
representation. More information and the definitions necessary for detail understanding 
of this method are in [Bastl01], [Berchtold00] or [Hoffmann93]. Note, that Gröbner base of 
an ideal can be used also for automatic proving in geometry or robotics. A lot 
of commercial and noncommercial packages for the Gröbner basis solution exist. In the 
example below is showed the usage of Gröbner basis for finding implicit representation of 
torus.  
 

Example 
Parametric expression of torus: 
 

 
urz

tRtury
tRturx

sin
sinsincos
coscoscos

=
+=
+=

 (21)

 
adopt marking 
 
 tsustcuc tutu sin,sin,cos,cos ====  (22)

 
then polynomials in variables zyxscsc ttuu ,,,,,,  are 
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0
0
0

=−
=−−
=−−

u

ttu

ttu

rsz
Rssrcy
Rccrcx

 (23)

 
adding identity  
 

 
011sincos

011sincos
2222

2222

=−+↔=+

=−+↔=+

tt

uu

sctt

scuu
 (24)

 
Reduced Gröbner basis for ideal I generated by the polynomials (22) and (23) contains 9 
elements. Only one from these 9 elements does not contain any variable from tutu sscc ,,,  
and has form  
 

 
02)22(

)22(2)22(22
42242224

22222422222224

=+−+−−+

++−+++−++

RRrrzRrz
yrRzyyxrRzxyxx

 (25)

 
after some operations the form is 
 
 )(4)( 222222222 rzRRrzyx −=−−++  (26)

 
and it is implicit equation of torus. 
 
 

2.1.2 Resultant method 
Term resultant is generally introduced if the question is explored: When have two 
polynomials in ][xk  common divider? A resultant is a characteristic projection variety of 
defined polynomial set to the smaller set of variables. Methods for a resultant evaluation 
can be used for an elimination of some variables subset from starting system of nonlinear 
algebraic equations. Interested feature of a resultant for polynomials in more variables is 
that from 1+n  polynomials it eliminates n variables concurrently. The elimination process 
is not sequential like in case of Gröbner basis. The basic idea of multidimensional 
resultants is conversion of nonlinear elimination problem to the linear. This help to apply 
knowledge of linear algebra and methods for linear equation sets solving. 

There exist several types of resultant. The basic definition of resultants is for two 
polynomials in one variable. It is for example Sylvester’s or Bezout’s resultant. Then 
generalization from two polynomials in one variable to resultants for two polynomials in 
two variables and to resultants for three polynomials in two variables (Dixon’s resultant) is 
performed. Dixon’s resultant can be generalized for case of 1+n  polynomials in n 
variables. Only the Sylvester’s resultant and some notes for the Bezout’s resultant and 
Dixon’s resultant will be given further. More information can be found in [Bastl03] or 
[Berchtold00]. 
 

Sylvester’s resultant 
The main problem is a tendency to find if two polynomials ][, xkfg ∈  have common 
divider. There exist several possible ways how we can find it. For example Euclid’s 
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algorithm can be used or a decomposition of polynomials to product root factors. Or there 
is lemma too, which says if ][, xkfg ∈  and 0)deg( >= nf , 0)deg( >= mg  then f and g 
have common divider if and only if exist polynomials ][, xkBA ∈  such that: 
 

1. Both polynomials A and B are not equal to zero. 
2. A is at most degree 1−m  and B is at most degree 1−n  
3. 0=+ BgAf  

 
Equation 0=+ BgAf  may be re-written to the linear equation set for unknown 
coefficients polynomial A and B. Note, that elements of the matrix depend on coefficients 
of polynomial f and g. Sylvester’s resultant is defined by the next definition. 
 

Definition 
Let ][, xkfg ∈  be polynomials of positive degree in a form 
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then Sylvester’s matrix of polynomials f and g is of type )()( mnmn +×+  and form 
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Empty places represent zeros. Sylvester’s resultant of polynomials f and g is then 
determinant of Sylvester’s matrix and is denoted Res(f,g) also 
 
 )),(Syldet(),(Res gfgf =  

 
To consider Sylvester’s resultant definition, it can be observed that f and g have common 
divider if and only if Res(f,g) = 0. 
Next example shows demonstration of Sylvester’s resultant and comparison with solution 
of the same set using Gröbner basis of ideal method. 
 

Example 
We have polynomials  
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They are polynomials in variable x whose coefficients are polynomials in variable y. 
Sylvester’s resultant for this polynomials is 
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For comparison can be showed solution of the same set of polynomials using the Gröbner 
basis of ideal. For the ideal gfI ,= , reduced Gröbner basis is 
 
 18168,16644324 23462345 +−++−+−++−−= yyyyyyyyyyxI . 

 
It can be seen that resultant directly corresponds to the element of the eliminated ideal I. 
 

Bezout’s resultant 
It is similar to the Sylvester’s resultant that it is defined by matrix (Bezout’s matrix), which 
has defined properties. The creation if Bezout’s matrix is more difficult then the creation 
Sylvester’s matrix but finally the Bezout’s matrix is much smaller (n ×  n). The 
determinant evaluation from the Bezout’s matrix is therefore much more faster. The 
Bezout’s matrix can be obtained from the Sylvester’s matrix by the special transformation. 
 

Dixon’s resultant 
It is a generalization of Bezout’s matrix and Bezout’s resultant for three polynomials in 
two variables. Dixon’s resultant is then generalized to 1+n  polynomials in n variables.  
  

2.1.3 The Wu-Ritt method 
This section gives a brief introduction to the theory of this method. This method is based 
on Wu-Ritt’s approach to find a characteristic set for a nonlinear system of equation. 
A given system of polynomial equations { }mfffS ,,, 21 K=  is transformed into a triangular 
form S’. It is important to note that if the number n of variables is greater then the number 
of equations in a set S (n > m) then the variable set is divided into two subsets: the 
independent variables (denoted by kuu ,,1 K ) and the dependent variables (denoted by 

lyy ,,1 K ).   
Pseudo division of two multivariate polynomials is the key operation in characteristic 

set computation. To perform the pseudo division, the recursive representation of 
a polynomial, which is considered as a univariate polynomial in its highest variable, is 
used. This pseudo division defines a polynomial reduction. 
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A polynomial fi is reduced with respect to another polynomial fj if  
 

1. the highest variable of fi is p the highest variable of fj or 
2. the degree of the highest variable in fj is greather than the degree of the highest 

variable in fi. 
 
If fi is not reduced with respect to fj then fi reduces to r by pseudo-dividing by fj. 
 
A characteristic set Φ  is defined: 
Given a finite set Σ of polynomials in lk yyuu ,,,,, 11 KK , a characteristic set Φ  of Σ  is 
defined to be either 
 

1. { }1g where g1 is a polynomial in kuu ,,1 K or 
2. a chain lgg K1 , where g1 is a polynomial in kuuy ,,, 11 K  with LC(g1), g2 

is a polynomial in kuuyy ,,,, 112 K  with LC(g2), …, gl is a polynomial in 

kl uuyy ,,,,, 11 KK  with LC(gl), such that 
• any zero of Σ  is zero of Φ , and 
• any zero of Φ  that is not a zero of any of the leading coefficients LC(gi) 

is a zero of  Σ . 
 
The optimal algorithm for a characteristic set computation is in [Gallo90]. In this paper, 
parallel and sequential algorithm is introduced. The time complexity of the sequential 
algorithm is O(N2.376) and for the parallel algorithm, time complexity is O(log2 N). 

More information about this method and algorithms for the characteristic set solution 
are in [Gallo90], [Gallo91], [Berchtold00] or [Rege96]. The Characteristic Sets Method 
has been implemented on most Computer Algebra Systems including Mathematica, Maple, 
Macsyma, Axiom etc. 
 

All methods mentioned above haves one common property: if we want to use them to 
convert parametric description of object to the implicit definition, the output from these 
methods is equation. From each method described above we receive implicit equation and 
this implicit equation can be directly used in visualizations methods. These are methods of 
geometric modeling. Slightly different methods can be used in computer graphics, too. 
There is no need to know parametric description of the object. These methods stem from 
knowledge triangular mesh or vertex data set.  

The methods described above do not will be more analyze and use in further work. 
This was only briefly description of these methods. For more details search in publications 
referred in text. 
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2.2 Variational implicit surfaces (RBF method) 
If an object is defined by the implicit equation it is a perfect description of the object. The 
object can be directly visualized by any method (1.4) from the implicit form. The object 
can be also stored in its implicit form for later use. So it is good to have the object defined 
by the implicit equation. A lot of objects, especially the basic primitives for the CSG 
modeling, are described by the implicit equation. Sometimes we want to use the object 
model, which has no implicit description. There will be described an elaborated method in 
this chapter. This method is based on Variational implicit surfaces, for the implicit 
representation of the object surface. 

2.2.1 Problem definition 
The surface representation problem can be expressed as 
 

Problem:  
Given n distinct points nxxx ,,, 21 K on a surface S in 3ℜ , find a surface S’ that is 
a reasonable approximation to S.  
 
Our approach is to model the surface implicitly with a function f (x, y, z). If a surface S 
consists of all the points (x, y, z) that satisfy the equation 
 
 ( ) 0,, =zyxf  (27)

 
then we say that f  implicitly defines S. Note, that the object can be defined like point-cloud 
data or triangular mesh. If the object is defined like the triangular mesh it helps with a set 
equation definition, but about it later. 
 

2.2.2 Scattered data interpolation 
The shape transformation problem relies on scattered data interpolation. The problem of 
scattered interpolation is to create a smooth function that passes through a given set of data 
points. The two-dimensional version of this problem can be stated as follows: Given 
a collection of k constraint points { }kccc ,,, 21 K 2that are scattered in the plane, together 
with scalar height values at each of these points { }khhh ,,, 21 K , construct a smooth surface 
that matches each of these heights at the given locations. We can think of this solution 
surface as a scalar-valued function f (x) so that f (ci) = hi, for ki ≤≤1 . One common 
approach to solve scattered data problems is to use variational techniques. This approach 
begins with an energy that measures the quality of an interpolating function and then finds 
the single function that matches the given data points and that minimizes this energy 
measure. For two-dimensional problems, thin-plate interpolation is the variational solution 
when using the following energy function E: 
 
 ∫ ++= Ω )()(2)( 222 xfxfxfE yyxyxx  (28)

 

                                                 
2 The constraints points contain all points of the object and additional points. How can be defined additional 
points will be discused later. 
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The notation xxf  means the second partial derivative in the x direction, and the other two 
terms are similar partial derivatives, one of them mixed. The above energy function is 
basically a measure of the aggregate squared curvature of f (x) over the region of interest 
Ω . Any creases or pinches in a surface will result in a larger value of E. A smooth surface 
that has no such regions of high curvature will have a lower value of E. The thin-plate 
solution to an interpolation problem is the function f (x) that satisfies all of the constraints 
and that has the smallest possible value of E [Turk99]. 
 

The scattered data interpolation problem can be formulated in any number of 
dimensions. When the given points ci are positions in N-dimensions rather than in 2-d, this 
is called the N-dimensional scattered data interpolation problem. There are appropriate 
generalizations to the energy function and to thin-plate interpolation for other dimensions. 
Because the term thin-plate is only meaningful for 2D problems, we will use variational 
interpolation to mean the generalization of thin-plate techniques to any number of 
dimensions. 
 

2.2.3 Equation system 
Now we have definition of the problem and we can describe the solution of a variational 
problem. The scattered data interpolation task as formulated above is a variational problem 
where the desired solution is a function, f(x), that will minimize equation (28) subject to 
the interpolation constraints f (ci) = hi. Equation (28) can be solved using weighted sums of 
the radial basis function ( )xφ . 

Scattered data interpolation can be achieved using radial basis functions centered at the 
constraints. Radial basis functions are circularly symmetric functions centered at 
a particular point. Radial basis functions may be used to interpolate a function with 
n points by using n radial basis functions centered at these points. The resulting 
interpolated function thus becomes 
 

 ( ) ( )∑
=

−=
n

j
jj cxxf

1
φλ . (29)

 
In the above equation, jc  are the locations of the constraints, jλ  are the weights and φ  is 
a radial basis function evaluated in radial r defined by the difference of the point in which 
we want to evaluate this function and the constraints. 
  

 
Figure  7: Solution of equation (29) for an arbitrary point x. 
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Figure 7 shows how the scalar value for an arbitrary point x is evaluated. To solve for the 
set of jλ  that will satisfy the interpolation constraints ( )ii cfh = , we can substitute the 
right side of equation (29) for ( )icf , which gives: 
 

 ( ) ( ) i

n

j
jiji hcccf =−= ∑

=1
φλ  (30)

 
Since this equation is linear with respect to the unknowns jλ , it can be formulated as 

a linear system. For interpolation in 3-d space, let { }z
i

y
i

x
ii cccc ,,=  and let ( )jiij cc −= φφ . 

Then this linear system can be written as follows: 
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In some cases (including the thin-plate spline solution), it is necessary to add a first-degree 
polynomial P to account for linear and constant portion of f and ensure positive-
definiteness of the solution. Then equation (29) is modified to equation (32). 
 

 ( ) )()(
1

xPcxxf
n

j
jj +−= ∑

=
φλ  (32)

 
If a polynomial is required, Eq. (31) similarly becomes 
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 (33)

 
If we denote  
 

 
( )jiji ccA −= φ, , nji ,,1, K=  

)(, ijji xcP = ,  njNi ,,1,,,1 KK ==  
(34)

 

then we can write the equation system in a form 
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It can be seen that in this system of equations, the part for solving of the coefficients 
polynomial ( )zyx ppp ,,  was added. Notation of writing of the polynomial to the system 
can be deducted from the matrix notation for the equation of plane determined by three 
points. These points cannot lie on the line.  

The system (33) must be solved and then the equation (29) can be evaluated for an 
arbitrary point in defined spatial coordinates. Discussion about solving the system and 
setting variables of the system is in next chapters. 
 

2.2.4 Solving the system 
The matrix system and solvability of this system must be examined before the discussion 
about methods for solving linear system. Certain that 
 
 nicccf z

i
y
i

x
i ,,1,0),,( K==     (on-surface points) (36)

 
If basis function φ  is known then we know the values of all elements of the matrix B. It is 
obvious, that condition 0=ih  is satisfied for on-surface points thus h is zero vector. So it 
can be easily seen, that it is possible to create the homogeneous system (37), from which it 
is possible to calculate values of vectors λ  and p. 
 

 







=








0
0

p
B

λ
 (37)

 
This system consisting of n (n = n+N+1) homogeneous equations has always zero solution 

)0,,0,0(0 K= . If the matrix of the homogeneous system has rank h, then the system has 
(n-h) linear independent solutions and each solution of this system is a linear combination 
of these (n-h) solutions. Especially if nh = , the system has only zero solution 

)0,,0,0(0 K= . If nm =  (number of rows is equal to number of columns) then the system 
has nonzero solution if and only if the determinant of the system is equal to zero. The 
system matrix B has at the main diagonal zero elements and out of the main diagonal has 
nonzero elements. It can be verified that the rank of our system matrix is equal to n 
(definition below) and its determinant is nonzero. 
 
Definition 
The square matrix )( ijaA =  of rank n is regular if and only if its determinant ija  is 
nonzero. (i.e. the matrix A has rank n) [Rektorys95]. 
 

Now we can say that our system has only one solution, zero (trivial) solution. This 
exact solution of the system is not what we need. This solution cannot be used for 
visualization methods. We need an approximation of such solution, thus it is necessary to 
add perturbation to input data to get non zero solution. This perturbation adds new 
equations to the system, so the system is no longer homogeneous. See next section about 
perturbation in data.  
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LU factorization [Turk99], [Turk01], [Turk02], [Morse01] or [Yngve02] is the mostly used 
method for solving the linear system defined by the equation (33) and (31). This method 
comes from rule that ALU = . The system matrix is decomposed to the upper triangular (U 
matrix) and to the lower triangular (L matrix) with unity elements at the diagonal. It is 
possible for such matrix decomposition to state following: 
 

 
.bUx

bLy
bLUxAx

=
=

==
 (38)

 
Advantage of the LU factorization is that we can solve easily more systems of the 
equations with equal system matrix (A) but different right sides (vector b). Factorization 
can be solved without knowledge right side. Then the total number of operations for LU 
factorization is n3 for such case. If vector b (right side) is known, then there are only n2 
operations needed for LU factorization. Methods like Cholesky factorization [Beatson00] 
or GMRES iterative method [Beatson99] can be also used. 

2.2.5 Perturbation in data 
In order to avoid the trivial solution that f is zero everywhere, off-surface points are 
appended to the input data and are given non-zero values. This gives a more useful 
interpolation problem: Find f such that 
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Nnidcccf i
z
i

y
i

x
i ,,1,0),,( K+=≠=  (off-surface points). 

(39)

 
This still leaves the problem of generating the off-surface points ( ){ }N

niiii zyx 1,, += and the 
corresponding values di.  

An obvious choice for f is a signed-distance function, where the di are chosen to be the 
distance to the closest on-surface point. Points outside the object are assigned positive 
values, while points inside are assigned negative values. Similar to Turk & O’Brien 
[Turk02], these off-surface points are generated by projecting along surface normals. 
Off-surface points may be assigned to either side of the surface as illustrated in Figure  8 

 

 
 

Figure  8: A signed-distance function is constructed from the surface data by specifying off-surface points along 
surface normals. These points may be specified on either or both sides of the surface, or not at all.  

 
Experience has shown that it is better to augment a data point with two off-surface points, 
on either side of the surface. In Figure  9a, surface points from a laser scan of a hand are 
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shown in green. Off-surface points are color coded according to their distance from their 
associated on-surface point. Hot colors (red) represent positive points outside the surface 
while cold colors (blue) lie inside. It is different definition from ours: we have positive 
values inside and negative values outside (3).  There are two problems to solve; estimating 
surface normals and determining the appropriate projection distance.  
 

 
Figure  9: Reconstruction of a hand from a cloud of points with and without validation of normal lengths. 

[Carr01] 

If we have a partial mesh, then it is straightforward to define off-surface points since 
normals are implied by the mesh connectivity at each vertex. In the case of unorganized 
point-cloud data, normals may be estimated from a local neighbourhood of points. This 
requires estimating both the normal direction and determining the sense of the normal. We 
can locally approximate the point-cloud data with a plane to estimate the normal direction 
and use consistency and/or additional information such as scanner position to resolve the 
sense of the normal. In general, it is difficult to robustly estimate normals everywhere. 
However, unlike other methods [Hoppe92], which also rely on forming a signed-distance 
function, it is not critical to estimate normals everywhere. If normal direction or sense is 
ambiguous at a particular point then we do not fit to a normal at that point. Instead, we let 
the fact that the data point is a zero-point (lies on the surface) to tie down the function in 
that region. 

Given a set of surface normals, care must be taken when projecting off-surface points 
along the normals to ensure that they do not intersect other parts of the surface. The 
projected point is constructed so that the closest surface point is the surface point that 
generated it. Provided this constraint is satisfied, the reconstructed surface is relatively 
insensitive to the projection distance |di|. Figure  9c illustrates the effect of projecting 
off-surface points with inappropriate distances along normals. Off-surface points have 
been chosen to lie a fixed distance from the surface. The resulting surface, where f is zero, 
is distorted in the vicinity of the fingers where opposing normal vectors have intersected 
and generated off-surface points with incorrect distance-to-surface values, both in sign and 
magnitude. In Figure  9a and b, validation of off-surface distances and dynamic projection 
has ensured that off-surface points produce a distance field consistent with the surface data. 
 

 
Figure  10: Cross section trough the fingers of a hand reconstructed from the point-cloud in Figure  9. 

[Carr01] 
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Figure  10 is a cross section through the fingers of the hand. The figure illustrates how 
the RBF function approximates a distance function near the object’s surface. The 
approximately equally spaced iso-contours at +1, 0 and -1 in the top of the figure and 
the corresponding function profile below, illustrate how the off-surface points have 
generated a function with a gradient magnitude close to 1 near the surface (which 
corresponds to the zero-crossings in the profile shown). 

 

2.2.6 Basic function 
The choice of basic function φ  affects the form of the attached surface. There exist many 
different functions, which can be used. Popular choices for the basic function include the 
thin-plate spline )log()( 2 rrr =φ  (for fitting smooth functions of two variables), the 
Gaussian )exp()( 2crr −=φ  (mainly for neural networks), and the multiquadric 

22)( crr +=φ  (for various applications, in particular fitting to topographical data). For 
fitting functions of three variables, good choices include the biharmonic ( 2)( rr =φ ) and 
triharmonic ( 3)( rr =φ ) splines.  
 
 

 
a) Compactly Supported 

)14()1()( 4 +−= + rrrφ  

b) Thin-plate (2-d) 

rrr log)( 2=φ  

c) Thin-plate (3-d) 
3)( rr =φ  

d) Gaussian 
22

)( σφ rer =  

Figure  11: Comparison of different basic functions in 2-d and 3-d. 
 
On initial inspection, the essentially local nature of the Gaussian, inverse multiquadric 
( 2/122 )()( −+= crrφ ) and compactly supported basic functions appear to lead to more 
desirable properties in the RBF. For example, the matrix B now has special structure 
(sparsity), which can be exploited by well-known methods, and evaluation of Equation 
(29) only requires that the sum be over nearby centers instead of all N centers. However, 
non-compactly supported basic functions are better suited to extrapolation and 
interpolation of irregular, non-uniformly sampled data. Indeed, numerical experiments 
using Gaussian and compactly supported piecewise polynomials for fitting surfaces to 
point-clouds have shown that these basic functions yield surfaces with many undesirable 
artifacts in addition to the lack of extrapolation across holes. 
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Compactly-Supported Radial Basis Functions 
Wendland [Wendland95] has recently solved the minimum degree polynomial problem 
with compact, locally supported radial basis functions that guarantee positive-definiteness 
of the matrix [Figure  11a]. All of the solutions have the form  
 

 
otherwise

1 if
      

0
)()1(

)(
<



 −

=
rrPr

r
p

φ  (40)

 
For various degrees of desired continuity (Ck) and dimensionality (d) of the interpolated 
function, he has derived the following radial basis functions:  
 

d = 1 +− )1( r  C0 

 )13()1( 3 +− + rr  C2 

 )158()1( 25 ++− + rrr  C4 

d = 3 2)1( +− r  C0 

 )14()1( 4 +− + rr  C2 

 )31835()1( 26 ++− + rrr  C6 

 )182532()1( 238 +++− + rrrr C6 

d = 5 3)1( +− r  C0 

 )15()1( 3 +− + rr  C2 

 )1716()1( 27 ++− + rrr  C4 

 
 
These functions have radius of support equal to 1. Scaling of the basis functions (i.e., 

)/( αφ r ) allows any desired radius of support α.  
The radial basis functions have finite support, 0||)(|| =− ji ccφ  for all (ci, cj) farther 

apart than the radius of support. We can exploit the spatial locality of the compactly 
supported radial basis functions during evaluation of the embedding function f by 
recognizing that only a fraction of the terms of Eq. (29) are non-zero for a given x: 

0||)(|| ≠− ji ccφ  if and only if 1|||| <− ji cc . By again using a k-d tree [More01] to organize 
the constraints spatially, each evaluation of the interpolating function requires only O(log 
n) operations to determine these non-zero terms. 
 

Selecting the Radius of Support 
The finite radius of support introduces an additional parameter that doesn’t exist in the 
thin-plate implementation. Proper selection of the radius of support is critical to achieve 
optimal efficiency of computation and results. Too small radius can produce basis 
functions that are unable to span the inter-constraint gaps. Too large radius does not 
adversely affect the results but reduces the sparseness of the matrix, thus increasing the 
computation required. It is therefore necessary to select a radius of support that is both 
large enough to produce effective results and not so large that the computation becomes 
impractical. 
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2.2.7 Speedup techniques 
The RBF method is computational very expensive. There exist many different ways to 
speedup this method. Some of them are based on preprocessing such as reducing the start 
point set and other on the speedup of methods for linear system equation evaluation. In this 
section some of them will be introduced. 
 

Fast Multipole Method  
The Fast Multipole Method (FMM) was introduced in [Greengard87] and for speedup of 
the RBF evaluation is used by Carr et al. [Carr01]. The FMM was designed for the fast 
evaluation of potentials (harmonic RBF’s) in two and three dimensions. The FMM makes 
use of the simple fact that when computations are performed, infinite precision is neither 
required nor expected. Once this is realized, the use of approximations is allowed. For the 
evaluation of an RBF, the approximations of choice are far- and near-field expansions. 
With the centers clustered in a hierarchical manner, far- and near-field expansions are used 
to generate an approximation to that part of the RBF due to the centers in a particular 
cluster. A judicious use of approximate evaluation for clusters “far” from an evaluation 
point and direct evaluation for clusters “near” to an evaluation point allows the RBF to be 
computed to any predetermined accuracy and with a significant decrease in computation 
time compared with direct evaluation. 
 

Center reduction 
Conventionally, an RBF approximation uses all the input data points as nodes of 
interpolation, and as centers of the RBF. However, the same input data may be able to be 
approximated to the desired accuracy using significantly fewer centers, as illustrated in 
Figure  12. A greedy algorithm can therefore be used to iteratively fit an RBF to within the 
desired fitting accuracy. 
 
A simple greedy algorithm consists of the following steps: 

1. Choose a subset from the interpolation nodes xi and fit an RBF only to these. 
2. Evaluate the residual, )( iii xff −=ε , at all nodes. 
3. If  |}max{| iε  < fitting accuracy then => stop. 
4. Else append new centers where iε  is large. 
5. Re-fit RBF => goto 2. 

 
If a different accuracy iε  is specified at each point, then the condition in step 3 may be 
replaced by ii δε <|| . 
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Figure  12: Illustration of center reduction. [Carr01] 

 
Center reduction is not essential when using the fast methods described in previous section. 
Usage of this method can be found in [Carr01]. Methods for polygonal mesh reduction 
[Franc02] can be used, too. 
 

Subset choosing 
The subset from the main set of points is chosen mainly together with compactly supported 
radial basis functions [Morse01]. The compactly supported RBF have defined radius of 
support and 0)( =xφ for all x farther than the radius. By using a k-d tree, the set of all 
points within the distance r from the particular point ci can be determined in O(log n) time. 
A k-d tree is a multidimensional binary tree with the following sorting property for a tree 
with point x at the root and subtrees Tleft and Tright. 
 

 dd
right

dd
left

xyTy

xyTy

>∈∀

≤∈∀

:

:
 (41)

 
where the sorting dimension d changes at each level of the tree. k-d trees can be used to 
find all points within distance r of a particular constraint in O(n log n) time. 

The resulting matrix is extremely sparse. Using a sparse-matrix representation, only 
O(n) storage is required. The direct (LU) sparse matrix solver can be used to find the 
solution to the system of equations. The computational complexity of such a solver 
depends on the amount of matrix “fill in” that occurs during the solution. 
 

Solving method 
One of the speedup techniques can be selection of the method for solving the equation 
system. Mostly used method is LU factorization. LU factorization is used in the form for 
full matrix: all input points are used for construction of the equation system, or in the 
sparse matrix form:  from the input set of points are selected only points that can affect 
the value of a computed point. For solving the system of equations, iterative methods like 
GMRES or other can be used [Mika96]. Algorithmic complexity of these methods is 
mentioned in the next section. 
 

2.2.8 Algorithmic complexity 
Calculating and using implicit surfaces that interpolate may be analyzed in three parts: 
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1. Constructing the system of equations, 
2. Solving the system of equations, and 
3. Evaluating the interpolating function (as required). 

 
Constructing the System of Equations 
A significant portion of the computational cost involved in calculating these implicit 
surfaces is the cost required to construct the matrix (or sub matrix) ||)(|| jiij cc −= φφ . 

Recall that the thin-plate radial basis function is )log()( 2 rrr =φ  (two dimensions) or 
3)( rr =φ  (three dimensions). This means that the matrix is entirely non-zero except along 

the diagonal, requiring the calculation of all inter-point distances within the set {ci}. 
Although the symmetry of the matrix cuts the computational cost in half, the computational 
complexity is still O(n2). Furthermore, storage of such a matrix requires O(n2) floating-
point values and this is a potentially more prohibitive factor than the computational 
complexity. 
 
Solving the System of Equations 
Although Turk and O’Brien use LU factorization (an O(n3) algorithm) to solve Eq. 5, they 
correctly point out that it is possible to solve this system in O(n2) by iterative means. Thus, 
while solution of the system may appear to be the limiting step, it needs only to be as 
computationally expensive as constructing the system. The method based on GMRES 
iteration method [Beatson99] reduces the computational cost of solving an RBF 
interpolation problem to O(N) storage, and O(N log N) operations. 
 
Evaluating the Function 
For nearly all applications it is not enough to simply solve the weights of the respective 
radial basis functions. Rather, it is necessary to evaluate this embedding function at 
potentially many points in order to extract the isosurface, calculate normals or other 
derivative quantities, etc. Because the terms ||)(|| icx −φ  in Eq. (29) are all nonzero for the 
thin-plate solution (except for one zero term when }{ jcx ∈ ), all of the terms must be used 
in calculating an arbitrary point. Thus, the complexity of each evaluation of the 
interpolated function is O(n). 
 
While the thin-plate spline embedding function does indeed minimize bending energy, it 
has the following drawbacks in computation and usefulness for user interaction: 
 

1. O(n2) computation is required to build the system of equations. 
2. O(n2) storage is required (for the nearly-full matrix) to represent the system. 
3. O(n2) computation is required to solve the system of equations. 
4. O(n) computation is required per evaluation 
5. Because every known point affects the result, a small change in even one constraint 

is felt throughout the entire resulting interpolated surface, an undesirable property 
for shape modeling. 

 

2.2.9 Advantages and disadvantages 

 
Advantages 
A single functional description has a number of advantages over piecewise parametric 
surfaces and implicit patches. It can be evaluated anywhere to produce a particular mesh, 
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i.e., a faceted surface representation can be computed at the desired resolution when 
required. Sparse, nonuniformly sampled surfaces can be described in a straightforward 
manner and the surface parameterization problem, associated with piecewise fitting of 
cubic spline patches, is avoided. 

An RBF offers a compact functional description of a set of surface data. Interpolation 
and extrapolation are inherent in the functional representation. The RBF associated with 
a surface can be evaluated anywhere to produce a mesh at the desired resolution. The RBF 
representation has advantages for mesh simplification and remeshing applications. 
Gradients and higher derivatives are determined analytically and are continuous and 
smooth, depending on the choice of basic function. Surface normals are therefore reliably 
calculated and iso surfaces extracted from the implicit RBF model are manifold (i.e., they 
do not self-intersect). 
 

 
Figure  13: Fitting a Radial Basis Function (RBF) to a 438,000 point-cloud. [Carr01] 

 
Disadvantages 
If the RBF method is used to solve, then it is necessary for the simple method without any 
reduction of input set of points calculate with O(N2) storage and O(N3) arithmetic 
operations. For example, direct fitting of the dragon in Figure  13 would have required 
3,000GB just to store the corresponding matrix. Consequently, fitting RBFs to real-world 
scan data has not been regarded as computationally feasible for large data sets. 
 

2.2.10 Examples  
The RBF method is used in a lot of applications. This method is mainly used for creating 
implicit description of the object defined by the point-cloud data or by the polygonal mesh. 
The input set of points can be obtained from scientific measurement, computer tomography 
(CT) or magnetic resonance (MR), 3D scanners etc. Only few applications with this 
method will be introduced. 
 
Scientific visualization 
Visualization of scientific data is necessary for understanding the process and visualize to 
otherwise hidden structure in the data. Good example of scientific visualization can be 
visualization of geophysical measurements. Figure  14a shows input data set which 
consists of 471031 geophysical measurements in 3D. 
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a) 3D view  b) Values on planes c) An iso surface d) A combined view 

Figure  14: Geophysical data visualization. [ARANZ] 

 
Images a,b,c and d in Figure  14 show multi-planar reslicing, iso surface extraction and 
combined view. This visualization was obtained with FastRBF toolbox for MATLAB. 
FastRBF toolbox is product of Applied Research Associates NZ Ltd. [ARANZ]. 
 
Medical visualization 
Visualization of medial data (CT, MR) or implant can be found in [Carr97] or [Yoo01]. 
The first publication [Carr97] presented a practical solution the problem of interpolating 
incomplete surface derived from three-dimensional medical graphics. The specific 
application considered is the design of cranial implants for the repair of defect, usually 
holes, in a skull. Terry S. Yoo [Yoo01] presents reconstruction of inner surface of blood 
vessel from a series of endovascular ultrasound images. 
 
3D scans visualization 
Many examples of 3D scans visualization introduced by J.C.Carr are in [Carr01]. Figure  9 
and Figure  13 show some of the reconstructed objects. The data were obtained from 3D 
scanner LIDAR or CYRAX 2400. Because these data have often very many points 
(Dragon on Figure  13 has 438,000 points), they used center reduction and FMM for 
speedup of the RBF method.  
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Previous work 
Previous work for this article has two parts. The first part consists of developing the system 
for direct compilation of implicitly defined objects and the second part lies in a basic 
implementation of radial basis functions method. 
 

Direct compilation 
The principle of the direct compilation of implicitly defined objects was based on the 
simple modeling language. The modeling language was inspired by the HyperFun project 
[HyperFun99] and the HyperFun was the main program for comparing with our system. 
The goal of the system for the direct compilation of implicitly defined objects was to keep 
both speedup from compiled objects in standard compiler and the syntax of HyperFun 
language.  

The syntax of the HyperFun language is simple and very similar to the C++ 
programming language. Some differences are only in signs, which define the Boolean 
operations. In particular, are speaking about the subtraction operator. In HyperFun, the 
backslash operator (‘\’) is used for this operation. It is slightly increased complexity of the 
model description. For other operations (union, intersection etc.), there was no problem 
with overloading the standard C++ operators.  

The system ‘Compiled HyperFun’ (CHF) reached speedup from the compilation of the 
models. Figure  15a shows the graph of speedup ratio. Testing was made on the complex 
objects form [HyperFun99]. The object was rewritten to the C++ language and the speedup 
was tested in different programming environment (e.g. Microsoft Visual C++, Borland 
C++ Builder or Microsoft .NET C#). Figure  15b shows the models. 
 

a) b) 

Figure  15: Speedup ratio and the models for testing. [Uhlir03] 

The CHF system was implemented as a module for Multivisual Environment (MVE) and it 
is connected with the visualization module. Both these modules are used in the 
implementation of the RBF method. 
 

RBF method 
Implementation of this method is based on the complex description of the RBF method 
above. All tests of this method are in MATLAB v6.5 and in MVE modules noted in 
previous section. Note, that there exists module [ARANZ] for MATLAB that provides the 
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implicitization of point-cloud data or polygonal meshes.  The [ARANZ] module has not 
been used in this project. 

The RBF method was implemented without any special speedup technique. For solving 
the linear equation system, LU factorization was used. Because the RBF method is very 
computationally expensive and does not use any method for the center reduction, then we 
tested the method for few points only.  
 

Example A 
We have few points, which define plane in 3-d space [Figure  16]. 
 

 
Figure  16: Plane definition. 

This plane can be visualized in MATLAB with functions trimesh or trisurf. Figure  17 
shows the plane in 2-d view and 3-d view.  
 

 
Figure  17: The plane modeled in MATLAB. 

 
If the system of equations (31) is constructed from these points and then solved by (38), 
then this system of equations have only one solution = 0. Another set of points 
(perturbation, Section 2.2.5 Perturbation in data) must be added to basic set of points. 
Points defined above and under main point have different values. We use the value –1 for 
points under the main set of points and 1 for points above. All added points had the same 
distance from main points. New points are standard defined in a direction of the normal in 
a vertex. The position in a direction of the normal has not been computed in this example 
yet. Points were localized in the direction of z-axis. It has been possible to evaluate the 
system of equations with new points and determine vector x. Vector x contains values of 
weight variable λ . 
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Figure  18: Example of the object in the CHF system. 

 
For the visualization of this example, module in MVE was used and this example was 
written as the function in our CHF system [Figure  18]. 

It can be seen, that the function rr log2 was used as the basic function φ  and the value 
of the object was calculated by equation (29). The visualization module in MVE requested 
this function at the value in spatial coordinates.  

Figure  19 shows the final visualization of this example with the marching triangle 
method. 

 
 

 
 

Figure  19: The plane visualized with MVE module and the marching triangle method. 

 
 

FmodelDouble FmodelDouble::example(double x[]) 
{ 
 //x,y,z,value,id 
 float points[][5] = {{ 0.0, 0.0, 0.5, 0.0, 1},{ 0.0, 2.0, 0.0, 0.0, 2},{ 0.0, 5.0, 0.0, 0.0, 3}, 
                      { 4.0, 5.0, 0.0, 0.0, 4},{ 3.0, 3.0, 1.5, 0.0, 5},{ 4.0, 1.0, 0.0, 0.0, 6}, 
                      { 4.0, 0.0, 0.0, 0.0, 7},{ 7.0, 0.0, 0.0, 0.0, 8},{ 7.0, 3.0,-0.5, 0.0, 9}, 
                      { 7.0, 5.0, 0.0, 0.0,10},{ 0.0, 0.0,-0.5,-1.0,11},{ 0.0, 2.0,-1.0,-1.0,12}, 
                      { 0.0, 5.0,-1.0,-1.0,13},{ 4.0, 5.0,-1.0,-1.0,14},{ 3.0, 3.0, 0.5,-1.0,15}, 
                      { 4.0, 1.0,-1.0,-1.0,16},{ 4.0, 0.0,-1.0,-1.0,17},{ 7.0, 0.0,-1.0,-1.0,18}, 
                      { 7.0, 3.0,-1.5,-1.0,19},{ 7.0, 5.0,-1.0,-1.0,20},{ 0.0, 0.0, 1.5, 1.0,21}, 
                      { 0.0, 2.0, 1.0, 1.0,22},{ 0.0, 5.0, 1.0, 1.0,23},{ 4.0, 5.0, 1.0, 1.0,24}, 
                      { 3.0, 3.0, 2.5, 1.0,25},{ 4.0, 1.0, 1.0, 1.0,26},{ 4.0, 0.0, 1.0, 1.0,27}, 
                      { 7.0, 0.0, 1.0, 1.0,28},{ 7.0, 3.0, 0.5, 1.0,29},{ 7.0, 5.0, 1.0, 1.0,30} 
                     };  
 
 float lambda[] = {-2.3295172376799261e-002,-1.8481464722608840e-002, 2.5858377867091463e-003,  
                    2.1098099868712271e-004, 4.5557184756117988e-002, 1.9505919630826790e-002,  
                   -4.8394018313553805e-002,-5.3201720212858912e-002,-4.9228452041243036e-002,  
                   -2.5564906118562439e-002, 2.2050751724291642e-003, 2.1686611006784817e-002,  
                   -4.1000618844257014e-003, 3.2915120419754820e-003,-1.4941496181109140e-001,  
                   -1.8345689212648533e-002, 2.9941739703427690e-002, 2.9289512608919158e-002,  
                    3.4054873609851606e-002, 6.2412410748465081e-003,-6.2054661325396700e-003,  
                    6.3385063208558537e-002,-1.2180805206499088e-002, 7.4572906296871591e-002,  
                   -6.6696489424080754e-002, 1.0218582605846335e-001,-1.0309468316983901e-002,  
                    1.2792126679700517e-002, 4.5181944283673593e-002,-1.5108476079092338e-002  
                  }; 
 
  float xx,yy,zz,r,value; 
  value = 0.0; 
  for(int i=0;i<30;i++) 
  { 
    xx = (x[0] - points[i][0])*(x[0] - points[i][0]); 
    yy = (x[1] - points[i][1])*(x[1] - points[i][1]); 
    zz = (x[2] - points[i][2])*(x[2] - points[i][2]); 
    r = sqrt(xx+yy+zz); 
    value += lambda[i]*((r*r)*log(r)); 
  } 
 return(value); 
} 
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Example B 
In this example the RBF method at the 2-d line was tested. A polygonal line was defined 
and how the RBF method makes approximation of this line was tested. Different basis 
functions and different methods for the off-surface points definition were tested [Figure  
20]. Note that we will use the term ‘off-surface point’ everywhere despite of that in this 
example a polygonal line is the basic object. 

Left image at Figure  20 shows off-surface points defined in a direction of y-axis and 
the right image shows definition of off-surface points in the direction of the vertex normal.  
 

 
Figure  20: Difference in off-surface points definition. 

 
The definition of off-surface points affects the form of the final approximation. The 
equation (32) is evaluated in each vertex grid on selected interval for the visualization of 
approximation with RBF method. The value in each vertex of this grid defines the „height“ 
in z-axis. It can be seen from Figure  21 that the approximation of the polynomial line is 
better, if off-surface points are defined in the direction of the vertex normal. In this case 

rr log2=φ  is the basic function. 
 

 
Figure  21: The surface is a visualization of values in vertices of grid. 

 
It is necessary to note, that the polynomial line presented above was selected because you 
can see behavior of the RBF method if there are fast changes on the line. Now we can take 
a look at line approximation if the line has “nice” course.  
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Figure  22: Approximation of the line without any quick changes. 

 
The line has really nice course. The final curve is the minimal value on the interval from 
off-surface points at the right side (blue) and point at the left side (red). There can be used 
different algorithms for the visualization. There is used stepping algorithm, which provides 
dividing of the interval between red and blue points, for each segment of the polygonal 
line. There are calculated values of equation (32) on this interval and in the direction of the 
segment normal the minimal value is searched for. These values represent points on the 
final curve. Left image at Figure  23 shows the visualization of the final curve in 2-d. The 
right image, at the same figure, shows values of the equation (32) in direction of z-axis.  
Note, that for the visualization, the basic stepping algorithm from the marching triangles 
method can be also used. 
 

 
Figure  23: Final curve (red) and original polygonal line (black). 

 
The basic function has influence on the course of the curve in 2-d and the course of the 
surface in 3-d. The group of basic functions is different for 2-d and 3-d approximation. 
Rather, the functions usable in 2-d case can be used in 3-d whereas in the inverse case it 
does not apply. From the group of functions introduced in section 2.2.6 only functions b) 
and c) can be used. The functions were used at the polynomial line shown on Figure  22. 
Figure  24 demonstrates the influence of basic function of final result. All functions 
presented in section 2.2.6 have been used. 
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Figure  24: Different basic function using. a) Thin-plate (2-d), b) Thin-plate (3-d), c) Compactly 

Supported and Gaussian. 

 
The basic function selection change the course at the interval defined by the off-surface 
points. From images c) compactly supported functions and Gaussian functions for 
approximation in 2-d evidently cannot be used.  

 The purpose of all these tests was to demonstrate possible modification of the RBF.  
The last figure (Figure  25) shows the part of the MATLAB source. Parts with the 
construction of the matrix system and the evaluation of the matrix system with LU 
factorization are shown. 

 
Figure  25: Creating and solving of the matrix system in MATLAB.

% matrix system construction 
for i=1:1:a_row, 
 for j=1:1:a_row, 
  xi = [BODY_ALL(i,1),BODY_ALL(i,2)]; 
  xj = [BODY_ALL(j,1),BODY_ALL(j,2)]; 
  r = sqrt((xi(1)-xj(1))^2+(xi(2)-xj(2))^2);       
  if(r == 0)  
   val = 0;  
  else  
    val = abs(r)^2*log(abs(r)); 
  end; 
  A(i,j) = val; 
 end; 
end; 
 
% if polynomial p(x) is used 
if(polynomial == 1) 
 a_row = a_row + 3; 
 for i=1:1:a_row-3, 
  A(i,a_row-2) = BODY_ALL(i,1); 
  A(i,a_row-1) = BODY_ALL(i,2); 
  A(i,a_row)   = 1;     
 end; 
 
 for j=1:1:a_row-3, 
  A(a_row-2,j) = BODY_ALL(j,1); 
  A(a_row-1,j) = BODY_ALL(j,2); 
  A(a_row,j)   = 1;     
 end; 
end; 
 
% LU factorization 
[L,U] = lu(A); 
lambda = U\ (L\b); 
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Conclusion and Future Work 
Implicitly defined object modeling starts to be very popular part of computer graphics. 
This modeling has many faces. In this work a complex method for implicitization of the 
object defined by the triangular mesh or point-cloud data was introduced. The RBF method 
has very many aspects for improvements and future exploration. Final implicit description 
and final quality of visualized object depends on the parameters of the RBF method. The 
basic parameters are: selection of the basic function and its influence to accuracy of the 
approximation, which method for solving of the linear equation system is better with 
respect to the algorithm, time complexity and the off-surface points definition and their 
influence to the approximation. All these parts are important and have very big influence to 
the final objects and the overall complexity of the method. These parameters will be 
scrutinized and described in further work. 

It has been tested and implemented the RBF method for a case of 2-d polynomial line 
in our previous work. Now we are going to continue with 3-d objects, where the number of 
points together with the algorithm complexity can make such method unusable. There were 
presented methods for speedup of the RBF method in the text, but these methods can affect 
accuracy of the final object. Parallelization can be also used. The RBF method can be 
parallelized in several steps. Parallel method can be used for solving the linear equation 
system and for evaluation of the final surface if the compactly supported radial basis 
functions are used. The accuracy of the final object and parallelization will be subject of 
further research too. 

The part of our previous work covered Constructive Solid Geometry (CSG) and the 
modeling system which provides direct compilation of an implicitly defined object. 
The principle of direct compilation was introduced in an example A. We want to extend 
the possibilities of our system for direct compilation of complex models in further 
research. We also want to continue with the modeling system and compilation of the 
models obtained from the RBF method. Within the CSG framework the RBF offers a new 
way of modeling real-world (scanned) objects since it is inherently a solid model. It can be 
manipulated through a series of Boolean unions and intersections with other objects in 
a manner similar to how simpler geometric primitives are currently used to construct more 
complicated objects.  

 
Summary, the aims of doctoral thesis are: 
- to explore influence of the basic functions to the accuracy of the approximation 

and propose  functions suitable for different objects 
- to explore off-surface points definition and their influence to the approximation 

and propose off-surface points selection for noisy and quickly changing data 
- to explore methods for solving the linear equation system in relation to 

parallelization 
- to implement stable and robust RBF method with possibility to compile objects 

or the CSG tree structure 
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