University of West Bohemia in Pilsen
Department of Computer Science and Engineering
Univerzitni 8

30614 Pilsen

Czech Republic

Redesign of CHAMP Control System
Using SOFA Components

Full-length version of a conference paper

Sven-Arne Andréasson, Jan Valdman

Technical Report No. DCSE/TR-2001-06
November, 2001

Distribution: public

Technical Report No. DCSE/TR~2001-06
November 2001

Redesign of CHAMP Control System
Using SOFA Components

Sven-Arne Andréasson, Jan Valdman

Abstract

This paper describes a component decomposition of a CHAMP control system
for flexible manufacturing. A new active database approach is introduced to
simplify relations and messages within the system. The system is described in
terms of SOFA software components and takes advantages of SOFA s ability
of formal description of component interfaces, relations and behavior provided
by Component Description Language. Other existing features that can support
flexible manufacturing like Dynamic Component Updating are also mentioned in
the paper.

This work was supported by the Grant Agency of Czech Republic, project No.
201/99/0244 “Developping software components for distributed environment”.

Copies of this report are available on
http://www.kiv.zcu.cz/publications/
or by surface mail on request sent to the following address:

University of West Bohemia in Pilsen

Department of Computer Science and Engineering
Univerzitni 8

30614 Pilsen

Czech Republic

Copyright (©2001 University of West Bohemia in Pilsen, Czech Republic

REDESIGN OF CHAMP CONTROL SYSTEM
USING SOFA COMPONENTS

Sven-Arne Andréasson, Jan Valdman
DCS, Chalmers University of Technology, andreasson(@cs.chalmers.se
DCSE, University of West Bohemia, valdman@kiv.zcu.cz

This paper describes a component decomposition of a CHAMP control system
Jfor flexible manufacturing. A new “active database” approach is introduced to
simplify relations and messages within the system. The system is described in
terms of SOFA software components and takes advantages of SOFA's ability of
Jformal description of component interfaces, relations and behavior provided by
Component Description Language. Other existing features that can support
flexible manufacturing like Dynamic Component Updating are also mentioned i
the paper.

1. INTRODUCTION

To achieve a control system that is easy to adjust to different physical environments a
good choice is to design it as a number of well defined components. In this paper the
CHAMP reference model is described as components using the SOFA component
software architecture. To minimize the complexity of the protocols among these
components the concept of an active database is also used. Together this gives a con-
trol system design where the need for reprogramming when used for another physical
environment is minimal.

1.1. CHAMP Overview

The CHAMP reference model was created to give a general control system that could
be used for many types of manufacturing without reprogramming of the system
(Adlemo et al, 1995). When used for a different system there should be need only for
writing routines for adjusting to different new machinery, “drivers”. Then the rest
needed adjustments are made by inserting system information in the database (Gul-
lander et al, 1998).

The reference model is built up with components as in Figure 1. Products are
described using a separate program that gives a description that consists of operations
and the order in which the operations must be performed. These descriptions are
stored in the database. The database also contains information about all the resources
and in which states they are. There are also mappings of which programs that can
perform the operations on which resource. This information is used by the scheduler
in order to decide what action to perform next by the system. Then the different states

of the resources are considered in order to only give schedules that can be performed
at the present situation in the system (Fabian et al, 1997)

@ Schodule

Opcratmu lists Pr;duct -
quirements
Current resource
Opcrauans l,‘\ablll(lCS —
Pmyammcd resource
apabllmcs

Figure 1 —The CHAMP model.

CELL CONTROL SYSTEM

Dispatcher

Physical production
system

The schedules are given to a dispatcher process that sends out orders to the different
resources. When designing the CHAMP model there has been an effort to minimize
the number of messages sent between the dispatcher and resources, “vertical” mes-
sages, but instead use messages between the different resources, “horizontal” mes-
sages (see Figure 2) (Gullander et al, 1995). Whenever changing their states the
resources update the database. Thus the scheduler always calculates the schedule
according to the actual states. The dispatcher process also has an operator interface
showing the production to the operator. The operator can intervene in the system by
gradually taking over the dispatcher’s role and thus decide about the schedule or in
the most manual mode, send his own commands to the resources (Adlemo et al,
1997). There are also possibilities of adding other programs to the system, such as
diagnosis and error recovery programs.

1.2. SOFA Overview

SOFA is a component software architecture created with an assumption that in the

future software applications will be built of many small, independent and reusable

modules. SOFA component is a black box of some type with precisely defined inter-
Handshake messages

POST HANDSHAKE READY

1
%7 9 - 13: Handshake messages
\

PREPARE
MOVE FROM TO

S W=
1
<

14: PRE _HANDSHAKE READY
15: OPERATION READY

Producer
2

[~ca [J (Rt] [nci2 |j

Figure 2 — The Resource - Dispatcher protocol

e
e

ooy

gt
ot
Ptatel

<
<

et

\ \\ permanet
X
! (S:gg;ponent replacable
part
control
[implementation part
objects
< {82‘ functional
N part

| componnet boundarylinterface wrapper [jmplementation object CM: component manager CB: component builder

Figure 3 — Internal Structure of a SOFA Component

faces. A SOFA application is a hierarchy of mutually interconnected software com-
ponents. An application is created just by a composition of bought components
perhaps with great reuse of already owned components (Plasil et al, 1998).
Components are described in Component Description Language (CDL) that is a high
level structured language capable to describe component structure (interfaces,
frames, architecture, bindings) and behavior (protocols, state machines) (Plasil et al,
1999).

SOFA framework allows upgrading of components at runtime via Dynamic Compo-
nent Updating (DCUP) features. At runtime, each component consist of permanent
and replaceable part, as it is shown in Figure 3.

2. SOFA DECOMPOSITION OF CHAMP

Component decomposition of CHAMP
with beneficial usage of active data-
base can considerably simplify the <
control loop, easily describe relations
between modules and thus allows more notifier) _ g
compact and clear control system. This | database - - _

is a third generation design of A
CHAMP/FMS, moving from an -
unstructured message-passing model,

via modular TCP/IP-based client/ - - control flows — dataflows
server model towards a middleware
component architecture.

scheduler

dispatcher

resource[i] ¢ = = = =4

Figure 4 — SOFA Decomposition of

2.1. Concepts

The component decomposition provided in this paper is based on “active database”
approach. It means that there is a possibility for a control loop where all control infor-
mation is propagated only in one direction. The feedback information of the con-
trolled system is provided only by updates of a central database. Compared to
previous version of CHAMP (Andréasson, 2001), the “vertical” commands are
reduced even further: all “upwards” commands are removed and replaced by the
active database approach.

Some modification also reflect the benefits and limitations of SOFA architecture.

2.2. Components

This section provides an informal description of each component and explain in more
detail its function. A formal SOFA description using CDL is provided in the next
chapter.

2.2.1 Active database

The database contains the state of whole manufacturing cell and all information about
products, resources, operations and programs. Active database is a composition of a
regular relational database and a wrapper that monitors incoming updates and notifies
subscribed components about the corresponding updates. Thus the dispatcher is noti-
fied about state changes.

Since regular relational databases are not active, we introduce a notifier component.
This component monitors database updates and notifies other components that have
subscribed for certain variable changes. Components can subscribe for changes of
wanted variables. For example, the dispatcher can subscribe for change of “running
state” variable of a given resource in order to recognize an end of moving operation
etc. Also the operator interface can be updated; the point here is that both the dis-
patcher and the operator must have the same view of the cell.

2.2.2 Scheduler

Scheduler is responsible for giving the possible operations to be performed when
asked by the dispatcher. It prevents possible deadlocks by removing unsafe opera-
tions. The scheduler might also optimize the production by only choosing certain
operations.

At the beginning, the scheduler gets a list of present products in the cell. For each
product it gets an operation list that is parsed to find out which operations to perform
on the product and in which order. Scheduler also finds which resources are capable
for each operation.

2.2.3 Dispatcher

The dispatcher is an executive body of the control system. It asks the scheduler for
next possible commands and chooses one among them. Then the dispatcher sends out
appropriate orders to the corresponding resources using a high-level “vertical” proto-
col. Then it asks the scheduler again for next possible command. The dispatcher also
asks when notified that a new product has entered the cell or after a time-out.

The scheduler might send commands that can not be executed immediately. Then the
dispatcher waits until the resources are available for one of the commands and that
command is chosen.

There is also a “manual mode” when the operator chooses between the commands
given by the scheduler.

2.2.4 Resources (Movers, Producers, In/Out Buffers)

The operations needed for the products are performed by resources. To do this there
must be a NC program for the corresponding operation and resource. The products
are moved by movers between resources. During cell operation, the resources update
the database and it thus reflects inner states of the resources. Movers performs hand-
shakes with corresponding resource when getting/leaving products. These hand-
shakes follows separate “horizontal” protocols.

The resources have a main state, a run-
ning state and a handshake state. Main H@

states are RUNNING, STOPPED and |start HaNDSHAKE sTEP ?]
ABORTED and they indicate the overall "
state of the resource (see Figure 5). ™ | rrocessing_sTep
T
> END_HANDSHAKE ~
o o e, j
W .

(_ABORTED (RUNNING)

s

7

ABORT

Figure 7 — Handshake states for a Re-
source

® [e |

MOVE_FROM_TO o
D
N

(_sToppED MOVING_TO_GET
Figure 5 — The Main States for a Resource

|

reflect the progress of production. They o
are IDLE, PREPARING, LOADING, | handshake
LOADED, PROCESSING, FINISHED,

UNLOADED and UNCERTAIN (see Fig-

ure 6). LOADED

When the main state is RUNNING, we Svne READY TO GET
. . . YN — 1
can identify several running states that |g % -

OADING

SR

N

MOVING_|

SYNG " TO_DELIVE

R = — —

handshake o
states

LOADING N

END_HANDSHAKE j 77777 Figure 8 — The states for a Mover

M

o3
Py
m
T
>
Py
m
o]
%
m
4

Py
pd
g
-<
—

i

START_PRE_HANDSHAKE T

M
UNLOADING

@

LOADED

PROCESSING

BEFORE

ﬁ

;
i

PROCESSING_STEP

PREPARE I B
D

FINISHED

HANDSHAKE_STEP_READY j_ _

R
~
@<>—| PROCESSED_STEP
@® UNLOADING | —

Figure 6 — States for Main State RUNNING ~ Figure 9 — Handshake states for a Movel

START_POST_HANDSHAKE
M

In running states LOADING and UNLOADING there occur resource-to-resource
handshakes that can be described in terms of handshake states (see Figure 7).

A Mover can act as a Resource and subsequently have the same states and events as
described above. However, when acting as a Mover it can also behave as the state
machine described in Figure 8. Then its handshake states are described as in Figure 9.

2.2.5 Communication

Due to the database the communication is different then in Figure 2. Instead it will be
like in Figure 10.

Let us look at a typical command:

At the beginning, the dispatcher sends a “prepare” command to resource P2 (see Fig-
ure 2). P2 responds by internal state changes that are visible in the database. Later,
the dispatcher sends a “move from to” commands to mover M. M responds also by
internal state changes, moves to P1, starts a handshake with P1 to get a products.
During this stage, both P1 and M update their state changes in the database. Then M
moves with the product to P2 and starts another handshake to leave the product; state
updates of M and P2 occur.

All feedback is provided through the database. The dispatcher monitor state updates
and mirrors the states of the resources. Although all state changes are recognized and
shown on the operator's interface, only certain stage changes will cause the dis-
patcher to take new actions. In case of problems (time-outs etc.) it starts some error
recovery actions.

2.2.6 Initial Cell setup

At the very beginning the database component is started because it acts as a server for
all other objects (in SOFA terms, it has only provides-type interfaces). Then all
resources in the cell log on the database and register their state. Each resource is rep-
resented by one SOFA component. Then the scheduler is started and it also logs on
the database. Now the dispatcher can be started; it logs on the database, there it finds
present resources (i.e. cell configuration) and logs on each resource. At last, the noti-
fier component is instantiated; it has all interfaces of requires-type, so this must be
the last instantiated component.

2.2.7 Limitations

The model of a control system provided here has some simplification to make the
ideas simple. All issues mentioned bellow are theoretically solved, described in ear-

SChedUIer
[

Database

1: PREPARE i

2 MOVE FROM TO AL

3-7: Handshake messages >
9-13: Handshake messages ' | Robot D | NC #2 Ij

Figure 10 — The Resource - Dispatcher protocol with active database

lier papers and can be integrated into the model. These simplification originate both
in SOFA and CHAMP and cause some limitations of the control system:

1. At present, there can be just one product in a resource at a time, so this version is
not suitable for assembly cells. Needed extensions are not too difficult; it is only the
resource implementation that has to be extended.

2. Resource to resource communication (i.e. handshake messages) can not be
described using SOFA terms. Currently, SOFA allows only static component binding
(described in CDL) and any temporary dynamic bindings are not supported yet.

3. To keep this SOFA/CHAMP model simple, we omit error recovery and other fea-
tures that are essential for any realworld control system.

3. SOFA DESCRIPTION OF CHAMP

Here follows a formal description of the control system components using SOFA
notation. SOFA describes modular systems in terms of interfaces and component
architecture. A component type (in SOFA called a frame = abstract data type) is spec-
ified by its name, incoming and outgoing interfaces (i.e. by keywords provides and
requires) and other optional features like behavior protocols or state machines.

As it was explained in the previous paragraph, we omit error recovery, diagnostic and
operator interface that would make the description more complex and more difficult
to read and understand.

3.1. Database Component

The database component is a passive frame databasef{

SOFA component abstraction for a provides db4scheduler s,
DBMS. Together with the notify compo- dbdresources ri],
. . dbdnotify n;
nent it forms the “active database” com-
ponent. The database component
provides interfaces required by the
scheduler, the resources and the notifier

component.

3.2. Scheduler Component

Since CHAMP is intended for experi- frame scheduler{

menting with different scheduling algo- ~ redquires databasedscheduler db;
rithms, the SOFA description gives only }promdes schedulerddispatcher d;
the interfaces. For example, SOFA/ ;i icrfice dpdscheduler(

DCUP allows to replace the scheduler product[] getProducts();

with different versions during runtime operationList getOperations (produ
and thus enables experiments with differ- : getResources (operation);

ent SChedulmg algorlthms. . interface schedulerd4dispatcher {
In general, the scheduler get all its infor- o nangstructure getwext () ;
mation only from the database using }

db4scheduler interface and then, when

asked by the dispatcher via schedulerddispatcher interface, it creates some sched-
uling information.

3.3. Resource Components

Resources are SOFA components representing the hardware components of the sys-
tem. Resources talk to the dispatcher, to the database and to each other. All types of
resources (including movers and buffers) share the same component frame but the
usage of interfaces and state machines or behavioral protocols can differ.
A resource component uses (possibly multiple) state machine to check the correct-
ness of incoming method calls. In SOFA, state machines or behavioral protocols can
work in interface-scope (to check one interface call protocol) or in frame-scope (to
check one component) or in architecture-scope (to check interaction of several com-
ponents).
frame resource { // R/M/H StateUpdate after each transition !!!
requires dbdgerm db;
provides resourceddispatcher d,

moverddispatcher m,
hadshakeInterface h;

state machine running { // Resource
initial=idle;
idle: d.prepare -> preparing;

preparing: <internal> -> prepared;
prepared: h.start pre_handshake -> loading;

loading: h.end handshake -> loaded;

loaded: <internal> -> processing;
processing: <internal> -> finished;

finished: h.start post handshake -> unloading;

unloading: h.end handshake -> idle;

}

state machine resource handshake { //hsh separated from resource
initial = before;

before: h.start_handshake_step -> processing_step;
processing step: <internal> -> processed step;
processed step: h.start handshake step -> processing step;

h.end_handshake -> running.loaded;
}
state machine running{ // mover+handshake together
initial=idle;

idle: d.moveFromTo->moving to get;
moving to get: <internal> -> ready to get;
ready_to get: h.sync -> loading;
loading: <internal> -> before loading;
before loading: <internal> -> processing step;
processing step: <internal> -> processed step;
processed step: h.handshake step ready -> processing step;
h.handshake step ready -> loaded;
loaded: <internal> -> moving between;
moving between: <internal> -> ready to deliver;
ready to deliver: h.sync -> unloading;
unloading: <internal> -> before unloading;

before unloading: <internal> -> processing step U;
processing step U:<internal> -> processed step U;
processed_step U: h.handshake_ step ready -> processing step U;
h.handshake step ready -> idle;

// main state methods: interface db4dresource {

abort(); getResources () ;

stop () getResourceData (resource) ;
resume () ; setResourcePresent () ;

// running state methods: updateRunningState () ;
prepare(); updateMainState () ;

// for recovery: updateHandshakeState () ;
startPreHandshake () ; state machine{...}

startProcessing() ; }
startPostHandshake () ;

setRunningState(); interface mover4ddispatcher {
getState () moveFromTo () ;
// for recovery:
state machine { moveTo () ;// without product
initial=running; moveBetween();// with a produc
final=aborted; }
running: prepare->running, interface resourceddiagnostic{
stop->stopped, whoAreYou () ;
abort->aborted, getVariables ()

startPreHandshake->running, getVariable();
startProcessing->running, !}
startPostHandshake->running,
resume->running;

stopped: resume->running,
setRunningState->stopped,
stop->stopped,
abort->aborted;

3.4. Dispatcher Component

The dispatcher is the frame dispatcher {

executive manager of requires scheduler4dispatcher s,

the system; it is an resourceddispatcher r[],
b

t t that databaseddispatcher d;
active componen a provides dispatcherdnotify n,

makes client connec- operatoraccess o;
tions to all resources,

and to the scheduler. state machine ({

For the control, the initial=started;

Kk started: d.getResources () -> no_work;
no“dedge . about no work: s.getNext -> try work;

resource's internal try work: <internal> -> new task;

states have been mini- n.runningStateUpdate -> no_ work
mized (see active data- n.runningStateUpdate -> try wor

n.mainsStateUpdate -> try work,
<timeout> -> no work,

X . n.newbProduct -> no_work;
operator interface, it new task: r[r2] .prepare -> dest prepared;
has to know all states dest prepared: r[m].moveFromTo(rl,r2) -> no wc
that the operator is !

interested in.

base). However, since
it provides human

3.5. Notifier Component

The notifier together with the database com- interface dbdnotify {

ponent forms an active database component. 9etNextUpdate () ;

This component can be implemented b3_’ using interface dispatcherdnotify |
trigger features of a DBMS or by polling the i ostatevpdate (germ, state)
database. The notifier is used to supply the mainstateupdate (germ,state);
dispatcher with necessary changes in the sys- newProduct();

tem. }

As it was suggested before, it can use some

trigger features of a DBMS or it can acts like an wrapper of a DMBMS: for example,
it can monitor passing SQL commands and detect changes of certain tables, rows or
attributes.

4. CONCLUSION

The paper provides a component-based description of the CHAMP control system
using SOFA terms. The paper also introduces the “active database” approach that is
used to simplify control structures of the original CHAMP model. Simultaneously we
have also shown that we can get a good system decomposition using components.
Now, when whole control system is described in CDL, there is a comprehensive
decomposition, clear component interfaces and clear component relations (bindings)
and interaction. SOFA brings also the necessary formal level of CHAMP description.
More benefits of SOFA decomposition originate in DCUP: advantages of multiple
versions, multiple parallel implementations of each component and instant compo-
nent upgrading/exchange are straightforward either for experiments and simulations
during further CHAMP development or for realworld control systems.

5. REFERENCES

1. Adlemo A, Andréasson S-A, Fabian M, Gullander P, Lennartsson B. Towards a Truly Flexible Manu-
facturing System. Control Engineering Practice, vol. 3, no. 4, 1995, pp. 545-554.

2. Adlemo A, Andréasson S-A, Gullander P, Fabian M, Lennartsson B.Operator Control Activities in
Flexible Manufacturing Systems. International Journal of Computer Integrated Manufacturing, vol. 10,
no. 1, 1997, pp. 221-231.

3. Andréasson S-A, Brada P., Valdman J: Component-based Software Decomposition of Flexible Manu-
facturing Systems. In: Proceedings of ICCC 2000, Podbanske, 2000.

4. Andréasson S-A. Commands And States In The Champ Dispatcher. will appear in Proceedings of
INCOM 2001, Vienna, 2001.

5. Fabian, M, Lennartsson B, Gullander P, Andréasson S-A, Adlemo A. Integrating Process Planning and
Control of Flexible Production Systems, in ECC'97, Brussels, Belgium, July 1997.

6. Gullander P, Fabian M, Andréasson S-A, Lennartsson B, Adlemo A. Generic Resource Models and a
Message-Passing Structure in an FMS Controller. Proceedings of the 1995 IEEE International Confer-
ence on Robotics and Automation, ICRA’95, Nagoya, Japan, May 1995, pp. 1447-1454.

7. Gullander P, Andréasson S-A, Adlemo A. Database Design for Flexible Manufacturing Cells. Control
Engineering Practice, vol. 6, no. 11, November 1998, pp. 1411-1420.

8. Plasil F, Balek D, Janecek R: SOFA/DCUP Architecture for Component Trading and Dynamic Updat-
ing. In; Proceedings of ICCDS 98, Annapolis, IEEE CS, 1998.

9. Plasil F, Visnovsky S, Besta M: Behavior Protocols and Components. Tech. report No. 99/2, Dept. of
SW Engineering, Charles University, Prague, 1999.

	xx.pdf
	REDESIGN OF CHAMP CONTROL SYSTEM USING SOFA COMPONENTS
	1. INTRODUCTION
	1.1. CHAMP Overview
	Figure 1 �–The CHAMP model.
	Figure 2 �– The Resource - Dispatcher protocol

	1.2. SOFA Overview
	Figure 3 – Internal Structure of a SOFA Component

	2. SOFA DECOMPOSITION OF CHAMP
	Figure 4 – SOFA Decomposition of CHAMP
	2.1. Concepts
	2.2. Components
	2.2.1 Active database
	2.2.2 Scheduler
	2.2.3 Dispatcher
	2.2.4 Resources (Movers, Producers, In/Out Buffers)
	2.2.5 Communication
	Figure 10 �– The Resource - Dispatcher protocol with active database

	2.2.6 Initial Cell setup
	2.2.7 Limitations

	3. SOFA DESCRIPTION OF CHAMP
	3.1. Database Component
	3.2. Scheduler Component
	3.3. Resource Components
	3.4. Dispatcher Component
	3.5. Notifier Component

	4. CONCLUSION
	5. REFERENCES
	1. Adlemo A, Andréasson S-A, Fabian M, Gullander P, Lennartsson B. Towards a Truly Flexible Manuf...
	2. Adlemo A, Andréasson S-A, Gullander P, Fabian M, Lennartsson B.Operator Control Activities in ...
	3. Andréasson S-A, Brada P., Valdman J: Component-based Software Decomposition of Flexible Manufa...
	4. Andréasson S-A. Commands And States In The Champ Dispatcher. will appear in Proceedings of INC...
	5. Fabian, M, Lennartsson B, Gullander P, Andréasson S-A, Adlemo A. Integrating Process Planning ...
	6. Gullander P, Fabian M, Andréasson S-A, Lennartsson B, Adlemo A. Generic Resource Models and a ...
	7. Gullander P, Andréasson S-A, Adlemo A. Database Design for Flexible Manufacturing Cells. Contr...
	8. Plasil F, Balek D, Janecek R: SOFA/DCUP Architecture for Component Trading and Dynamic Updatin...
	9. Plasil F, Visnovsky S, Besta M: Behavior Protocols and Components. Tech. report No. 99/2, Dept...
	Figure 5 �– The Main States for a Resource
	Figure 6 �– States for Main State RUNNING
	Figure 7 �– Handshake states for a Resource
	Figure 9 �– Handshake states for a Mover
	Figure 8 �– The states for a Mover

