
University of West Bohemia in Pilsen
Department of Computer Science and Engineering
Univerzitni 8
30614 Pilsen
Czech Republic

The ENT Model: A General Model
for Software Interface Structuring

Přemysl Brada

Technical Report No. DCSE/TR-2002-10
April, 2002

Distribution: public

Technical Report No. DCSE/TR-2002-10
April 2002

The ENT Model: A General Model
for Software Interface Structuring

Přemysl Brada

Abstract

Software modules and components have always played a key role in software en-
gineering, primarily as key abstractions that embody the principle of information
hiding, using separation of interface and implementation. In most module- and
component-based systems, the specification of the interface therefore plays an
important role.

This paper presents a model for structuring module interfaces (called the ENT
model) which allows their multi-faceted views and analyses. The design of the
model is motivated by two factors. First, we feel a need to unify the variety of
approaches to module- and component-based software descriptions. Secondly, we
want to provide a vehicle for modeling the different roles which the features on
module/component interface play for the players in software composition (users,
developers, tools).

The model uses a classification of module’s features according to their purpose
as perceived by human users. The feature declarations are consequently grouped
by their classification properties in a hierarchy of named sets called traits and
categories. This structuring allows us to analyse module interface in the same
way as the users do. Perhaps more interestingly, it provides a way to formally
define the split of the interface into sets of provided and required features.

Besides the model definition itself, we provide examples of its use for two com-
ponent frameworks – SOFA components and CORBA Component Model. The
applicability of the model in other situations is also discussed, and its possible
usages are presented.

This work was supported by the Research Plan number MSM235200005 funded
by the Ministry of Education of the Czech Republic.

Copies of this report are available on
http://www.kiv.zcu.cz/publications/
or by surface mail on request sent to the following address:

University of West Bohemia in Pilsen
Department of Computer Science and Engineering
Univerzitni 8
30614 Pilsen
Czech Republic

Copyright c©2002 University of West Bohemia in Pilsen, Czech Republic

3

Contents

1 Introduction 2
1.1 Module Specifications and Their Use 2
1.2 Goal and Structure of the Paper 3

2 The ENT Model of Module Interface 4
2.1 Module Features and Qualities 4

2.1.1 Characteristics of Features and Quality Attributes 5
2.2 Feature and Quality Classification System 6
2.3 The Model: Elements, Traits and Categories 7

2.3.1 Traits in Interface Specification 10
2.3.2 Trait Categories . 11
2.3.3 TheE, N, T categories 14

3 Applications of the Model 15
3.1 Applicability . 15
3.2 Use for Humans . 16
3.3 Use for Tools . 18

4 Discussion 20
4.1 Advantages of the Model . 20
4.2 Disadvantages and Open Issues 21
4.3 A Note on Specification Languages 22

5 Related Work 23

6 Future Work 25

7 Conclusion 27

A The ENT model for CORBA components 28
A.1 Trait Definitions . 28
A.2 Example: TheParking Component Source 28
A.3 Example: TheParking Component in ENT 29

B The ENT Model for JavaBeans 30
B.1 Trait Definitions . 30
B.2 Example: TheMyJuggler JavaBean Source 31
B.3 Example: TheMyJuggler JavaBean in ENT 32

C Vision of a Rich Component Specification 33

1

1 Introduction

Software modules and components have always played a key role in software
engineering, primarily as key abstractions for efficient software decomposition.
Their unifying characteristics is the separation of interface and implementation
driven by the principle of information hiding. From this perspective the module1

interface and its specification play the most important role.
This paper presents a structured model of module interface which allows its

multi-faceted views and analyses. The design of the model was motivated by
two observations. The first one is the variety of approaches to module- and
component-based software decomposition currently in use [27, 33, 1, 20]. Each
of them uses a slightly different model and means of component specification yet
from a higher perspective, they share many characteristics related to the general
interactions between the component and its environment.

Secondly we observe that different parts of module interface play different
roles in module interactions (exemplified by the separation of provided and re-
quired features in software components [34]). Sometimes only a subset of such
component’s functionality is used by an application or is interesting for a user in
analysing its properties (like “let us see the differences in what these two modules
provide”).

1.1 Module Specifications and Their Use

The principal purpose of software modules is information hiding. Therefore, each
module is in essence composed of two parts: the interface and the implementation.
The interface part declares the features which the module exports and thus it is (or
should be) principal to understanding the module usage. It is usually expressed
in the form of a formal or semi-formal specification, and serves as the primary
documentation used in this understanding.

Module interface specification can be utilised in very different ways. Ordinary
users consult it to see what the module does or how it differs from what they cur-
rently have. Application developers need to know how to incorporate the module
into an application – what types and operations it provides, which interfaces it
depends on, what properties govern the usage of the module, etc. The tools used
by all of them need to be able to reliably compare module specifications (for the
purpose of linking or interconnecting modules), extract type information, etc. For
all these reasons, the specification should at the same time be precise, rich and
human readable.

There is always a close correspondence between the interface specification and

1The termmoduledenotes both “component” as in [34] and “module” as in [26] in this paper.

2

module implementation. In some systems [27, 13, 28] the specification is used to
generate a skeleton of implementation source code, in other cases [22, 33, 31] on
the other hand, it is derived from the implementation.

Since the module as a whole is often represented in the specification as a high-
level user-defined type, we can use the methods of type theory to reason about
components. This type-based approach frees us from constraining implementa-
tion dependencies which unnecessarily complicate the analyses of some indus-
trial components – namely DCE and COM which (being binary standards) are
sensitive to the physical order of declarations [23].

1.2 Goal and Structure of the Paper

The goal of this paper is to present a model of module interface using a set of
general abstractions that are not tied to a particular component framework. It
classifies module’s features according to their purpose as perceived by human
users. The feature declarations are consequently grouped in named sets called
traits and categories. This structuring allows us to analyse module interface in the
same way as the users do, and to formally define the split of the interface into sets
of providedandrequiredfeatures. We also show the applicability of the model in
several different scenarios.

The paper is structured as follows. We first present a motivation for our mo-
dule interface structuring. Then in Section 2 we describe the model itself and
provide the definitions of its constituent parts. The next section describes two
different applications of the model. The paper is concluded with an analysis of
related work and a discussion of open issues.

3

2 The ENT Model of Module Interface

When we look at various component and module-based systems [28, 20, 3, 12,
11, 33] we find a lot of similarities, although expressed in different languages and
typing systems. In any of them, the concept of module interface is used to declare
the features the module makes available for use in inter-module communication,
and sometimes also the properties (qualities) governing its correct usage.

The model we present in this section provides a natural classification of fea-
tures and qualities and uses this classification to structure the interface into coarse-
grained units called traits and categories.

2.1 Module Features and Qualities

Let us start by clarifying the terminology used in this paper.

Definition 2.1 (Feature) A module interface feature is a named part of the mo-
dule interface which (1) is used in the interactions between the module and its
environment, (2) is referenced as an atomic unit when the interconnections used
for these interactions are established (during linking, application assembly, or
run-time binding).

For the purposes of this work we consider only features which are defined by
a (set of) declaration(s) in the module interface specification.

This definition should correspond to the intuitive notion of a feature as “some-
thing sticking out of the module interface”. Examples of features are an IDL
interface of a COM component, a log file created and written to by a web server
module, a description of the persistent state of a SOFA component, or theData-
Source property of Borland DelphiDBGrid component.

Definition 2.2 (Quality attribute) A module quality attribute is an expression
which declares non-functional properties (rules for correct usage, quantitative
or qualitative characteristics, etc.) of the module or of a subset of its features.

For the purpose of this work we consider only quality attributes which have
the form of a (set of) declaration(s) in the module interface specification.

Again, the definition should correspond to the natural understanding that qua-
lities often provide information about the implementation of features. Typical
instances of module-wide qualities are semantic descriptions, for example invari-
ant expressions as in Eiffel classes or frame protocols in SOFA. Note that we do
not require that qualities be named, in accordance with common usage.

4

2.1.1 Characteristics of Features and Quality Attributes

From the human point of view, features and qualities can be classified in several
orthogonal ways depending on which aspect is interesting to the observer. Figure
1 shows these aspects schematically.

calls and events
incoming, outgoing
data written, read

call semantics,
data formats
interfaces
provided, required

component surface

pro
vid

es
req

uir
es

dataoperations

Figure 1: Parts of software module interface

A fundamental distinction is by what we call thekind. Theoperationalfea-
tures and qualities describe or are used to invoke functionality. Thedata features
describe (sets of) data which the element exchanges with its environment. There
can also be features and qualities which contain a mix of these two characteristics.

An orthogonal classification attribute is therole in module interactions. Each
moduleprovidesfeatures which its clients can use to invoke its functionality and
which thus represent the purpose of the module. On the other hand, the module
may require the connection to some features in its environment which its imple-
mentation depends on. This distinction into roles is explicit in component-based
systems [28, 20, 17] and in many modular programming languages [1, 33].

Lastly, we can differentiate features and qualities according to their usage du-
ring or applicability to different stages in modulelifecycle. Current practice and
research [2, 28, 15, 16] leads to several such classes:development-timefor cor-
rect compilation, static or dynamic linking, and packaging (when e.g. component
assemblies are created from individual pieces),design-timefor the integration (or
assembly) stage of creating module interconnections in a visual tool and con-
figuring the composed application,configuration-timewhich covers the phase of
configuring the application in the actual deployment environment, andrun-time
ones which are used during application execution for inter-module communica-
tion. Some features like events or data qualities, may be relevant in more phases
of the lifecycle – for example provided interfaces of a CORBA component are
useful in compile-time, design-time as well as run-time stages.

5

2.2 Feature and Quality Classification System

We now formalize these findings in a classification system which uses the faceted
classification approach [29]. The system has, at the present stage, four facets
called “dimensions” suitable for the classification of module interface features and
quality attributes as described above. However, it is independent of the number of
dimensions and open to further development.

The term space of each facet is represented as a set of identifiers that are de-
fined as a setIdentifiers which contains strings described by the regular expres-
sion[a-zA-Z][a-zA-Z0-9]* .

We use a setId spec = {nil, na, nk, any} ⊂ Identifiers of special identifiers
which denote an empty value, a not applicable case, and an unknown value, and
any value, respectively. Thena value is used in the cases when the given dimen-
sion is not applicable to the given feature or quality. Thenk value (not known)
is used when the class cannot be clearly determined. Theany value is used as a
substitute for listing all the user-defined term values of the dimension.

Definition 2.3 (ENT classification system)Let the terminterface element clas-
sification system denote a faceted classification system suitable for classifying
module interface elements, using a facet collectionDimensions = {dim1, dim2,
... , dimD} wheredimi = {i|i ∈ Identifiers} ∪ Id spec. Let the termclassifier
denote an ordered tuple(d1, d2, . . ., dD) such thatdi ⊆ dimi.

The(core) ENT classification system is an interface element classification sys-
tem which uses an ontology based on the understanding of interface elements by
human users and developers, such thatDimensionsENT = {Contents,Kind,
Role, Lifecycle} where

• Contents = {feature, quality} ∪ Id spec is a basic dimension used to de-
scribe the primary meaning of an element,

• Kind = {operational, data,mix} ∪ Id spec is a dimension describing the
nature of an element with respect to computational characteristics,

• Role = {provided, required} ∪ Id spec describes the “orientation” of an
element in module interactions (primarily at run-time, but also important in
other parts of its lifecycle), and

• Lifecycle = {any, development, design, configuration, runtime} ∪Id spec

is a dimension describing the possible phases in module’s lifecycle in which
an element can be meaningfully accessed or used.

An interface element classification systemS is called anextended ENT clas-
sification system if DimensionsS ⊃ DimensionsENT .

6

The core ENT classification system is used in this report unless noted other-
wise. The extended ENT classification system may be used in situations when the
core dimensions are insufficient to uniquely distinguish different interface features
and quality attributes. An example is the CORBA Component Model where it is
necesssary to distinguish eventpublishersandemittersby the arity of the event
source – see [20] and Appendix A.

On the other hand, there may be systems which can unambiguously distinguish
interface elements using a subset of the core ENT classification. For example,
the{Contents,Kind,Role} facet collection would be sufficient for the current
SOFA component model.

2.3 The Model: Elements, Traits and Categories

To be able to analyze and manipulate the specification of a module interface, we
need to handle the parts of the specification which correspond to the features and
qualities as defined above. They describe the smallest elements of interest in our
model.

Definition 2.4 (Specification element)A specification element e of a moduleM
written in languageL is a tuple2 e = (name, typename, typedecl, tags, meta-
type, classifier) wherename ∈ Identifiers, typename ∈ Identifiers, typedecl ∈
L is a language phrase,tags = {tagi}, tagi ∈ L is a (possibly empty) set
of language phrases,metatype ∈ Identifiers and classifier = (ce1, ce2, ...,
ceD); cei ⊆ dimi.

By module specification element set EM we will understand the set of all spe-
cification elements contained in the specification of moduleM . In other words,
EM completely represents of a module in our model.

A specification element represents a complete information about one feature
identified by languagename andtypename and/ortypedecl or of one module-
wide quality attribute (which may havename = nil). Thetags item contains a
set of phrases with additional parts of the element’s declaration. It may serve as
an aid if one needs to e.g. precisely compare two elements3, or re-generate valid
source code for the element.

These four parts of the specification element can be derived directly from the
specification source code. Operations on them are subject to the syntax and typing
rules of the languageL used for module specification – in other words, this model

2In this work, we shall denote parts of a tuple by the “dot” notation, e.g.e.classifier denotes
theclassifier part of a tuplee.

3For example, in a comparison offinal static int x = 5 againstint x , thefinal
static tags stored in thetags part represent an important semantic information.

7

frame AddressBook {
require:

/system/FileAccess files;
provide:

IAddressBook book;
IAddressSearch search;

property short maxSize;
property short defaultSortOrder;
protocol:

// this protocol is incomplete and inaccurate,
// but will do for illustration purposes
?book.addPerson { !files.create? ; !files.write }
;
(?book.clear { !files.write }

| ?book.getPerson { !files.read }
| ?book.updatePerson { !files.write }

)*
}

Figure 2: Source of a SOFA component frame with selected elements highlighted

is parametrized by the specification language for which its concrete application is
sought.

Themetatype element is a name describing the general type of feature or
quality, such as “interface” or “event”. It is often represented as a non-terminal
symbol in the grammar ofL. The classifier contains the classification of the
element according to the ENT classification system.

This information has to be provided manually, based on an analysis of the
languageL and the human-percieved meaning of its phrases. The purpose of
such effort is to create a complete but minimal set of metatypes and classifier
combinations which the specification elements can have. The motivation is their
use in the description of the module’s characteristic traits (see below). Once this
analysis is done, it is relatively easy to create the appropriate supplementary code
in a suitable parser/analyser of the specification languageL.

Completeness of the element means that it includes all the information about
the feature or quality attribute contained in the specification (with respect to both
the language declarations and the classification dimensions) even if this informa-
tion is not available in a single language phrase. For example, in SOFA CDL
the interface variable belongs to either theprovides or requires section but

8

maxSize
name = maxSize,
typename = short,
typedecl = nil,
tags = ∅,
metatype = property,
classifier = ({feature}, {data}, {provided}, {development, design,
runtime})

files
name = files,
typename = /system/FileAccess,
typedecl = nil,
tags = ∅,
metatype = interface,
classifier = ({feature}, {operational}, {required}, {any})

protocol
name = nil,
typename = nil,
typedecl = ?book.addPerson{ !files.create . . .} . . . ,
tags = ∅,
metatype = protocol,
classifier = ({quality}, {operational}, {provided, required},
{development, design, runtime})

Figure 3: Selected elements in theAddressBook SOFA component

these keywords are not part of the interface variable declaration itself.

Definition 2.5 (Element comparison)We say that two specification elements are
equal,ei = ej iff ei.name = ej.name∧(ei.typename 6= nil∧TypeOf(ei.typename) =L

TypeOf(ej.typename)) ∧ (ei.typedecl 6= nil ∧ ei.typedecl =L ej.typedecl) ∧
ei.tags =L ej.tags.

We say that specification elementei is subsumed by specification elementej,
ei < ej iff ei.name = ej.name∧(ei.typename 6= nil∧TypeOf(ej.typename) ≺L
TypeOf(ei.typename)) ∧ (ei.typedecl 6= nil ∧ ej.typedecl ≺L ei.typedecl) ∧
ei.tags ⊂L ej.tags.

The case when two specification elements have incomparable contents, i.e.
ei.name = ej.name ∧ ei 6≤ ej ∧ ei 6> ej is denotedei 4 ej in this work.

9

Note that the relations are based on the contents derived from the specification
source only and are parametrized by the specification languageL of the elements.
We would also like to point out the reverse role of subtyping in the comparison
of the .typename and.typedecl parts: the motivation is the intended meaning “ei
has fewer declarations (and/or more restrictions) thanej”.

Assumee1 = (count,int, nil, ∅,. . .), e2 = (count,int, nil, {static,final},. . .), and
e3 = (count,longint, nil, ∅,. . .). Then, the following holds:

• e1 < e2, because∅ ⊂ {static,final}, and

• e1 > e3, becauseint ≺ longint and the other parts ofe1, e3 are equal,

• e2 4 e3, becauseint ≺ longint but{static,final} ⊃ ∅.

Figure 4: Examples of element comparison results

2.3.1 Traits in Interface Specification

As was said at the beginning of this chapter, we would like our model to handle
the declarations in the module interface specification in a manner natural to our
human perception. In particular this involves grouping the specification elements
into more abstract concepts – characteristic traits of the module.

Definition 2.6 (Trait) Let trait classifierCT be a tuple(ct1, ct2, ..., ctD) where
cti ⊆ dimi. A specification trait (or just trait in short) of a module is a tu-
ple t = (name,metatype, CT , E) wherename ∈ Identifiers, metatype ∈
Identifiers, and E ⊆ EM is a set of specification elements such that∀ei ∈
E, cei ∈ ei .classifier : cei = cti ∧ ei.metatype = metatype.

A module trait set is a set of traitsTM = {t} such that∀ti, tj ∈ TM :
ti.name 6= tj.name and∀e ∈ EM ∃tk ∈ TM : e ∈ tk.E.

In plain words, trait is a named set of specification elements which have the
same meaning as characterized by the trait definition (a unique combination of
classifiers andmetatype of the contained elements). Thus we can for example
get traits of provided events, required interfaces, provided design-time qualities,
etc., mirroring user’s view of the module.

Traits group elements of a module even if in the source these may be written
in various places (as shown in Figure 2 on page 8). This allows us later to analyse
the interface specification by the meaning of its parts rather than by their place

10

of occurence or language type. This approach is similar toconnection protocols
described in [4].

We should note that not all combinations of element classification dimension
values need make sense in the given specification language4. This in practice
greatly reduces the number of traits and thus the complexity of the model. For
example, the SOFA system provides the component specifier with just four traits
of elements shown in Figure 5.

provides: metatype =interface,
classifier =({feature}, {operational}, {provided}, {any}),

requires: metatype =interface,
classifier =({feature}, {operational}, {required}, {any}),

properties: metatype =property,
classifier =({feature}, {data}, {provided}, {development,
design, runtime}), and

protocol: metatype =protocol,
classifier =({quality}, {operational}, {provided, required},
{development, design, runtime}).

Figure 5: Trait definitions for the SOFA system

Definition 2.7 (Trait comparison) Assume traitsti and tj such thatti.name =
tj.name. We say that the two traits are equal (denotedti = tj) iff ti.E = tj.E.
We say that traitti is subsumed by traittj (denotedti < tj) iff ti.E ⊂ tj.E (i.e.
|ti.E| ≤ |tj.E| ∧ ∀ei ∈ ti.E∃ej ∈ tj.E : ei ≤ ej). The case when two traits have
incomparable contents, i.e.ti 6≤ tj ∧ ti 6> tj is denotedti 4 tj.

Note that, in line with the specification element equality and order, these rela-
tions are based solely on the specification contents. The human-added information
is too unreliable to use it for precise relationships – namely, it is difficult to find
any natural ordering of the classification facets and their terms.

2.3.2 Trait Categories

Although traits are a useful grouping of specification declarations, for an archi-
tectural level view of a module their granularity is still too small. In high-level

4In such cases we can use partial classification like(quality, na, nk, runtime), providing as
much information as practical.

11

Name Elements
Provisions { (book,IAddressBook, …), (search, IAddressSearch, …) }
Properties { (maxSize,short, …), (defaultSortOrder,short, …) }
Requirements { (files,/system/FileAccess, …) }
Protocol {(–,?book.clear { !files.write …, …) }

Figure 6: The traits in theAddressBook SOFA component

analyses of software we often come into situations where would like to handle
for example “all provided features” as a single group. Such groups are called
categories in our model.

Definition 2.8 (Category) A specification trait category (shortly category) of a
module is a tupleK = (name,CK , T) in whichname ∈ Identifiers, CK =
(ck1, ck2, ..., ckD) wherecki ⊆ dimi andT ⊆ TM such that∀t ∈ T, cti ∈ t.CT :
cti ⊆ cki.

A category set is a set of categories{C1, C2, ..., Cn} such that∀t1 ∈ Ci, t2 ∈
Cj : t1 6= t2.

That is, categories group traits which are similar in some aspect(s). This is ex-
pressed in our model by sharing the values in some of their classification dimen-
sions while disregarding other dimensions, as specified by the category definition
CK . The category set provides category definitions such that each trait from the
module trait set belongs to at most one category of the set; note that the category
set need not cover all specification elements of a module.

F-D (Functionality-Data)
CF = (Contents, {operational}, Role, Lifecycle),
CD = (Contents, {data}, Role, Lifecycle)

Fe-Q (Features-Qualities)
CFe = ({feature}, Kind,Role,Lifecycle),
CQ = ({quality}, Kind, Role,Lifecycle)

S-Q (Services-Qualities, or the Server view)
CS = ({feature}, {operational}, {provided}, Lifecycle),
CQ = ({quality}, Kind, {provided}, Lifecycle)

Figure 7: Example category sets

12

From the definition above it follows that we can define several different ca-
tegory sets which, superimposed on module specification expressed in traits, can
give us completely different views of the module. A key category set, theE −
N − T set, is defined below. Other category sets that can be useful in the ENT
model applications are shown in Figure 7 on the page before.

Figure 8: A SOFA component structured by different category sets

It is worthwhile to note the subtle but important difference between trait and
category definitions. Traits require that the element classifier beequalto that of
the trait – for instance, thatlifecycle = development ∧ lifecycle = runtime.
Thus traits strictly split the element set into distinct subsets. Categories on the
other hand group elements with classifiers that aresubsetof the category classi-
fier CK – this may be e.g. written aslifecycle = development ∨ lifecycle =
runtime.

The other notable characteristic of categories is that they group elements of
different meta-types. They therefore allow operations on the module specifica-
tion based on its human understanding (represented by the classification system
described above) rather than on the syntax or the typing system of the language.

Definition 2.9 (Category comparison)Assume two categoriesKi, Kj such that
Ki.name = Kj.name. We say that these two categories are equal (denotedKi =
Kj) iff |Ki.T | = |Kj.T | ∧ ∀ti ∈ Ki.T ∃tj ∈ Kj.T : ti = tj. We say that category
Ki is subsumed by categoryKj (denotedKi < Kj) iff |Ki.T | ≤ |Kj.T | ∧ ∀t1,i ∈
Ki.T ∃t2,j ∈ Kj.T : t1,i.name = t2,j.name ∧ t1,i ≤ t2,j. The case when two

13

categories have incomparable contents, i.e.Ki 6≤ Kj ∧ Ki 6> Kj is denoted
Ki 4 Kj.

2.3.3 TheE, N, T categories

Because categories are parametrized by classification dimensions, they add flexi-
bility to our model. The set of categories most useful for our work surveyed in
the next section is obtained by using therole dimension. This way we get three
categories which also give the name to our model of module interface:

exports E = (exports, CE, TE);
whereCE = ({feature}, Kind, {provided}, Lifecycle);

needs N = (needs, CN , TN);
whereCN = ({feature}, Kind, {required}, Lifecycle);

tags T = (tags, CT , T T);
whereCT = ({quality}, Kind, {provided, required}, Lifecycle).

Figure 9: The ENT category set

The speciality of this particular category set is that it captures the different
aspects which each part of the interface (and consequently the corresponding spe-
cification trait) has from the point of view of the module interconnections. It is
thus a formalization of the general idea presented in Figure 1 and a crucial struc-
ture for the definitions of compatibility presented in [9].

14

3 Applications of the Model

The model of module interface structuring presented in the preceding section is
applicable to a wide range of module- and component-based systems. It is also
general enough to serve different purposes, suitable for the module developers
(mainly in module understanding) as well as their tools (automated module com-
parisons).

In this chapter we briefly present these aspects of the model. As major part of
the things presented is currently work in progress, they are best taken as examples
motivating the development of the model.

3.1 Applicability

The examples shown in Section 2 use the SOFA component model to illustrate the
concepts. This is a primary platform on which the research on the ENT model is
being carried. The particular features of this framework which make it appealing
to ENT are the simple and readable CDL component specification language and
the presence of features and quality attributes with the key kinds and and roles.

In a straightforward extension, the model is well applicable to the CORBA
Component Model (CCM [20]). While CCM does not use any quality attributes
in component specification, its IDL has constructs for several kinds of features.
The example shown in Figure 10 on the following page shows a dissection of a
CORBA component in the ENT model. Appendix A provides the definitions of
traits applicable to CCM, as well as further examples.

In a similar manner, other component or modularization systems which use an
IDL-like language for the specification of component interface [11, 24] can utilize
the ENT model.

The generality of the model however makes it possible to apply its approach
also to modules specified in other languages. One example is the Java platform,
in particular the JavaBeans [2] component model. Using a modifed Java parser
which takes into account only the interface parts of thepublic class constructs,
we can dissect a JavaBean interface into a set of six traits – imported packages,
imported classes, extended classes, implemented interfaces, methods, and prop-
erties. An example (using a simplified version of thesunw.demo.Juggler
JavaBean) is shown in Appendix B.

The application of the ENT model to JavaBeans suffers however from one de-
ficiency of the platform. JavaBeans can be used in two modes – adesign modeis
utilized by visual tools for setting up bean interconnections, theruntime modeis a
standard mode during bean-based application execution. Some methods of a bean
are applicable only to the design mode, most are available only in runtime mode.
The problem is that this designation is realized by testing theisDesignMode()

15

// other declarations omitted
// for brevity

component HTTPClient {
provides HTTP connection;
uses ::net::Sockets network;
attribute boolean keepalive;
attribute long timeout;

};

Figure 10: A CORBA component in ENT

dynamic property (fromjava.beans.DesignMode interface) inside method
bodies. Unless a sophisticated analysis of method body code is used, it is impos-
sible to correctly set thelifecycle classification property of each method.

Based on our experiences, we expect the ENT model to be applicable also
to widely used modular programming languages, such as to Delphi units, Ada
packages or C language modules. Again, parsing the source to find and classify
elements can be complicated to a different degree. Especially the case of the C
language would require a modified grammar which mixes language and prepro-
cessor constructs (the#include directive represents the module dependencies,
i.e. elements withrole = required classification). Some of these problems are
highlighted in Section 4 at the end of this report.

3.2 Use for Humans

The ENT representation of software modules and components can be helpful in
human understanding of the software. This is a direct result of the design of the
model achieved mainly via its classification system. The three levels of interface
structuring – elements, traits and categories – can show the interface in different
levels of detail and in various views oriented towards different aspects. Figure 8
on page 13 shows how this can look like.

The aim of this feature of the model is to provide for easier and less error prone
software evaluation, thus facilitating tasks such as visual design, re-engineering
and maintenance. The primary envisaged application in this respect is in visual
design tools. The use of the ENT model in this context would result in software
presentation in user terms rather than (as common now) in language terms.

Especially for visual development with components, the developer can then

16

have the component appearance affected by category selection. Such view para-
metrization can have three applications:

1. In assembly (binding) of modules into applications, e.g. in solving the tasks
“now I want to see just the links between the provided and required ifaces”
in CORBA components, or “let’s see how events propagate” by showing
just event sinks/sources with event names.

2. In search/evaluation, the model can provide a tree view of a single com-
ponent in which the user can expand category, trait, and specification item
contents to trace down a particular feature. For example, in seaching for
theanimationRate property of theJuggler JavaBean, the developer
would use the Operational-Data categories and unfold, in sequence, the
“Data” category and the “Properties” trait, to find the specification.

3. In maintenance or servicing, the maintainer can test change propagation
in “what-if” scenarios using therole of features (see Figure 11) – change
is OK if the proposed modification is an extension of the provided or a
reduction of the required features.

Figure 11: Change propagation shown in the ENT model

Another use is in library search and retrieval, where the model can assist in
narrowing the result set. This can be achieved by augmenting the search methods
(e.g. fulltext search in descriptions, signature matching, etc.) using the classifiers
and other metadata associated with elements, traits and categories. The user can,
for example, restrict the search for a SOFA component to match just signatures of
the provided operational features (within interfaces in theprovides trait).

17

3.3 Use for Tools

In the area of tool-based module and component processing, the ENT model can
provide support for automated component evaluation. The unique and interesting
feature in this respect is the possibility to represent in the same format the interface
of modules from different systems. This opens the opportunity for side-by-side
comparison, high-level analyses and other processing.

In particular, we currently use this approach in two different but related scenar-
ios. First, we can produce a meaning-based diff of two modules (see Figure 12).
This is useful in the evaluation of module or component substitutability [9], as
well as in tracing change propagation as described above.

Figure 12: ENT -based difference highlighting

Secondly, the results of this ENT -based diff are the input data in our language-
based revision identification of SOFA and CORBA components [7, 8]. This ap-
proach uses a structure of the revision number based on theE ,N ,T category set,
rather than anM .m.µ scheme with arbitrary semantics.

From a wider perspective, the low-level ENT data could also be used e.g. for
translation of module interfaces between systems. For example, after extracting
ENT data for a JavaBean component we could use this data to generate a CORBA
IDL skeleton of a corresponding CCM component.

The assistant role in library search and retrieval mentioned in the preced-
ing subsection obviously needs related automated support. We also expect that
the ENT model could be beneficial for component testing, as identificaiton of

18

traits/categories allows separate testing of independent aspects (functionality vs.
QoS tests). The generality of the ENT model suggests that more uses of it can be
found.

19

4 Discussion

The purpose of creating models is to abstract away details of the subject which are
not interesting from the particular point of view. Therefore, care must be taken to
balance simplicity and precision in the model definition. The subject of our work,
software module and component systems, exhibit a great degree of variation. Thus
the goal of our work may be noble but is not easy to attain.

In this section, we would therefore like to discuss in more detail the model, its
advantages and weaknesses. This opens the way for further work on applications
and improvements of the model, as well as in related areas.

4.1 Advantages of the Model

The primary objectives of the model are conceptual simplicity and close corre-
spondence to human (primarily developer’s) view on software modules. These
aspects can be directly counted as the module’s advantages.

The simplicity lies primarily in the use of a restricted set of classification facets
and metadata items attached to interface elements, and in straighforward rules
for their grouping into traits and categories. The model should thus be easy to
comprehend and implement in code.

The application of the model to a given module-based programming language
or component framework results in a representation of modules or components
that is easy to visualise and comprehend. This stems from the selection of clas-
sification facets and from the natural hierarchy of elements, traits and categories.
The model is thus a contribution to the area of program understanding.

Additionally, the model allows to manipulate the software specification (ana-
lyse, compare, transform) based on interesting semantic properties. While these
properties are not always directly expressed in the syntax of the language, it is rel-
atively easy to augment the given parser to extract them. Furthermore, the model
hints the possible improvements in specification languages (see Appendix C on
page 33).

The model was designed to be very general and independent of any particular
technology or specification language. It is thus and applicable to many research
and industrial platforms – among others to SOFA [28], C2 [24], CORBA [20], Jav-
aBeans [2] and Enterprise JavaBeans [3]. Examples of an ENT model of CORBA
and JavaBean components are given in the Appendix.

As the definition of trait and category is not bound to a predefined classifier, the
model allows to flexibly define ENT-based software representations for various
purposes. The main practical application is the ability to reduce the specification
to an “interesting” subset (e.g. to theprovides part of the component interface)
depending on the concrete interests of the users.

20

Finally, the model is open for extensions. It was noted in Section 2 that the
facet collection used in ENT classification is not fixed. Should the analysis of
platforms, frameworks and languages not covered by our research reveal new
classification dimensions, they can be added without directly affecting the model
itself. Similarly, the ordering relations for specification elements can be changed,
e.g. using the approach to relaxed signature matching presented by Zaremski and
Wing [36].

4.2 Disadvantages and Open Issues

The ENT model presented here has however several shortcomings that need the
attention in future research. The primary problem as we see it is the need for
manual classification of specification elements in the given language. This need
arises because automated classification is in general a difficult problem [6, 36], in
this case further complicated by the lack of expressiveness of some specification
and programming languages. This opens room to different interpretations and
thus imprecise classification of features and properties (e.g. along theLifecycle
dimension).

The second problem concerns the fact that elements are taken as atomic units
without considering the details of their internal structure. For example, in the
elementproperty: readonly int count; the keywordreadonly ex-
presses mainly semantics of the property but this information is largely disre-
garded in the current model. Similar case are methods in Eiffel [21] with pre- and
post-condition expressions.

This calls for a more accurate handling of thetags part of the specification
element. The desired effect would be achieved by defining this part as a set of
pairs tags = {(declarations, classifier)}, i.e. tagging individual parts of the
declaration with classifiers. This would make the model match reality better but
at the expense of readability and simplicity. We therefore accept the simpler ap-
proach and consider declarations as monolithic, classified by its overall proximity
to the classification facet terms. The use of internal structuring of declarations is
reserved for future work.

Last but not least, the implementation of the ENT model for some languages
requires non-trivial amount of work. In some cases it is necessary to redesign
the language grammar so that elements and traits are easier to separate. In any
case the approach depends on the creation of suitable parsers which extract the
relevant data from the specification source. These two tasks combined pose a
challenge mainly in the case of syntactically rich programming languages like
C/C++ or Java.

21

4.3 A Note on Specification Languages

There are however a few problems outside of the model, in specification languages
themselves, which may hinder the full use of our approach to interface structuring.
The most unfortunate one is the lack of expressiveness of current specification
languages. For example, while the support for theprovides role is common,
only several research and a few industrial languages allow to specify required
features [28, 20].

Similarly, the languages allow the specification of only a limited number of
data feature types. The only common one are data properties, but in reality soft-
ware components often depend on or create various data files and streams. No
component framework in widespread use provides support for file or stream spec-
ifications that would capture this important aspect of their functionality.

The result is that the model presented in this paper can easily accomodate
today’s specifications but is not used to its full potential. Thus our reasoning
about features and properties provides hints on what can (and should) be done in
terms of improving component specifications. Appendix C on page 33 shows how
we envision a component specification with some of these aspects implemented.

22

5 Related Work

Component models.In the area of component models, there exists several widely
known research and industrial systems. Some of them (C2 [24], SOFA [28],
CORBA [20]) provide a reasonable component model which uses interface spe-
cification language (under various names – ADL, IDL, CDL) with syntactic dis-
tinction of provided and required parts of the interface. In some cases, a form
of semantic properties specification is also available. There are also other frame-
works (e.g. COM [11], EJB [3]) which do not match our general model too well
but are interesting due to their widespread practical use. However, there seems to
be a lack of explicit work on modeling module and component interfaces [25, 19].

The notion of module-based programming [26] first introduced the concept
of information hiding and the separation between interface and implementation
in software. This is now taken as one of the fundamental principles in software
engineering and in the pure form is represented by the systems which use various
IDL-like languages [13, 27, 32].

There are several languages representing the module-based programming pa-
radigm that are interesting from our point of view. First, the Ada programming
language [1] provides very rich and precise means for specifying module and
class interfaces. The Eiffel language [21] is interesting from the point of view
that its class declarations can contain semantic properties in the form of pre- and
post-condition plus class invariant. Also, the Eiffel compiler set includes a tool
to generate a digest form of class declaration which is close to the specification
languages mentioned above.

Among the languages that are more common in practical use, we might men-
tion Java with itsjavadoc tool that can be used to generate a documentation of
the interface to public elements in the class declaration.

Feature classification.The ENT model uses an (admittedly simple) faceted
classification system first introduced to software by Prieto-Diaz [29]. However,
the main inspiration comes from the implicit classification of features (keywords
like provides , imports , etc.) found in some IDL languages [20, 28, 24]

Specification analysis.There are several works which deal with the analysis
of software source code, be it interface specification or the implementation code.
Medvidovic and Taylor [19] mention in this respect mainly enforcement of prop-
erties, simulation and code generation. Zaremski and Wing [36] extract method
signatures from Standard ML code and then apply various forms of their matching
in a library search approach.

CASE tools (e.g. Together [35], Rational Rose [30]) usually support so-called
“round-trip engineering” where source code can be generated from an UML model,
modified and then parsed to re-create the model.

Software visualization. Most component-based systems support some form

23

of visual design mode in which components represented as elements without inter-
nal structure can be interconnected. However as Medvidovic [19] notes “support
for other views is sparse”.

The UML notation [14] is a widely used graphical language for visualising
static and dynamic aspects of object-oriented systems. The visual representation
of the modules shown in the examples in Section 2 is inspired by the UML ap-
proach but goes further in the possibility to collapse individual levels (categories,
traits, elements) and to parametrize the display by the category set used.

In the area of software comprehension, the work on visualizing change prop-
agation (see e.g. [10]) touches a topic related to our work. The use of the ENT
model can bring the benefit of separating dependencies between individual traits,
allowing to focus on change propagation only in particular aspects.

24

6 Future Work

The work on the ENT model is done mainly to support other areas of our research
related to component compatibility and versioning [8, 9]. However, there are
several opportunities for work connected to the model itself. They are listed below
in no particular order.

First, it would be beneficial to verify the model on a wider range of modu-
lar programming languages, component frameworks and specification languages.
The main purpose of this expected work is to verify the structure of the specifi-
cation element and the choice of classification dimensions. Among the candidate
systems are the Wright language [5], the C2 ADL [24], Enterprise JavaBeans [3],
Ada language packages [1], Eiffel classses [21] and Borland Delphi [33] compo-
nents.

As noted in the discussion above (Section 4), one of the shortcomings of the
model is the uniform treatment of element declaration parts. It would be more
appropriate to provide element comparison which uses tag matching rather than
set comparison of thetags set. This will therefore be subject to the investigation
of possibilities and methods.

Preliminary practice shows, that the design of an ENT model for a particular
language does not start with determining interface elements and classifying them
according to the classification scheme. Instead, it is easier to start directly with
the language grammar and find rules describing specification traits. The interface
elements are then extracted from the specification source using the appropriate
parser. This suggests that the definition of trait based on element classification
(as given in Section 2.3.1 on page 10) may be too restrictive and/or complicated
for practical use. Therefore, we will study the relationship between elements and
traits in more detail.

To support automated ENT data extraction, more research into the possibili-
ties of grammar tagging is needed. The purpose of this work is to tag specification
language grammar rules to indicate, whether the rule contributes to a particular
element, trait, or their class. Such grammar tagging would enable us to automat-
ically generate ENT parsers or at least their skeletons, thus eliminating the most
mundane work on the model implementation.

The possibility to visualise the module’s ENT representation opens the way
to further research its possible use in software visualisation, comprehension and
modeling. While there exist various notations and approaches in this area that
help software developers the ENT model can add the possibility to parametrize
the visual representation by chosen category set. This may be interesting e.g. in
relation to showing version differences or change propagation [10].

There is also need for more work in the implementation of the model as pre-
sented in this paper. First, the support for SOFA component framework should

25

be completed. This involves automatic generation of ENT data from SOFA CDL
source (CDL parser, XML output backend), visualisation of the components from
ENT data parametrized by trait and category definitions. The latter should also
include interconnections with the option to show change propagation effects. A
part of this work is currently in progress.

Second, the metod for comparison of ENT data to generate an ENT diff
should be fully specified and implemented, together with generating revision iden-
tification as described in [8] based on the diff results. In correspondence with the
visualisation aspect of the model, the visual display of this diff should be imple-
mented.

Lastly, our aim is to provide an example implementation of the ENT-based
representation, comparison and revision identification for the CORBA Component
Model. At present the component versioning part is under development.

26

7 Conclusion

In this report we have presented a general model for natural structuring of the in-
terface of software modules and components, motivated by the need to to enable
analyses based on user understanding of the software. The model uses a faceted
classification of interface features and properties derived from their various as-
pects as perceived by human developers and users. The resulting structuring of
interface into, among others, the exported and needed elements formalizes the
notion of software component as defined by Szyperski [34].

The key feature of the model is its extensibility and applicability to different
component- and module-based systems. While being general enough to cover
most current systems, it can easily accomodate future developments by extending
the classification system and/or enhancing the comparison methods used. As it
is not tied to a concrete system it may serve, among other uses, as a unifying
platform for software visualization.

Our subsequent work on the model will be mainly driven by the needs to fur-
ther improve some aspects of the model, mainly in order to make it more precise
in modeling detailed aspects of the interface. Also, several applications of the
model will be explored together with a research into techniques facilitating fur-
ther automation.

27

A The ENT model for CORBA components

A.1 Trait Definitions

The CORBA Component Model requires to use an extended classification system
that enables us to distinguish event publishers and emmiters:DimensionsCCM
= DimensionsENT ∪ {Arity} whereArity = {single,multiple} denotes how
many connections an element can accept/provide.

inherits metatype =component-ref,
classifier =({feature}, {operational, data}, {provided}, {development},
{na})

supports metatype =interface-ref,
classifier =({feature}, {operational}, {provided}, {any}, {na})

facets metatype =interface-ref,
classifier =({feature}, {operational}, {provided}, {any}, {nk})

receptaclesmetatype =interface-ref,
classifier =({feature}, {operational}, {required}, {any},
{single, multiple})

publishers metatype =event-ref,
classifier =({feature}, {operational}, {required}, {any}, {multiple})

emitters metatype =event-ref,
classifier =({feature}, {operational}, {required}, {any}, {single})

sinks metatype =event-ref,
classifier =({feature}, {operational}, {provided}, {any}, {single,multiple})

attributes metatype =attribute,
classifier =({feature}, {data}, {provided}, {design}, {na})

A.2 Example: TheParking Component Source

The source (from OpenCCM [18] examples):

// the parking.
component Parking
{

// parking states.
readonly attribute string description;

28

readonly attribute ParkingState state;
readonly attribute PlaceNumber capacity;
readonly attribute PlaceNumber free;
// parking receptacles.
provides ParkingAccess for barriers;
provides ModifyState for admin;
// parking events ports.
publishes ChangeState state notify;

};

A.3 Example: TheParking Component in ENT

The representation of theParking component in traits is as follows, ommitting
empty traits and element classifiers.

facets = {(for barriers, ParkingAccess, ∅, ∅,interface-ref, (. . .)),
(for admin,ModifyState, ∅, ∅,interface-ref, (. . .))}

publishers = {(state notify , ChangeState, ∅, ∅,event-ref, (. . .))}

attributes = {(description, string, ∅, {readonly},atribute, (. . .)),
(state, ParkingState, ∅, {readonly},attribute, (. . .)),
(capacity, P laceNumber, ∅, {readonly},attribute, (. . .)),
(free, P laceNumber, ∅, {readonly},attribute, (. . .))}

29

B The ENT Model for JavaBeans

We ought to note in this place that it is not easy to create the trait definitions for
JavaBean components [2]. The primary reason is the way the component model is
defined – namely, the excessively close links to the Java language type system and
to a set of name conventions (the specification refers to these as “design patterns”
which is a misnomer).

In the first place, to find elements of theproperties trait, the syntactical analy-
sis of method signatures must be complemented by the appropriate lexical analysis
of their names. This is because JavaBean properties are implemented as pairs of
accessor and mutator methods that are named according to a convention. For ex-
ample, to define a propertyint property , a JavaBean must contain methods
int getProperty(); plusvoid setProperty(int value); .

Next, the JavaBean model contains an event-handling mechanism using the
publish-subscribe design pattern. However, this is realized by JavaBean classes
implementing listener interfaces which group event declarations. If we were to
define a trait for the events a component can react to, we would have to refer
to the contents of such interfaces which is obscure at the conceptual level and
difficult for the implementation.

The most we could do is to rely on another name convention as listener in-
terface names should end inListener – but this method is highly unreliable
because the name convention is not mandatory. We could also try to detect event-
handling methods in component interface – but the “design pattern” by which they
are described in the specification (void <eventOccurenceMethodName>
(<EventStateObjectType> evt);) is clearly so general that it is useless
for any automated analysis.

B.1 Trait Definitions

The JavaBean framework uses the core ENT classification system. As noted in
Section 4, it is not possible to distinguish design-time and run-time methods based
on method signatures only.

imports-p metatype =CanonicalPackageName,
classifier =({feature}, {nk}, {required}, {development})

imports-c metatype =CanonicalClassName,
classifier =({feature}, {operational, data}, {required}, {development})

extends metatype =ClassName,
classifier =({feature}, {operational, data}, {required}, {development})

30

implements metatype =InterfaceName,
classifier =({feature}, {operational}, {provided}, {any})

methods metatype =Method,
classifier =({feature}, {operational}, {provided}, {runtime})

properties metatype =Property,
classifier =({feature}, {data}, {provided}, {design, runtime})

B.2 Example: TheMyJuggler JavaBean Source

The following code is an shortened version of the originalsunw.demo.Juggler
JavaBean. The method bodies are removed due to the fact they are not interest-
ing in interface specification. Several specification elements are highlighted in the
code.

package zcu.fav.kiv.ent.demo;

import java.awt.*;
import java.awt.event.*;
import java.awt.image.*;
import java.net.URL;
import java.beans.*;
import java.beans.DesignMode.*;

public class MyJuggler
extends

Applet
implements

PropertyChangeListener, DesignMode
{

/** design time methods */
public void setDebug(boolean debug) { /* ... */ }

/** property: int animationRate */
public int getAnimationRate() { /* ... */ }
public void setAnimationRate(int x) { /* ... */ }

/** Juggler methods */
public synchronized void startJuggling() { /* ... */ }
public synchronized void stopJuggling() { /* ... */ }
public void startJuggling(ActionEvent x) { /* ... */ }

31

public void stopJuggling(ActionEvent x) { /* ... */ }
public boolean isJuggling() { /* ... */ }

/** administrative methods */
public void setDesignTime(boolean dmode) { /* ... */ }
public boolean isDesignTime() { /* ... */ }
public boolean isDebug() { /* ... */ }

}

B.3 Example: TheMyJuggler JavaBean inENT

The representation of theMyJuggler JavaBean in traits is as follows, ommitting
the metatypes and classifiers.

imports-p = {(nil, java.awt, ∅, ∅,. . .),
(nil, java.awt.event, ∅, ∅,. . .),
(nil, java.awt.iamge, ∅, ∅,. . .),
(nil, java.beans, ∅, ∅,. . .),
(nil, java.beans.DesignMode, ∅, ∅,. . .)}

imports-c = {(nil, java.net.URL, ∅, ∅,. . .)}

extends = {(nil, Applet, ∅, ∅,. . .)}

implements = {(nil, PropertyChangeListener, ∅, ∅,. . .),
(nil,DesignMode, ∅, ∅,. . .)}

methods = {(setDebug, boolean→ void, ∅, ∅,. . .),
(startJuggling, void→ void, ∅, {synchronized},. . .),
(stopJuggling, void→ void, ∅, {synchronized},. . .),
(startJuggling, ActionEvent→ void, ∅, ∅,. . .),
(stopJuggling, ActionEvent→ void, ∅, ∅,. . .),
(isJuggling, void→ boolean, ∅, ∅,. . .),
(setDesignT ime, boolean→ void, ∅, ∅,. . .),
(isDesignT ime, void→ boolean, ∅, ∅,. . .),
(isDebug, void→ boolean, ∅, ∅,. . .)}

properties = {(animationRate, int, ∅, ∅,. . .)}

32

C Vision of a Rich Component Specification

The following IDL-like code shows how we envisage a full-featured component
specification, using the experiences gained in developing the ENT model de-
scribed in this paper. The notable enhancements agains current IDL/ADL lan-
guages are:

• Explicit declaration ofdata featureslike files and streams, including means
for datatype and/or format specification of their records.

• Use of annotations to describe semantic, classification and quality of service
properties of individual elements as well as of the whole component.

• The ability to include versioning information in the component IDL speci-
fication.

dataformat LogFile [ascii]
{

DateTime date;
String<20> object;
int result;

}

component ExampleCo [remote rev=3.1.1]
{

provides:
InterfaceA a1 [rev=4.1 synchronized arity=1];
InterfaceB b1 [arity=any bind-after=a1]

[* response-time:avg=1ms,max=30ms *];
LogFile log [filename=SystemLogDir."ExampleCo.log"]

[* growth-rate-avg=230 *];
requires:

InterfaceX x1 [rev-from=2.0 rev-to=3.3 synchronized];
ConfigFile cfg

[filename=SystemConfigDir."ExampleCo.cfg" read-write];
properties:

int MAX = 256 [design-time run-time];
String<80> WindowTitle [design-time];
String SystemLogDir = "/var/log/";
String SystemConfigDir = "/etc/components/";

state:

33

int count;
float[] data;

invariant:
count >= 0 and count < MAX;

protocol:
<init> { log.open ; cfg.read } ;
(?a1.a { !x1.a ; log.write }

|| ?a1.b { !x1.a ; !x1.b ; log.write })
+ ?b1.q ;
<finishing> { log.close }

}

34

References

[1] Ada 95 Reference Manual : Language and Standard Libraries. Lecture
Notes in Computer Science 1246. Springer Verlag, November 1997. Inter-
national Standard ISO/IEC 8652:1995(E).

[2] JavaBeans (version 1.01). API specification, Sun Microsystems, Inc., 1997.

[3] Enterprise JavaBeans(TM) Specification. Version 2.0, Sun Microsystems
Inc., August 2001.

[4] Marı́a Jośe Presso. Declarative Descriptions of Component Models as a
Generic Support for Software Composition. Position paper, June 2000.
Workshop on Component-Oriented Programming (WCOP’00).

[5] R. Allen and G. Garlan. Formalizing architectural connection. InPro-
ceedings of the Sixteenth International Conference on Software Engineering,
pages 71–80, Sorrento, Italy, May 1994.

[6] Juergen B̈orstler. Feature-oriented classifciation for software reuse. InPro-
ceedings of the 7th International Conference on Software Engineering and
Knowledge Engineering, pages 204–211, Rockville, MD, USA, Jun 1995.

[7] Přemysl Brada. Component change and version identification in SOFA. In
Jan Pavelka and Gerald Tel, editors,Proceedings of SOFSEM’99, LNCS
1725, Milovy, Czech Republic, 1999. Springer-Verlag.

[8] Přemysl Brada. Component revision identification based on idl/adl compo-
nent specification. InProceedings of the Xth European ACM Conference on
Software Engineering (ESEC/FSE). ACM Press, 2001.

[9] Přemysl Brada. Towards automated component compatibility assessment.
Technical report, Budapest, Hungary, 2001. Presented at the Work-
shop on Component-Oriented Programming, WCOP’2001 affiliated with
ECOOP’2001.

[10] Kunrong Chen and V́aclav Rajlich. Ripples: Tool for change in legacy soft-
ware. Technical report, Department of Computer Science, Wayne State Uni-
versity, Detroit, MI, 2001.

[11] Microsoft Corporation and Digital Equipment Corporation. The component
object model specification. Draft version 0.9, Microsoft Corporation, Octo-
ber 1995.

35

[12] M. Goedicke and H. Schumann. Component-oriented software development
with Π. ISST report 21/94, Fraunhofer Institute for Software-Engineering
and Systems Engineering, 1994.

[13] Object Management Group. The Common Object Request Broker: Architec-
ture and Specification (Revision 2.4.2). OMG Document formal/01-02-33,
OMG, February 2001.

[14] Object Management Group. The Unified Modeling Language v1.4. Omg
standard, OMG, 2001.

[15] Magnus Larsson and Ivica Crnkovic. New challenges for configuration man-
agement. InProceedings of the SCM-9 workshop, ECOOP 1999, LNCS
1675, Toulouse, France, Sep 1999.

[16] Chris Lüer and David S. Rosenblum. WREN—An Environment for
Component-Based Development, 2001.

[17] J. Magee et al. Specifying distributed software architectures. InProceedings
of ESEC’95, Barcelona, Spain, 1995.

[18] Raphael Marvie, Philippe Merle, and Mathieu Vadet. The OpenCCM plat-
form. http://corbaweb.lifl.fr/OpenCCM/index.html, 2001.

[19] Neno Medvidovic. A Classification and Comparison Framework for Soft-
ware Architecture Description Languages. Technical report UCI-ICS-TR-
97-02, University of Carolina, Irvine, 1997.

[20] Philippe Merle. CORBA 3.0 New Components Chapters. OMG Document
ptc/2001-11-03, Object Management Group, November 2001.

[21] Bertrand Meyer.Eiffel: The Language, 2nd ed. Prentice Hall, 1992.

[22] Sun Microsystems. javadoc - The Java API Documentation Generator,
2002.

[23] M.T.Peterson.DCE: A Guide to Developing Portable Applications, chapter
17: UUID and Version attributes. McGraw-Hill, 1995.

[24] Peyman Oreizy. Issues in the Runtime Modification of Software Architec-
tures. Technical report TR-96-35, University of Carolina, Irvine, 1996.

[25] Allen Parish, Brandon Dixon, and David Hale. Component based software
engineering: A broad based model is needed. Technical report, The Univer-
sity of Alabama, Tuscaloosa, AL, USA, Apr 1999.

36

[26] David L Parnas. On the criteria to be used in decomposing systems into
modules.Communications of the ACM, December 1972.

[27] M. T. Peterson. DCE: A Guide to Developing Portable Applications.
McGraw-Hill, 1995.

[28] Frantǐsek Pĺǎsil, Dušan B́alek, and Radovan Janeček. SOFA/DCUP: Archi-
tecture for Component Trading and Dynamic Updating. InProceedings of
ICCDS’98, Annapolis, Maryland, USA, 1998. IEEE CS Press.

[29] R. Prieto-Diaz and P. Freeman. Classifying software for reusability.IEEE
Software, 18(1), Jan 1987.

[30] Rational Software.Rational Rose. http://www.rational.com/products/rose/.

[31] Ralph Reussner. The Use of Parametrised Contracts for Architecting Sys-
tems with Software Components. Position paper, June 2001. Presented at the
Workshop on Component-Oriented Programming, WCOP’2001, Budapest,
Hungary.

[32] D. Rogerson.Inside COM. Microsoft Press, 1997.

[33] Borland Software Corporation.Delphi 6 Developer’s Guide, 2001.

[34] Clemens Szyperski.Component Software. ACM Press, Addison-Wesley,
1998.

[35] TogetherSoft Corporation.Together ControlCenter 6.0 User Guide, 2002.
http://www.togethersoft.com/products/controlcenter/.

[36] Amy Moormann Zaremski and Jeanette Wing. Specification matching of
software components.ACM Transactions on Software Engineering and
Methodology, 6(4), October 1997.

37

	 Introduction
	 Module Specifications and Their Use
	 Goal and Structure of the Paper

	 The ENT Model of Module Interface
	 Module Features and Qualities
	 Characteristics of Features and Quality Attributes

	 Feature and Quality Classification System
	 The Model: Elements, Traits and Categories
	 Traits in Interface Specification
	 Trait Categories
	 The E, N, T categories

	 Applications of the Model
	 Applicability
	 Use for Humans
	 Use for Tools

	 Discussion
	 Advantages of the Model
	 Disadvantages and Open Issues
	 A Note on Specification Languages

	 Related Work
	 Future Work
	 Conclusion
	 The ENT model for CORBA components
	 Trait Definitions
	 Example: The Parking Component Source
	 Example: The Parking Component in ENT

	 The ENT Model for JavaBeans
	 Trait Definitions
	 Example: The MyJuggler JavaBean Source
	 Example: The MyJuggler JavaBean in ENT

	 Vision of a Rich Component Specification

