
Simulation Model of TTP/C 
Protocol v1.0

Petr Grillinger
University of West Bohemia

Research group DSS

5. 4. 2004



Outline

● Motivation 
– FIT project, 1st TTP/C model (v0.1)

● General TTP/C properties
– Principles, versions

● New features of version 1.0
● Design decisions

– Process communication
– Modular structure

● Implementation in Python
– Benefits and issues

● Model availability and restrictions



Motivation

● Successful model of TTP/C 0.1 in C-Sim (FIT 
project, 1999-2002)

● New protocol version surpasses the verified 
0.1 but so far no equivalent model exists

● TTTech (provider of TTP/C) wants the model 
of newest protocol v1.0

● Verification of safety critical protocol that one 
day may be used in “my car”

● Demonstration/Evaluation of new modeling 
approach



TTP/C in General

● Distributed communication protocol for safety 
critical deployment (cars, planes, etc.)

● Separation of communication (controller) and 
application (host)

● FT provided by communication controller:
– active/passive replication of nodes
– replication of messages (channel, node, time)
– node reintegration after failure
– error detection mechanism (EDM)
– strict timing (deadlines), synchronized global 

time
● Defined interface between controller and host



TTP/C Versions

● Two independent version lines:
– General protocol version (high-level 

specification)
– Implementation version (low-level specification)

0.1 0.5 1.0

C1 C2
C2NF
C2S



New Features of TTP/C 1.0

● The core remains the same as in version 0.1
● Extension of some limits: message length, 

cluster size, communication period length
● New message type (X-Frame), better CRC
● Improved reintegration algorithm safety
● Better documentation: precise and complete
● Direct support of star architecture and central 

bus guardian (BG)
● More general MEDL structure



Inter-Process Communication

● 0.1 model uses direct function calls and 
function hooks – not very clear

● Option 1 – message passing:
– Language independent, allows distribution
– Simple and stable object interface
– High overhead, no language support
– Slightly more complicated

● Option 2 – interface (virtual methods)
– No overhead, very simple
– Run-time name resolution in Python
– Less readable and robust



Message Handling Example

while self._receive(deadline):
if self._message(id=FRAME):

continue
elif self._message(id=INTERRUPT):

break
elif self._message(id=CLOCK):

continue
else:

self._deadline_exceeded()



Modular Structure

● Original 2D modular structure works, but 
there may be something better?

● Changed module and file name conventions:
– Like Java (one class – one module)
– Different functional levels in different directories 

(packages), e.g. protocol or application
● Separated simulation and functionality:

– 2D directory structure seems too complex
– Currently: functionality in base class, simulation 

added through multiple inheritance
– So far no visualization



Modular Structure Example

● psim
● Protocol

● Functionality: Controller, CNI, MEDL, Frame
● Simulation: Controller, Clock

● Application
● Functionality: Host
● Simulation: Host, Cluster

● Channel
– Simulation: Bus, Star

from C2NF.Protocol.Functionality import *
from C2NF.Protocol.Simulation import *



Benefits of Python 
Implementation

● Configuration files are scripts
– More powerfull than simple data files

● Package-based modular structure
– Namespaces, clear hierarchy

● Dynamic run-time name resolution:
– No abstract methods / classes

● Direct access to data produced by TTPplan 
and TTPbuild (serialized Python classes)

● Much shorter source codes
● Possibility of portable GUI (tkinter)



Issues of Python 
Implementation

● Low performance but can be improved:
– Use JIT compiler
– Use thread-free P-Sim implementation

● Not portable to most HW platforms
– Can be used for algorithm-level verification
– Cannot be used to design whole applications on 

model and transfer them later to HW
● Relatively unknown language
● Model developed under NDA with several 

restrictions



State of the Art

● What is complete:
– C2NF model without local BG
– Bus channel implementation
– Cluster setup framework

● What is under development:
– Local bus guardian
– Import from TTPplan data files

● Near future
– C2S model

● Far future
– Star architecture



Availability of the Model

● The model is developed under NDA and 
sponsored by TTTech:
– Is may not be published (source or otherwise)
– Some of the specifications used during 

development are not public (most are)
● The model can be used for research and 

obtained results may be published
● Verification of FT is not part of agreement 

with TTTech



Conclusions

● Python is superior prototyping language
– Short development and debugging time

● Next model will be probably in C or Java:
– Possible transition to industrial HW platform
– Performance
– No restriting NDA

● No FT verification has been done so far
– It will be performed using FI after the model is 

finished
– Especially star architecture is worth testing


