

Ruby

Marek Paška

Why “scripting” language?

Language Statements ratio Lines ratio
C 1.00 1.00
C++ 2.50 1.00
Fortran 2.50 0.80
Java 2.50 1.50

6.00 6.00
6.00 6.25

Python 6.00 6.50

Perl
Smalltalk

Ruby and Python History

● Appeared in 1995
● Designed by

Yukihiro
Matsumoto

● De-facto standard:
C-based interpreter
implementation

● Appeared in 1991
● Designed by Guido

van Rossum
● De-facto standard:

C-based interpreter
implementation

“benevolent dictator for life”

Ruby Properties

● Very high level language
● Everything is accessible at run-time

(actually no compile/run-time difference)
● Everything is object
● Built-in arraylist, hashtables

Ruby Coordinates

● Ruby is two parts Perl, one part Python,
and one part Smalltalk

● But:
– not as ugly as Perl
– fully object-oriented (unlike Python)
– straightforward syntax (unlike Smalltalk)

Type System

● Duck typing is a style of dynamic typing
in which an object's current set of
methods and properties determines the
valid semantics, rather than its
inheritance from a particular class.

● If it walks like a duck and quacks like a
duck, I would call it a duck.

Type System - Classes

● class definition is never closed
● example: adding method to built-in String

class

class String
def twice()

return (self + " ") * 2
end

end

s = "hallo"
puts s.twice #prints "hallo hallo"

Type System - Methods

● adding method to one particular instance
class << s

def twice()
(self + "\n") * 2

end
end

puts s.twice

● method alias (one page AOP)
class String

alias :toString :to_s
end

Type System - Inheritance

● No multiple inheritance
● Modules – interfaces on steroids
● Mixins

module M
def m()

"hallo from module"
end

end

class C
include M

end

c=C.new
puts c.m

Type System - Attributes

class Tuple
def initialize(a,b)

@a = a
@b = b

end

attr_reader :a
attr_accessor :b

end

f = Tuple.new(1,2)
puts f.a
f.b = 3

● No verbose getters and setters

Closures

● piece of code sent as parameter

x = [1, 2, 3, 4]

x.each {|i| puts i} #prints all items

x2 = x.map {|i| i*i}

x3 = x.select {|i| i > 2}

puts "x3:", x3

Closures - transactions

File.open('file.txt', 'w') do |file|

file.puts 'Wrote some text.'

end #file is automatically closed here

Sweet Details

● method name conventions
– if ends with “!” then changes object state
– if ends with “?” then returns boolean

s = “hallo”
s.capitalize #returns “Hallo”, s is “hallo”
s.capitalize! #returns “Hallo”, s is “Hallo”
s.empty? #returns false

Threading

● uses user-level “green” threads
– cheap
– no speedup, no slowdown
– web development: processes instead of

threads

● JRuby uses Java threads
– breaks some libraries

Strings

● No built-in unicode (because of Japan
origin)

● Strings are “binary”
● Usually utf-8 encoding (like gnome)
● No “char” data type
● Unicode “broken” in many languages

(Java, C#, Python)

Ruby on Rails

● Just a MVC framework
● “Convention over configuration”

– application layout is predefined (comfortable
for developers, cheap for maintenance)

● Zero turn-around time
● O/R mapping: design pattern

“ActiveRecord”

RoR – Sequence of
Operations

1. Create database schema in relation db
like MySQL

2. ActiveRecord classes are generated at
runtime

3. Generate CRUD version of application –
scaffolding

4. Use advantage of zero turn-around time

