Simulation Model of TTP/C
Protocol v1.0

Petr Grillinger
University of West Bohemia
Research group DSS

5.4.2004



Outline

* Motivation
- FIT project, 1 TTP/C model (v0.1)
 General TTP/C properties
- Principles, versions
* New features of version 1.0
* Design decisions

— Process communication
— Modular structure

* Implementation in Python
- Benefits and issues

* Model avalilability and restrictions




I Motivation

e Successful model of TTP/C 0.1 in C-Sim (FIT
I project, 1999-2002)

* New protocol version surpasses the verified
0.1 but so far no equivalent model exists

e TTTech (provider of TTP/C) wants the model
of newest protocol v1.0

* Verification of safety critical protocol that one
day may be used in “my car’

* Demonstration/Evaluation of new modeling
approach



TTP/C in General

Distributed communication protocol for safety

critical deployment (cars, planes, etc.)

Separation of communication (controller) and

application (host)

FT provided by communication controller:

— active/passive replication of nodes

- replication of messages (channel, node, time)

- node reintegration after failure

— error detection mechanism (EDM)

- strict timing (deadlines), synchronized global
time

Defined interface between controller and host



I TTP/C Versions

— General protocol version (high-level
specification)
- Implementation version (low-level specification)

I * Two independent version lines:

0.1 0.5 1.0
————————————eeeeeeeeee >

Cl C2
—nm—m—

C2NF
C2S



New Features of TTP/C 1.0

The core remains the same as in version 0.1
Extension of some limits: message length,
cluster size, communication period length
New message type (X-Frame), better CRC
Improved reintegration algorithm safety
Better documentation: precise and complete
Direct support of star architecture and central
bus guardian (BG)

More general MEDL structure



I Inter-Process Communication

function hooks — not very clear
* Option 1 — message passing:
- Language independent, allows distribution
- Simple and stable object interface
- High overhead, no language support
- Slightly more complicated
* Option 2 — interface (virtual methods)
- No overhead, very simple
- Run-time name resolution in Python
- Less readable and robust

I * 0.1 model uses direct function calls and



Message Handling Example

while self. receive(deadline):
| f self. message(1 d=FRAME) :

cont 1 nue

elif self. nmessage(i d=I NTERRUPT) :
br eak

elif self. nmessage(i d=CLOCK):
cont i nue

el se:
sel f. deadl i ne_exceeded()



I Modular Structure

there may be something better?

* Changed module and file name conventions:
- Like Java (one class — one module)
— Different functional levels in different directories
(packages), e.g. protocol or application

* Separated simulation and functionality:
- 2D directory structure seems too complex
— Currently: functionality in base class, simulation
added through multiple inheritance
- So far no visualization

I * Original 2D modular structure works, but



Modular Structure Example

* psim
* Protocol
e Functionality: Controller, CNI, MEDL, Frame
e Simulation: Controller, Clock
* Application
* Functionality: Host
e Simulation: Host, Cluster

e Channel
- Simulation: Bus, Star

from C2NF. Prot ocol . Functionality I nport *
from C2ZNF. Prot ocol . Si nul ati on | nport *



Benefits of Python
Implementation

Configuration files are scripts
- More powerfull than simple data files

Package-based modular structure
- Namespaces, clear hierarchy

Dynamic run-time name resolution:
— No abstract methods / classes

Direct access to data produced by TTPplan
and TTPbuild (serialized Python classes)
Much shorter source codes

Possibility of portable GUI (tkinter)



Issues of Python
Implementation

Low performance but can be improved:
- Use JIT compiler
- Use thread-free P-Sim implementation

Not portable to most HW platforms

- Can be used for algorithm-level verification

- Cannot be used to design whole applications on
model and transfer them later to HW

Relatively unknown language
Model developed under NDA with several
restrictions



I State of the Art

- C2NF model without local BG
— Bus channel implementation
— Cluster setup framework
* What is under development:
- Local bus guardian
- Import from TTPplan data files
* Near future
- C2S model
* Far future
- Star architecture

I * What is complete:



I Availability of the Model

sponsored by TTTech:

- Is may not be published (source or otherwise)

- Some of the specifications used during
development are not public (most are)

* The model can be used for research and
obtained results may be published

* Verification of FT is not part of agreement
with TTTech

I * The model is developed under NDA and



I Conclusions

- Short development and debugging time

* Next model will be probably in C or Java:
- Possible transition to industrial HW platform

- Performance
— No restriting NDA

* No FT verification has been done so far

- It will be performed using FI after the model is
finished
- Especially star architecture is worth testing

I * Python is superior prototyping language



