

University of West Bohemia in Pilsen
Department of Computer Science and Engineering
Univerzitni 8
30614 Pilsen
Czech Republic

Document Classification in a Digital
Library
PhD Study Report

Jiří Hynek

Technical Report No. DCSE/TR-2002-04
February 2002

Distribution: public

Document Classification in a Digital Library

 -2-

Document Classification in a Digital Library
Ing. Jiří Hynek

jiri.hynek@insite.cz

CONTENTS

1. GENERAL CONCEPTS OF DIGITAL LIBRARIES AND INFORMATION RETRIEVAL.................. 4
1.1. INTRODUCTION .. 4
1.2. BASIC TERMINOLOGY .. 4
1.3. QUANTITATIVE AND QUALITATIVE ASSESSMENT OF THE SEARCH PROCESS.. 5
1.4. TAXONOMY OF SEARCH METHODS .. 5

1.4.1. Statistical Analysis of Absolute Term Frequency .. 5
1.4.2. Syntactical Methods... 5
1.4.3. Semantic Methods.. 5

1.5. TAXONOMY OF SEARCH MODELS... 5
1.5.1. Boolean Model... 5
1.5.2. Vector Model ... 7
1.5.3. Fuzzy Model... 8

1.6. LINGUISTIC ASPECTS IN THE CONTEXT OF A DIGITAL LIBRARY... 8
1.6.1. Morphological Analysis of Queries ... 8
1.6.2. Stemming ... 8
1.6.3. Stop-List... 9
1.6.4. Right-hand Word Expansion.. 9
1.6.5. Thesaurus .. 9

2. DIGITAL LIBRARY OF ZÁPADOČESKÁ ENERGETIKA .. 11
2.1. MAIN FEATURES .. 11
2.2. TECHNICAL FEATURES... 11
2.3. SYSTEM’S ARCHITECTURE ... 12
2.4. QUERYING AND USER INTERFACE.. 14
2.5. SEARCH ENGINE – UNISEEK... 15
2.6. LINGUISTIC ASPECTS ... 16
2.7. FURTHER IMPROVEMENTS.. 17

3. DOCUMENT CLASSIFICATION.. 18
3.1. THE TASK OF DOCUMENT CLASSIFICATION ... 18
3.2. EXISTING DOCUMENT CLASSIFICATION METHODS .. 18
3.3. TEST DOCUMENT COLLECTIONS .. 19
3.4. ASSESSMENT OF CLASSIFICATION ALGORITHMS.. 20

4. ITEMSETS CLASSIFIER ... 21
4.1. ASSOCIATION RULES.. 21
4.2. ITEMSETS CLASSIFIER .. 21
4.3. APRIORI ALGORITHM FOR ITEMSETS GENERATION .. 21
4.4. DOCUMENT CLASSIFICATION USING ITEMSETS.. 23
4.5. PHASES OF ITEMSETS METHOD .. 24

4.5.1. Training Phase .. 24
4.5.2. Classification Phase .. 25

4.6. PRELIMINARY RESULTS ... 26

Document Classification in a Digital Library

 -3-

5. AUTOMATIC DOCUMENT SUMMARIZATION .. 27
5.1. INTRODUCTION .. 27
5.2. APPROACHES TO DOCUMENT SUMMARIZATION... 27
5.3. EVALUATION OF SUMMARIZATION SYSTEMS ... 28

6. OTHER APPLICATIONS OF ITEMSETS METHOD .. 30
6.1. ITEMSETS-BASED DOCUMENT CLUSTERING... 30

6.1.1. General Concepts of Document Clustering ... 30
6.1.2. Document Clustering Using Itemsets .. 30

6.2. NAÏVE BAYES CLASSIFIER AND ITS MODIFICATION BASED ON ITEMSETS METHOD................................... 32
6.2.1. General Principles... 32
6.2.2. Document Classification Using Naive Bayes classifier... 33
6.2.3. Implementation of Naive Bayes document classification algorithm.. 34

6.3. ITEMSETS-BASED INFORMATION SEARCH AND RETRIEVAL ... 35
6.3.1. Discovering Interesting Web Sites... 35
6.3.2. Information Push ... 35
6.3.3. Searching for Similar Documents.. 35
6.3.4. Querying.. 36

6.4. TOPICAL SUMMARIZER .. 36
6.5. ITEMSETS SPAM FILTER ... 36

6.5.1. Spam Filtering ... 36
6.5.2. Results of a Preliminary Practical Implementation... 36

7. CONCLUSION ... 39

8. WEB INFORMATION SOURCES... 40

9. REFERENCES.. 41
AUTHOR’S CONFERENCE PUBLICATIONS RELATED TO THIS REPORT: ... 42

Other publications ... 42
Translated books ... 42

Document Classification in a Digital Library

 -4-

1. GENERAL CONCEPTS OF DIGITAL LIBRARIES AND INFORMATION RETRIEVAL

1.1. Introduction
This report is focused mainly on further development of document classification algorithms and their
potential applications in various areas of digital library world. Special attention is also paid to
clustering and summarization technologies.
Chapter 2 constitutes a description of a real world digital library implemented at a regional power
utility company. Chapter 3 is a brief introduction to existing document classification methods,
presenting advantages and disadvantages of existing categorization technologies, thus reasoning
development of yet another method. Itemsets categorization, a new document classification method, is
the prime topic of chapter 4 and my further research. Automatic document summarization is the topic
of Chapter 5, as this is a prerequisite for itemsets categorization. Other potential applications of
itemsets method are briefly introduced in Chapter 6.
Development of itemsets classifier, a method suitable for short documents, was motivated by presence
of freely accessible abstracts on the web. Digital collections of abstracts can be developed cheaply,
avoiding the risk of copyright infringement.
My further research work will concentrate namely on the following: domain-independent optimization
of itemsets categorization method and its application on full-length text files, and testing itemsets
method on additional document collections (both in Czech and English). Categorization of full-length
documents by itemsets classifier will require my involvement in research on suitable document
summarization methods. I will also look for specific applications of itemsets method (and their
implementation), namely modification of Naïve Bayes classifier, itemsets-based document clustering,
unsolicited e-mail filtering and information querying.
Needed to note that some of the new ideas and concepts contained in this report have already been
implemented. Other ideas, suggestions and paradigms will be subject to my further research and,
hopefully, also implemented. The prime topic of this report is permanently tested on a real intranet
application, which is undergoing quite dynamic day-to-day development.
Numerous information sources on digital libraries and document management systems can be found
on the web, such as www.dlib.org (including renowned D-Lib Magazine). See Section 8 – Web
Information Sources for further references. The issue of digital libraries is also the topic of the well-
known European Conference on Research and Advanced Technology for Digital Libraries (ECDL).

1.2. Basic Terminology
Let’s define several key terms to be used in the following sections of this report. Corpus is an
extensive, structured and comprehensive collection of documents in a given language. Corpuses can
include either plain or tagged documents. Morpheme represents an elementary language element, such
as root, prefix, or suffix. Morphological analyzer is an automaton providing a set of basic forms
(lemmas and grammar rules) for each form of a word. Morphological normalization (stemming)
denotes a process of converting word forms into corresponding basic forms. Morphological variations
are inflected word forms (word declensions) occurring at some languages, such as Czech. Vocabulary
problem denotes potential use of different synonyms by document authors and users entering their
queries. Phrase is a short sequence of significant words bearing some meaning. Phrase search can be
implemented by full-text search of phrases in a document collection. Stop list is a list of non-
significant words, i.e. words bearing no semantics (prepositions, conjunctions, etc.). Classification (or
categorization) is the process of arranging specific items (such as words, documents, messages) into
classes, or categories, using (combination of) features depending on specific classification method. A
priori definition of classes (categories) by a librarian is required. Clustering, on the other hand, is used
to arrange specific items into groups that are defined along the way, without prior definition of
categories. An Itemset denotes a set of items (such as words, goods in a supermarket, etc.) of some
kind.
Various authors often confuse the meaning of keyword, term and descriptor. To be exact, keywords
represent the simplest expressions (e.g. “liberalization”, “price”, etc.), whereas terms and descriptors
denote multiword language phrases, such as “bipolar transistor” or “structured query language”.

Document Classification in a Digital Library

 -5-

1.3. Quantitative and Qualitative Assessment of the Search Process
In order to assess the quality of a search engine, we need to define some basic parameters and criteria.
Elementary measurements include precision and recall coefficients.

DBrel

Rrel

R

Rrel

N
N

N
NP == R:Recall :Precision

Where:
NRrel = Number of retrieved documents relevant to the user,
NR = Total number of documents retrieved,
NDBrel = Total number of documents in the document collection relevant to the user.

In order to quantify the above coefficients, users must declare how many documents are relevant to
them. It order to determine recall, we need to know the number of relevant documents in the whole
collection, which is often impossible (such as in case of www).

1.4. Taxonomy of Search Methods

1.4.1. Statistical Analysis of Absolute Term Frequency
Quantification of absolute term frequency is the elementary method used by search engines. It entails
monitoring the number of matches between the word entered and its frequency in the text database.
Such a definition of relevance is quite unreliable, however it is considered sufficient for giving a basic
hint. Document ranking by search engines is often expressed in percent or by a number. Documents
are then sorted according to their ranking, starting with those considered most relevant to the user.
In many languages, such as Czech and other Slavic languages, we are coping with derived word forms
(declensions). This is a problem not only for querying, but also for document indexing, namely when
we deal with irregular word declensions. We must also take into account non-significant words, i.e.
words with grammatical function only, lacking any semantics.

1.4.2. Syntactical Methods
Syntactical methods are based on comparing syntactical text structures with structure templates stored
in a special database. Basic document structuring is based on document heads, sections, parts,
chapters, paragraphs, etc.

1.4.3. Semantic Methods
Document retrieval by means of semantic methods is based on analysis of the semantic structure of
document content. Semantic analysis of the text database must be performed. Information retrieval
system can be represented, for example, by a semantic tree structure including various topics of
interest.
Some search engines display query terms in retrieved documents using different typeface or by means
of highlighting (such as Uniseek search engine described in section 2.5). Metadata are often displayed
in addition to text information in order to provide further semantics.
Full-text search in very large document collections is not very efficient unless it is accompanied by
support techniques, such as document structuring, hypertext, thesauri, domain dictionaries, etc. The
language of lawyers, for example, is constantly changing by not only introducing new words, but also
by altering the semantics of existing terms [22]. Some words, seemingly unambiguous, can have as
much as a dozen of different meanings, often contradictory ones. Ambiguity of legal speak is widely
known, being less of a problem in strictly technical libraries, such as the one of a power utility
company.

1.5. Taxonomy of Search Models

1.5.1. Boolean Model
Boolean model facilitates queries consisting of several words associated by logical operators, as well
phrases. By implementing logical operators, we end up with a system based on Boolean logic, i.e.
system supporting Boolean search model.

Document Classification in a Digital Library

 -6-

User’s query must be passed to lexical and syntax analyzers that must separate terms from logical
operators depending on syntax rules, recognize phrases and parenthesized expressions.
Indexing is implemented by means of a sparse Boolean matrix of k × n (k documents, n terms).
Logical operations on terms correspond to Boolean vector operations (using bit arithmetic), with
highly efficient processing time. Bitmap indexing can be expressed as follows:

d1 (t11, t12, …, t1n)
d2 (t21, t22, …, t2n)
…
dk (tk1, tk2, …, tkn)

Where tij = 1 iff term j is contained in document i, otherwise tj = 0. For domains of a large cardinality
(i.e. high number of terms) we can apply compressed bitmap indexing, using a suitable compression
method, e.g. RLL encoding.
User’s query Q = (q1, q2, …, qn) is represented by a Boolean vector of the length n, which is matched
against Boolean vectors of individual documents di = (t1, t2, …, tn). For queries containing AND
operators only (i.e. conjunctive queries, AND-queries), di is included in the result iff Q && di == Q.
Should a query include OR operators only (i.e. disjunctive query, OR-query), document is retrieved iff
Q && di <> 0. Relevance coefficient can be simply defined by the scalar product of a Boolean query
vector Q and the Boolean vector representing document di. Documents retrieved upon applying an
OR-query can be ranked in descending order according to the above scalar product.
In general, Boolean queries can be defined in conjunctive normal form (CNF, conjunction of
disjunctions of terms or their negations), or disjunctive normal form (DNF, disjunction of conjunctions
of terms or their negations). The length of a query is then defined as the number of disjunctions
(CNF), or conjunctions (DNF).
A query vector can be subject to query expansion (application of thesaurus and inference rules),
converting the original query vector to a modified Boolean vector.
The above Boolean matrix can be refined by specifying exact location of each term in the document.
In place of logical values tij = 0 / 1, each matrix cell can represent a record {0/1; offset}, where offset
is the displacement from the origin of the document, according to applicable granularity level (chars,
sentences, paragraphs, sections, etc.).
The table below presents customary logical and positional operators and symbols used in definitions of
general regular expressions:

Table 1.5.1.-1: Logical and positional (proxy) operators
Operator Meaning
X AND Y
X & Y

Documents containing both term X and term Y (conjunctive query)

X OR Y
X | Y

Documents containing term X or term Y (disjunctive query)

NOT X
! X
-X

Documents not containing term X

X NEAR Y
X ~ Y

Documents containing term X in the vicinity of term Y (at the distance less than
a predefined number of words)

X (n)words Y Documents containing term X and also term Y at most n words after term X

X adj Y Documents containing term X followed by term Y (the same as X (0)words Y)
X sentence Y Documents containing terms X and Y in the same sentence
X paragraph Y Documents containing terms X and Y in the same paragraph
(expression) Expressions in parentheses
“phrase” Documents containing a specific phrase (several terms delimited by quotes)
+X Documents that must contain term X

Document Classification in a Digital Library

 -7-

1log +









=

j
j DF

mIDF

X|category Documents containing term X at a specific category, e.g. Delphi|Software
. Full-stop represents any character
x* Star indicates an arbitrary (also zero) number of occurrences of character x
x+ Plus sign indicates arbitrary (1 or more) number of occurrences of character x
[s] Arbitrary character (exactly one) of string s
[^s] Arbitrary character, except chars contained in string s
[x-y] Arbitrary character in the range from x to y. Several ranges can be defined

simultaneously, e.g. [a-z0-9] indicates an arbitrary lower case character or
number

Other search specifiers or functions
Language User can specify the language of document being searched
Family filter User can leave out documents not suitable for children
Results per page Users can specify the number of documents per page
Customized
settings

E.g. character set, document size, etc.

The disadvantage of the Boolean model is unsatisfactory relevance ranking of documents when
displaying query results. Definition of user queries is not intuitive and expressive power of the
Boolean model is relatively limited.

1.5.2. Vector Model
Vector model is in fact an extension of the Boolean model, trading logical weights for weight
coefficients expressed by real numbers. In vector model we can use more intuitive queries, or even
queries in natural language. We are making use of the concept of relevance, which is not covered in
the Boolean model. The original system must be enhanced by index tables of significant terms (sparse
matrices in a compressed form), weight definitions and efficient index file management. Methods of
computing document relevance against query are the issue of proprietary algorithms implemented by
search engines.
The following general approach applies:
Let’s consider k documents and n index terms. We will assign weights
wij = TFij × IDFj (the weight of term tj in document di), where:
TFij = Term Frequency, frequency of term tj in document di
DFj = Document Frequency, the number of documents containing term tj

IDFj = Inverse Document Frequency, the function inversely proportional to
the number of documents containing term tj, where m is the total number of
documents in the collection.

Prior to processing a query, we need to compute query term weights qj in the range [0;1], by applying
the following formula (Salton and Buckley, 1988):

where TFj is the frequency of query term tj, TFmax is the maximum frequency of an arbitrary query
term, and IDFj represents IDF of term tj in the document collection.
Index Structure and Similarity
Index is represented by the following data structures: weight matrix W (containing weights wij), term
frequency matrix TF (TFij), document frequency vectors DF (DFj), and inverse document frequency
vectors IDF (IDFj). Context (such as headings, text body, keywords) of terms should be taken into
account while associating weights with document terms. Indexing granularity can be refined by
replacing “pointers” to documents by pointers to specific paragraphs or sentences.
Similarity Sim (Q, di) can be quantified by various coefficients with subsequent impact on precision
(P) and recall (R) of information retrieval.

j

j
j IDF

TF
TF

q ×
×+

=
max

)5,0(5,0

Document Classification in a Digital Library

 -8-

The simplest (not normalized) method of computing similarity coefficient is a plain scalar product of
query and document weight vectors:

Another popular method is cosine similarity function, which can be illustrated by geometrical distance
between query and document vectors in vector space of dimension n:

Documents representing result of a query are sorted per relevance, placing first documents with the
highest Sim (Q, di) values.
Conjunctive and disjunctive queries are not distinguished in vector model. NOT operator can be
implemented by extending the range of query term weights from [0; 1] to [-1; 1].
The main advantage of vector retrieval model as opposed to Boolean model is document ranking per
relevance with respect to user’s query. Retrieval usability is thus significantly better compared to the
Boolean model.
Searching for Similar Documents
The above formula for computing qj can be used to implement “find similar documents” feature.
Should it be the case, query is represented by the document (or an abstract) itself – we are trying to
quantify similarity between the original document (i.e. the query) and documents in the collection.
Index terms result from the linguistic analysis of all documents in the collection. The number of terms
should reflect our effort in reaching compromise between the search speed and full semantic coverage.

1.5.3. Fuzzy Model
Users can specify weights associated with query terms – resulting in a special case of vector search
model (fuzzy search). Specification of these weights by users is both difficult and subjective.
The advantage of fuzzy concept is the ability to simulate words in natural language, which is
extremely important for query languages. Majority of query languages is based on two-value logic
{0;1}, with no opportunity to convert adequately vague (fuzzy) requirements to the query. The
expressive power of the Boolean model is rather limited; therefore we can anticipate increased recall
of the search engine by using fuzzy (multiple-valued) logic in the query. Response will include also
those items that did not fit into strict two-value criteria. The expressive power of a non-procedural
query language containing fuzzy logic elements will therefore increase.

1.6. Linguistic Aspects in the Context of a Digital Library

1.6.1. Morphological Analysis of Queries
A search engine can make automatic query term expansion by synonyms, or possibly other
morphological variations of query terms (reverse stemming). Unsophisticated query expansion can,
however, result in significant drop in precision (while increasing recall). Further ramification requires
user’s feedback, often taking place in several query-response phases.

1.6.2. Stemming
Stemming (lemmatization, morphological normalization) denotes the process of forming basic word
forms. Stemming can be used not only for creating normalized index terms, but also for converting
query terms into their corresponding base forms. It is common wisdom in IR that stemming improves
recall with at most a small reduction in precision.
The simplest stemming method consists in trivial cutoff of word endings (using a database of
predefined word endings), so that the resulting word fraction included at least three or four characters.
As follows from our practical testing on document collection of Czech technical documents, trivial
stemming is quite satisfactory, considering the ease of its implementation. Dictionary approach, on the
other hand, is based on a brute-force searching in an extensive database of all derived word forms,

∑
=

×=
nj

ijji wqdQSim
,...,1

)(),(

() ()∑ ∑

∑

= =

=

×

×
=

nj nj
ijj

nj
ijj

i wq

wq
dQSim

,...,1 ,...,1

22
,...,1

)(
),(

Document Classification in a Digital Library

 -9-

substituting base forms for corresponding original terms. As stemming is performed off-line, time is
not a problem in this case. Quality of stemming clearly depends on the quality of language corpus
used. We have implemented dictionary-based stemming using i-spell corpus distributed under general
public license (GPL). For more information on stemming by means of i-spell see section 2.7.
According to Dumais et al. [32] speaking in the context of document classification by inductive
learning algorithms, the simplest document representation (using individual words delimited by white
spaces with no stemming) was, surprisingly, at least as good as representations involving more
complicated syntactic and morphological analysis. However, these results apply to Reuters collection
of short English newswire stories. Application to Czech documents leads to largely different results.
Practical stemming algorithms can be found, for example, at http://snowball.sourceforge.net/index.php
(stemmers for English, French, Spanish, German, Russian and other languages).

1.6.3. Stop-List
Stop-list (dictionary of non-significant words) is applied to text corpus in order to eliminate words
bearing no semantics, i.e. words playing grammatical role only. Application of a stop-list is a must in
every digital library. Stop-list used for our digital library (see Section 2) currently contains non-
significant English terms listed in the figure below. These terms are used both during the indexing
phase and user query processing1. A suitable stop-list for the Czech language can be found in [17].
an the for be is am are
you he she it we they them
do to in at on if as
by of and or then than so
which their was were will how when
here there not

Fig. 1.6.3.-1: Example stop-list for the English language.

Stop words are removed from text corpus by the lexical analyzer. Collection of non-significant words
can be created ad hoc on the basis of a frequency vocabulary, as this task is largely domain-dependent.
Final content of the stop-list must be fine-tuned manually.

1.6.4. Right-hand Word Expansion
This concept is related to using wildcards in the user query (such as *, %, ?, _). We can modify lexical
analyzer to expand query terms with wildcards to corresponding full terms (stored in a database –
upon stemming). Search engine is then provided with expanded query without any wildcards. As a
result we achieve higher recall (with likely smaller precision).

1.6.5. Thesaurus
Terms contained in a thesaurus (a hierarchical dictionary of synonyms) are classified into synonym
classes. Thesauri are often used not only for text corpus indexing, but also for information querying.
Should a system respond by too few documents, we can apply thesaurus to expand the query by
additional terms2. By analogy, should the response be too extensive, we can use thesaurus to make
query more specific. Systems integrating a thesaurus are sometimes denoted as third-generation full-
text search engines. Design of a thesaurus can be simplified by concentrating on a specific domain
only.
When expanding user’s query, we should take into account the length of the original query: the longer
the query, the more synonyms we can add, and vice versa.
Well-defined thesaurus can improve system’s response significantly. The system can demonstrate
some intelligence, depending on the content and quality of thesaurus database.

1 Before we eliminate any terms from a query, we should define an irrelevance threshold based on the length of
user query.
2 By using a more general (more specific) term from a thesaurus we can increase recall and reduce precision
(increase precision and reduce recall).

Document Classification in a Digital Library

 -10-

Thesaurus can solve, at least partially, the vocabulary problem, i.e. use of different terms for the same
concept by document authors and digital library users.
Thesaurus can also solve the issue of ever-changing grammar rules, such as concurrent use of Czech
terms like “liberalizace” and “liberalisace”, “impulz” and “impuls”, etc.

Document Classification in a Digital Library

 -11-

2. DIGITAL LIBRARY OF ZÁPADOČESKÁ ENERGETIKA
The purpose of this technical digital library is to enhance knowledge and skills of company
employees, who should regularly monitor the latest trends and advancements in their area of specialty.
Majority of employees does not have the time to monitor information resources. This issue is
comprehensively tackled by the intranet digital library, storing information and providing it
conveniently to all users. Materials can be stored directly by a person having the information, a
designated group of people, or an external data provider.
We will consider a real-life information system called InfoServis used by Západočeská energetika,
a.s., a regional power utility. The system was installed in the commercial environment in early 1999.
Author of this report is on the team responsible for the design and development of the library
described herein.

2.1. Main Features
Solution is based on a three-tier architecture with thin clients (web browsers) accessing relational
database. The system has gradually developed into a full-fledged object-oriented multi-platform client-
server application. Text data are stored in a semi-structured object form.
All data in InfoServis are classified into topic trees, which can be defined by a librarian arbitrarily.
Tree nodes hold the actual data (called materials). Materials can take various forms, usually consisting
of several text fields (e.g. title, short description or an abstract, keywords) and one or more attached
files in any format (PDF, MS Word, MS Excel, MS PowerPoint, HTML, XML, etc.).
Main features of InfoServis:
• Document classification using customer-defined taxonomy;
• Immediate access to new materials, quick list of abstracts, full-text available upon request;
• Integration with a search engine (uniseek);
• Individual user settings (profiles) – automated notification of new or updated materials;
• Automated replication of data between two InfoServis installations via e-mail;
• All data are treated as objects linked by semantic networks – guaranteeing maximum flexibility

and extensibility;
• Automated archiving of outdated documents and corresponding database records.
Integrating InfoServis with uniseek (search engine) allows users searching for information in text
fields of materials as well as in documents attached. Search can be restricted to sub-trees only.
Uniseek is described in detail in section 2.5.

2.2. Technical Features
Implementation is based on a relational database using a tree-like taxonomy. Technical solution
includes a non-distributed text database, software tools for graphical database administration using
standard web browser, customer-specific taxonomy (based on keyword analysis, customer
requirements and domain expert recommendations), and software tools for generating dynamic web
pages using C++/Java code.
From users’ viewpoint, there are typically no write operations (except administrative data); therefore
transaction integrity problems are not an issue. Transaction control would be a problem, as web server
is a stateless entity (there is no context maintained for individual clients). The SQL server used
(MySQL) currently does not support transaction processing, which is well balanced by its significant
speed in day-to-day usage.
InfoServis can be linked to file server’s directory tree to maintain additional information on individual
documents. The system can detect new documents and ask their authors to enter the required data.
Software Requirements include Linux operating system, MySQL database server, Apache web server,
PHP 4, and Sendmail. By using MySQL database server we can generate text form of the complete
database by single mysqldump command, and thus transfer the database to another server easily. By
analogy, we can restore the complete database in a batch from a single plain-text file.
Hardware Requirements: Web applications running under Linux are known for modest hardware
requirements. InfoServis can run on a modest Pentium II server fitted with 128 MB RAM and IDE
hard drive.

Document Classification in a Digital Library

 -12-

Object-oriented design
Each element in InfoServis is treated as an object. Attributes (features) are defined for each object.
Object handling depends on the object type (e.g. “article”, “company”, “product”, “process”, etc.).
Object types are summarized in the object catalog (see below).
Objects are inter-connected by semantic links (such as translation link between two objects of
document type, topic link between object of document type and object of topic type, parent link
between two objects of topic type, defining tree-like topic hierarchy).
Object catalog
The following major object types are used:
Topics define the area of interest. Topics form a hierarchy, facilitating multi-criterion information
classification. Documents: Instances of Document class represent materials as such (including
attributes such as title, language, etc.). Source: Source objects are necessary for expanding the
information base. We can create links between topics, build taxonomy of sources, create source
“rings”, classify sources into topic trees, etc.
Links Catalog
Types of links are defined by means of links catalog. It is a list of available links and detailed
description of these. Different links are used for different object types; however, some links are used
for all objects. We have defined links between topics, between documents, between
documents/sources and topics, and between documents and sources.
Object-oriented solution incorporating semantic networks provides opportunity for future
development, such as defining inheritance hierarchy of object types (e.g. company – customer –
wholesale customer), facilitating various analyses over the data.
Auto-links
InfoServis also includes a special form of references called autolinks. These facilitate document
classification into tree hierarchy. If we have, for example, an autolink from “Wind power plants” to
“Renewable energy”, documents classified to the first class will be also automatically classified into
the latter one. It is an example of unidirectional autolink. Bidirectional autlinks are also utilized
widely. Semantically speaking, unidirectional autolinks mostly represent is-part-of relationship (such
as “e-commerce” topic is-part-of “e-anything” topic), whereas bi-directional autolinks represent is-
identical-to or is-similar-to relations, namely when making references from one knowledge tree to
another, saving librarian from making multiple classifications.

2.3. System’s Architecture
Implementation of the digital library is based on a three-tier architecture depicted in figure 2.3.-1. Thin
client (interface layer) is represented by a standard web browser. Apache web server plays the role of
an application server (second layer), communicating via PHP scripts with MySQL database server
(third layer). Administrator can also communicate directly with database server by using either
command line or MyAdmin management tool. Three-tier model is suitable for applications accessing
data from various heterogeneous sources, which is the case.

Document Classification in a Digital Library

 -13-

Fig. 2.3.-1: Three-tier architecture of InfoServis.
Flow of documents, parameters and queries is depicted in fig. 2.3.-2. Users working on the Internet
cannot add their own documents into the shared library directories.

On-site installation – company intranet

client application server DB server
(web browser) documents queries

 parameters, queries data

Off-site installation – Internet (server housing)

client application server DB server
(web browser) documents queries

 parameters, queries data

Fig. 2.3.-2: Information flow in the digital library.
Client’s role (MSIE, Netscape, Opera) consists in presentation functions only (displaying HTML code
distributed by the web server, and sending data entered by users). Platform-independent web
application server, Apache, takes care of the business logic (SQL, input data processing and

Document Classification in a Digital Library

 -14-

forwarding these data to DB server, management of user profiles, etc.). MySQL database server takes
care of the data logic (i.e. applicable data model), data services (input and output of raw data) and file
services (operating system calls).
By segmenting the application into presentation logic, business logic and data logic we can achieve
much higher flexibility level. Integration of an application server makes connectivity and
interoperability among heterogeneous network components much simpler. The middle layer provides
for uniform API for all connected clients and the database server.
HTTP transactions between the server and a client take place by opening a connection by the client
and sending an applicable URL address. Server gets the request, extracts file requested by the user
from the URL address, sends reply information back to the user and closes the connection.

2.4. Querying and User Interface
Users can enter their queries without any a priori knowledge of data structures or location of data
being looked up. Users can browse through the topic tree (navigation), optionally displaying all
abstracts at the current level and all sub-levels. Navigation results can be ranked per various criteria,
such as the date (from the oldest to the most recent), title, users’ ranking, or the number of times an
abstract was read. Users can also invoke (advanced) full-text search. Search can be invoked globally
(in the root of a tree), or at the required topic tree level.
Information search is based on uniseek search engine (see section 2.5.) developed especially for multi-
lingual digital libraries. It is particularly efficient for east-European languages, such as Czech and
Slovak. Readers can use the following search criteria:
• Limiting search to a particular digital library, location or language;
• Limiting search to any topic or combination of topics;
• Exact phrase search;
• Boolean operators (AND, OR, NOT);
• Positional operator NEAR
• Wildcards - *, ?
Entry dialog of the search portal is depicted in the figure below.

Fig. 2.4.-1: Dialog box of the search portal.

Search portal can be further improved by introducing context-specific search, i.e. users can specify
entities to search in headlines, bodies, or keywords, for example, depending on the structure of
documents in the library.
Abstracts are displayed in form of HTML pages generated dynamically from MySQL database. By
default, the latest abstracts are displayed first (see the figure 2.4.-2 below).

Document Classification in a Digital Library

 -15-

Fig. 2.4.-2: Survey of the latest abstracts in InfoServis.

The interface has been designed to facilitate full utilization of enterprise document taxonomy,
featuring functionality such as intra- and inter-document links, tree browsing, automatic (semantic)
inter-topic links, etc.
Data update
Data in the library are updated continuously, as librarians add new items into the collection. Overnight
update is performed as well, storing all new documents supplied by information provider. E-mails
informing of new items are broadcasted on a daily basis. This model is based on 1:1 information
delivery, i.e. one source of information distributes data to one owner of the profile. We can make an
enhancement to 1:N model, sending news to all employees of a department, using generic
departmental profile.

2.5. Search Engine – Uniseek
The indexing and search server is designed to allow searching defined information sources (within the
company or outside). The system features the following characteristics:
• Reading data from various sources (file server, database engines, intranet/Internet, etc.);
• Transferring the data on the indexing server;
• Converting files into a text representation;
• Controlled indexing with saves into a database;
• Searching using a web interface – no need to install any dedicated client software;
• Support for Boolean operators, multiple-word expressions, lexical forms;
• Sorting by relevance, date.
Searching
Search functions are interfaced via a web browser. Users enter their search queries, select individual
data locations, and send information to the server. For each object found, a title and a short description
are displayed. Selected terms found in the document collection are highlighted using various colors, so
that user can judge relevance of the reply.
Search time depends on complexity of the search query. Even complicated queries do not take more
than several seconds. For a vague query the server can locate thousands of documents – users can
gradually refine their queries to find the required information.
System’s design
The search engine usually runs on a dedicated machine, reading data across local networks or the
Internet. Searching is usually invoked via a web interface. A network client communicating with the

Document Classification in a Digital Library

 -16-

search server is available, allowing customers’ existing or new applications easily interface into the
system – results are generated in form of an XML document.

Fig. 2.5.-1: System’s design.

Indexing
Uniseek can handle multi-language documents. Each language is supported by an extensive dictionary
defining lexical relations among individual words (declination, various word forms, singular/plural).
The following languages are currently supported:
• Czech (the dictionary contains almost 3,000,000 words);
• English (over 150,000 words);
• German (over 500,000 words).
Since these dictionaries are based on freely available international spell-checker i-spell, it is possible
to extend support to other languages easily.
During indexing phase, all words are converted into their base form (equivalent of a nominative).
Words not covered by the dictionary have their language identified by heuristic algorithms and are
converted into their base form using a database of suffices and endings from a given language.

2.6. Linguistic Aspects
The library includes various documents in Czech, English, German and Slovak. Vast majority of
documents is either in Czech or English, mostly coming from the web. In order to index and process
these documents correctly, we need suitable linguistic tools for both Czech and English. Working with
English documents has another advantage: we can compare, for example, classification results with
those achieved on Reuters3-21578 collection.
It is often the case that a document cannot be classified into a single topic only (in our case this holds
true for 8 % of documents only. Most documents are assigned to 3 topics, the average is 2,7, although
this number ranges from 1 to 10 (in case of Reuters collection, this parameter ranges from 1 to 16).

3 Reuters-21578 is currently one of the most popular databases for evaluating text categorization and clustering
algorithms.

Document Classification in a Digital Library

 -17-

Stemming and Stop-List Application
Upon application of a stemmer, the number of distinct significant terms dropped by 42 %, with
consequent impact on size of database index files. We have used i-spell text corpus for Czech
stemming, currently containing approx. three million words. All terms are subject to morphological
normalization, including terms with irregular declension. As we expected, stemming applied to the
English corpus resulted in much less significant drop (20 %).
We have applied both controlled-indexing-based stemmer (i-spell) as well as trivial word-endings’
cutoff stemmer. Controlled indexing is more complicated, requiring continuous update of the
dictionary databases.
By leaving out non-significant words from the index of Czech collection, library volume was reduced
by 18 % (in number of terms). Observing this parameter in a long term, there was very little variation,
regardless of the total collection volume (always ranging around 20 %). By leaving out five most
frequent non-significant terms, the number of terms dropped by more than 10 %. In case of Reuters
collection, we have observed drop by 32 %. Impacts of using stop-list have been much more
significant for the English language, in spite of using stop-list half the size of the Czech one.
Language Stop-list size Number of suffixes used in

trivial stemming process
I-spell volume

(number of terms)
Czech 484 108 Almost 3 million
English 64 29 500 thousand
German 108 127 150 thousand

According to tests described in [22], a sample of 5,000 full-text documents contained approx. 200,000
various terms (all morphological variations), represented by 80,000 distinct words in their base form
(upon stemming).
It is clear that ever-growing volume of the digital library results in adding new technical terms (with
constantly slowing speed, as word stock gets saturated), such as chemical substances, foreign words
and some special medical terms.
The most frequent significant words in law documents include “law”, “republic”, “court”, “contract”,
“state”, and “legal” [22], as opposed to „system“, „electrical“, „energy“, „market“, „device“, „control“
and „power“ occurring in our digital library of a power utility company.

2.7. Further Improvements
Digital library will be enhanced by some innovative and non-traditional functions resulting from
research topics constituting focus of this report:
1. Itemsets classifier (see Chapter 4) will be optimized to allow automatic categorization of full-

length Czech, English, German, and Slovak documents to InfoServis topics. The classifier will be
also used for pre-classification of specific e-mail messages into knowledge-base topics (final
classification will be confirmed by a librarian periodically).

2. Itemsets clustering (see section 6.1) will be tested on document collection, possibly using it for
automatic grouping of discussion group submissions and e-mail messages.

3. Itemsets-based information push technology (also see 6.3.2.) will be tested within the context of
InfoServis.

4. Search for similar documents (also see 6.3.3.) will be further enhanced, possibly using itemsets for
this purpose.

5. Results of automatic document summarization research will be utilized in order to create
document abstracts automatically, as this work currently occupies one full-time employee.

6. I am planning to look for new features that can be used for information classification, such as
identification of the sender, personal profile of message authors, previous submissions of
document originators, keywords, titles, behavioral patterns of InfoServis users, pre-defined auto-
links, etc.

Document Classification in a Digital Library

 -18-

3. DOCUMENT CLASSIFICATION

3.1. The Task of Document Classification
Classification is used to split data into groups, taking into account specific criteria, attributes, or
features. Should these criteria be a priori known for at least a sample of data, we can apply predictive
modeling methods and develop a model with classification variable at its output. In the case of text
classification, the attributes are words contained in text documents. Feature (attribute) selection is
widely used prior to machine learning to reduce the feature space, as the number of features in
consideration might become prohibitive.
We are often working with uncontrolled classifier, i.e. criteria are not a priori known, making the
classifier find these criteria. Cluster analysis techniques are applied in these cases.
Learning a classifier (supervised machine learning) means inducing a model from the training data set
that we believe will be effective at predicting class in new data for which we do not know the class.
In general, we distinguish between rule-based classifiers (rules are constructed manually, and the
resulting set of rules is difficult to modify) and inductive-learning classifiers. Classifiers based on
inductive learning are constructed using labeled training data; these are easy to construct and update,
not requiring rule-writing skills. In this report I will focus on inductive-learning approach in classifier
construction only.
Besides document categorization, we can come across the issue of web page and link classification, as
introduced by Haas and Grams [37], with useful applications in searching and authoring.

3.2. Existing Document Classification Methods
An interesting survey of five (supervised learning) document classification algorithms is presented by
Dumais et al. [32], focusing namely on promising Support Vector Machines (SVM) method. Find
Similar, Naïve Bayes, Bayesian Networks, and Decision Trees methods are also discussed. Another
detailed test of text categorization methods is presented by Yang and Liu [33], discussing various
algorithms such as SVM, kNN, LLSF (linear least-squares fit), NNet and Naïve Bayes.
Selected existing document classification methods are briefly examined in the table below:
Method K nearest neighbor (KNN), “Find Similar”
Principle To classify a new object, find the object in the training set that is most similar.

Methods utilizing such principle are sometimes called “memory based learning”
methods. tf*idf term weights are used, computing similarity between test examples
and category centroids. The weight assigned to a term is a combination of its weight
in an original query, and judged relevant and irrelevant documents. It is a variant of
Rocchio’s method for relevance feedback.
Cosine value of two vectors (or any other similarity measure) can be used to measure
similarity between two documents.

Advantages Easy to interpret. One of the top performing methods on the benchmark Reuters
corpus (Reuters-21450, Apte set).

Disadvantages No feature space reduction. Lazy learner – defers data processing until classification
time (no off-line preprocessing).

Method Decision trees
Principle Model based on decision trees consists of a series of simple decision rules, often

presented in form of a graph. These graphs can be quickly modified even by those
lacking deep knowledge of statistics.
It is a probabilistic classifier – confidence(class) represents a probability distribution.

Advantages Easy to interpret.
Disadvantages Number of model parameters is hard to find. Error estimates are difficult.

Document Classification in a Digital Library

 -19-

Method Naïve Bayes (Idiot Bayes)
Principle Constructed from the training data to estimate the probability of each class given the

document feature values (words) of a new instance. Bayes theorem is used to
estimate these probabilities.
It is a probabilistic classifier – confidence(class) represents a probability distribution.

Advantages Works well even when the feature independence assumed by Naïve Bayes does not
hold. Surprisingly effective.

Disadvantages Simplifying assumptions (conditional independence of words).
Method Unrestricted Bayesian classifier
Principle Assumption of word independence is not applied. Its alternative – semi-naïve

Bayesian classifier – iteratively joins pairs of attributes to relax the strongest
independence assumptions.

Advantages Simple implementation, easy interpretation.
Disadvantages Exponential complexity due to assuming conditional dependence of words.
Method Neural networks (perceptrons)
Principle Separate neural network per category is constructed, learning a non-linear mapping

from input words (or more complex features, such as itemsets) to a category.
Advantages Design is easy to modify. Various models can be constructed quickly and flexibly.

Subject to intensive study in artificial intelligence.
Disadvantages Model based on neural networks does not provide any clear interpretation. High

training cost (more time consuming than the other classifiers).
Method Linear SVM
Principle An SVM is a hyperplane that separates a set of positive examples from a set of

negative examples with maximum margin. The margin is defined by the distance of
the hyperplane to the nearest of the positive and negative examples. SVM
(optimization) problem is to find the decision surface that maximizes the margin
between the data points in a training set.

Advantages Good generalization performance on a wide variety of classification problems. Good
classification accuracy, fast to learn, fast for classifying new instances.

Disadvantages Not all problems are linearly separable.
Method Itemsets Modification of Naïve Bayes – see Section 6.2.

Development of yet another classification method was motivated by the need of processing short-
documents (abstracts). It is likely that size of digital libraries will increase rapidly in the near future
and proper classification of abstracts will become even more important. Efficiency of universal
document categorization methods will gradually decrease, necessitating ad-hoc classification methods,
such as itemsets, offering easy adjustment to a particular document collection.

3.3. Test Document Collections
Classification algorithms are tested on large sample document collections in order to assess their
viability and compare one to another. Reuters-21578 collection4 is gaining popularity among
researchers in text classification5, becoming a widely used benchmark corpus. Collection includes
short newswire stories in English, classified into 118 categories (e.g. earnings, interest, money, etc.).
Each story is assigned to 1.3 categories on the average (maximum is 16); however, there are many
unassigned stories as well. Original classification is highly skewed, as a very large portion of stories is

4 Publicly available at http://www.research.att.com/~lewis/reuters21578.html
5 Topic spotting for newswire stories is one of the most commonly investigated application domains in text
categorization literature.

Document Classification in a Digital Library

 -20-

assigned to earnings category only. Top 10 categories include 75 % of all instances, and 82 % of the
categories have less than 100 instances.
We have also made various tests on our proprietary collection of technical documents from the digital
library of a power utility (more than 4,000 text documents in Czech, English, German and Slovak).
There are other widely used collections, such as MEDLINE6 (medical texts in English), UCI ML
Repository7, or Czech national corpus8.
The size of test collection is an important issue. When testing a classification algorithm, we need to
examine how many positive training examples are necessary to provide good generalization
performance. According to Dumais et al. [32], twenty or more training instances provide stable
generalization performance9. According to Yang and Liu [33], SVM and kNN classifiers significantly
outperform NNet (neural nets) and Naïve Bayes when the number of positive training examples per
category are small (less than ten). The required number of training examples is therefore specific for
each classification algorithm.
As opposed to testing classification algorithms on collections of short abstracts, various tests on full-
text document collections have been performed, such as the one by Beney and Koster [38], testing
Winnow classifier10 on patent applications supplied by the European Patent Office (documents about
5,000 words each).

3.4. Assessment of Classification Algorithms
Classification algorithms are evaluated in terms of speed and accuracy. Speed of a classifier must be
assessed separately for two different tasks: learning (training a classifier) and classification of new
instances.
Many evaluation criteria for classification are proposed. Precision and recall criteria are mentioned
most often. Break-even point is proposed by Dumais et al. [32] as an average of precision and recall.
Decision thresholds in classification algorithms can be modified in order to produce higher precision
(at the cost of lower recall), or vice versa – as appropriate for different applications. Averaged F1
measure11 is commonly used for classifier evaluation. Single valued performance measures (p, r, F1)
can be dominated by the classifier’s performance on common categories or rare categories, depending
on how the average performance is computed [33] (micro-averaging vs. macro-averaging).
In the case of mono-classification, some researchers (e.g. [38]) report error rate measure, which is
percentage of documents misclassified.
Yang and Liu [33] report an interesting controlled study with statistical significance tests on five text
categorization methods. As categories typically have an extremely non-uniform distribution (such as
the case of Reuters-21578), it is meaningful to assess a classifier with respect to category frequencies.
With respect to Reuters-21578 benchmark corpus, ApteMod version is often used, which is obtained
by eliminating unlabeled stories (i.e. unclassified instances) and selecting the categories which have at
least one document in the training set and the test set.
It is important to note that classifier’s performance largely depends on splitting the corpus on training
and testing data. Testing the classifier on training data used for learning the classifier often leads to
significantly better results.
The problem with evaluating classifiers is their domain dependence. Each classifier has a particular
sub-domain for which it is most reliable [35]. In order to overcome this issue, multiple learned
classifiers are combined to obtain more accurate classification. Separating the training data into
subsets where classifiers either succeed or fail to make predictions was used in Schapire’s Boosting
algorithm [36]. A decision tree induction algorithm (such as C4.5) can be trained and applied to

6 MEDLINE is available at: http://www.nlm.nih.gov/databases/databases_medline.html
7 UCI Repository of Machine Learning databases, 1996, available at:
http://www.cs.uci.edu/~mlearn/MLRepository.html
8 Available at: http://uckn.ff.cuni.cz/CZ/cnc
9 We have resorted to at least 50 positive training examples per category while testing itemsets classifier.
10 Description of the Winnow algorithm can be found at http://www.cs.kun.nl/doro
11 F1 was initially introduced by van Rijsbergen [34]; it is defined as: F1(r,p) = 2rp / (r+p)

Document Classification in a Digital Library

 -21-

distinguish between cases where the classifier is correct and those where it is incorrect.
4. ITEMSETS CLASSIFIER

4.1. Association Rules
The topic of association rules is of key importance for many document classification algorithms.
Association rules, and the related concept of itemsets, constituted my motivation for developing a new
document classifier.
It is imperative to find a method for automatic generation of association rules over the word domain.
We can start with keywords, checking which word pairs are present in more than τ documents (τ is a
threshold value), or possibly documents classified to a specific topic. We can also look for
associations among terms with specific semantics (semantic tags can be supplemented by means of a
special lexical analyzer). We can define weights of association rules by frequency of occurrence, or
possibly by distances between terms in an association. Association among terms cannot be regarded as
causality relationship, as we do not know the direction.

4.2. Itemsets Classifier
Original classification method, called itemsets classification, has been developed to facilitate
automatic classification of short-documents in the digital library of Západočeská energetika. Majority
of traditional document classification methods is based on repeated word occurrence, which is
impractical to use in case of very short documents (less than 100 significant words in this case).
Our aim was to produce a taxonomy reflecting information-seeking behavior of a specific user
population, i.e. employees of a regional power utility. Functionality of the digital library simplifies
creation of enterprise information portal (EIP). Automatic classification (auto-categorization) engine
facilitates continual monitoring of the information generated by the company (or external sources) and
organizing it into directories.
Itemsets method resulted from our basic assumption, that objects belonging to the same concept (class)
demonstrate similar features. Learning paradigm based on such an assumption is called similarity-
based learning. Objects representing instances of the same concept constitute “clusters” in the concept
space. The task of modeling is to assume finite number of instances and find general representation12
of these clusters, which we call classes, topics, or categories. Classification algorithm looks for
knowledge that can be used for classifying new instances.
We are using inductive inference based on inductive learning hypothesis: Any hypothesis found to
approximate the target (classification) function well over a sufficiently large set of training examples
(abstracts in the training set, in this case) will also approximate the target function well over other
unobserved examples (abstracts to be classified).
Itemsets method is robust to errors (alike decision tree learning methods) – both errors in the
classification of training documents (made by a librarian manually) and errors in the attribute values
(significant terms) that describe these documents.
Abstracts of technical articles are mostly freely accessible on the web. It is therefore possible to create
an extensive library of these abstracts. Users of the library can then make a request to buy a full copy
of a document or its translation. The task of document searching in the digital library is similar to the
one of categorization, being solved by means of similar principles.

4.3. Apriori Algorithm for Itemsets Generation
The apriori algorithm (Agrawal et al.) is an efficient algorithm for knowledge mining in form of
association rules [25]. We have recognized its convenience for document categorization. The original
apriori algorithm is applied to a transactional database of market baskets. In the context of a digital
library, significant terms occurring in text documents take place of items contained in market baskets
(itemsets searching is equivalent to term clustering process) and the transactional database is in fact a
set of documents (represented by sets of significant terms). Consistently with the usual terminology
let’s denote terms as items and sets of items as itemsets.

12 Herein below denoted as „characteristic itemsets“.

Document Classification in a Digital Library

 -22-

Let πi is an item, Π = {π1, π2, … ,π m} is an itemset and ∆ is our document collection (representing
transactions). The itemset containing k items is called k-itemset. Each itemset Π is associated with a
set of transactions TΠ = {T ∈ ∆ | Π ⊆ T} which is a set of transactions containing itemset Π.
Frequency of an itemset is defined as a simultaneous occurrence of items in data in consideration.
Within our investigation we often utilize the threshold value employed for the minimum frequency
(minsupport) of an itemset. Frequent itemsets are defined as those whose support is greater than or
equal to minsupport. The (transaction) support in our case corresponds to the frequency of an itemset
occurrence in the (transaction) database ∆ (∆ = {T1, T2, …, Tn}, T representing transactions). The
support supp(Π) of an itemset Π equals |TΠ| / |∆|. Support is defined over the binary domain {0, 1},
with a value of 1 indicating the presence of an item in a document, and the value of 0 indicating
absence of an item (frequency of an item is deemed irrelevant, as opposed to traditional TF×IDF
methods)13. Support fails as a measure of relative importance whenever the number of items plays a
significant role. We have found that this is not a problem for short-document classification task.
Declaring itemsets frequent should they occur in more than minsupport number of documents in a
particular class is correct14, with no need of normalization like in case of IDF concept (we do not
eliminate those in the upper frequency range, as itemsets are to characterize a class based on their
frequent appearance). At this phase we have already eliminated stop (non-content) words; moreover,
we are deciding on „being frequent“ within the scope of a class, not the whole document collection.
Co-occurrence of terms representing an itemset is domain-restricted, domain being a class (category).
Our goal is to discover frequent itemsets in order to characterize individual topics in the digital library.
Frequent itemsets’ searching is an iterative process. At the beginning, all frequent 1-itemsets are
found, these are used to generate frequent 2-itemsets, then frequent 3-itemsets are found using
frequent 2-itemsests, etc.
Let’s suppose we have TDS distinct significant terms in our document collection ∆. Firstly we generate
candidates of frequent 1-itemsets (shortly „candidate 1-itemsets”). These are stored directly in index
files in DF (Document Frequency) table. Consequently, we compute frequent 1-itemsets. In the
next step, we generate 2-itemsets from frequent 1-itemsets. Generation of subsequent candidate and
frequent n-itemsets continues until the process of frequent itemsets’ searching terminates with regard
to apriori property (“all non-empty subsets of a frequent itemset must be frequent”). While
implementing this method, we utilize a technique similar to transaction reduction method: a document
that does not contain a k-itemset can be left out of our further consideration, since it cannot contain
any of (k+1)-itemsets.
Let Çk denote a set of candidate k-itemsets and Fk a set of frequent k-itemsets. Generation of Fk from
Fk-1 is based on the following algorithm (our modification of the original Apriori algorithm by Srikant
and Agrawal):
// For 1-itemsets:
Ç1 := all significant terms in ∆;
F1 := ∅;
for ∀ Πi ∈ Ç1 do
 for ∀ tj ∈ T do
 if (supp(Πi) in class tj is greater than or equal to minsupport)
 then begin
 add Πi to F1
 break;
 end;

// For k-itemsets, where k > 1:
Fk := ∅;
for ∀ Πi ∈ Fk-1 do
 for ∀ Πj ∈ Fk-1 do

13 In case of a shopping-basket transaction database, support provides a misleading picture of frequency in terms
of the quantity of items sold. This is not the case of document collection, taking documents as transactions.
14 The class support is a variation of the usual support notion and estimated the probability that the itemset
occurs under a certain class label.

Document Classification in a Digital Library

 -23-

 if (the first k-2 items in Πi and Πj equal, but the last items differ)
 then begin
 c := Πi join Πj;
 if (∃ subset s, s ⊂ c having k-1 elements, where s ∉ Fk-1)
 then break;
 else for ∀ t ∈ T do
 if (supp(c) in class t is greater than or equal to minsupport)
 then begin
 add c to Fk
 break;
 end;
 end;

4.4. Document Classification Using Itemsets

The following notation will be used in this section:

Π Frequent itemset DΠi Set of documents containing itemset Πi
|Π| Cardinality of frequent itemset Π |DΠi| The number of documents containing the

itemset Πi
T Topic (representing a categorization

class)
DTi Set of documents associated with topic Ti

D Document |DTi| The number of documents associated with
topic Ti

D A set of significant terms contained in
document D

|TΠi| Number of topics in which itemset Πi is
frequent

L The number of topics Ci Set of itemsets characterizing topic Ti
Ni The number of frequent itemsets of

cardinality i
|Ci| The number of itemsets characterizing topic

Ti

The Classification Problem
The classification problem can be divided into two parts: training phase and classification15 phase.
The training phase consists of the following:
• Define a set of topics (categories) by a domain expert16. L categories are thus defined.
• Insert (manually) a certain number of documents into topics, i.e. classification attributes are

defined for each class (training data set). A domain expert performs categorization of all available
training documents. Each topic should be assigned a statistically significant number of documents.

• Automatic generation of representative itemsets of different cardinality for each topic.
While performing classification, we utilize representative (characteristic) itemsets to classify
documents into corresponding topics.
The classification algorithm can be evaluated in terms of accuracy (precision and recall parameters)
and speed. Accuracy can be measured by means of a test-set, the members of which have a priori
known classification. Precision: P = p/q; Recall: Q = p/r, where p is the number of classes determined
correctly by the classifier (automatically); q is total number of classes determined automatically; r is
the number of classes determined by a domain expert (manually, i.e. correctly).
Note the analogy with corresponding parameters defined for search engines as well as association
rules in databases of business transactions:

15 A classifier is a function mapping a vector of document terms onto a set of topics (classes): { }topicsDf =)(
16 Categories are often represented in a hierarchical form. We are not considering this aspect in our research,
although it would not be a problem – we might combine leaf topics into a single node, retraining the classifier on
the adjusted structure.

Document Classification in a Digital Library

 -24-

Classifier Search engine Association rules
Precision

P = p / q

Precision

totalfound
relevantfound

Confidence
Conf (X ⇒ Y) = P(Y | X) =

Xnstransactioofnumber
YXnstransactioofnumber ∪

Recall

Q = p / r

Recall

databaseinrelevant
relevantfound

Support
Sup (X ⇒ Y) = P (X ∪ Y) =

nstransactioallofnumber
YXnstransactioofnumber ∪

Where number of transactions X ∪ Y denotes the number of transactions containing both X and Y.
We are computing overall precision and recall parameters using micro-averaging method, i.e. we are
giving equal weight to each object (rather than each category, as in macro-averaging). P and R are
computed for each new test document separately, then figuring out the average of all precision and
recall values over the whole test set.
Quality of classification is often expressed by means of F-measure (or F-score):

RP

F 1)1(1
1

αα −+
=

α representing relative importance attributed to precision P.
The following F-measure is often used in the context of text retrieval and classification (by
substituting α = ½), denoting it as F1-measure (see also 3.4):

RP
RPF

+
××

=
2

Complexity of itemsets classification algorithm
Complexity of classifying one document can be expressed approximately as CAVG × L × K (= CTOT ×
K), where CAVG is the average number of itemsets in C, L is the number of classes, K is a constant
representing average complexity of comparing itemsets in C with document being classified17 and
CTOT is the total number of itemsets in all C files. Time requirements of classification as such are
relatively low compared to complexity of the training phase.

4.5. Phases of Itemsets Method

4.5.1. Training Phase
The training phase can be also described as feature selection phase (reduction of the feature space).
For each itemset Πj we can find a corresponding set of documents containing Πj. Let’s designate this
set of documents as DΠj. It is obvious that cardinality of DΠj will be higher than a certain threshold
value, since Πj was selected as a frequent itemset.
By analogy, for each topic Ti there is a characteristic set of documents associated with this topic. Let’s
designate this set as DTi. Altogether we will have L sets.
Our goal is to specify a certain number of itemsets for each topic, where each itemset is associated
with a subset of the set of topics. Namely, itemset Πj is associated with topic Ti corresponding to the
values of i

j

TwΠ exceeding some threshold value. The weight of i

j

TwΠ can be computed as follows18:

17 K naturally depends on the size (in the number of terms) of document being classified. Needed to note that
twice long a document does not mean twice longer the classification. We are working with significant terms only
(leaving out stop words), also neglecting repeated occurrence of significant terms.
18 This is, of course, an ad-hoc approach. I have tried various formulae leading to various results. It is likely that

[] Li
DTDDDT

DTD
w

ijji

ijTi

j
...,,2,1

1
=

∩Π−Π+×

∩Π
=Π

Document Classification in a Digital Library

 -25-

Denominator is used to normalize with respect to the number of documents associated with topic Ti. It
takes into account whether an itemset occurs in other topics as well. Significance of terms occurring
frequently in documents other than DTi is thus suppressed.
Upon associating itemsets with individual topics based on the formula above, we will acquire sets of
itemsets Ci characterizing a particular topic19 Ti. On the whole, there will be L sets of itemsets.
Aside: As we look for itemsets of higher cardinality, we are, in a way, performing latent semantic
indexing (although applied to classifier training phase rather than document indexing). Co-occurring
terms are projected onto the same dimension, while non-co-occurring terms onto different dimensions
(latent semantic indexing results in dimensionality reduction). LSI is sometimes useful for solving
vocabulary problem, at least partially. It is important, as objects in the collection of abstracts are often
created by many different authors using various synonyms. End of aside
Let’s summarize notation used herein: itemset is a set of items (i.e. terms). Candidate itemset is a
potentially frequent itemset. Frequent itemsets are those appearing in more than minsupport number of
documents of a given class. Characteristic itemsets are frequent itemsets declared characteristic for a
given class (taking some fixed number of the best frequent itemsets associated with that class). See the
figure below:

Classifier construction is summarized in the figure below:

 Abstracts
 Indexing

Index files
 Feature space reduction (feature selection)

Data set
 Itemsets inductive learning algorithm

 ITEMSETS CLASSIFIER

4.5.2. Classification Phase
Over the course of document classification process, we must take into account cardinality of itemsets
in order to distinguish between correspondence in pairs and correspondence in quadruplets, for
instance. That is why we define a weight factor corresponding to the cardinality of an itemset. For
pairs we will use wf2, for triplets wf3, for quadruplets wf4, etc.

I will come up with a different formula for the final version of this method.
19 Each topic is currently represented by a set of itemsets of fixed size.

Candidate itemset

Frequent itemset

Characteristic itemset

Frequency filter based on the
class support

Threshold filter (selecting a
fixed number of the best
frequent itemsets found)

Document Classification in a Digital Library

 -26-

Now we can proceed with classifying a document into a topic (or several topics). Let’s suppose that
set Ci contains elements Π1, Π2, …, Π|Ci|. We will compute the weight corresponding to the accuracy of
associating document D with topic Ti:

In other words, the classification weight is determined by the sum of products of weights i

j

TwΠ with

weight factors wf|Πj| for all itemsets of a given topic, which (the itemsets) are contained in the
document being classified. Usage of i

j

TwΠ results in emphasizing those itemsets that provide the best

description of topic Ti.
The document D will be associated with topic Ti corresponding to the highest weight D

TiW . Naturally,
we can desire to associate the document with several topics. Should it be the case, we will classify the
document D to all topics Ti where D

TiW exceeds a certain threshold value. Decreasing this threshold
value may (but does not have to) result in lower precision (P) and higher recall (R) of classification.
Modification of the threshold value generally leads to an opposite shift of precision and recall values.

4.6. Preliminary Results
Initial results achieved on a large collection of abstracts in English are quire promising. Results
indicated in [32] were used for cross-method comparison, utilizing Reuters-21578 collection for this
purpose. Classifiers in the test were used to categorize 12,902 documents into 118 classes, showing
results for 10 largest categories, which include almost 75 % of all documents. That is why I have run
the tests only for classes containing more than 180 documents (ranging from 212 to 2,779), to imitate
approach of other authors. Documents were split to training and testing using 3:1 ratio.

Classifier Itemsets Naïve Bayes BayesNets Linear SVM
AVG(P, R) 91.3620 81.50 85.00 92.00

Preliminary results are motivating for further optimization of itemsets classifier, namely on other
document collections, potentially in other languages, with the ultimate goal of developing a
domain/language independent short-document classifier.

20 When testing the classifier on training documents only, the average of P and R is 91.9 %.

∑
=

ΠΠ
=⊆Π∧∈Π×=

i
i

jji

C

j
jij

TD
T LiallforDCwherewwfW

1
...,,2,1)()(

Document Classification in a Digital Library

 -27-

5. AUTOMATIC DOCUMENT SUMMARIZATION

5.1. Introduction
Research in automatic document summarization is motivated by the need of applying itemsets
classifier to full-length documents. As itemsets method is designed for short documents and abstracts,
it is imperative to reduce the length of documents in the document collection by means of an
intelligent summarizer. Documents “abbreviated” by automatic summarizer can be then passed to
classifier to proceed with categorization.
Automatic document summarization also constitutes a classification problem: each sentence (or
paragraph) in a document to be summarized is either a summary sentence (paragraph) or a non-
summary sentence (paragraph). Class collection is restricted to two categories in this case.
It is imperative to define basic summary types:
a) Indicative: Indicative summaries give brief information on the central topic of a document (useful

in IR applications, such as giving an indicative summary of documents retrieved by a search
engine). Indicative summary is typically 5-10 % of the original text.

b) Informative (substantive): Informative summaries provide a substitute for full document
(“surrogate”, “digest”), retaining important details, while reducing information volume.
Informative summary is typically 20-30 % of the original text.

c) Evaluative: Evaluative summary captures the point of view of the author on a given subject.
In the context of automatic document classification by itemsets method, we are interested primarily in
indicative summarization (indicative summarizer has the ability to preserve the critical portion of the
content); however, for automating the task of document summarizing in a digital library, informative
summaries are needed, in order to maintain coverage of a topic.

5.2. Approaches to Document Summarization
Summary is either fixed-length (limited by some portion of document length, say 10 %) or best-length
(no length limit is applied). Fixed-length summary will be preferred for the purpose of subsequent
document categorization by itemsets method. Optimum length of documents being fed to itemsets-
classifier is still a question of further research.
The following methodologies are most commonly used by document summarizers:

• Sentence length cutoff21;
• Cue phrases22;
• Sentence position in a document / paragraph;
• Occurrence of frequent words;
• Relative position of frequent terms within a sentence;
• Words in capital letters (uppercase words)23;
• Occurrence of title words24;
• Author-supplied abstract25;
• Intra-document links between passages of a document.

The importance of term frequency for document summarization has been recognized by Luhn [26] as
early as in 1958. Luhn observes that relative position of frequent terms within a sentence also
furnishes useful measurement for determining significance of sentences. Significance of sentences can

21 Short sentences tend not to be included in summaries.
22 Summary includes sentences containing any of cue phrases, such as „in conclusion“, „this letter“, „as a result“,
„in summary“, „to sum up“, „the point is“, etc.
23 Proper names, abbreviations and acronyms are often important, increasing score of a corresponding sentence.
Special attention must be paid not to include abbreviations of units of measurement (Kg, MPa, F, C, etc.)
24 80 % of significant words occurring in the title correspond to the most frequent significant words in the
document [22].
25 If an author-supplied abstract is present (heading containing the word abstract), subsequent paragraphs are
used directly as the summary.

Document Classification in a Digital Library

 -28-

therefore be expressed as a combination of word frequency and position of these words. Intelligent
summarizer should take into account linguistic implications, such as grammar, syntax, and possibly
logical and semantic relationships. Speaking strictly of word frequency and word position, wherever
the greatest number of frequently occurring different words are found in the greatest physical
proximity to each other, the probability is very high that the information being conveyed is most
representative of the document [26]. It is important to set a limit for the distance at which any two
significant words will be considered significantly related. We have coped with a similar problem
while implementing sliding-window modification (see Hynek, Ježek [3]) of the itemsets classifier.
Summary by extraction is mentioned by Kupiec, Pedersen and Chen [27]. The goal is to find a subset
of the document that is indicative of its contents (sentences are scored and those with the best score are
presented in a summary). It is important to note that extracted sentences rarely maintain narrative
coherence of the original text. Sentence extraction is treated as a statistical classification problem in
[27]. Classification function is developed in order to estimate the probability a given sentence is
included in an extract. A training set of data (i.e. corpus of documents with labeled extracts) must be
prepared manually prior to inductive learning process. A set of potential features, the classification
method and a training corpus of document/extract pairs must be established for this purpose. Simple
Bayesian classification function has been developed by Kupiec et al. [27] in order to assign for each
sentence a score, which can be used to select sentences for inclusion in a generated summary.
Resulting summaries are mainly indicative (give brief information on the central topic), with the
average length of three sentences.
Strzalkowski et al. [28] observed that much of the written text display certain regularities of
organization and style, which they call Discourse Macro Structure (DMS). Summaries are created to
reflect the components of a given DMS. Resulting summaries are coherent and readable. DMS-based
summarizer can generate both short indicative abstracts and well as longer informative digests that can
serve as surrogates for the original text. In order to make a summary intelligible, it is necessary to
extract text sections longer than simple sentences. Some studies [29] show that simply selecting the
first paragraph from a document tends to produce better summaries than a sentence-based algorithm.
Strzalkowski at al. [28] work on paragraph-level instead of sentences. Summaries are made up of
paragraphs extracted from the original text. Indicative summaries are scored for relevance to pre-
selected topics and compared to the classification of respective full documents. A summary is
considered successful if it preserves the original document’s relevance or non-relevance to a topic. By
analogy, we can use the same evaluation method upon classifying original documents and their
summarized counterparts by the itemsets classifier.
An interesting approach to document summarization is presented by Salton et al. [30], generating
intra-document links between passages of a document, using these linkages to characterize the
structure of the text. The knowledge of text structure is applied to perform automatic text
summarization by passage extraction. Intra-document links are generated by means of techniques used
by most automatic hypertext link generation algorithms. Needed to note that semantic links between
documents are used by document clustering algorithms as well (see Section 6.1.). A text relationship
map obtained by intra-document text linking may be used to isolate text passages that are functionally
homogeneous [30]. These text passages represent contiguous piece of text that is well linked
internally, but largely disconnected from the adjacent text.

5.3. Evaluation of Summarization Systems
Quality of an automatic summarizer can be measured by comparing classification of the original (full-
length) document with that of the summarized document. Classification can be compared, for
example, in terms of precision, recall or F-measure.
Besides evaluation based on classification, we may compare automatically generated extracts with
those produced by humans. We must assume that a human would be able to identify effectively the
most important sentences or paragraphs in a document. If the set of sentences/paragraphs selected by
an automatic extraction method has a high overlap with the extract generated by human, the automatic
summarizer should be regarded as effective. However, there is fairly uniform acceptance of the belief
that any number of acceptable abstracts could effectively represent the content of a single document
[31]. The essence of an idea can be captured by more than one sentence or phrase.

Document Classification in a Digital Library

 -29-

Evaluation of text summarization systems is discussed in detail by Firmin and Chrzanowski in [31].
Besides a number of other evaluation approaches, they mention degree of domain independence.
Although most authors claim some degree of domain independence, they have performed tests only on
a specific type of data, such as newspaper articles [29].
Quality of a summarizer was calculated, for example, as percentage of sentence matches and partial
matches between their automatic summary and manually generated abstract [27]. The problem with
this approach is reliance on the notion of a single “correct” (“best”) abstract.
Quality of an abstract can be also measured by time required to read it. Firmin and Chrzanowski [31]
compare average time required for reading full-text documents, best summaries, and 10 % summaries.
There are many improvements that can be made to the quality of the summaries, such as higher
cohesion in sentence selection or sentence generation, and topic coverage across the set of topics
mentioned within a document.

Document Classification in a Digital Library

 -30-

6. OTHER APPLICATIONS OF ITEMSETS METHOD
The following sections describe potential usage areas of the itemsets method. Further research will be
performed to explore additional applications and new possibilities. Final results of practical
implementation will be published.

6.1. Itemsets-Based Document Clustering

6.1.1. General Concepts of Document Clustering
The issue of clustering is closely related to classification. I will focus on document clustering based on
textual contents of these entities. The goal of clustering is to maximize intra-class similarity while
minimizing inter-class similarity. Clustering thus facilitates taxonomy building, i.e. information
structuring into classes or a hierarchy of classes represented by similar entities. Clustering
technologies are described in detail by Lukasová and Šarmanová [39] – clustering methods are divided
into hierarchical (with further subdivision to agglomerative and divisive) and non-hierarchical (either
optimizing or mode analysis methods).
Inter-document similarity can be expressed by a coefficient, so that we can associate each document
with at least one cluster. Should similarity exceed some threshold value, documents rank into the same
class of equivalence (cluster). Each new document can be compared, for example, with (a) the first
document of a cluster (b) an arbitrary document of a cluster (c) a representative document of a cluster
(d) several documents from a cluster, etc.
Clustering can be implemented either as hierarchical (creating a tree26 of document clusters) or non-
hierarchical. We will consider non-hierarchical clustering only. If we desire to join clusters into a
hierarchical structure, we can apply various binding methods, such as “simple binding” (i.e. linking
two most similar documents, each coming from a different cluster). By analogy, we can apply “full
binding”, comparing two clusters using two least similar documents.
Clustering technology is used, for example, by Altavista search engine for clustering of results. Query
results are substituted by a single document representing the whole web site. Such a document can be
expanded to all relevant documents by clicking on “More pages from this site“ button.

6.1.2. Document Clustering Using Itemsets
In order to enhance the original use of itemsets classification method, we can also consider its
application to document clustering. The following paragraphs contain preliminary ideas, while
practical application is the issue of my further research.
We can start document clustering process with an arbitrary document clustering method, such as k-
means or its modification, and create a variable number of clusters using pre-defined number of
documents (at least one thousand). The number of clusters thus created depends largely on threshold
values applicable to clustering method chosen for this purpose (genetic algorithm can be applied at
this phase).
Let’s denote clusters containing at least, say, fifty documents, as regular clusters. Smaller clusters will
be denoted as non-regular. We will use regular clusters for training the itemsets classifier, i.e. for
creating characteristic itemsets for each of these clusters. The same number of characteristic itemsets
will be defined for every regular cluster. This number can range from 10 to 40, for example, so that we
could guarantee existence of enough characteristic itemsets for each regular cluster.
We will retrain itemsets classifier on regular clusters every time the number of documents in a
particular cluster grows by a pre-defined figure (by applying a trigger). Itemsets classifier is retrained
for a particular cluster only, as remaining clusters are still either non-regular, or trained enough.
New documents are assigned to non-regular clusters using a traditional document clustering method
(such as k-means), until these clusters become regular. Itemsets classifier must be trained on each new
regular cluster. Time requirements should not be prohibitive, as we look for frequent (and thus
characteristic) itemsets only within the pertinent topic, not the whole document collection.

26 By defining a tree, we create a concept hierarchy. A digital library can be treated (not necessarily) as several
trees, i.e. several concept hierarchies.

Document Classification in a Digital Library

 -31-

“Cannot classify” criterion: This criterion is a must to decide whether we can classify a particular
document at all. Let’s define it as: “computed weight of document assignment to the worst class
compared to weight applicable to the best class is greater than X %”. Relatively narrow “weight band”
means small difference between document ass;ignments to various topics. An assignment in such a
case is too fuzzy. Classifier decides: cannot classify. It is to be decided what “narrow weight band”
means. We may alter the width of this band depending on the number of topics resulting from
document clustering process. We may apply some form of genetic algorithm for this purpose.
The first implementation draft of a clustering algorithm is depicted in the figure below.

Initial clustering phase(1)

Check selected cluster(s)
for coherence(2)

Break up if necessary

Fig. 6.1.2.-1: A new concept of document clustering.

Bag of
unassigned
documents

Mark clusters
as RC or NRC(3)

Train itemsets classifier on
non-trained regular clusters(4)

Take a new document, try to
classify into one or more RCs

Classified to
at least one

RC?

NRC
became

RC?

Try classification into NRC(6)

Classified
at least to
one NRC?

Create new NRC containing
this document only

Training-
size

trigger(7)

+

+

+

+

– –

–

–

Any
documents
to process?

+

–
Close-up(5)

Document Classification in a Digital Library

 -32-

Notes:
(1) Initial clustering phase is performed by means of a modified “traditional” clustering mechanism,
such as k-means using itemsets in lieu of single terms. We will first evaluate the whole corpus by
some form of tf*idf method, leaving out terms with extremely low or high frequency of occurrence, as
well as applying stop-list and stemmer. We can then represent each document by several itemsets
(achieving significant feature-space reduction).
(2) We need to ensure that one cluster does not contain semantically different documents. We can
compare each pair of documents in the cluster. In case of inconsistencies, we must break up the cluster
and put documents back into the bag.
(3) Regular clusters (RC) and non-regular clusters (NRC), depending on the number of documents
assigned to the cluster.
(4) Clusters that were marked by training-size triggers are also considered non-trained regular clusters.
(5) Close-up operations: Browse cluster by cluster and look for similarity coefficients between each
pair of documents (alike in step (2)). In the case of unsatisfactory semantic cohesion (i.e. the range of
similarity coefficient is relatively too wide), break-up the cluster, and put documents back into the bag
of unassigned documents.
Identify extremely small clusters, say of 1 or 2 documents. Put these back into the bag and change
threshold values applicable to assignment.
Run clustering for remaining documents in the bag.
Optional: Take each document from every existing (both regular and non-regular) cluster and try to
reclassify it (using itemsets classifier) into other regular clusters. We will thus ensure document
classification into those clusters that may have been created after document’s initial classification.
This is the final phase of our clustering algorithm.
(6) Using the same clustering method as in the initial phase (e.g. modified k-means).
(7) The trigger is set ON if the cluster must be re-trained, i.e. more than a specified number of
documents have been added since the last training.
The above approach ensures creating new clusters on as-needed basis, as well as break up of clusters
demonstrating low semantic cohesion.
Threshold values: By properly setting up clustering threshold values, we can tune up optimal number
of clusters upon the initial phase, or the total number of clusters in general. Trial and error approach (a
form of genetic algorithm) is viable in this case.
As an alternative, we may try to assign a new document into one class only, which results in a simpler
clustering method.
In the sense of taxonomy presented by Lukasová and Šarmanová [39], the clustering algorithm
proposed above ranks to the class of agglomerative algorithms, although we are not building a
hierarchy of documents (even if we could redesign the algorithm to a hierarchical one).

6.2. Naïve Bayes Classifier and its Modification Based on Itemsets Method

6.2.1. General Principles
Naïve Bayes classifier can be applied in such tasks where each instance x is described by a product of
attribute values (probabilities), and target function f(x) represents mapping to a finite set of values V
(classes). If we describe the new instance A by n-tuple (a1 , a2 ,an), we can describe the target value
of vMAP as:

Then, by applying Bayes theorem:

).....,|(maxarg 21 nj
Vv

MAP aaavPv
j ∈

=

)()|.....,(maxarg

).....,(
)()|.....,(

maxarg

,21

,21

,21

jjn
Vv

n

jjn

Vv
MAP

vPvaaaP

aaaP
vPvaaaP

v

j

j

⋅=

⋅
=

∈

∈

Document Classification in a Digital Library

 -33-

We can make an estimate of the parameters occurring in the above formulae:
• P(vj) – based on frequency of vj values in training data;
• P(a1,a2,....an | vj) – these values can be estimated for sufficiently large sets of training data.

The Naïve Bayes classifier is based on a simplifying assumption of conditional dependence of
attribute values of the target value. In other words, conjunction is represented by a product of
probabilities of individual attribute values, i.e.: ∏=

i
jijn vaPvaaaP)|()|.....,,(21

By substituting to the above formula, we get Naïve Bayes classifier:

∏
∈

=
i

jij
Vv

NB vaPvPv
j

)|()(maxarg

Itemsets Modification
Instead of working with word attributes (ai), we may use (characteristic) itemsets C of different
cardinality for computing vNB. Over the course of classification, we will utilize characteristic itemsets
that have been determined for each class. This leads to significant feature space reduction. Only
characteristic itemsets of a given class contained in the instance A being classified are utilized. The
formula is therefore changed to

∏
∈

=
i

j
v
ij

Vv
NBI vCPvPv j

j

)|()(maxarg , where jv
iC represents i-th characteristic itemset of the class vj, that

also occurs in the instance A being classified. An itemset C was declared frequent in the class v iff its
)|(vCP exceeded some minsupport value. For filtering characteristic itemsets out of frequent ones,

we are utilizing the same concept as in the itemsets classifier (see section 4.5.1.).
We may as well combine both methods, i.e. sum up the weights determined by NB and those
determined by itemsets’ modification of NB, designating this method NBCI (Naive Bayes Combined
with Itemsets).

6.2.2. Document Classification Using Naive Bayes classifier
In order to illustrate practical use of Naive Bayes classifier, we will apply it to document
classification. Let’s have a document collection X, a set of training documents determining yet
unknown target function f(x) and a finite set V of possible resulting values of the target function.
Attributes a1, a2....an represent individual words occurring in documents.
For the sake of simplicity, let’s assume a set of 1,000 documents, 700 representing „interesting“
documents, considering the remaining 300 documents uninteresting. The set V therefore represents
two values only, vj∈{interesting, uninteresting}. We can take a new document containing 111 words,
to be classified into one of these classes, containing the word „your“ in the 1st position, the word
„letter“ in the 2nd position, etc., and the word „date“ in the last position. Now we apply Naive Bayes
classifier:

{ }

{
)""()""()""()(maxarg

)|()(maxarg

11121
ing}uninterestg,interestin

111

1inguninterestg,interestin

jjjj
v

jij
v

NB

vdateaPvletteraPvyouraPvP

vaPvPv

j

j

=⋅⋅⋅=⋅=⋅=

⋅=

∈

∈
∏

In the end, we will get the following results:
vNB …classification via NB classifier

ki
NBIv …classification using characteristic k-itemsets (k being 1, 2, 3)

(not necessarily one class, can represent a set of classes)

The basic assumption we are making is mutual independence among words occurring at various
positions in the document. Now we must determine probabilities of P(vj) and P(ai = wk|vj). We assume
that P(a1 = wk|vj), P(a2 = wk|vj), etc. are equal to probability P(wk|vj), where wk is k-th word in
vocabulary compiled from training documents.

Document Classification in a Digital Library

 -34-

0.3
all

ingunintereststing)P(unintere

0.7
all

ginterestining)P(interest

==

==

In order to determine the probability of P(wk|vj) we will use formula (see [21]) for estimating
probability of terms in document collection, i.e.

vocabularyn
nvwP

j

k
jk +

+
=

1)|(

where |vocabulary| is the total number of distinct significant terms in the collection of training data
By analogy for itemsets modification: the total number of distinct frequent itemsets in the collection
nj – The total number of word positions in all training instances with the target value of vj.
nk – The number of wk occurrences over these word positions.

By analogy, the value of)|(j
v
i vCP j can be determined by algorithm classify (F,A) described in [24],

potentially also applying the weight factor of i

j

TwΠ specified in section 4.5.1. above.

6.2.3. Implementation of Naive Bayes document classification algorithm

Practical implementation is divided into training and classification phases.
Training phase
Input: Collection of training documents; Set of target values (categories, topics) V, where vj∈V
Output: Files containing probabilities of P(vj) and P(wk|vj)

Procedure
1. Identify all significant terms (other than stop words) contained in collection of training documents

(examples)
• Vocabulary ← set of all distinct words from the collection of training documents

2. Compute required probabilities of P(vj) and P(wk|vj)
• docsj ← subset of documents from training collection with target value of vj

• P(vj) ←
examples

docs j

• Textj ← one document formed by chaining all members of docsj
• nj ← total number of different word positions in Textj
• For each word wk from Vocabulary

• nj
k ← number of wk occurrences in Textj

• P(wk|vj) ←
vocabularyn
n

j

j
k

+
+1

Classification phase
Input: Document being classified (Doc), ai representing word occurring at i-th position
Output: The target value, i.e. category the document is classified to

• position ← all positions of words in Doc occurring in Vocabulary
• Compute value of vNB, where ∏

∈∈
=

positioni
jij

Vv
NB vaPvPv

j

)|()(maxarg

Practical implementation of NBCI classification algorithm is currently an issue of further research.

Document Classification in a Digital Library

 -35-

Modification of Naive Bayes classifier with respect to itemsets is also described by Meretakis and
Wüthrich [24]. Large Bayes classifier proposed Meretakis and Wüthrich is reduced to Naïve Bayes
classifier when all itemsets are of size one only (i.e. no feature space reduction takes place). Support of
itemsets is determined with respect to their occurrence in the whole document collection (using F as a
global set of all interesting and frequent itemsets), not a particular class (my suggestion). They work
with the largest possible itemsets, leaving out shorter itemsets contained in larger ones. In my opinion,
this idea does not work well in practice.
My draft if based on the concept of characteristic itemsets, likely with a fixed number of characteristic
itemsets for each class. Feature space dimension is reduced significantly in all cases, leading to higher
speed and lower memory requirements. Some combination with weight factors determined in itemsets
classifier might also improve classification results.

6.3. Itemsets-Based Information Search and Retrieval

6.3.1. Discovering Interesting Web Sites
We can use itemsets-based classifier for looking for potentially interesting web pages. Classification
engine can run in a background, trying to classify candidate web pages into topics of interest pre-
defined by the user (thus representing user’s profile). Threshold values must be properly set to prevent
information overload. Short average length of web pages makes practical implementation of this idea
quite interesting.
Classifier can be trained on a directory containing web pages downloaded by the user and designated
as interesting. It is also possible for the classifier to browse through “Favorites” stored by the web
browser, visit all pages in each category, get trained (i.e. create sets of characteristic itemsets) and then
look for additional pages that may fit into the corresponding category. Classifier could work in the
background and notify the user of other potentially interesting web sites. Relevance ranking must be
applied to prevent too many pages being offered to the user. Practical results of such a tool could be
improved significantly by attaching user’s rating of each web site visited by the user.
Output of the tool proposed herein would be represented by a web page containing links to
recommended interesting web sites, sorted per relevance (a special web page per category in
“favorites”).
The tool could as well run permanently in the background while browsing on the Internet, highlighting
HTML links recommended to the user, i.e. recommending web sites deemed interesting based on
previous training on favorite web pages.

6.3.2. Information Push
The classifier mentioned in 6.3.1. could be as well trained on a single area of interest, boiling down to
a simple binary classifier (interesting/uninteresting). Applying such a classifier on a scientific portal or
a research digital library, we could filter out articles of user’s interest only, pushing these to the user
by e-mail. Similar concept can be applied to the digital library described in detail in Chapter 2 –
InfoServis articles considered relevant based on user’s profile can be distributed to users by e-mail.

6.3.3. Searching for Similar Documents
We can also use itemsets classifier for finding similar documents. Let’s have document D with the
task to find similar documents in our collection. We will threat this document as an item to be
classified using itemsets method. We will therefore find classes ci…cj (possibly one class only) based
on characteristic itemsets occurring jointly in D and ci … cj. We are then looking for “candidate
similar documents”, i.e. we are looking for documents from ci…cj, containing itemsets occurring also
in D. In the case we find any documents, we sort them according to pre-defined weight criteria and
provide these to the user.
The above is based on hypothesis that similar documents can be found in the same semantic topic.
Classification threshold must be sufficiently “liberal”, so that ci…cj represent several classes, since
documents can be classified into several topics, therefore similar documents can be stored in similar
topics.

Document Classification in a Digital Library

 -36-

6.3.4. Querying
Let’s create all possible k-itemsets from query Q entered by the user. These itemsets are then matched
against characteristic itemsets associated with corresponding categories in document collection. If we
find a match with a class, documents contained in this class are given higher priority for checking
against Q – these documents will be assigned higher relevance. Maximum relevance corresponds to
“match” over the largest k-itemset.

6.4. Topical Summarizer
The issue of summarization has been discussed in detail in Section 5. It is likely that itemsets-based
approach could be also used for automatic document summarization.
Let’s suppose we have a trained itemsets classifier, i.e. we have a set of characteristic itemsets for each
class of document collection. We can regard all characteristic itemsets as phrases for a topical
summarizer. We also have a document to be summarized. We can make a sophisticated match of this
document against characteristic itemsets of every single class. The class matching the highest number
of summary sentences is the one to which document should be classified (elementary principle of
itemsets classification). Topical summary is a by-product, consisting of summary sentences containing
characteristic itemsets of that particular class. Proper thresholds must be defined for selecting
sentences as summary or non-summary.

6.5. Itemsets Spam Filter

6.5.1. Spam Filtering
The first spam filters were based on a simple principle – delete all messages containing pre-defined
keywords. Obviously, such an approach leads to deleting many important messages at the higher than
acceptable rate.
Modern spam filter is in fact a classifier trained on a single topic. By being classified into the
“unsolicited mail” class, the incoming document is labeled as a spam; it is treated as a relevant
message otherwise. Based on figures achieved by applying itemsets classifier on Reuters collection
containing one topic only (nearly 100 % precision and recall), we may anticipate successful filtering
results when applying our classifier on incoming e-mail messages. We can train the classifier on a
representative collection of unsolicited messages. Such a collection can be created ad hoc, or one of
numerous existing spam collections can be used.
We can use the table below to assess quality of itemsets-based spam filter:

Is it really a spam?
Identified as a spam? Yes No
Yes → Delete aOK berror
No → Keep cerror dOK

Relevance factor applicable to b must be several orders of magnitude (e.g. λ = 1000) higher than that
of c (i.e. we desire to prevent deleting important messages). In other words, blocking legitimate
message is λ-times more costly than misclassifying a spam message.

Classification accuracy (i.e. filter accuracy) can be defined as
dcba

da
+++

+

Precision
ba

aP
+

= , Recall
ca

aR
+

=

6.5.2. Results of a Preliminary Practical Implementation
Itemsets spam filter was tested on an “encrypted” collection of legitimate and spam messages, dubbed
PU1 corpus27, which was made publicly available contributing to standard benchmarks. Also ten-fold

27 PU1 corpus is publicly available from the publications section of http://www.iit.demokritos.gr/~ionandr

Document Classification in a Digital Library

 -37-

cross validation was introduced to reduce random variations and an effect of attribute-set size,
stemming and stop-list was taken into account.
PU1 testing corpus28 consists of 1099 messages: 481 spam messages in the English language, not
containing duplicates; 618 legitimate messages. There are no more than five messages from each
person because the reader usually saves the friend’s address into the address book in the e-mail
browser and in the future the messages from these people will not have to be examined.
Attachments and HTML tags were removed from all messages to respect privacy, in this publicly
available version of PU1, fields other than “Subject:” were removed, and each token (word, number,
punctuation mark, etc.) in the bodies or subjects of these messages was replaced by a unique number.
For example:
From: spammer@spamcompany.com
To: spamtarget@provider.com
Subject: Get rich now !
Click here to get rich ! Try it now !

becomes:
Subject: 1 2 3 4
5 6 7 1 2 4 8 9 3 4

There are actually four “encrypted” versions of the publicly available of PU1 corpus, one for each
combination of enabled/disabled stop-list and stemmer.
PU1 corpus statistics:
E-mail messages: 1099 (481 spam, 618 legitimate)
Classes: 2 (spam, legitimate)
Total length of e-mail messages: 849,977 terms
Number of unique significant terms: 24,745

Length of e-mail messages
 Minimum Maximum Average
All terms 16 15677 773
Significant terms 12 14367 590

Impact of stemming:

Number of unique significant terms after stemming:
21,702 (87.70 % of the original)

24745
21702

0

5000

10000

15000

20000

25000

30000

Impact of stop-list application:
The total length of the e-mail messages upon
applying a stop-list: 648,414 (76.29 % of the
original)

849977

648414

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

Testing
In all experiments with itemsets classifier, ten-fold cross validation was used to reduce random
variations. That is, PU1 was partitioned randomly into ten parts, and each experiment was repeated ten
times, each time reserving a different part for testing, and using the remaining nine parts for training.

28 For detailed information on PU1 corpus, see [23]

Document Classification in a Digital Library

 -38-

Results (applicable to 500 features) were then averaged over the ten runs.

Filter used (P+R) / 2
(%)

(a) Itemsets 97.63
(b) Itemsets + stemmer 97.72
(c) Itemsets + stop-list 97.54
(d) Itemsets + stemmer and stop-list 97.81

We can also experiment with 2-itemsets, 3-itemsets, and 4-itemsets. In fact, this results in very little
improvement, while increasing memory requirements and processing time enormously.

Implications
Practical implementation of an itemsets-based spam filter leads to very promising results. 2-itemsets,
3-itemsets, and 4-itemsets are not worth using because of significant time and memory requirements.
Neither stemmer nor stop-list improved precision and recall of the filter significantly.

The following spam filters can be also considered for comparison purposes:
Spam Killer (www.spamkiller.com)
Anti Spam (securedisk.netfirms.com)

Document Classification in a Digital Library

 -39-

7. CONCLUSION
This report presents a survey of issues related to document classification, clustering, and
summarization. Practical implementation of a digital library is also presented. A survey of current text
categorization algorithms is provided, along with a preliminary idea of a new classification method,
itemsets classifier, and its potential applications.
My further research will be focused namely on optimization and ramifications of itemsets document
categorization, specifically the cross-collection and cross-method testing. Viability of its application
on full-text document collections will be tested upon coming up with a suitable automatic document
summarizer, which is an issue of yet another research.
Itemsets classifier will be optimized namely by improving the stemming algorithm, making detailed
assessment of numerous input parameters and threshold values of the classifier, testing the impact of
its sliding-window modification for various document collections, optimizing itemsets-generation
phase for time and memory requirements.
My further study will be devoted to other applications of itemsets method, such as spam filtering,
document clustering, and modification of Naïve Bayes classifier. Any promising results achieved
herein will result in integrating the applicable method into the real world digital library in order to
back-up results by real-life use. Special attention will be paid to cross-cultural issues in the context of
digital libraries, i.e. significant differences between Czech and English document collections. Besides
implementing these preliminary ideas, I will try to come up with even further applications of this
promising method.
Itemsets classifier has already been subject to extensive testing (see author’s publications below),
providing quite promising results (namely in the case of Reuters-21578 collection), comparable to
those generated by SVM categorization algorithm, in terms of precision, recall and storage/time
requirements. Further work is needed to improve classification results on Czech documents, namely
unabridged full-text files.

Document Classification in a Digital Library

 -40-

8. WEB INFORMATION SOURCES

Pair-wise Comparison http://lsa.colorado.edu/cgi-bin/LSA-pairwise.html
Natural language querying http://www.ask.com
Newsgroups http://www.dejanews.com
Terminology http://www.onelook.com
Search engines http://www.searchenginewatch.com
Abstracts http://www.reserse.cz
Computer Science Technical Reports
(Digital library of the New Zealand)

http://www.nzdl.org/cstr

Clustering (CLUTO clustering toolkit) http://www.cs.umn.edu/~karypis/cluto
Text databases http://www.research.microsoft.com/research/db/debull

http://www.informatik.uni-trier.de/~ley/db/groups.html
Digital Libraries
D-Lib® Forum http://www.dlib.org/
Virginia Tech Courseware
(self-study course in digital libraries)

http://ei.cs.vt.edu/~dlib

ACM Digital Library http://www.acm.org/dl
Knowledge-based projects http://www.cs.utexas.edu/users/mfkb/related.html
Dublin Core http://dublincore.org
Springer – Knowledge and Information
Systems

http://link.springer.de/link/service/journals/10115/index.ht
m

Diglib - Implementation Issues
MySQL http://www.tcx.se

http://www.mysql.com
PHP http://www.php.cz

http://www.php.net
http://www.pruvodce.cz/kluby/php3
http://www.phpbuilder.com

Apache http://www.apache.org
http://sunsite.mff.cuni.cz/web/apache

Text corpuses
Reuters-21578 http://www.research.att.com/~lewis/reuters21578.html
Czech national corpus http://uckn.ff.cuni.cz/CZ/cnc
Medline http://www.nlm.nih.gov/databases/databases_medline.html
UCI Machine Learning Repository http://www.cs.uci.edu/~mlearn/MLRepository.html

;

Document Classification in a Digital Library

 -41-

9. REFERENCES

[1] Houser P.: „Hledat na Internetu dnes ještě neznamená najít“, Technology World, Computerworld
1-2/99, pp. 4
[2] Kosek J.: „XML: Další magická zkratka internetového světa“, Computerworld 14/99, pp. 11
[3] Jonák Z.: „Zbraně proti entropii Internetu“, Technology World, Computerworld 7/99, pp. 4
[4] Hejný J.: „Tma pod svícnem aneb informace skryté za humny“, Technology World,
Computerworld 6/99, pp. 2
[5] Čáp J.: „Katalogy vs. Indexy“, PC World 1/1999, pp. 130
[6] Date C.J.: “An Introduction to Database Systems”, Volume I, 5th Edition, Addison Wesley
Publishing Company, 1990
[7] Pokorný J.: „Databázová abeceda“, Science 1998
[8] Pola M.: „Od klínového písma k fulltextu“, Chip 9/1996, pp. 44
[9] Vaňous J.: „Interaktivita na WWW“, Softwarové noviny 1/1997, pp. 88
[10] Kroha P.: „Databáze dnes a zítra“, Softwarové noviny 9/1995, pp. 18
[11] Kukal J.: „Znalostní databáze“, Softwarové noviny 9/1998, pp. 96
[12] Kostelanský J.: „Fuzzy SQL“, Computer Echo 1/95, pp. 14
[13] Pokorný J.: „Počítačové databáze“, Kancelářské stroje 1991
[14] Lake, Tweney, Li-Ron: „Najděte to na Webu“, PC World 9/1999, pp. 76
[15] Peterka J.: „Co může Internet nabídnout?“, Softwarové noviny 10/1997, pp. 30
[16] Kosek J.: „PHP Tvorba interaktivních internetových aplikací“, Grada 1999
[17] Pokorný J., Snášel V., Húsek D.: „Dokumentografické informační systémy“, Karolinum 1998
[18] Melichar B.: „Textové informační systémy“, Vydavatelství ČVUT 1996
[19] Psutka, Kepka: „Umělá inteligence – reprezentace znalostí“, Západočeská univerzita 1994
[20] Bulletin of the Technical Committee on Data Engineering, June 1998, Vol. 21, No. 2, IEEE
Computer Society
[21] Mitchell T.M.: “Machine Learning”, McGraw Hill 1997
[22] Právník 137/98, ISSN 0231-6625, pp. 135-150
[23] Androutsopoulos I., Koutsias J., Chandrinos K.V. and Spyropoulos C.D.: “An Experimental
Comparison of Naive Bayesian and Keyword-Based Anti-Spam Filtering with Personal E-mail
Messages“, Proceedings of the 23rd Annual International ACM SIGIR 2000, Athens, Greece, pp. 160-
167
[24] Meretakis D., Wüthrich B.: “Extenting Naïve Bayes Classifiers Using Long Itemsets”, KDD-99,
San Diego, California, 1999, pp. 165-174
[25] Agrawal et al.: „Advances in Knowledge Discovery and Data Mining“, MIT Press 1996, pp. 307-
328
[26] Luhn H.P.: „The Automatic Creation of Literature Abstracts“, IRE National Convention, New
York, March 24, 1958
[27] Kupiec J., Pedersen J., Chen F.: “A Trainable Document Summarizer”, Xerox Palo Alto Research
Center, Palo Alto, CA 94304
[28] Strzalkowski T., Stein G., Wang J., Wise B.: “A Robust Practical Text Summarizer”, GE
Corporate Research and Development, Niskayuna, NY 12309
[29] Brandow R., Mitze K., Rau L.: “Automatic Condensation of Electronic Publications by Sentence
Selection”, Information Processing and Management 31(5), 1995, pp. 675-686
[30] Salton G., Singhal A., Mitra M., Buckley C.: “Automatic Text Structuring and Summarization”,
Dept. of Computer Science, Cornell U., Ithaca NY

Document Classification in a Digital Library

 -42-

[31] Firmin T., Chrzanowski M.: “An Evaluation of Automatic Text Summarization Systems”,
Department of Defense, Ft. Meade MD 20755
[32] Dumais S., Platt J., Heckerman D.: “Inductive Learning Algorithms and Representations for Text
Categorization”, CIKM 98, Bethesda MD, USA, pp. 148-155
[33] Yang Y., Liu X.: “A Re-examination of Text Categorization Methods”, SIGIR 99, 8/99, Berkley,
CA, USA, pp. 42-49
[34] Rijsbergen van C.J.: “Information Retrieval”, Butterworths, London, 1979
[35] Ortega J., Koppel M., Argamon S.: “Arbitrating Among Competing Classifiers Using Learned
Referees”, Knowledge and Information Systems (2001) 3: 470-490
[36] Schapire R.: “The Strength of Weak Learnability”, Machine Learning 5(2): 197-227, 1990
[37] Haas S., Grams E.: “Page and Link Classifications: Connecting Diverse Resources”, Digital
Libraries 98, Pittsburgh PA, USA, ACM 1998, pp. 99-107
[38] Beney J., Koster C.: „Classifying Large Document Collections with Winnow”, November 2000
[39] Lukasová A., Šarmanová J.: „Metody shlukové analýzy“, SNTL Praha, 1985

Author’s Conference Publications Related to this Report:

[1] Hynek J., Ježek K.: „Automatická klasifikace dokumentů do tříd metodou Itemsets, její modifikace

a vyhodnocení“, proceedings of Datakon 2001, pp. 329-336, Brno, 20. – 23. 10. 2001, ISBN 80-
227-1597-2

[2] Hynek J., Ježek K., Rohlík O.: „Short Document Categorization – Itemsets Method“, proceedings
of PKDD 2000, Lyon – France, 12. – 16. 9. 2000

[3] Hynek J., Ježek K.: „Document Classification Using Itemsets“, proceedings of MOSIS 2000, pp.
97-102, Rožnov pod Radhoštěm, 1. – 4. 5. 2000, ISBN 80-85988-45-3

Other publications
• Hynek J., Vítkovský R.: Anglicko-český a česko-anglický slovník výpočetní techniky a

informačních technologií, 520 pages, Fraus, March 2000
• Hynek J., Vítkovský R.: Anglicko-český a česko-anglický slovník výpočetní techniky a

informačních technologií, 2nd Edition, 560 pages, Fraus, to be published in 2002

Translated books
• AutoCAD 2002 – Podrobný průvodce, George Omura, 1050 pages, Grada Publishing,

to be published in 2002
• Delphi 6 – příručka zkušeného programátora, Marco Cantú, 650 pages, Grada Publishing,

to be published in 2002
• Delphi 6 – příručka programátora, Marco Cantú, 640 pages, Grada Publishing, to be published

in 2002
• Myslíme v jazyku C#, Tom Archer, 450 pages, Grada Publishing, 2002
• Administrace systému Linux, Steve Shah, 650 pages, Grada Publishing, 2002
• Myslíme v jazyku UML, Joseph Schmuller, 390 pages, Grada Publishing, 2001
• Myslíme v jazyku C++, Bruce Eckel, 556 pages, Grada Publishing, 2000
• Outlook 2000, Gini Courter, Annette Marquis, 568 pages, Grada Publishing, 2000
• AutoCAD 2000 – Podrobný průvodce, George Omura, 934 pages, Grada Publishing, 1999
• Delphi 4 – Podrobný průvodce programátora, Marco Cantú, 637 pages, Grada Publishing,

1999

